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Paper 1, Section II
38B General Relativity

A Klein-Gordon scalar field ¢ satisfies the equation of motion V¥V ¢ = m?¢ where
m is a constant. Its stress-energy tensor takes the form:

T = 5 [VubVa6 + 00 (AV,0976 + B#) | ()

(a) Using the fact that the stress-energy tensor is covariantly conserved, determine
the value of the parameters A and B.

(b) Using the Einstein equation, write an expression for the Ricci curvature R, in
terms of ¢ and its derivatives, in a D > 2 dimensional spacetime. Simplify your answer
as much as possible.

(c) Now consider a general stress-energy tensor of the form (x), with A and B not
necessarily given by the values you have found above. The stress-energy tensor is said to
satisfy the weak energy condition if

T XPXY > 0

for all timelike vectors X*. Find the most general constraints on A and B such that (x)
satisfies the weak energy condition, and show that your answer to part (a) satisfies these
constraints.

[Hint: you may find it useful to work in normal coordinates and furthermore to choose
these coordinates such that X* = §o*.]

Paper 2, Section 11
38B General Relativity
Consider the geometry of 2-dimensional hyperbolic space:
ds® = a*(dr? + sinh® r d¢p?)
where a is a constant. The coordinates have ranges 0 < r and 0 < ¢ < 27.

(a) For a general metric with components g,g, give an expression for the Christoffel
symbols, I‘g,y, in terms of the metric components and their derivatives. Use this formula
to calculate the Christoffel symbols for the metric above.

(b) Using the geodesic equation, show that lines of constant ¢ are always geodesics,
but circles of constant r > 0 never are.

(c) Calculate both of the nonzero components of the Riemann tensor R*g+s.
[You may use: R*gys 1= IG5 — OsT'G, + Fgafﬁv - Fgw 55‘]
(d) Show that the Ricci scalar R is constant.

Part 11, Paper 1 [TURN OVER]
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Paper 3, Section II
37B General Relativity

(a) Let M be the mass of a star and consider a photon with impact parameter b
which passes near the star. In this problem, by following the steps below, you will derive
the general relativistic formula for the total angle §¢ by which the photon bends.

The general relativistic formulae for equatorial null orbits in the Schwarzschild
metric (in units where ¢ = G = 1) are:

1., 1, 1 2M Y\ L?
= =-F =-(1-—7)=
SV =5 V() ( )

where dot is derivative with respect to proper time, and L = r2q§ is the angular momentum.

(i) Write down the geodesic equation for the trajectory of the photon, para-
meterized by the ¢ coordinate. Switch to an inverse radial coordin-
ate y = 1/r. By differentiating the geodesic equation by ¢, show that
y" +y = 3My?. Here ' denotes d/d¢.

(ii) Solve this equation in the flat space regime (M = 0), for a trajectory for
which r - oo at ¢ = 0, 7.

(iii) Using perturbation theory in M identify a differential equation for Ay, the
first order perturbation of y due to nonzero M.

(iv) Find the homogeneous and particular solutions for Ay.

(v) Taking r — oo at ¢ = 0, show that the leading order result for the bending

of the light ray is:

AM
09| ~ D

(b) In Nordstrém’s theory of gravitation, the metric is required to take the form

Guv = ¢277,u1/a

where 7, is the Minkowski metric and ¢ > 0 is a dynamical scalar field which approaches
the value 1 far from any isolated gravitating system.

Write down the equation satisfied by an affinely parameterised geodesic of the metric
9uv- What can you deduce about the bending of light rays around a star of mass M in
Nordstrom’s theory? Is this result compatible with observations?

Part II, Paper 1
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Paper 4, Section II
37B General Relativity
(a) Consider a linearized gravitational plane wave of the form

A ik,xP
hyw = Hype™

where H,,, is independent of %, h,, = h;, — %hnw/ is the trace-reversed perturbation to
the Minkowski metric 7,,,, and we are using Lorentz gauge 0"h,, = 0.

(i) What restrictions are there on k* and H,,? Justify your answers.

(ii) Derive the residual gauge symmetry remaining in H,,,, even after imposing
Lorentz gauge.

[You may use: Gy = féapapﬁ,w + 8”8(#51,”) — %nwapaaﬁpa.]

(b) Suppose that LIGO detects the merger of two black holes, each of which is about
30 solar masses, from an event which takes place approximately a few billion lightyears
away.

(i) Estimate the frequency (in Hz) of the gravitational wave source, from the
perspective of a hypothetical observer close to the binary system and at
rest with respect to it, during the last orbit of the black holes before they
merge. In solving this problem you may use the (Newtonian) Kepler’s law:

2
4me 4

T? = ——73.
aM "

Here T is the period and for purposes of estimation you may take r =
6MG/c?, the general relativistic formula for the inner-most stable circular
orbit for a test particle in a Schwarzschild geometry. As these assumptions
are inexact, do not keep more than one significant figure.

[You may use: ¢ ~ 3.0 x 108 m/s, G ~ 6.7 x 1071 m3/(kgs?), and the
solar mass Mg = 2.0 x 103 kg.]

(ii) Write down a Big Bang metric suitable for calculations in our universe,
which is spatially flat. You may leave the scale factor a(t) as an undeter-
mined function (where ¢ is the proper time).

Let t. be the time of emission, and t, be the time of detection. Write down
a formula for the frequency of the gravitational wave as it is observed by
LIGO, from the perspective of Earth’s local reference frame. [For purposes
of solving this problem, you may treat the Earth and the binary black hole
system as both being at rest relative to the cosmological frame of reference.]

Part 11, Paper 1 [TURN OVER]
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Paper 1, Section II
38D General Relativity

A Milne universe is an isotropic, homogeneous model of cosmology which has
negative spatial curvature, k = —1, and an expanding scale factor, a(t) > 0, even though
there is no matter or radiation (7,3 = 0) and no cosmological constant (A = 0).

(a) Write down the FLRW metric for this cosmological model. Calculate the scale
factor a(t) as an explicit function of the proper time ¢ of a stationary observer.

(b) Verify that the singularity as a — 0 is a coordinate singularity by calculating
the Kretschmann scalar. [Hint: You may find it useful to relate the Riemann tensor to
the Ricci tensor.]

(¢) By constructing an appropriate coordinate transformation, show that the Milne
universe is equivalent to the interior of the future light-cone of a point p in Minkowski
space-time. What do the spatial isometries of the hyperbolic ¢ = const. slices correspond
to in this Minkowski space-time?

[Hint: You may wish to use the following formulae:
a+k
a2

3 — A =8mp, (Friedmann I)

2ai + a* + ka®> — A = —87P. (Friedmann IT)

Riemann tensor in normal coordinates:

1
Raﬂuu = i(aﬁa,ugoa/ + aozaugﬂu - 8(18“9[311 - aﬁaugau)- ]

Part 11, Paper 1 [TURN OVER]
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Paper 2, Section II
38D General Relativity

(a) Consider a 2-sphere with coordinates (¢, ¢) and metric
ds?® = d6? + sin®0 do? .

(i) Show that lines of constant longitude (¢ = constant) are geodesics, and that the only
line of constant latitude (@ = constant) that is a geodesic is the equator (6 = 7/2).

(ii) Take a vector with components V# = (1,0) in these coordinates, and parallel
transport it once around a circle of constant latitude. What are the components of
the resulting vector, as functions of 67

(b) In units where 8wG = 1, the Einstein equation states that T,,3 = R — %gagR. Solve
for R,p in terms of T,,3 and T' = g°PT, g, in general space-time dimension n > 2.

(c) Using the symmetries of the Riemann curvature tensor, show that in n = 2 dimensions,
R.s = %gagR. [Hint: Since this is a tensor equation, it only needs to be proved in one
particular coordinate system.] Explain the implications of this if we try to define General
Relativity in n = 2 space-time dimensions.

Part II, Paper 1
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Paper 3, Section II
37D General Relativity

Recall that the Schwarzschild metric is
ds* = —(1 —2M/r)dt* + (1 — 2M/r) " tdr® + r2(d6* + sin® 0 d¢?) |

in units where ¢ = G = 1. An advanced alien civilization builds a static, spherically-
symmetrical space station surrounding a non-rotating black hole of mass M. The station
itself has mass Mg < M and is located at a radius ry > 2M (in Schwarzschild
coordinates). It occupies a very thin shell of width dr < 7.

(a) Some sodium lamps, which emit photons at a characteristic wavelength A, are
attached to the space station. In terms of rg, what is the wavelength of these photons as
seen by an observer at radius r > 5?7 What happens in the limit that rs approaches the
event horizon?

(b) What is the magnitude and direction of the proper acceleration of the space
station (i.e. the acceleration in its own instantaneous rest frame)? Verify that in the limit
rgs — 00, the magnitude is equal to the acceleration due to Newtonian gravity.

Now suppose we wish to take into account the gravitational effects of the space
station itself, even though Mg <« M. The space station has a mass per unit area of p as
measured in its own local frame of reference. However, its effective gravitational energy is
reduced by the fact that it is in a gravitational potential.

(c) What is an appropriate metric to use outside of the space station? Your answer
should indicate how the metric depends on p. Why is this justified? [Hint: You do not
need to explicitly solve the Einstein equation in order to answer this problem.]

Part 11, Paper 1 [TURN OVER]
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Paper 4, Section II
37D General Relativity

(a) Determine whether each of the following spaces is, or is not, a manifold. Justify
your answers.

(i) R?® with points identified if they are related by the transformation
(x,y, Z) - (—QJ, -Y, _z)'

(i) R3, except that the closed ball of all points with 22 +y?+ 22 < 1 is removed.
(b) Let a tensor S at point p € M be defined as a linear map
S:T;(M) = Tp(M) x T(M),

where T}, is tangent space and T} is cotangent space.

() What is the rank of S? Use (%) notation.

(ii) What is the rank of S ® VS, where ® is an outer product and V is the
covariant derivative?

Consider a spacelike geodesic which goes from point p to point q. As a geodesic,
this curve minimizes the action

1
S:/ V9 THTY dX |
0

where z = x(\) with z(0) = p, 2(1) = ¢ and &* = da*/d\. Show using the Euler-Lagrange
equations that
2
d?zP +F5y@dw” o,
ds? " ds ds

where s is the proper distance along the geodesic and I‘ﬁ,j is the Levi-Civita connection.

Part II, Paper 1
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Paper 1, Section II
38C General Relativity
The Weyl tensor Cygs may be defined (in n = 4 spacetime dimensions) as

1 1
Caprs = Ragys = 5 (JarBss + 955 Rary = JasRoy — 9y Ras) + £(9ar955 — 9as9sy) R,
where R,g,6 is the Riemann tensor, R,g is the Ricci tensor and R is the Ricci scalar.
(a) Show that C%_ s = 0 and deduce that all other contractions vanish.

(b) A conformally flat metric takes the form

Jap = €2w7704,8 s

where 7,4 is the Minkowski metric and w is a scalar function. Calculate the Weyl tensor
at a given point p. [You may assume that d,w = 0 at p.]

(¢) The Schwarzschild metric outside a spherically symmetric mass (such as the Sun,
Earth or Moon) is

-1
ds® = — <1 - 2M) dt® + <1 - 2M> dr® + r2dQ2.
T T

(i) Calculate the leading-order contribution to the Weyl component Cy,.4, valid at
large distances, r > 2M, beyond the central spherical mass.

(i) What physical phenomenon, known from ancient times, can be attributed to
this component of the Weyl tensor at the location of the Earth? [This is after subtracting
off the Earth’s own gravitational field, and neglecting the Earth’s motion within the solar
system.] Briefly explain why your answer is consistent with the Einstein equivalence
principle.

Part 11, 2021 List of Questions
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Paper 2, Section II
38C General Relativity
Consider the following metric for a 3-dimensional, static and rotationally symmetric
Lorentzian manifold:
ds® = r=2(—dt* + dr?) + r?d6? .

(a) Write down a Lagrangian £ for arbitrary geodesics in this metric, if the geodesic
is affinely parameterized with respect to A. What condition may be imposed to distinguish
spacelike, timelike, and null geodesics?

(b) Find the three constants of motion for any geodesic.

(c) Two observation stations are sitting at radii » = R and r = 2R respectively,
and at the same angular coordinate. Each is accelerating so as to remain stationary with
respect to time translations. At ¢ = 0 a photon is emitted from the naked singularity at
r=0.

(i) At what time ¢; does the photon reach the inner station?

(ii) Express the frequency v of the photon at the outer station in terms of the
frequency 11 at the inner station. Explain whether the photon is redshifted
or blueshifted as it travels.

(d) Consider a complete (i.e. infinite in both directions) spacelike geodesic on a
constant-t slice with impact parameter b = ry;, > 0. What is the angle Af between the
two asymptotes of the geodesic at r = 00?7 [You need not be concerned with the sign of
Af or the periodicity of the 6 coordinate.]

[Hint: You may find integration by substitution useful.]

Part II, 2021 List of Questions [TURN OVER]
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Paper 3, Section II
37C General Relativity
(a) Determine the signature of the metric tensor g, given by

01 0 0
10 0 o
Iw =10 0 -1 0
00 0 -1

Is it Riemannian, Lorentzian, or neither?

(b) Consider a stationary black hole with the Schwarzschild metric:
2M oM\
ds® = — <1 - ) dt* + (1 - ) dr® + r?dQ°.
r r

These coordinates break down at the horizon » = 2M. By making a change of coordinates,
show that this metric can be converted to infalling Eddington—Finkelstein coordinates.

(c) A spherically symmetric, narrow pulse of radiation with total energy E falls
radially inwards at the speed of light from infinity, towards the origin of a spherically
symmetric spacetime that is otherwise empty. Assume that the radial width A\ of the
pulse is very small compared to the energy (A < FE), and the pulse can therefore be
treated as instantaneous.

(i) Write down a metric for the region outside the pulse, which is free from
coordinate singularities. Briefly justify your answer. For what range of
coordinates is this metric valid?

(ii) Write down a metric for the region inside the pulse. Briefly justify your
answer. For what range of coordinates is this metric valid?

(iii) What is the final state of the system?

Part 11, 2021 List of Questions
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Paper 4, Section II
37C General Relativity
(a) A flat (k=0), isotropic and homogeneous universe has metric g,g given by

ds® = —dt? + a*(t) (da® + dy* + dz?) . 1)

(i) Show that the non-vanishing Christoffel symbols and Ricci tensor components
are

0 . ; ;. a a P
Iy =aa, 61-:1“2-0:5, R00:—35, R = ad+ 24",

where dots are time derivatives and i € {1,2,3} (no summation assumed).

(ii) Derive the first-order Friedmann equation from the Einstein equations,
Gag + Agag = STFTQB.

(b) Consider a flat universe described by () with A=0 in which late-time accel-
eration is driven by “phantom” dark energy obeying an equation of state with pressure
Pon = wppn, where w < —1 and the energy density ppn > 0. The remaining matter is
dust, so we have p = py, + paust With each component separately obeying p = —3%(p+ P).

(i) Calculate an approximate solution for the scale factor a(t) that is valid at late
times. Show that the asymptotic behaviour is given by a Big Rip, that is, a
singularity in which a — oo at some finite time ¢*.

(ii) Sketch a diagram of the scale factor a as a function of ¢ for a convenient choice
of w, ensuring that it includes (1) the Big Bang, (2) matter domination, (3)
phantom-energy domination, and (4) the Big Rip. Label these epochs and
mark them on the axes.

(iii) Most reasonable classical matter fields obey the null energy condition, which
states that the energy-momentum tensor everywhere satisfies Ti,3 Veve >0
for any null vector V<. Determine if this applies to phantom energy.

The energy-momentum tensor for a perfect fluid is Tog = (p + P)uaug + Pgag }

Part II, 2021 List of Questions [TURN OVER]
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Paper 1, Section II

38D General Relativity
Let (M, g) be a four-dimensional manifold with metric g,g of Lorentzian signature.
The Riemann tensor R is defined through its action on three vector fields X, V., W by

R(X,V)W =VxVyW —VyVxW —Vix y|W,
and the Ricci identity is given by

VaVsV7 = VVaV7 = R yusV?.

(i) Show that for two arbitrary vector fields V', W, the commutator obeys

[V, WI]® = VIV, W — WHY, Ve,

(ii) Let y: I xI'" = M, I,I' CR, (s,t) — 7(s,t) be a one-parameter family of
affinely parametrized geodesics. Let T be the tangent vector to the geodesic v(s = const, t)
and S be the tangent vector to the curves (s, t = const). Derive the equation for geodesic
deviation,

VrVrS = R(T,S)T.

(iii) Let X* be a unit timelike vector field (X*X, = —1) that satisfies the geodesic
equation Vx X = 0 at every point of M. Define

B.s = VgXa, hag = gap + XaXp,
CRES Bo‘ﬂhag, 0ap = Blag) — %@ha/g, Wap = Blag) -
Show that
BopX® = BopX? = hopX® = hopX’ =0,

1
B = §®ha5 + 008 + Wag go‘ﬁaa[g =0.

(iv) Let S denote the geodesic deviation vector, as defined in (ii), of the family of
geodesics defined by the vector field X*. Show that S satisfies

XHV,8% = B*,S"

(v) Show that

X"V yBag = —B"5Bay + Ruga” X'X,, .

Part II, 2020 List of Questions [TURN OVER]
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Paper 2, Section II

37D General Relativity
The Schwarzschild metric is given by

oM oM\ 1
ds? = — (1 — > dt® + <1 - > dr? 4+ r2df? + r? sin® 0 d¢? .

r r

(i) Show that geodesics in the Schwarzschild spacetime obey the equation

1., I 1 2M\ ([ L?
5" +V(r)= 2E ,  where V(r)= 5 <1 . ><r2 ,

where F, L, () are constants and the dot denotes differentiation with respect to a suitably
chosen affine parameter \.

(ii) Consider the following three observers located in one and the same plane in the
Schwarzschild spacetime which also passes through the centre of the black hole:

e Observer O; is on board a spacecraft (to be modeled as a pointlike object moving
on a geodesic) on a circular orbit of radius » > 3M around the central mass M.

e Observer Oy starts at the same position as O; but, instead of orbiting, stays
fixed at the initial coordinate position by using rocket propulsion to counteract
the gravitational pull.

e Observer O3 is also located at a fixed position but at large distance r — oo from
the central mass and is assumed to be able to see @1 whenever the two are at the
same azimuthal angle ¢.

Show that the proper time intervals A7y, Amp, Ars, that are measured by the three
observers during the completion of one full orbit of observer Oy, are given by

r2(r — o; M)

AT, =27 % , 1=1, 2, 3,
where a1, az and ag are numerical constants that you should determine.

(iii) Briefly interpret the result by arranging the A7; in ascending order.

Part 11, 2020 List of Questions
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Paper 3, Section II

37D General Relativity
(a) Let (M, g) be a four-dimensional spacetime and let T' denote the rank G) tensor
defined by

T:T (M) xTo(M) =R, (n,V)=n(V), VneT (M), VeTM).

Determine the components of the tensor T and use the general law for the transformation
of tensor components under a change of coordinates to show that the components of T
are the same in any coordinate system.

(b) In Cartesian coordinates (t,z,y, z) the Minkowski metric is given by
ds? = —dt® + da? + dy? + d2*.
Spheroidal coordinates (r, 0, ¢) are defined through

x = Vr?2+a?sinf cos¢,
= Vr2+a?sinf sing,
z = rcosb,
where a > 0 is a real constant.

(i) Show that the Minkowski metric in coordinates (¢,r,0, ¢) is given by

r2 + a?cos? 0

ds® = —dt® + 21 g2 dr? + (r* 4 a® cos® 0)d9? + (r* + a*) sin® 6d¢” . ()
r2+a

(ii) Transform the metric () to null coordinates given by u = ¢ —r, R = r and show
that 9/0R is not a null vector field for a > 0.

(iii) Determine a new azimuthal angle ¢ = ¢ — F(R) such that in the new coordinate

system (u, R, 6, ), the vector field 9/0R is null for any a > 0. Write down the Minkowski
metric in this new coordinate system.

Part II, 2020 List of Questions [TURN OVER]
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Paper 4, Section II
37D General Relativity
In linearized general relativity, we consider spacetime metrics that are perturbatively
close to Minkowski, g, = 1 + hyw , where 7, = diag(—1, 1, 1, 1) and hy,, = O(e) < 1.
In the Lorenz gauge, the Einstein tensor, at linear order, is given by
1_- - 1

G = —5 0y Py = Py = 3 b, (1)

where [J = 99,0, and h = n**h,,.

(i) Show that the (fully nonlinear) Einstein equations G, = 8nT,g can be
equivalently written in terms of the Ricci tensor R,g as

1
R, = 8 (Tag — 5908 T> , T =g"Tu.

Show likewise that equation (f) can be written as

1
Ohyy = =167 <TW — 577W T> . ()

(ii) In the Newtonian limit we consider matter sources with small velocities v < 1
such that time derivatives /0t ~ v3/0x" can be neglected relative to spatial derivatives,
and the only non-negligible component of the energy-momentum tensor is the energy
density Tpp = p. Show that in this limit, we recover from equation (%) the Poisson
equation V2@ = 47p of Newtonian gravity if we identify hgg = —2P.

(iii) A point particle of mass M is modelled by the energy density p = M §(r).
Derive the Newtonian potential ® for this point particle by solving the Poisson equation.

/
[You can assume the solution of VZp = f(r) is ¢(r) = — Lalg‘r’. ]
Ar|r — 7|

(iv) Now consider the Einstein equations with a small positive cosmological constant,
Gop + Agap = 81Th3, A = O(e) > 0. Repeat the steps of questions (i)-(iii), again
identifying hgg = —2®, to show that the Newtonian limit is now described by the Poisson
equation V2 = 4mp — A, and that a solution for the potential of a point particle is given
by

@:—%—Bﬂ,
r

where B is a constant you should determine. Briefly discuss the effect of the Br? term and
determine for which range of the radius r the weak-field limit is a justified approximation.
[Hz'nt: Absorb the term Agap as part of the energy-momentum tensor. Note also that in

spherical symmetry 62]‘ = %%(rf) ]

Part 11, 2020 List of Questions
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Paper 4, Section 11
36D General Relativity
(a) Consider the spherically symmetric spacetime metric

ds? = =Ndt* + pdr® + r?do” + r? sin® 0 dg?, (1)
where A and p are functions of t and r. Use the Euler-Lagrange equations for the geodesics
of the spacetime to compute all non-vanishing Christoffel symbols for this metric.

(b) Consider the static limit of the line element () where A and p are functions of
the radius r only, and let the matter coupled to gravity be a spherically symmetric fluid
with energy momentum tensor

T = (p+ Pluu” + Pg", u*=[\"1,0,0,0],

where the pressure P and energy density p are also functions of the radius r. For
these Tolman-Oppenheimer-Volkoff stellar models, the Einstein and matter equations
G = 8nTy,, and V,T", = 0 reduce to

8;)\ = /122; ! + 4mrp? P,
om = 4mr?p,  where m(r) = i (1 - i) ,
2 2
p?—1
P = —(p+P) ( 5 —|—47r7",u2P> .

Consider now a constant density solution to the above Einstein and matter equa-
tions, where p takes the non-zero constant value pg out to a radius R and p = 0 for r > R.
Show that for such a star,

4mr 1
oOP=—9#—o—#oH—7094—|(P+ = P+ ,
( 1_ %TFPOT2 < 3P0> ( PO)

and that the pressure at the centre of the star is

1-+/1-2M/R 4
P(0) = / with M = gﬂpoRg.

TS T—2M/R—1

Show that P(0) diverges if M = 4R/9. [Hz'nt: at the surface of the star the pressure
vanishes: P(R) = 0]
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Paper 2, Section II
36D General Relativity
Consider the spacetime metric

2m

1
——dr? +r%(df* +sin® 0d¢?), with f(r)=1- "= — H*r?,
T

f(r)

where H > 0 and m > 0 are constants.

ds®> = — f(r)dt* +

(a) Write down the Lagrangian for geodesics in this spacetime, determine three
independent constants of motion and show that geodesics obey the equation

P2+ V(r)=E?,
where F is constant, the overdot denotes differentiation with respect to an affine parameter

and V (r) is a potential function to be determined.

(b) Sketch the potential V(r) for the case of null geodesics, find any circular null
geodesics of this spacetime, and determine whether they are stable or unstable.

(c) Show that f(r) has two positive roots r_ and r if mH < 1/1/27 and that these
satisfy the relation r_ < 1/(v/3H) < ry.

(d) Describe in one sentence the physical significance of those points where f(r) = 0.
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Paper 3, Section II
37D General Relativity
(a) Let M be a manifold with coordinates z#. The commutator of two vector fields
V and W is defined as
V,W|*=V"9,W*—-W"9,V*.

(i) Show that [V, W] transforms like a vector field under a change of coordinates
from z# to TH.

(ii) Show that the commutator of any two basis vectors vanishes, i.e.

o 0
[w’w]zo-

(iii) Show that if V' and W are linear combinations (not necessarily with constant

coefficients) of n vector fields Z (s @=1,..., n that all commute with one
another, then the commutator [V, W] is a linear combination of the same n
fields Z ).

[You may use without proof the following relations which hold for any vector fields
V1,Va, V3 and any function f:

Vi,Va] = —[V, V4], (1)
[V1,Va+ V3] = [Vi,Vo]+[V1, V3], (2)
V1, fVa] = [V, Vo] +Vi(f) Va2, (3)

but you should clearly indicate each time relation (1), (2), or (3) is used.]

(b) Consider the 2-dimensional manifold R? with Cartesian coordinates (z!,2?) =
(x,y) carrying the Euclidean metric gog = dqg3-

(i) Express the coordinate basis vectors 0, and dp, where r and 6 denote the usual
polar coordinates, in terms of their Cartesian counterparts.

(ii) Define the unit vectors

Or 6 Op

JeAln 106l

ﬁ:

and show that (%, é) are not a coordinate basis, i.e. there exist no coordinates
2% such that # = 9/0z" and = 9/02*.
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37D General Relativity

Let (M, g) be a spacetime and T" the Levi-Civita connection of the metric g. The Riemann
tensor of this spacetime is given in terms of the connection by

R o = c")al“zﬁ - 85F7)a + P;LBFZM — Fﬁarzﬁ .

The contracted Bianchi identities ensure that the Einstein tensor satisfies

VHG,, =0.

(a) Show that the Riemann tensor obeys the symmetry

RV o5 + R'gpa + R o, = 0.

(b) Show that a vector field V¢ satisfies the Ricci identity
V[ VgV =VaVgV? = VgV V7 = R oV’

Calculate the analogous expression for a rank ((2)) tensor 7", i.e. calculate V[, Vg T in
terms of the Riemann tensor.

(c) Let K* be a vector that satisfies the Killing equation
VoKg+ VK, =0.
Use the symmetry relation of part (a) to show that
V,V,K*=R*,3K",
VAV, K® = —R*3K”

where R, is the Ricci tensor.

(d) Show that
K°VoR =2Vviv K,

and use the result of part (b) to show that the right hand side evaluates to zero, hence
showing that K“V,R = 0.
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Consider the de Sitter metric

ds? = —dt® + 21 (da® + dy? + d2?),

where H > 0 is a constant.

(a) Write down the Lagrangian governing the geodesics of this metric. Use the
Fuler-Lagrange equations to determine all non-vanishing Christoffel symbols.

(b) Let C be a timelike geodesic parametrized by proper time 7 with initial conditions
at 7 =0,
t=0, z=y=2=0, =v9>0, y=2=0,

where the dot denotes differentiation with respect to 7 and vg is a constant. Assuming
both ¢ and 7 to be future oriented, show that at 7 =0,

i:\/1+vg.

(c) Find a relation between 7 and ¢ along the geodesic of part (b) and show that
t — —oo for a finite value of 7. [You may use without proof that

1. V14+ae v 41

—1In + constant , a,b>0]

1
=
/\/1+aeb“ b V1+aetv—1

(d) Briefly interpret this result.
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The Friedmann equations and the conservation of energy-momentum for a spatially
homogeneous and isotropic universe are given by:

a2+ k 2ad + a2 + k

3—5— —A=238mp, 5

A=-8tP, jp=-3%(P+p),
a

a a

where a is the scale factor, p the energy density, P the pressure, A the cosmological
constant and k = +1, 0, —1.

(a) Show that for an equation of state P = wp, w = constant, the energy density

obeys p = 2—’7:@*3(1““), for some constant p.

(b) Consider the case of a matter dominated universe, w = 0, with A = 0. Write
the equation of motion for the scale factor a in the form of an effective potential equation,

a? +V(a) =C,

where you should determine the constant C' and the potential V'(a). Sketch the potential
V(a) together with the possible values of C' and qualitatively discuss the long-term
dynamics of an initially small and expanding universe for the cases k = +1, 0, —1.

(c) Repeat the analysis of part (b), again assuming w = 0, for the cases:

(i) A>0,k=—-1,
(i) A<0, k=0,
(iii) A >0, k= 1.

Discuss all qualitatively different possibilities for the dynamics of the universe in each case.
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37E General Relativity
(a) In the Newtonian weak-field limit, we can write the spacetime metric in the form

ds® = —(142®)dt* + (1 — 2®);; da’ da’ ()

where &;;dx'dz’ = dz? + dy* + dz? and the potential ®(¢,z,y, 2), as well as the velocity v
of particles moving in the gravitational field are assumed to be small, i.e.,

D, P, 0P, v? < 1.

Use the geodesic equation for this metric to derive the equation of motion for a massive
point particle in the Newtonian limit.

(b) The far-field limit of the Schwarzschild metric is a special case of () given, in
spherical coordinates, by

2M 2M
ds? = — <1 — —> dt? + (1 + —) (dr2 + r2d6? + r? sin? 0d<p2) ,
r

,
where now M /r < 1. For the following questions, state your results to first order in M /r,
i.e. neglecting terms of O((M/r)?).
(i) Let r1,79 > M. Calculate the proper length S along the radial curve from
to 9 at fixed t, 0, ¢.

(ii) Consider a massless particle moving radially from r = ry to r = 5. According
to an observer at rest at ro, what time 1" elapses during this motion?

(iii) The effective velocity of the particle as seen by the observer at ry is defined as
Vet := S/T. Evaluate veg and then take the limit of this result as 1 — rs.
Briefly discuss the value of veg in this limit.

Part II, 2018 List of Questions [TURN OVER



2018

BB UNIVERSITY OF
¥¥ CAMBRIDGE 52

Paper 3, Section II
38E General Relativity

The Schwarzschild metric in isotropic coordinates & = (¢, Z, 9, 2), @ = 0,...,3, is
given by:

where

and m is the mass of the black hole.

(a) Let ¥ = (t, z, y, 2), p = 0,...,3, denote a coordinate system related to T by
t=~t—vx), T=7x—-u0t), =y, Z=z,

where v = 1/v/1 —v? and —1 < v < 1. Write down the transformation matrix 9z%/dz",
briefly explain its physical meaning and show that the inverse transformation is of the
same form, but with v — —v.

(b) Using the coordinate transformation matrix of part (a), or otherwise, show that
the components g, of the metric in coordinates z# are given by
ds?® = gdatde’ = f(A)(—dt* + da® + dy* + d2?) + 7*g(A)(dt — vdx)?,
where f and g are functions of A that you should determine. You should also express A
in terms of the coordinates (¢, z, y, 2).

(c) Consider the limit v — 1 with p = m~ held constant. Show that for points = # ¢
the function A — 0, while 42 A tends to a finite value, which you should determine. Hence
determine the metric components g, at points x # ¢ in this limit.
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(a) The Friedmann-Robertson-Walker metric is given by

dr?

1— kr?

ds® = —dt* + a*(t) +7%(d6* + sin? 0 dg?) | |

where k = —1,0,+1 and a(t) is the scale factor.

For k£ = +1, show that this metric can be written in the form
ds? = —dt* + y;dx'de? = —dt* + a*(t) [dx2 + sin? x(d#?* + sin® # dq52)] .
Calculate the equatorial circumference (6 = 7/2) of the submanifold defined by constant

t and Y.

Calculate the proper volume, defined by [ +/det~y d3z, of the hypersurface defined
by constant .

(b) The Friedmann equations are

.2 k
3<a i >—A:87Tp,

a2

2ad + a® + k

5 A=-81P,

a

where p(t) is the energy density, P(t) is the pressure, A is the cosmological constant and
dot denotes d/dt.

The Einstein static universe has vanishing pressure, P(t) = 0. Determine a, k and
A as a function of the density p.

The Einstein static universe with a = ag and p = pg is perturbed by radiation such
that

1
a=ag+dalt), p=potopt), P=30p(t),

where da < ap and dp < pg. Show that the Einstein static universe is unstable to this
perturbation.
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A static black hole in a five-dimensional spacetime is described by the metric

—1
as? = — (1- %) at? + (1 - %) dr® + r?[dy® + sin® ) (6 + sin® 6. de*)],

where p > 0 is a constant.
A geodesic lies in the plane § = 1) = w/2 and has affine parameter A. Show that
P dt 2 d¢
E:(l——)— d =%
r2)ax )
are both constants of motion. Write down a third constant of motion.

Show that timelike and null geodesics satisfy the equation

1 (dr\? 1 5
5 <a> + V(r) = §E
for some potential V' (r) which you should determine.

Circular geodesics satisfy the equation V'(r) = 0. Calculate the values of r for
which circular null geodesics exist and for which circular timelike geodesics exist. Which
are stable and which are unstable? Briefly describe how this compares to circular geodesics
in the four-dimensional Schwarzschild geometry.

Paper 3, Section 11
36D General Relativity
Let M be a two-dimensional manifold with metric g of signature —+.

(i) Let p € M. Use normal coordinates at the point p to show that one can choose two
null vectors V, W that form a basis of the vector space T,(M).

(ii) Consider the interval I C R. Let v : I — M be a null curve through p and U # 0
be the tangent vector to v at p. Show that the vector U is either parallel to V or
parallel to W.

(iii) Show that every null curve in M is a null geodesic.

[Hint: You may wish to consider the acceleration a® = UﬁvﬁUa.]

(iv) By providing an example, show that not every null curve in four-dimensional
Minkowski spacetime is a null geodesic.
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(a) In the transverse traceless gauge, a plane gravitational wave propagating in the
z direction is described by a perturbation h,g of the Minkowski metric 1,5 =
diag(—1, 1, 1, 1) in Cartesian coordinates z® = (¢, x, y, z), where

hap = Hageik“xu , where kM =w(1,0,0,1),

and H,p is a constant matrix. Spacetime indices in this question are raised or
lowered with the Minkowski metric.

The energy-momentum tensor of a gravitational wave is defined to be

1

T#y - g(@uhaﬁ)(&,haﬁ) .

s

Show that 0“1, = %8“7'”,, and hence, or otherwise, show that energy and
momentum are conserved.

point mass m undergoes harmonic motion along the z-axis with frequency w an
b) A point d h i ti 1 th is with f d
amplitude L. Compute the energy flux emitted in gravitational radiation.

[Hint: The quadrupole formula for time-averaged energy fluz radiated in gravita-

tional waves s JE .
<E> - g(QijQij>

where Q;; is the reduced quadrupole tensor.]
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A spherically symmetric static spacetime has metric

dr?

ds®> = — (1+r2/b?) dt? + ————
s (+r/ ) +1+r2/b2

+ 7% (df® + sin® 0 dp” )

where —oo <t < 0o, 7 > 0, b is a positive constant, and units such that ¢ = 1 are used.

(a) Explain why a time-like geodesic may be assumed, without loss of generality, to
lie in the equatorial plane § = /2. For such a geodesic, show that the quantities

E =1+t and h=r%¢p
are constants of the motion, where a dot denotes differentiation with respect to proper
time, 7. Hence find a first-order differential equation for r(7).

(b) Consider a massive particle fired from the origin, » = 0. Show that the particle
will return to the origin and find the proper time taken.

(¢) Show that circular orbits r = a are possible for any a > 0 and determine whether
such orbits are stable. Show that on any such orbit a clock measures coordinate time.
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Consider a family of geodesics with s an affine parameter and V¢ the tangent vector
on each curve. The equation of geodesic deviation for a vector field W is

DQWa a by cyxsd
W:Rbcdvvw, (*)
D
where Ds denotes the directional covariant derivative V0V,
S
(i) Show that if
owe ove
vt =w’
Oxb Oxb

then W satisfies ().
(ii) Show that V* and sV satisfy ().

(iii) Show that if W is a Killing vector field, meaning that V,W, + V,W;, = 0, then
W satisfies ().

(iv) Show that if W* = wU? satisfies (%), where w is a scalar field and U is a time-like
unit vector field, then

d?w
R (9% — K)w,
DU® DU,
Mmim:—; ; and K = Rypeq UCVOVCU?.
S S

[ You may use: ViV X% — V.V X = Rp. X% for any vector field X®. |
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The Kasner (vacuum) cosmological model is defined by the line element

ds* = —c*dt® + t*P'da® + t*Pdy® + t*3dz®  with  t >0,
where p1, pa, p3 are constants with py + pa + p3 = p? + p3 +p§ =1and 0 < p; < 1. Show
that pap3 < 0.
Write down four equations that determine the null geodesics of the Kasner model.

If k% is the tangent vector to the trajectory of a photon and u® is the four-velocity of
a comoving observer (i.e., an observer at rest in the (¢, x,y, z) coordinate system above),
what is the physical interpretation of k,u®?

Let O be a comoving observer at the origin, z = y = z = 0, and let S be a comoving
source of photons located on one of the spatial coordinate axes.

(i) Show that photons emitted by S and observed by O can be either red-
shifted or blue-shifted, depending on the location of S.

(ii) Given any fixed time ¢ = T, show that there are locations for S on each
coordinate axis from which no photons reach O for t < T

Now suppose that p; = 1 and ps = p3 = 0. Does the property in (ii) still hold?

Paper 3, Section 11
35D General Relativity
For a spacetime that is nearly flat, the metric g, can be expressed in the form

Gab = Nab + hab 5

where 74, is a flat metric (not necessarily diagonal) with constant components, and the
components of hy and their derivatives are small. Show that

2Rpa = ha” pa + " da — P%abd — Pod,ach®™

where indices are raised and lowered using 74p.
[ You may assume that R%q = I'%%qgc — I%c,d + Tl % — Tl e - ]

For the line element
ds® = 2dudv + dz? + dy* + H(u, x,y) du?® ,

where H and its derivatives are small, show that the linearised vacuum field equations
reduce to V2H = 0, where V? is the two-dimensional Laplacian operator in = and y.
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In static spherically symmetric coordinates, the metric g, for de Sitter space is
given by

ds? = —(1 = r*/a®)dt* + (1 - r*/a®) " dr 4 12d02?
where dQ? = d6? + sin® 0d¢? and a is a constant.

(a) Let u =t —atanh™'(r/a) for 7 < a. Use the (u,r,0,¢) coordinates to show that the
surface r = a is non-singular. Is » = 0 a space-time singularity?

(b) Show that the vector field g%u , is null.
(c) Show that the radial null geodesics must obey either

d—u*() or d_u —72
dr dr 1—1r2/a?’

Which of these families of geodesics is outgoing (dr/dt > 0)?

Sketch these geodesics in the (u,r) plane for 0 < r < a, where the r-axis is horizontal
and lines of constant u are inclined at 45° to the horizontal.

(d) Show, by giving an explicit example, that an observer moving on a timelike geodesic
starting at » = 0 can cross the surface r = a within a finite proper time.
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(a) The Schwarzschild metric is
ds* = —(1 —rg/r)dt* + (1 — r/r) " dr® + r2(d6? + sin® 0dp?)

(in units for which the speed of light ¢ = 1). Show that a timelike geodesic in the

equatorial plane obeys
577+ V(r)=3E?,

2= (1-2)(1+5)

where

and E and h are constants.

(b) For a circular orbit of radius r, show that

2 7"27‘5

T o — 3rs

Given that the orbit is stable, show that r > 3r,.
(c¢) Alice lives on a small planet that is in a stable circular orbit of radius r around a
(non-rotating) black hole of radius rs. Bob lives on a spacecraft in deep space far from

the black hole and at rest relative to it. Bob is ageing k times faster than Alice. Find
an expression for k2 in terms of r and rs and show that k < v/2.
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Let I'*;. be the Levi;Civita connection and R%,.4 the Riemzinn tensor corresponding
to a metric gq (), and let I'?; . be the Levi-Civita connection and R%, ., the Riemann tensor
corresponding to a metric gop(x). Let T%, = I'*, . — "%,

(a) Show that 7%, is a tensor.
(b) Using local inertial coordinates for the metric gq, or otherwise, show that
Rabcd — R%cq = 2Tab[d;c} - 2Tae[dTec}b

holds in all coordinate systems, where the semi-colon denotes covariant differentiation
using the connection I'%.. [You may assume that R%cq = 2I'%q, — 20 q1 g |

(¢) In the case that T%,. = £*g. for some vector field £, show that ﬁbd = Rypq if and only
if

eb;d +lply =0.

(d) Using the result that £[,,; = 0 if and only if £, = ¢ , for some scalar field ¢, show that
the condition on ¢, in part (c) can be written as

ka;b =0

for a certain covector field k., which you should define.
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A vector field £% is said to be a conformal Killing vector field of the metric gq if
’S(a;b) = %wgab (*)
for some scalar field ¥. It is a Killing vector field if ¢ = 0.

(a) Show that (x) is equivalent to
fcgab,c + éc,a Gbe + éc,b Jac =V Gab -

(b) Show that if £% is a conformal Killing vector field of the metric g,p, then £ is a Killing
vector field of the metric €2? gy, where ¢ is any function that obeys

260+ =0.
(c) Use part (b) to find an example of a metric with coordinates ¢, x, y and z (where

t > 0) for which (¢,z,y, z) are the contravariant components of a Killing vector field.
[Hint: You may wish to start by considering what happens in Minkowski space.]
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A plane-wave spacetime has line element

ds? = Hdu® + 2du dv + dz® + dy?,

where H = z? — y?. Show that the line element is unchanged by the coordinate
transformation
u =1, U:’D—i—:fea—%em, r=T—¢e% y=7. (%)

Show more generally that the line element is unchanged by coordinate transforma-
tions of the form

u=u+a, v=0+bT4+c, T=T+p, Y=74,

where a, b, ¢ and p are functions of @, which you should determine and which depend in
total on four parameters (arbitrary constants of integration).

Deduce (without further calculation) that the line element is unchanged by a 6-
parameter family of coordinate transformations, of which a 5-parameter family leave
invariant the surfaces u = constant.

For a general coordinate transformation z¢ = x%(z%), give an expression for the

transformed Ricci tensor R.q in terms of the Ricci tensor Ry and the transformation
a

matrices Calculate Rzz when the transformation is given by () and deduce that

A
oxe’
va = va-

Paper 2, Section II
36E General Relativity

Show how the geodesic equations and hence the Christoffel symbols I'%,. can be
obtained from a Lagrangian.

In units with ¢ = 1, the FLRW spacetime line element is
ds® = —dt* + a*(t)(de® + dy* + dz?).

Show that P101 = a/a

You are given that, for the above metric, Go° = —3a2/a? and G1! = —2i/a—a?/a?,
where G’ is the Einstein tensor, which is diagonal. Verify by direct calculation that
ViGa" = 0.

Solve the vacuum Einstein equations in the presence of a cosmological constant to de-
termine the form of a(t).
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The vector field V@ is the normalised (V,V¢ = —c?) tangent to a congruence of
timelike geodesics, and By, = V3 V.

Show that:
(i) VOBap = V'Bap = 0 ;
(ii) VeV Bap = —B%Bae — R0 VVy .
[You may use the Ricci identity V.V X, = V, V. X, — R0 X4 ]

Now assume that B, is symmetric and let 8 = B,*. By writing By, = Eab + %99(11),
or otherwise, show that
do
g < —167 — Ry,

de
where Rog = RyVeV? and e = V*V,0. [You may use without proof the result that
o T
BayB® > 0]
Assume, in addition, that the stress-energy tensor T,;, takes the perfect-fluid form

(p+p/c)VuVy + pgap and that pc? 4 3p > 0. Show that

gt 1

dr >4’

and deduce that, if §(0) < 0, then |#(7)| will become unbounded for some value of 7 less
than 4/]6(0)].
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For a timelike geodesic in the equatorial plane (6 = %77) of the Schwarzschild space-
time with line element

ds® = —(1 —rg/r)dt* + (1 — ry/r) " Ydr? 4 r*(d6? + sin® 0 dp?)
derive the equation
52+ V(r) = 5(E/e)?
where
Ts h? h2rg

r o c2r2  c2pd

and h and E are constants. The dot denotes the derivative with respect to an affine
parameter 7 satisfying c?dr? = —ds?.

Given that there is a stable circular orbit at r = R, show that
R
2 2-3¢’
where € = r5/R.
Compute €, the orbital angular frequency (with respect to 7).

Show that the angular frequency w of small radial perturbations is given by

w?R?  e(1— 3e)
2 2 -3¢
Deduce that the rate of precession of the perihelion of the Earth’s orbit, Q — w,
is approximately 3Q372, where T is the time taken for light to travel from the Sun to
the Earth. [You should assume that the Earth’s orbit is approximately circular, with
rs/R < 1and E ~ 2]
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Consider the metric describing the interior of a star,

d82 — _GQQ(T)dtQ + e?,@(r)dTQ + 7,,2 (d92 + Sin2 9d¢2) ,

defined for 0 < r < rg by

com) _ 3 -5 _ L )
2 2 ’

with
e 2P0 =1 — Ar?.

Here A = 2M/r§, where M is the mass of the star, By = (o), and we have taken units
in which we have set G = c = 1.

(i) The star is made of a perfect fluid with energy-momentum tensor
Ty = (p + p)uaub + D YGab -

Here u® is the 4-velocity of the fluid which is at rest, the density p is constant throughout
the star (0 < r < r¢) and the pressure p = p(r) depends only on the radial coordinate.
Write down the Einstein field equations and show that they may be written as

Ry = 87(p + p)uatp + 47 (p — p)gab -

(ii) Using the formulae given below, or otherwise, show that for 0 < r < r¢, one has

(@ + 5 —2s0) ’
T

| 1 1
dn(p—p) = <5 a __>e—2/3(r)+_

r r2 r2’

dn(p+p) =

where primes denote differentiation with respect to r. Hence show that
3A 3A [ e Bl — o
= — )= — _— .
P 8t p(r) 8t \ 3e=Fo — =B
[The non-zero components of the Ricci tensor are

/
Ryy = 2028 (a”a/,@/+o/2+ 2a>
,
2 /
Ry = —o'+dB —a?+ B
r

Ryy = 14¢ 28 (8" —a')r —1]
R33 = sin2 9R22 .

Note that L
a'zEAreﬁ_o‘ . Bl=Are® ]
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A spacetime contains a one-parameter family of geodesics % = z*(\, ), where A is
a parameter along each geodesic, and u labels the geodesics. The tangent to the geodesics
is T = 0z%/0\, and N* = 0z“/0u is a connecting vector. Prove that

VvV, IT*=V,\N*,
and hence derive the equation of geodesic deviation:
ViN® + R%.qT°N°T¢ = 0.
[You may assume R%,.q; = —R%q. and the Ricci identity in the form

(VaV, =V, V) T% = R%q T°T°N¢. ]

Consider the two-dimensional space consisting of the sphere of radius r with line
element

ds? = r2(df? + sin® 0 d¢?) .
Show that one may choose 7% = (1,0), N* = (0, 1), and that
VyN® = cot§ N¢.

Hence show that R = 2/r2, using the geodesic deviation equation and the identity in any
two-dimensional space

1
Rpea = 53(53 9bd — 64 Gbe) »
where R is the Ricci scalar.
Verify your answer by direct computation of R.

[You may assume that the only non-zero connection components are

er = ng) =cotf

and
F§5¢ = —sinfcosf.

You may also use the definition

a . a a a e a e
R%ea =T3gc = Theat Teclha — Teal'te - |
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The Schwarzschild metric for a spherically symmetric black hole is given by

oM oM\ !
ds? — — <1 _ _> dt? + (1 — —> dr® + r? (d92 + sin29d¢2) ,

T T

where we have taken units in which we set G = ¢ = 1. Consider a photon moving within
the equatorial plane 6 = 7, along a path 2¢(\) with affine parameter A. Using a variational
principle with Lagrangian

dz® dab

L= ab 7N N
9ab "X dx

or otherwise, show that

oM\ [ dt do
<1—T> <a>:E and T2<a):h,

for constants £ and h. Deduce that

(8) -5 -2)

Assume now that the photon approaches from infinity. Show that the impact
parameter (distance of closest approach) is given by

b= —.
E

Denote the right hand side of equation (x) as f(r). By sketching f(r) in each of the
cases below, or otherwise, show that:

(a) if b2 > 27M?, the photon is deflected but not captured by the black hole;
(b) if b < 27M?, the photon is captured;

(c) if b2 = 27M?, the photon orbit has a particular form, which should be described.
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The curve v, % = x%(\), is a geodesic with affine parameter A. Write down the
geodesic equation satisfied by z%(\).

Suppose the parameter is changed to u(A), where du/dA > 0. Obtain the
corresponding equation and find the condition for i to be affine. Deduce that, whatever
parametrization v is used along the curve ~, the tangent vector K% to -y satisfies

(V, K)ok = 0.

Now consider a spacetime with metric g4, and conformal transformation
~ _ QQ c
Gab = (‘T )gab .

The curve 7 is a geodesic of the metric connection of g,,. What further restriction has to
be placed on « so that it is also a geodesic of the metric connection of g,;? Justify your
answer.
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The metric for a homogenous isotropic universe, in comoving coordinates, can be
written as

ds? = —dt? + a*{dr® + f?[d6* + sin® 0 d¢*]},
where a = a(t) and f = f(r) are some functions.

Write down expressions for the Hubble parameter H and the deceleration parameter
q in terms of a(n) and h = dlog a/dn, where 7 is conformal time, defined by dn = a~'dt.

The universe is composed of a perfect fluid of density p and pressure p = (v — 1)p,
where 7 is a constant. Defining Q = p/p., where p. = 3H?/87G, show that

k ig)
S _0-1 =af), — =2qh(Q—1
72 o a=e, qh( )

where k is the curvature parameter (k = +1, 0 or —1) and o = %(37 — 2). Hence deduce

that
dQ 2«

i FQ(Q -1)
and .
T
where A is a constant. Given that A = 2GiM7 sketch curves of {2 against a in the case
when v > 2/3.

[You may assume an Einstein equation, for the given metric, in the form

h2 k 8
Pl L

and the energy conservation equation

d
L +3H(p+p) =0
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The metric of any two-dimensional rotationally-symmetric curved space can be
written in terms of polar coordinates, (r,6), with 0 < 6 < 27,7 > 0, as

ds? = ¥ (dr? + r2d6?),

where ¢ = ¢(r). Show that the Christoffel symbols I'",, T'Y
compute I, T, and I'%) =T9 .

rTr?

»and I’ g(, are each zero, and

The Ricci tensor is defined by

Ry =T

ab,c

d d
- 1—‘Zc,b + I‘(c:dFULb - Fac lc)d
where a comma here denotes partial derivative. Prove that R,y = 0 and that

¢/
R, = _¢// - ? s Ryg = TQRTT .

Suppose now that, in this space, the Ricci scalar takes the constant value —2. Find
a differential equation for ¢(r).

By a suitable coordinate transformation r — x(r), # unchanged, this space of
constant Ricci scalar can be described by the metric

ds® = dx* + sinh? y df* .
From this coordinate transformation, find cosh y and sinh y in terms of r. Deduce that

I
1— A2p2°

where 0 < Ar < 1, and A is a positive constant.

[You may use

d 1 1
/ sinﬁx =3 log(coshy — 1) — 3 log(cosh x + 1) + constant .]
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(i) The Schwarzschild metric is given by

oM oM\ !
ds? = — <1 — —> dt? + <1 — —> dr? + r2(d(92 + Sin2c9d¢)2).
r r

Consider a time-like geodesic x%(7), where 7 is the proper time, lying in the plane § = 7 /2.
Use the Lagrangian L = g,,4%i? to derive the equations governing the geodesic, showing
that

with h constant, and hence demonstrate that

d?u

M
W+U7_+3MU27

=73

where u = 1/r. State which term in this equation makes it different from an analogous
equation in Newtonian theory.

(ii) Now consider Kruskal coordinates, in which the Schwarzschild ¢ and r are
replaced by U and V, defined for r > 2M by

T 1/2 t
_ B r/(4M)
U= (2M 1) c cosh <4M>

r 1/2 t
— (. _ r/(4M) -
V= (2M 1) e sinh <4M>

and for r < 2M by

Given that the metric in these coordinates is

2 _ 3203
T

ds ™M) (V2 + dU?) + 12(df? + sin® 0dg?) ,

where r = r(U, V) is defined implicitly by
o r/2M) _ 72 _ 2
(2M 1) e U2-v?,

sketch the Kruskal diagram, indicating the positions of the singularity at » = 0, the event
horizon at r = 2M, and general lines of constant r and of constant ¢.
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(i) Using the condition that the metric tensor g, is covariantly constant, derive an
expression for the Christoffel symbol I';, = I'¢,.

(ii) Show that

a _ ac
ba — 59 gac,b .

Hence establish the covariant divergence formula

. 1 9
Vie= = g

where ¢ is the determinant of the metric tensor.

(V=9V*) .

[It may be assumed that 9, (log det M) = trace (M ~19,M) for any invertible matrix M].

(iii) The Kerr-Newman metric, describing the spacetime outside a rotating black
hole of mass M, charge () and angular momentum per unit mass a, is given in appropriate
units by

A

2
: 2(9 d 2

+ (2 +a)dé — adt)? T2 + (% + d02> p*,
p

ds* = — (dt — asin® 0 dg)?

where p? = r2 + a%cos?0 and A = r?> — 2Mr + a®> + Q%. Explain why this metric is
stationary, and make a choice of one of the parameters which reduces it to a static metric.

Show that, in the static metric obtained, the equation
(9@ )0 =0
for a function ® = ®(t,r) admits solutions of the form
¢ = sin(wt)R(r),

where w is constant and R(r) satisfies an ordinary differential equation which should be
found.

Part 11, 2012 List of Questions



2011

% UNIVERSITY OF
¥ CAMBRIDGE 42

Paper 1, Section II
37D General Relativity
Consider a metric of the form

ds? = —2dudv + da® + dy* — 2H (u, 2, y)du? .

Let 2%(\) describe an affinely-parametrised geodesic, where z¢ = (z!, 22,23 2%) =
(u,v,x,y). Write down explicitly the Lagrangian

ca-b
L:gabxax )

with % = dz®/d\, using the given metric. Hence derive the four geodesic equations. In
particular, show that

b+ 2 a—Hz+a—H' u+8—Hu2—0
Ox 8yy ouw

By comparing these equations with the standard form of the geodesic equation,
show that I'}; = OH/Ox and derive the other Christoffel symbols.

The Ricci tensor, Ry, is defined by
Ry =T%, ,— T2, + T4}, —T¢T) .
By considering the case a = 1,b = 1, show that the vacuum Einstein field equations imply

0’H  9*H
it —o.
ox?  Oy?
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The curvature tensor R%.q satisfies

Va;bc - Va;cb = ‘/eReabc

for any covariant vector field V,. Hence express R°.. in terms of the Christoffel symbols
and their derivatives. Show that

Reabc = _Reacb .
Further, by setting V, = 0¢/0x®, deduce that
Reabc + Recab + Rebca =0.

Using local inertial coordinates or otherwise, obtain the Bianchi identities.

Define the Ricci tensor in terms of the curvature tensor and show that it is
symmetric. [You may assume that Rgpeq = — Rpacq.] Write down the contracted Bianchi
identities.

In certain spacetimes of dimension n > 2, Rgp.q takes the form

Rabcd = K(gac 9bvd — YGad gbc) .

Obtain the Ricci tensor and curvature scalar. Deduce, under some restriction on n which
should be stated, that K is a constant.
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The metric of the Schwarzschild solution is

ds® = — (1 - ﬂ) dt* + —(1 12M) dr? + r?(d6* + sin® 0 d¢?) . (%)

r

Show that, for an incoming radial light ray, the quantity
t+r+2M1 ‘—T 1‘
v = r o —
Slam

1S constant.

Express ds? in terms of r, v, # and ¢. Determine the light-cone structure in these
coordinates, and use this to discuss the nature of the apparent singularity at » = 2M.

An observer is falling radially inwards in the region r < 2M. Assuming that the
metric for r < 2M is again given by (x), obtain a bound for dr, where 7 is the proper
time of the observer, in terms of dr. Hence, or otherwise, determine the maximum proper
time that can elapse between the events at which the observer crosses r = 2M and is torn
apart at r = 0.
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Consider a spacetime M with a metric gq,(2©) and a corresponding connection I'¢,..
Write down the differential equation satisfied by a geodesic z%(\), where A is an affine
parameter.

Show how the requirement that

d d

5 / Gab (%) =2 () amb(A) d\ =0,

where § denotes variation of the path, gives the geodesic equation and determines I'G..
Show that the timelike geodesics for the 2—manifold with line element

ds® = t72 (da® — dt?)

are given by
t? =2 +ax+8,

where « and 8 are constants.
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A vector field k* which satisfies

ka;b + kb;a =0
is called a Killing vector field. Prove that k% is a Killing vector field if and only if

kcgab,c + kc,b Yac T+ kc,a Gbe = 0.

Prove also that if V¢ satisfies
Ve, vt =0,

then
(Ve%q) VP =0 (%)

for any Killing vector field k®.
In the two—dimensional space-time with coordinates ® = (u,v) and line element
ds? = —du® + u?dv?,

verify that (0,1), e ¥(1,u™!) and e’(—1,u~!) are Killing vector fields. Show, by using ()
with V¢ the tangent vector to a geodesic, that geodesics in this space-time are given by

ae’ + B = 2qu"t,

where «,  and « are arbitrary real constants.
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The Schwarzschild line element is given by

ds? = —Fdt*> + F 1dr? + 1% (d6? + sin® 0 d¢?)

where F'=1—rg/r and ry is the Schwarzschild radius. Obtain the equation of geodesic
motion of photons moving in the equatorial plane, § = 7 /2, in the form

where 7 is proper time, and E and h are constants whose physical significance should be
indicated briefly.

Defining w = 1/r show that light rays are determined by

() G e

where b = h/E and rs may be taken to be small. Show that, to zeroth order in 74, a light
ray is a straight line passing at distance b from the origin. Show that, to first order in r,
the light ray is deflected through an angle 2ry/b. Comment briefly on some observational
evidence for the result.
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Write down the differential equations governing geodesic curves x*(\) both when A
is an affine parameter and when it is a general one.

A conformal transformation of a spacetime is given by
Gab — gab = Qz(x)gab-

Obtain a formula for the new Christoffel symbols f’gc in terms of the old ones and the
derivatives of €). Hence show that null geodesics in the metric g4, are also geodesic in the
metric gup.

Show that the Riemann tensor has only one independent component in two dimen-

sions, and hence derive
R=2 det(gab) R0101,

where R is the Ricci scalar.

It is given that in a 2-dimensional spacetime M, R transforms as
R— R=0Q2R-20logQ),

where d¢ = ¢®*V,V, ¢. Assuming that the equation 0¢ = p(z) can always be solved,
show that €2 can be chosen to set g to be the metric of 2-dimensional Minkowski spacetime.
Hence show that all null curves in M are geodesic.

Discuss the null geodesics if the line element of M is
ds? = —t7'dt? + t db?,

where ¢t € (—00,0) or (0,00) and 6 € [0, 27].
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A spacetime has line element

ds® = —dt® + t*P1da? + t%P2dx3 + t*P3da?

where p1, p2 and ps are constants. Calculate the Christoffel symbols.

Find the constraints on pi, po and pg for this spacetime to be a solution of the
vacuum Einstein equations with zero cosmological constant. For which values is the
spacetime flat?

Show that it is not possible to have all of p;, ps and ps strictly positive, so that if
they are all non-zero, the spacetime expands in at least one direction and contracts in at
least one direction.

[The Riemann tensor is given in terms of the Christoffel symbols by

bed = Lape = Lepa + ngrf:lcb - F&frz{b ]

Paper 4, Section 11
36D General Relativity
The Schwarzschild metric is given by

2M oM\
ds? = — <1 - _> dt? + <1 — —> dr? + r* (d9* + sin® 0d¢?) ,
T

r

where M is the mass in gravitational units. By using the radial component of the geodesic
equations, or otherwise, show for a particle moving on a geodesic in the equatorial plane

= /2 with r constant that
do)" _ M
) 3’

Show that such an orbit is stable for r > 6M.

An astronaut circles the Earth freely for a long time on a circular orbit of radius R,
while the astronaut’s twin remains motionless on Earth, which is assumed to be spherical,
with radius Rp, and non-rotating. Show that, on returning to Earth, the astronaut will
be younger than the twin only if 2R < 3Ry.
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For the metric 1

d32=r—2(—dt2+d7‘2), r=>0,

obtain the geodesic equations of motion. For a massive particle show that

dr\? _1 1
de ) k2r2’

for some constant k. Show that the particle moves on trajectories

1
2= kr =sect, kt=tanT,

r ]{j27

where 7 is the proper time, if the origins of ¢, 7 are chosen appropriately.

2/11/35E  General Relativity

Let z%(\) be a path P with tangent vector 7% = -kx%(X). For vectors X*(z(\))
and Y?(x(\)) defined on P let

VrX®= %X“ + T%(2(N) XoTe,

where I'%,.(z) is the metric connection for a metric gop(x). VoY is defined similarly.
Suppose P is geodesic and A is an affine parameter. Explain why V,7T® = 0. Show that
if V72X = V7Y® =0 then gup(z(\)X%(x(N\)Y?(2()\)) is constant along P.

If (A, p) is a family of geodesics which depend on p, let S® = %m“ and define

vexe— L x4 [ (2(A) XS
op
Show that V5% = VgT? and obtain
V128 = Vi (VrS®) = R T°T¢S<.

What is the physical relevance of this equation in general relativity? Describe briefly how
this is relevant for an observer moving under gravity.

[You may assume [Vz, V] X® = R%.4XT¢S59 )
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A solution of the Einstein equations is given by the metric

=

For an incoming light ray, with constant 8, ¢, show that

ds? :—(1—%) de? +
T

dr? 4 r*(d6? + sin® 6d¢?) .

b

.
t=v—p—2MIl )——1
v T Og 2M

for some fixed v and find a similar solution for an outgoing light ray. For the outgoing
case, assuming r > 2M, show that in the far past 537 —1 oc exp(ﬁ) and in the far future
T ~t.

Obtain the transformed metric after the change of variables (¢, 7,0, ¢) — (v, 7,0, ¢).
With coordinates £ = v — r,r sketch, for fixed 6, ¢, the trajectories followed by light rays.
What is the significance of the line r = 2M?

Show that, whatever path an observer with initial r = ro < 2M takes, he must
reach r = 0 in a finite proper time.
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Starting from the Riemann tensor for a metric g5, define the Ricci tensor R, and
the scalar curvature R.

The Riemann tensor obeys
ve}%abcd + chabde + vd]%abec =0.

Deduce that
VR = %VbR. (%)

Write down FEinstein’s field equations in the presence of a matter source, with energy-
momentum tensor T,,. How is the relation () important for the consistency of Einstein’s
equations?

Show that, for a scalar function ¢, one has

V2Vao = Vo V20 + Ry Vo .

Assume that
Rab - vavb¢

for a scalar field ¢. Show that the quantity
R+ V%V,

is then a constant.
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The symbol V, denotes the covariant derivative defined by the Christoffel connec-
tion I'%, for a metric gqp. Explain briefly why

(VaVy = ViVa)o =0,
(szvb - vaa)'Uc ?é 07

in general, where ¢ is a scalar field and v, is a covariant vector field.

A Killing vector field v, satisfies the equation
Swpy = Vavp + Vv, = 0.
By considering the quantity V,Sp. + VpSac — VeSap , show that
VoVive = —R%pevq.

Find all Killing vector fields v, in the case of flat Minkowski space-time.

For a metric of the form
ds* = —f(x)dt* + g;;(x)dz’da’, i,j=1,2,3,

where x denotes the coordinates z?, show that 'y = I‘Oij = 0 and that I'%; = I'%y =
2(8;f) / f. Deduce that the vector field v* = (1,0,0,0) is a Killing vector field.

[You may assume the standard symmetries of the Riemann tensor.]
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Consider a particle on a trajectory x®(A). Show that the geodesic equations, with
affine parameter A, coincide with the variational equations obtained by varying the integral

A a b
t dz® dz

1 :/ gab(w) d/\a
N dx dx

the end-points being fixed.

In the case that f(r) =1 — 2GMu, show that the space-time metric is given in the

form
1

f(r)

™
for a certain function f(r). Assuming the particle motion takes place in the plane § = 5
show that

ds? = —f(r)dt* + dr® 4+ r*(d6” + sin®  d¢?)

do  h d  E

dx — 2 dx — f(r)

for h, E' constants. Writing u = 1/r, obtain the equation

du '\ k E?
(5) +10)e =~ 7+ 5

where k£ can be chosen to be 1 or 0, according to whether the particle is massive or massless.
In the case that f(r) =1 — GMu, show that

d?u GM 2

In the massive case, show that there is an approximate solution of the form

1
u =3 (1+ ecos (ag)),
where
3GM

What is the interpretation of this solution?
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Let ¢(x) be a scalar field and V, denote the Levi-Civita covariant derivative
operator of a metric tensor gqp. Show that

VoV = VyVao .

If the Ricci tensor, Ry, of the metric g, satisfies

Rab = aa¢ ab(vb )

find the energy momentum tensor T,; and use the contracted Bianchi identity to show
that, if 9,¢ # 0, then
VVé=0. (*)

Show further that () implies

aa (\/jggabab(b) =0.
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The Schwarzschild metric is

oM\ 2M
ds* = (1 — ) dr? +r? (d6” + sin® 0 d¢*) — (1 - > dat* .
T r
Writing v = 1/r, obtain the equation
d2
df;; +u=3Mu?, (+)

determining the spatial orbit of a null (massless) particle moving in the equatorial plane
0=m/2.

Verify that two solutions of (x) are

1
(1) u :m s and

i) 111

W UT3M T Meoeosho+1°

What is the significance of solution (i)? Sketch solution (ii) and describe its relation to
solution (i).

Show that, near ¢ = cosh™' 2, one may approximate the solution (ii) by
rsin(¢ — cosh™' 2) ~ V2TM |

and hence obtain the impact parameter.
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What are local inertial co-ordinates? What is their physical significance and how
are they related to the equivalence principle?

If V,, are the components of a covariant vector field, show that
aa VE) - ab Va

are the components of an anti-symmetric second rank covariant tensor field.

If K* are the components of a contravariant vector field and g,, the components
of a metric tensor, let

Qab = Kcac Gab + Gac abKC + Geb 811Kc .

Show that
Qab = 2v(aKb) )

where K, = go,K?, and V,, is the Levi-Civita covariant derivative operator of the metric
Gab-

In a particular co-ordinate system (x!, 22, 23, 2%), it is given that K¢ = (0,0,0, 1),
Qap = 0. Deduce that, in this co-ordinate system, the metric tensor g, is independent of
the co-ordinate 2. Hence show that

VaKb = <8a Kb - 8b Ka) )

1
2

and that i
T

EF=—-K,— ,
d\

is constant along every geodesic 2%(\) in every co-ordinate system.

What further conditions must one impose on K% and dz®/d) to ensure that the
metric is stationary and that E is proportional to the energy of a particle moving along
the geodesic?
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Suppose (z(7),t(7)) is a timelike geodesic of the metric

dz?

ds? = 22
5 1+ 22

— (1 + %) dt?,
where 7 is proper time along the world line. Show that dt/dr = E/(1 + x?), where E > 1
is a constant whose physical significance should be stated. Setting a? = E? — 1, show that

d dx gt FE dx (%)
T = )
va? — 2 (14 22)va? — 22

Deduce that x is a periodic function of proper time 7 with period 27. Sketch dz/dr as a
function of x and superpose on this a sketch of dx/dt as a function of . Given the identity

/a Edx
—a (1+$2) Cl2 —$2

deduce that x is also a periodic function of ¢t with period 2.

Next consider the family of metrics

L+ f()]? da?

ds® =
5 14 22

- (1 + 172) dt2 )
where f is an odd function of z, f(—z) = —f(x), and |f(x)| < 1 for all . Derive

expressions analogous to (x) above. Deduce that z is a periodic function of 7 and also
that z is a periodic function of t. What are the periods?

2/11/35C  General Relativity

State without proof the properties of local inertial coordinates x® centred on an
arbitrary spacetime event p. Explain their physical significance.

Obtain an expression for J,I,¢4 at p in inertial coordinates. Use it to derive the
formula,

Rabcd = %(8bacgad + aaaalgbc - 8b8dgac - 8aacgbd)

for the components of the Riemann tensor at p in local inertial coordinates. Hence deduce
that at any point in any chart Rgpeq = Redab-

Consider the metric
Nap dx® da®

(1 + L72nabxazb)2 ’

ds? =

where 7, = diag(1, 1,1, —1) is the Minkowski metric tensor and L is a constant. Compute
the Ricci scalar R = R, at the origin z® = 0.
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State clearly, but do not prove, Birkhoff’s Theorem about spherically symmetric
spacetimes. Let (r,0,¢) be standard spherical polar coordinates and define F(r) =
1 —2M/r, where M is a constant. Consider the metric

dr?
F(r)

ds* = + 72(d6* + sin? 0 d¢?) — F(r) dt>.

Explain carefully why this is appropriate for the region outside a spherically symmetric
star that is collapsing to form a black hole.

By considering radially infalling timelike geodesics z* = (r(7),0,0,t(7)), where 7
is proper time along the curve, show that a freely falling observer will reach the event
horizon after a finite proper time. Show also that a distant observer would see the horizon
crossing only after an infinite time.
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