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Paper 1, Section II

38B General Relativity
A Klein-Gordon scalar field φ satisfies the equation of motion ∇α∇αφ = m2φ where

m is a constant. Its stress-energy tensor takes the form:

Tµν =
1

2

[
∇µφ∇νφ+ gµν

(
A∇ρφ∇ρφ+Bφ2

) ]
. (∗)

(a) Using the fact that the stress-energy tensor is covariantly conserved, determine
the value of the parameters A and B.

(b) Using the Einstein equation, write an expression for the Ricci curvature Rµν in
terms of φ and its derivatives, in a D > 2 dimensional spacetime. Simplify your answer
as much as possible.

(c) Now consider a general stress-energy tensor of the form (∗), with A and B not
necessarily given by the values you have found above. The stress-energy tensor is said to
satisfy the weak energy condition if

TµνX
µXν > 0

for all timelike vectors Xµ. Find the most general constraints on A and B such that (∗)
satisfies the weak energy condition, and show that your answer to part (a) satisfies these
constraints.
[Hint: you may find it useful to work in normal coordinates and furthermore to choose
these coordinates such that Xµ = δ0

µ.]

Paper 2, Section II

38B General Relativity
Consider the geometry of 2-dimensional hyperbolic space:

ds2 = a2(dr2 + sinh2 r dφ2)

where a is a constant. The coordinates have ranges 0 6 r and 0 6 φ < 2π.

(a) For a general metric with components gαβ, give an expression for the Christoffel
symbols, Γα

βγ , in terms of the metric components and their derivatives. Use this formula
to calculate the Christoffel symbols for the metric above.

(b) Using the geodesic equation, show that lines of constant φ are always geodesics,
but circles of constant r > 0 never are.

(c) Calculate both of the nonzero components of the Riemann tensor Rα
βγδ.

[You may use: Rα
βγδ := ∂γΓα

βδ − ∂δΓ
α
βγ + Γµ

βδΓ
α
µγ − Γµ

βγΓα
µδ.]

(d) Show that the Ricci scalar R is constant.

Part II, Paper 1 [TURN OVER]
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Paper 3, Section II

37B General Relativity
(a) Let M be the mass of a star and consider a photon with impact parameter b

which passes near the star. In this problem, by following the steps below, you will derive
the general relativistic formula for the total angle δφ by which the photon bends.

The general relativistic formulae for equatorial null orbits in the Schwarzschild
metric (in units where c = G = 1) are:

1

2
ṙ2 + V (r) =

1

2
E2, V (r) =

1

2

(
1− 2M

r

)
L2

r2
,

where dot is derivative with respect to proper time, and L = r2φ̇ is the angular momentum.

(i) Write down the geodesic equation for the trajectory of the photon, para-
meterized by the φ coordinate. Switch to an inverse radial coordin-
ate y = 1/r. By differentiating the geodesic equation by φ, show that
y′′ + y = 3My2. Here ′ denotes d/dφ.

(ii) Solve this equation in the flat space regime (M = 0), for a trajectory for
which r →∞ at φ = 0, π.

(iii) Using perturbation theory in M identify a differential equation for ∆y, the
first order perturbation of y due to nonzero M .

(iv) Find the homogeneous and particular solutions for ∆y.

(v) Taking r →∞ at φ = 0, show that the leading order result for the bending
of the light ray is:

|δφ| ≈ 4M

b
.

(b) In Nordström’s theory of gravitation, the metric is required to take the form

gµν = φ2ηµν ,

where ηµν is the Minkowski metric and φ > 0 is a dynamical scalar field which approaches
the value 1 far from any isolated gravitating system.

Write down the equation satisfied by an affinely parameterised geodesic of the metric
gµν . What can you deduce about the bending of light rays around a star of mass M in
Nordström’s theory? Is this result compatible with observations?

Part II, Paper 1
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Paper 4, Section II

37B General Relativity
(a) Consider a linearized gravitational plane wave of the form

h̄µν = Hµνe
ikρxρ

where Hµν is independent of xα, h̄µν = hµν − 1
2hηµν is the trace-reversed perturbation to

the Minkowski metric ηµν , and we are using Lorentz gauge ∂µh̄µν = 0.

(i) What restrictions are there on kµ and Hµν? Justify your answers.

(ii) Derive the residual gauge symmetry remaining in Hµν , even after imposing
Lorentz gauge.

[You may use: Gµν = −1
2∂

ρ∂ρh̄µν + ∂ρ∂(µh̄ν)ρ − 1
2ηµν∂

ρ∂σh̄ρσ.]

(b) Suppose that LIGO detects the merger of two black holes, each of which is about
30 solar masses, from an event which takes place approximately a few billion lightyears
away.

(i) Estimate the frequency (in Hz) of the gravitational wave source, from the
perspective of a hypothetical observer close to the binary system and at
rest with respect to it, during the last orbit of the black holes before they
merge. In solving this problem you may use the (Newtonian) Kepler’s law:

T 2 =
4π2

GM
r3.

Here T is the period and for purposes of estimation you may take r =
6MG/c2, the general relativistic formula for the inner-most stable circular
orbit for a test particle in a Schwarzschild geometry. As these assumptions
are inexact, do not keep more than one significant figure.

[You may use: c ≈ 3.0 × 108 m/s, G ≈ 6.7 × 10−11 m3/(kg s2), and the
solar mass M� ≈ 2.0 × 1030 kg.]

(ii) Write down a Big Bang metric suitable for calculations in our universe,
which is spatially flat. You may leave the scale factor a(t) as an undeter-
mined function (where t is the proper time).

Let te be the time of emission, and to be the time of detection. Write down
a formula for the frequency of the gravitational wave as it is observed by
LIGO, from the perspective of Earth’s local reference frame. [For purposes
of solving this problem, you may treat the Earth and the binary black hole
system as both being at rest relative to the cosmological frame of reference.]
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Paper 1, Section II
38D General Relativity

A Milne universe is an isotropic, homogeneous model of cosmology which has
negative spatial curvature, k = −1, and an expanding scale factor, ȧ(t) > 0, even though
there is no matter or radiation (Tαβ = 0) and no cosmological constant (Λ = 0).

(a) Write down the FLRW metric for this cosmological model. Calculate the scale
factor a(t) as an explicit function of the proper time t of a stationary observer.

(b) Verify that the singularity as a → 0 is a coordinate singularity by calculating
the Kretschmann scalar. [Hint: You may find it useful to relate the Riemann tensor to
the Ricci tensor.]

(c) By constructing an appropriate coordinate transformation, show that the Milne
universe is equivalent to the interior of the future light-cone of a point p in Minkowski
space-time. What do the spatial isometries of the hyperbolic t = const. slices correspond
to in this Minkowski space-time?

[Hint: You may wish to use the following formulae:

3
ȧ+ k

a2
− Λ = 8πρ , (Friedmann I)

2aä+ ȧ2 + ka2 − Λ = −8πP . (Friedmann II)

Riemann tensor in normal coordinates:

Rαβµν =
1

2
(∂β∂µgαν + ∂α∂νgβµ − ∂α∂µgβν − ∂β∂νgαµ). ]
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Paper 2, Section II
38D General Relativity
(a) Consider a 2-sphere with coordinates (θ, φ) and metric

ds2 = dθ2 + sin2θ dφ2 .

(i) Show that lines of constant longitude (φ = constant) are geodesics, and that the only
line of constant latitude (θ = constant) that is a geodesic is the equator (θ = π/2).

(ii) Take a vector with components V µ = (1, 0) in these coordinates, and parallel
transport it once around a circle of constant latitude. What are the components of
the resulting vector, as functions of θ?

(b) In units where 8πG = 1, the Einstein equation states that Tαβ = Rαβ − 1
2gαβR. Solve

for Rαβ in terms of Tαβ and T = gαβTαβ, in general space-time dimension n > 2.

(c) Using the symmetries of the Riemann curvature tensor, show that in n = 2 dimensions,
Rαβ = 1

2gαβR. [Hint: Since this is a tensor equation, it only needs to be proved in one
particular coordinate system.] Explain the implications of this if we try to define General
Relativity in n = 2 space-time dimensions.

Part II, Paper 1

2022



47

Paper 3, Section II
37D General Relativity

Recall that the Schwarzschild metric is

ds2 = −(1− 2M/r) dt2 + (1− 2M/r)−1dr2 + r2(dθ2 + sin2 θ dφ2) ,

in units where c = G = 1. An advanced alien civilization builds a static, spherically-
symmetrical space station surrounding a non-rotating black hole of mass M . The station
itself has mass Mst � M and is located at a radius rst > 2M (in Schwarzschild
coordinates). It occupies a very thin shell of width δr � rst.

(a) Some sodium lamps, which emit photons at a characteristic wavelength λ, are
attached to the space station. In terms of rst, what is the wavelength of these photons as
seen by an observer at radius r � rst? What happens in the limit that rst approaches the
event horizon?

(b) What is the magnitude and direction of the proper acceleration of the space
station (i.e. the acceleration in its own instantaneous rest frame)? Verify that in the limit
rst →∞, the magnitude is equal to the acceleration due to Newtonian gravity.

Now suppose we wish to take into account the gravitational effects of the space
station itself, even though Mst � M . The space station has a mass per unit area of ρ as
measured in its own local frame of reference. However, its effective gravitational energy is
reduced by the fact that it is in a gravitational potential.

(c) What is an appropriate metric to use outside of the space station? Your answer
should indicate how the metric depends on ρ. Why is this justified? [Hint: You do not
need to explicitly solve the Einstein equation in order to answer this problem.]

Part II, Paper 1 [TURN OVER]
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Paper 4, Section II
37D General Relativity

(a) Determine whether each of the following spaces is, or is not, a manifold. Justify
your answers.

(i) R3 with points identified if they are related by the transformation
(x, y, z)→ (−x,−y,−z).

(ii) R3, except that the closed ball of all points with x2+y2+z2 6 1 is removed.

(b) Let a tensor S at point p ∈M be defined as a linear map

S : T ∗
p (M)→ Tp(M)× Tp(M) ,

where Tp is tangent space and T ∗
p is cotangent space.

(i) What is the rank of S? Use
(
r
s

)
notation.

(ii) What is the rank of S ⊗ ∇S, where ⊗ is an outer product and ∇ is the
covariant derivative?

Consider a spacelike geodesic which goes from point p to point q. As a geodesic,
this curve minimizes the action

S =

∫ 1

0

√
gµν ẋµẋν dλ ,

where x = x(λ) with x(0) = p, x(1) = q and ẋµ = dxµ/dλ. Show using the Euler-Lagrange
equations that

d2xβ

ds2
+ Γβµν

dxµ

ds

dxν

ds
= 0 ,

where s is the proper distance along the geodesic and Γβµν is the Levi-Civita connection.

Part II, Paper 1
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Paper 1, Section II

38C General Relativity
The Weyl tensor Cαβγδ may be defined (in n = 4 spacetime dimensions) as

Cαβγδ = Rαβγδ −
1

2
(gαγRβδ + gβδRαγ − gαδRβγ − gβγRαδ) +

1

6
(gαγgβδ − gαδgβγ)R ,

where Rαβγδ is the Riemann tensor, Rαβ is the Ricci tensor and R is the Ricci scalar.

(a) Show that Cαβαδ = 0 and deduce that all other contractions vanish.

(b) A conformally flat metric takes the form

gαβ = e2ωηαβ ,

where ηαβ is the Minkowski metric and ω is a scalar function. Calculate the Weyl tensor
at a given point p. [You may assume that ∂αω = 0 at p.]

(c) The Schwarzschild metric outside a spherically symmetric mass (such as the Sun,
Earth or Moon) is

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2.

(i) Calculate the leading-order contribution to the Weyl component Ctrtr valid at
large distances, r � 2M , beyond the central spherical mass.

(ii) What physical phenomenon, known from ancient times, can be attributed to
this component of the Weyl tensor at the location of the Earth? [This is after subtracting
off the Earth’s own gravitational field, and neglecting the Earth’s motion within the solar
system.] Briefly explain why your answer is consistent with the Einstein equivalence
principle.

Part II, 2021 List of Questions

2021



53

Paper 2, Section II

38C General Relativity
Consider the following metric for a 3-dimensional, static and rotationally symmetric

Lorentzian manifold:
ds2 = r−2(−dt2 + dr2) + r2dθ2 .

(a) Write down a Lagrangian L for arbitrary geodesics in this metric, if the geodesic
is affinely parameterized with respect to λ. What condition may be imposed to distinguish
spacelike, timelike, and null geodesics?

(b) Find the three constants of motion for any geodesic.

(c) Two observation stations are sitting at radii r = R and r = 2R respectively,
and at the same angular coordinate. Each is accelerating so as to remain stationary with
respect to time translations. At t = 0 a photon is emitted from the naked singularity at
r = 0.

(i) At what time t1 does the photon reach the inner station?

(ii) Express the frequency ν2 of the photon at the outer station in terms of the
frequency ν1 at the inner station. Explain whether the photon is redshifted
or blueshifted as it travels.

(d) Consider a complete (i.e. infinite in both directions) spacelike geodesic on a
constant-t slice with impact parameter b = rmin > 0. What is the angle ∆θ between the
two asymptotes of the geodesic at r = ∞? [You need not be concerned with the sign of
∆θ or the periodicity of the θ coordinate.]

[Hint: You may find integration by substitution useful.]
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Paper 3, Section II

37C General Relativity
(a) Determine the signature of the metric tensor gµν given by

gµν =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


 .

Is it Riemannian, Lorentzian, or neither?

(b) Consider a stationary black hole with the Schwarzschild metric:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2.

These coordinates break down at the horizon r = 2M . By making a change of coordinates,
show that this metric can be converted to infalling Eddington–Finkelstein coordinates.

(c) A spherically symmetric, narrow pulse of radiation with total energy E falls
radially inwards at the speed of light from infinity, towards the origin of a spherically
symmetric spacetime that is otherwise empty. Assume that the radial width λ of the
pulse is very small compared to the energy (λ � E), and the pulse can therefore be
treated as instantaneous.

(i) Write down a metric for the region outside the pulse, which is free from
coordinate singularities. Briefly justify your answer. For what range of
coordinates is this metric valid?

(ii) Write down a metric for the region inside the pulse. Briefly justify your
answer. For what range of coordinates is this metric valid?

(iii) What is the final state of the system?
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Paper 4, Section II

37C General Relativity
(a) A flat (k=0), isotropic and homogeneous universe has metric gαβ given by

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (†)

(i) Show that the non-vanishing Christoffel symbols and Ricci tensor components
are

Γ0
ii = a ȧ , Γi0i = Γii0 =

ȧ

a
, R00 = −3

ä

a
, Rii = a ä+ 2ȧ2 ,

where dots are time derivatives and i ∈ {1, 2, 3} (no summation assumed).

(ii) Derive the first-order Friedmann equation from the Einstein equations,
Gαβ + Λgαβ = 8πTαβ.

(b) Consider a flat universe described by (†) with Λ = 0 in which late-time accel-
eration is driven by “phantom” dark energy obeying an equation of state with pressure
Pph = wρph, where w < −1 and the energy density ρph > 0. The remaining matter is
dust, so we have ρ = ρph +ρdust with each component separately obeying ρ̇ = −3 ȧa(ρ+P ).

(i) Calculate an approximate solution for the scale factor a(t) that is valid at late
times. Show that the asymptotic behaviour is given by a Big Rip, that is, a
singularity in which a→∞ at some finite time t∗.

(ii) Sketch a diagram of the scale factor a as a function of t for a convenient choice
of w, ensuring that it includes (1) the Big Bang, (2) matter domination, (3)
phantom-energy domination, and (4) the Big Rip. Label these epochs and
mark them on the axes.

(iii) Most reasonable classical matter fields obey the null energy condition, which
states that the energy–momentum tensor everywhere satisfies Tαβ V

αV β > 0
for any null vector V α. Determine if this applies to phantom energy.

[
The energy–momentum tensor for a perfect fluid is Tαβ = (ρ+ P )uαuβ + Pgαβ

]
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Paper 1, Section II

38D General Relativity
Let (M, g) be a four-dimensional manifold with metric gαβ of Lorentzian signature.

The Riemann tensor R is defined through its action on three vector fields X, V , W by

R(X,V )W = ∇X∇V W −∇V∇XW −∇[X,V ]W ,

and the Ricci identity is given by

∇α∇βV γ −∇β∇αV γ = RγραβV
ρ .

(i) Show that for two arbitrary vector fields V , W , the commutator obeys

[V ,W ]α = V µ∇µWα −Wµ∇µV α .

(ii) Let γ : I × I ′ → M, I, I ′ ⊂ R, (s, t) 7→ γ(s, t) be a one-parameter family of
affinely parametrized geodesics. Let T be the tangent vector to the geodesic γ(s = const, t)
and S be the tangent vector to the curves γ(s, t = const). Derive the equation for geodesic
deviation,

∇T∇TS = R(T ,S)T .

(iii) Let Xα be a unit timelike vector field (XµXµ = −1) that satisfies the geodesic
equation ∇XX = 0 at every point of M. Define

Bαβ := ∇βXα , hαβ := gαβ +XαXβ ,

Θ := Bαβhαβ , σαβ := B(αβ) −
1

3
Θhαβ , ωαβ := B[αβ] .

Show that

BαβX
α = BαβX

β = hαβX
α = hαβX

β = 0 ,

Bαβ =
1

3
Θhαβ + σαβ + ωαβ , gαβσαβ = 0 .

(iv) Let S denote the geodesic deviation vector, as defined in (ii), of the family of
geodesics defined by the vector field Xα. Show that S satisfies

Xµ∇µSα = Bα
µS

µ .

(v) Show that

Xµ∇µBαβ = −Bµ
βBαµ +Rµβα

νXµXν .
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Paper 2, Section II

37D General Relativity
The Schwarzschild metric is given by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θ dφ2 .

(i) Show that geodesics in the Schwarzschild spacetime obey the equation

1

2
ṙ2 + V (r) =

1

2
E2 , where V (r) =

1

2

(
1− 2M

r

)(
L2

r2
−Q

)
,

where E, L, Q are constants and the dot denotes differentiation with respect to a suitably
chosen affine parameter λ.

(ii) Consider the following three observers located in one and the same plane in the
Schwarzschild spacetime which also passes through the centre of the black hole:

• Observer O1 is on board a spacecraft (to be modeled as a pointlike object moving
on a geodesic) on a circular orbit of radius r > 3M around the central mass M .

• Observer O2 starts at the same position as O1 but, instead of orbiting, stays
fixed at the initial coordinate position by using rocket propulsion to counteract
the gravitational pull.

• Observer O3 is also located at a fixed position but at large distance r → ∞ from
the central mass and is assumed to be able to see O1 whenever the two are at the
same azimuthal angle φ.

Show that the proper time intervals ∆τ1, ∆τ2, ∆τ3, that are measured by the three
observers during the completion of one full orbit of observer O1, are given by

∆τi = 2π

√
r2(r − αiM)

M
, i = 1, 2, 3 ,

where α1, α2 and α3 are numerical constants that you should determine.

(iii) Briefly interpret the result by arranging the ∆τi in ascending order.
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Paper 3, Section II

37D General Relativity
(a) Let (M, g) be a four-dimensional spacetime and let T denote the rank

(
1
1

)
tensor

defined by

T : T ∗
p (M)× Tp(M)→ R , (η,V ) 7→ η(V ) , ∀ η ∈ T ∗

p (M), V ∈ Tp(M) .

Determine the components of the tensor T and use the general law for the transformation
of tensor components under a change of coordinates to show that the components of T
are the same in any coordinate system.

(b) In Cartesian coordinates (t, x, y, z) the Minkowski metric is given by

ds2 = −dt2 + dx2 + dy2 + dz2 .

Spheroidal coordinates (r, θ, φ) are defined through

x =
√
r2 + a2 sin θ cosφ ,

y =
√
r2 + a2 sin θ sinφ ,

z = r cos θ ,

where a > 0 is a real constant.

(i) Show that the Minkowski metric in coordinates (t, r, θ, φ) is given by

ds2 = −dt2 +
r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdφ2 . (†)

(ii) Transform the metric (†) to null coordinates given by u = t−r, R = r and show
that ∂/∂R is not a null vector field for a > 0.

(iii) Determine a new azimuthal angle ϕ = φ−F (R) such that in the new coordinate
system (u,R, θ, ϕ), the vector field ∂/∂R is null for any a > 0. Write down the Minkowski
metric in this new coordinate system.
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Paper 4, Section II

37D General Relativity
In linearized general relativity, we consider spacetime metrics that are perturbatively

close to Minkowski, gµν = ηµν + hµν , where ηµν = diag(−1, 1, 1, 1) and hµν = O(ε)� 1.
In the Lorenz gauge, the Einstein tensor, at linear order, is given by

Gµν = −1

2
�h̄µν , h̄µν = hµν −

1

2
ηµν h , (†)

where � = ηµν∂µ∂ν and h = ηµνhµν .

(i) Show that the (fully nonlinear) Einstein equations Gαβ = 8πTαβ can be
equivalently written in terms of the Ricci tensor Rαβ as

Rαβ = 8π

(
Tαβ −

1

2
gαβ T

)
, T = gµνTµν .

Show likewise that equation (†) can be written as

�hµν = −16π

(
Tµν −

1

2
ηµν T

)
. (∗)

(ii) In the Newtonian limit we consider matter sources with small velocities v � 1
such that time derivatives ∂/∂t ∼ v ∂/∂xi can be neglected relative to spatial derivatives,
and the only non-negligible component of the energy-momentum tensor is the energy
density T00 = ρ. Show that in this limit, we recover from equation (∗) the Poisson
equation ~∇2Φ = 4πρ of Newtonian gravity if we identify h00 = −2Φ.

(iii) A point particle of mass M is modelled by the energy density ρ = M δ(r).
Derive the Newtonian potential Φ for this point particle by solving the Poisson equation.

[You can assume the solution of ~∇2ϕ = f(r) is ϕ(r) = −
∫

f(r′)
4π|r − r′|d

3r′ . ]

(iv) Now consider the Einstein equations with a small positive cosmological constant,
Gαβ + Λgαβ = 8πTαβ, Λ = O(ε) > 0. Repeat the steps of questions (i)-(iii), again
identifying h00 = −2Φ, to show that the Newtonian limit is now described by the Poisson
equation ~∇2Φ = 4πρ−Λ , and that a solution for the potential of a point particle is given
by

Φ = −M
r
−Br2 ,

where B is a constant you should determine. Briefly discuss the effect of the Br2 term and
determine for which range of the radius r the weak-field limit is a justified approximation.[
Hint: Absorb the term Λgαβ as part of the energy-momentum tensor. Note also that in

spherical symmetry ~∇2f = 1
r
∂2

∂r2
(rf) .

]
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Paper 4, Section II

36D General Relativity
(a) Consider the spherically symmetric spacetime metric

ds2 = −λ2dt2 + µ2dr2 + r2dθ2 + r2 sin2 θ dφ2 , (†)

where λ and µ are functions of t and r. Use the Euler-Lagrange equations for the geodesics
of the spacetime to compute all non-vanishing Christoffel symbols for this metric.

(b) Consider the static limit of the line element (†) where λ and µ are functions of
the radius r only, and let the matter coupled to gravity be a spherically symmetric fluid
with energy momentum tensor

T µν = (ρ+ P )uµuν + Pgµν , uµ = [λ−1, 0, 0, 0] ,

where the pressure P and energy density ρ are also functions of the radius r. For
these Tolman-Oppenheimer-Volkoff stellar models, the Einstein and matter equations
Gµν = 8πTµν and ∇µT

µ
ν = 0 reduce to

∂rλ

λ
=

µ2 − 1

2r
+ 4πrµ2P ,

∂rm = 4πr2ρ , where m(r) =
r

2

(
1− 1

µ2

)
,

∂rP = −(ρ+ P )

(
µ2 − 1

2r
+ 4πrµ2P

)
.

Consider now a constant density solution to the above Einstein and matter equa-
tions, where ρ takes the non-zero constant value ρ0 out to a radius R and ρ = 0 for r > R.
Show that for such a star,

∂rP =
4πr

1− 8
3πρ0r

2

(
P +

1

3
ρ0

)
(P + ρ0) ,

and that the pressure at the centre of the star is

P (0) = −ρ0
1−

√
1− 2M/R

3
√

1− 2M/R − 1
, with M =

4

3
πρ0R

3 .

Show that P (0) diverges if M = 4R/9.
[
Hint: at the surface of the star the pressure

vanishes: P (R) = 0 .
]
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Paper 2, Section II

36D General Relativity
Consider the spacetime metric

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2(dθ2 + sin2 θ dφ2) , with f(r) = 1− 2m

r
−H2r2 ,

where H > 0 and m > 0 are constants.

(a) Write down the Lagrangian for geodesics in this spacetime, determine three
independent constants of motion and show that geodesics obey the equation

ṙ2 + V (r) = E2 ,

where E is constant, the overdot denotes differentiation with respect to an affine parameter
and V (r) is a potential function to be determined.

(b) Sketch the potential V (r) for the case of null geodesics, find any circular null
geodesics of this spacetime, and determine whether they are stable or unstable.

(c) Show that f(r) has two positive roots r− and r+ if mH < 1/
√
27 and that these

satisfy the relation r− < 1/(
√
3H) < r+.

(d) Describe in one sentence the physical significance of those points where f(r) = 0.
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(a) Let M be a manifold with coordinates xµ. The commutator of two vector fields

V and W is defined as
[V ,W ]α = V ν∂νW

α −W ν∂νV
α .

(i) Show that [V ,W ] transforms like a vector field under a change of coordinates
from xµ to x̃µ.

(ii) Show that the commutator of any two basis vectors vanishes, i.e.

[
∂

∂xα
,
∂

∂xβ

]
= 0 .

(iii) Show that if V and W are linear combinations (not necessarily with constant
coefficients) of n vector fields Z(a), a = 1, . . . , n that all commute with one
another, then the commutator [V ,W ] is a linear combination of the same n
fields Z(a).

[You may use without proof the following relations which hold for any vector fields
V 1,V 2,V 3 and any function f :

[V 1,V 2] = − [V 2,V 1] , (1)

[V 1,V 2 + V 3] = [V 1,V 2] + [V 1,V 3] , (2)

[V 1, fV 2] = f [V 1,V 2] + V 1(f)V 2 , (3)

but you should clearly indicate each time relation (1), (2), or (3) is used.]

(b) Consider the 2-dimensional manifold R2 with Cartesian coordinates (x1, x2) =
(x, y) carrying the Euclidean metric gαβ = δαβ .

(i) Express the coordinate basis vectors ∂r and ∂θ, where r and θ denote the usual
polar coordinates, in terms of their Cartesian counterparts.

(ii) Define the unit vectors

r̂ =
∂r

||∂r||
, θ̂ =

∂θ
||∂θ||

and show that (r̂, θ̂) are not a coordinate basis, i.e. there exist no coordinates
zα such that r̂ = ∂/∂z1 and θ̂ = ∂/∂z2.
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Let (M,g) be a spacetime and Γ the Levi-Civita connection of the metric g. The Riemann
tensor of this spacetime is given in terms of the connection by

Rγραβ = ∂αΓ
γ
ρβ − ∂βΓ

γ
ρα + ΓµρβΓ

γ
µα − ΓµραΓ

γ
µβ .

The contracted Bianchi identities ensure that the Einstein tensor satisfies

∇µGµν = 0 .

(a) Show that the Riemann tensor obeys the symmetry

Rµραβ +Rµβρα +Rµαβρ = 0 .

(b) Show that a vector field V α satisfies the Ricci identity

2∇[α∇β]V
γ = ∇α∇βV

γ −∇β∇αV
γ = RγραβV

ρ .

Calculate the analogous expression for a rank
(2
0

)
tensor T µν , i.e. calculate ∇[α∇β]T

µν in
terms of the Riemann tensor.

(c) Let Kα be a vector that satisfies the Killing equation

∇αKβ +∇βKα = 0 .

Use the symmetry relation of part (a) to show that

∇ν∇µK
α = RαµνβK

β ,

∇µ∇µK
α = −RαβKβ ,

where Rαβ is the Ricci tensor.

(d) Show that
Kα∇αR = 2∇[µ∇λ]∇[µKλ] ,

and use the result of part (b) to show that the right hand side evaluates to zero, hence
showing that Kα∇αR = 0.
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Consider the de Sitter metric

ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2) ,

where H > 0 is a constant.

(a) Write down the Lagrangian governing the geodesics of this metric. Use the
Euler–Lagrange equations to determine all non-vanishing Christoffel symbols.

(b) Let C be a timelike geodesic parametrized by proper time τ with initial conditions
at τ = 0,

t = 0 , x = y = z = 0 , ẋ = v0 > 0 , ẏ = ż = 0 ,

where the dot denotes differentiation with respect to τ and v0 is a constant. Assuming
both t and τ to be future oriented, show that at τ = 0,

ṫ =
√

1 + v20 .

(c) Find a relation between τ and t along the geodesic of part (b) and show that
t→ −∞ for a finite value of τ . [You may use without proof that

∫
1√

1 + ae−bu
du =

1

b
ln

√
1 + ae−bu + 1√
1 + ae−bu − 1

+ constant , a, b > 0.]

(d) Briefly interpret this result.
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The Friedmann equations and the conservation of energy-momentum for a spatially
homogeneous and isotropic universe are given by:

3
ȧ2 + k

a2
− Λ = 8πρ ,

2aä+ ȧ2 + k

a2
− Λ = −8πP , ρ̇ = −3

ȧ

a
(P + ρ) ,

where a is the scale factor, ρ the energy density, P the pressure, Λ the cosmological
constant and k = +1, 0, −1.

(a) Show that for an equation of state P = wρ, w = constant, the energy density
obeys ρ = 3µ

8πa
−3(1+w), for some constant µ.

(b) Consider the case of a matter dominated universe, w = 0, with Λ = 0. Write
the equation of motion for the scale factor a in the form of an effective potential equation,

ȧ2 + V (a) = C ,

where you should determine the constant C and the potential V (a). Sketch the potential
V (a) together with the possible values of C and qualitatively discuss the long-term
dynamics of an initially small and expanding universe for the cases k = +1, 0, −1.

(c) Repeat the analysis of part (b), again assuming w = 0, for the cases:

(i) Λ > 0, k = −1,

(ii) Λ < 0, k = 0,

(iii) Λ > 0, k = 1.

Discuss all qualitatively different possibilities for the dynamics of the universe in each case.
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(a) In the Newtonian weak-field limit, we can write the spacetime metric in the form

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)δij dx
i dxj , (∗)

where δijdx
idxj = dx2 + dy2 + dz2 and the potential Φ(t, x, y, z), as well as the velocity v

of particles moving in the gravitational field are assumed to be small, i.e.,

Φ, ∂tΦ, ∂xiΦ, v2 ≪ 1.

Use the geodesic equation for this metric to derive the equation of motion for a massive
point particle in the Newtonian limit.

(b) The far-field limit of the Schwarzschild metric is a special case of (∗) given, in
spherical coordinates, by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1 +

2M

r

)
(dr2 + r2dθ2 + r2 sin2 θdϕ2) ,

where now M/r ≪ 1. For the following questions, state your results to first order in M/r,
i.e. neglecting terms of O((M/r)2).

(i) Let r1, r2 ≫ M . Calculate the proper length S along the radial curve from r1
to r2 at fixed t, θ, ϕ.

(ii) Consider a massless particle moving radially from r = r1 to r = r2. According
to an observer at rest at r2, what time T elapses during this motion?

(iii) The effective velocity of the particle as seen by the observer at r2 is defined as
veff := S/T . Evaluate veff and then take the limit of this result as r1 → r2.
Briefly discuss the value of veff in this limit.
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The Schwarzschild metric in isotropic coordinates x̄ᾱ = (t̄, x̄, ȳ, z̄), ᾱ = 0, . . . , 3, is

given by:

ds2 = ḡᾱβ̄dx̄
ᾱdx̄β̄ = −(1−A)2

(1 +A)2
dt̄2 + (1 +A)4(dx̄2 + dȳ2 + dz̄2)

where
A =

m

2r̄
, r̄ =

√
x̄2 + ȳ2 + z̄2 ,

and m is the mass of the black hole.

(a) Let xµ = (t, x, y, z), µ = 0, . . . , 3, denote a coordinate system related to x̄ᾱ by

t̄ = γ(t− vx), x̄ = γ(x− vt), ȳ = y, z̄ = z ,

where γ = 1/
√
1− v2 and −1 < v < 1. Write down the transformation matrix ∂x̄ᾱ/∂xµ,

briefly explain its physical meaning and show that the inverse transformation is of the
same form, but with v → −v.

(b) Using the coordinate transformation matrix of part (a), or otherwise, show that
the components gµν of the metric in coordinates xµ are given by

ds2 = gµνdx
µdxν = f(A)(−dt2 + dx2 + dy2 + dz2) + γ2g(A)(dt − v dx)2 ,

where f and g are functions of A that you should determine. You should also express A
in terms of the coordinates (t, x, y, z).

(c) Consider the limit v → 1 with p = mγ held constant. Show that for points x 6= t
the function A→ 0, while γ2A tends to a finite value, which you should determine. Hence
determine the metric components gµν at points x 6= t in this limit.
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(a) The Friedmann–Robertson–Walker metric is given by

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
,

where k = −1, 0,+1 and a(t) is the scale factor.

For k = +1, show that this metric can be written in the form

ds2 = −dt2 + γijdx
idxj = −dt2 + a2(t)

[
dχ2 + sin2 χ(dθ2 + sin2 θ dφ2)

]
.

Calculate the equatorial circumference (θ = π/2) of the submanifold defined by constant
t and χ.

Calculate the proper volume, defined by
∫ √

det γ d3x, of the hypersurface defined
by constant t.

(b) The Friedmann equations are

3

(
ȧ2 + k

a2

)
− Λ = 8πρ ,

2aä+ ȧ2 + k

a2
− Λ = −8πP ,

where ρ(t) is the energy density, P (t) is the pressure, Λ is the cosmological constant and
dot denotes d/dt.

The Einstein static universe has vanishing pressure, P (t) = 0. Determine a, k and
Λ as a function of the density ρ.

The Einstein static universe with a = a0 and ρ = ρ0 is perturbed by radiation such
that

a = a0 + δa(t) , ρ = ρ0 + δρ(t) , P =
1

3
δρ(t) ,

where δa ≪ a0 and δρ ≪ ρ0. Show that the Einstein static universe is unstable to this
perturbation.
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A static black hole in a five-dimensional spacetime is described by the metric

ds2 = −
(
1− µ

r2

)
dt2 +

(
1− µ

r2

)−1
dr2 + r2[dψ2 + sin2 ψ (dθ2 + sin2 θ dφ2)] ,

where µ > 0 is a constant.

A geodesic lies in the plane θ = ψ = π/2 and has affine parameter λ. Show that

E =
(
1− µ

r2

) dt
dλ

and L = r2
dφ

dλ

are both constants of motion. Write down a third constant of motion.

Show that timelike and null geodesics satisfy the equation

1

2

(
dr

dλ

)2

+ V (r) =
1

2
E2

for some potential V (r) which you should determine.

Circular geodesics satisfy the equation V ′(r) = 0. Calculate the values of r for
which circular null geodesics exist and for which circular timelike geodesics exist. Which
are stable and which are unstable? Briefly describe how this compares to circular geodesics
in the four-dimensional Schwarzschild geometry.

Paper 3, Section II

36D General Relativity
Let M be a two-dimensional manifold with metric g of signature −+.

(i) Let p ∈ M. Use normal coordinates at the point p to show that one can choose two
null vectors V, W that form a basis of the vector space Tp(M).

(ii) Consider the interval I ⊂ R. Let γ : I → M be a null curve through p and U 6= 0
be the tangent vector to γ at p. Show that the vector U is either parallel to V or
parallel to W.

(iii) Show that every null curve in M is a null geodesic.

[Hint: You may wish to consider the acceleration aα = Uβ∇βU
α.]

(iv) By providing an example, show that not every null curve in four-dimensional
Minkowski spacetime is a null geodesic.
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(a) In the transverse traceless gauge, a plane gravitational wave propagating in the
z direction is described by a perturbation hαβ of the Minkowski metric ηαβ =
diag(−1, 1, 1, 1) in Cartesian coordinates xα = (t, x, y, z), where

hαβ = Hαβe
ikµxµ

, where kµ = ω(1, 0, 0, 1) ,

and Hαβ is a constant matrix. Spacetime indices in this question are raised or
lowered with the Minkowski metric.

The energy-momentum tensor of a gravitational wave is defined to be

τµν =
1

32π
(∂µh

αβ)(∂νhαβ) .

Show that ∂ντµν = 1
2∂µτ

ν
ν and hence, or otherwise, show that energy and

momentum are conserved.

(b) A point mass m undergoes harmonic motion along the z-axis with frequency ω and
amplitude L. Compute the energy flux emitted in gravitational radiation.

[Hint: The quadrupole formula for time-averaged energy flux radiated in gravita-
tional waves is 〈

dE

dt

〉
=

1

5
〈
...
Qij

...
Qij〉

where Qij is the reduced quadrupole tensor.]
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A spherically symmetric static spacetime has metric

ds2 = −
(
1 + r2/b2

)
dt2 +

dr2

1 + r2/b2
+ r2

(
dθ2 + sin2 θ dφ2

)

where −∞ < t <∞, r > 0, b is a positive constant, and units such that c = 1 are used.

(a) Explain why a time-like geodesic may be assumed, without loss of generality, to
lie in the equatorial plane θ = π/2. For such a geodesic, show that the quantities

E = (1 + r2/b2) ṫ and h = r2φ̇

are constants of the motion, where a dot denotes differentiation with respect to proper
time, τ . Hence find a first-order differential equation for r(τ).

(b) Consider a massive particle fired from the origin, r = 0. Show that the particle
will return to the origin and find the proper time taken.

(c) Show that circular orbits r = a are possible for any a > 0 and determine whether
such orbits are stable. Show that on any such orbit a clock measures coordinate time.
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35D General Relativity
Consider a family of geodesics with s an affine parameter and V a the tangent vector

on each curve. The equation of geodesic deviation for a vector field W a is

D2W a

Ds2
= Ra

bcdV
bV cW d , (∗)

where
D

Ds
denotes the directional covariant derivative V b∇b.

(i) Show that if

V b ∂W
a

∂xb
= W b ∂V

a

∂xb

then W a satisfies (∗).

(ii) Show that V a and sV a satisfy (∗).

(iii) Show that if W a is a Killing vector field, meaning that ∇bWa + ∇aWb = 0, then
W a satisfies (∗).

(iv) Show that if W a = wUa satisfies (∗), where w is a scalar field and Ua is a time-like
unit vector field, then

d2w

ds2
= (Ω2 −K)w ,

where Ω2 = −DU
a

Ds

DUa

Ds
and K = Rabcd U

aV bV cUd .

[ You may use: ∇b∇cX
a −∇c∇bX

a = Ra
dbcX

d for any vector field Xa. ]
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The Kasner (vacuum) cosmological model is defined by the line element

ds2 = −c2dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 with t > 0 ,

where p1, p2, p3 are constants with p1 + p2 + p3 = p21 + p22 + p23 = 1 and 0 < p1 < 1. Show
that p2 p3 < 0.

Write down four equations that determine the null geodesics of the Kasner model.

If ka is the tangent vector to the trajectory of a photon and ua is the four-velocity of
a comoving observer (i.e., an observer at rest in the (t, x, y, z) coordinate system above),
what is the physical interpretation of kau

a ?

Let O be a comoving observer at the origin, x = y = z = 0, and let S be a comoving
source of photons located on one of the spatial coordinate axes.

(i) Show that photons emitted by S and observed by O can be either red-
shifted or blue-shifted, depending on the location of S.

(ii) Given any fixed time t = T , show that there are locations for S on each
coordinate axis from which no photons reach O for t 6 T .

Now suppose that p1 = 1 and p2 = p3 = 0. Does the property in (ii) still hold?

Paper 3, Section II

35D General Relativity
For a spacetime that is nearly flat, the metric gab can be expressed in the form

gab = ηab + hab ,

where ηab is a flat metric (not necessarily diagonal) with constant components, and the
components of hab and their derivatives are small. Show that

2Rbd ≈ hd
a
,ba + hb

a
,da − haa,bd − hbd,acη

ac ,

where indices are raised and lowered using ηab.

[ You may assume that Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

ceΓ
e
db − Γa

deΓ
e
cb . ]

For the line element

ds2 = 2du dv + dx2 + dy2 +H(u, x, y) du2 ,

where H and its derivatives are small, show that the linearised vacuum field equations
reduce to ∇2H = 0, where ∇2 is the two-dimensional Laplacian operator in x and y.
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In static spherically symmetric coordinates, the metric gab for de Sitter space is
given by

ds2 = −(1− r2/a2)dt2 + (1− r2/a2)−1dr2 + r2dΩ2

where dΩ2 = dθ2 + sin2 θdφ2 and a is a constant.

(a) Let u = t− a tanh−1(r/a) for r 6 a. Use the (u, r, θ, φ) coordinates to show that the
surface r = a is non-singular. Is r = 0 a space-time singularity?

(b) Show that the vector field gabu,a is null.

(c) Show that the radial null geodesics must obey either

du

dr
= 0 or

du

dr
= − 2

1− r2/a2
.

Which of these families of geodesics is outgoing (dr/dt > 0)?

Sketch these geodesics in the (u, r) plane for 0 6 r 6 a, where the r-axis is horizontal
and lines of constant u are inclined at 45◦ to the horizontal.

(d) Show, by giving an explicit example, that an observer moving on a timelike geodesic
starting at r = 0 can cross the surface r = a within a finite proper time.
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34D General Relativity

(a) The Schwarzschild metric is

ds2 = −(1− rs/r)dt
2 + (1− rs/r)

−1dr2 + r2(dθ2 + sin2 θdφ2)

(in units for which the speed of light c = 1). Show that a timelike geodesic in the
equatorial plane obeys

1
2 ṙ

2 + V (r) = 1
2E

2 ,

where

2V (r) =
(
1− rs

r

)(
1 +

h2

r2

)

and E and h are constants.

(b) For a circular orbit of radius r, show that

h2 =
r2rs

2r − 3rs
.

Given that the orbit is stable, show that r > 3rs.

(c) Alice lives on a small planet that is in a stable circular orbit of radius r around a
(non-rotating) black hole of radius rs. Bob lives on a spacecraft in deep space far from
the black hole and at rest relative to it. Bob is ageing k times faster than Alice. Find
an expression for k2 in terms of r and rs and show that k <

√
2.
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Let Γa
bc be the Levi-Civita connection and Ra

bcd the Riemann tensor corresponding
to a metric gab(x), and let Γ̃a

bc be the Levi-Civita connection and R̃a
bcd the Riemann tensor

corresponding to a metric g̃ab(x). Let T
a
bc = Γ̃a

bc − Γa
bc .

(a) Show that T a
bc is a tensor.

(b) Using local inertial coordinates for the metric gab, or otherwise, show that

R̃a
bcd −Ra

bcd = 2T a
b[d;c] − 2T a

e[dT
e
c]b

holds in all coordinate systems, where the semi-colon denotes covariant differentiation
using the connection Γa

bc. [You may assume that Ra
bcd = 2Γa

b[d,c] − 2Γa
e[dΓ

e
c]b .]

(c) In the case that T a
bc = ℓagbc for some vector field ℓa, show that R̃bd = Rbd if and only

if
ℓb;d + ℓbℓd = 0 .

(d) Using the result that ℓ[a;b] = 0 if and only if ℓa = φ,a for some scalar field φ, show that
the condition on ℓa in part (c) can be written as

ka;b = 0

for a certain covector field ka, which you should define.
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A vector field ξa is said to be a conformal Killing vector field of the metric gab if

ξ(a;b) =
1
2ψgab (∗)

for some scalar field ψ. It is a Killing vector field if ψ = 0.

(a) Show that (∗) is equivalent to

ξcgab,c + ξc,a gbc + ξc,b gac = ψ gab .

(b) Show that if ξa is a conformal Killing vector field of the metric gab, then ξ
a is a Killing

vector field of the metric e2φgab, where φ is any function that obeys

2ξcφ,c + ψ = 0 .

(c) Use part (b) to find an example of a metric with coordinates t, x, y and z (where
t > 0) for which (t, x, y, z) are the contravariant components of a Killing vector field.
[Hint: You may wish to start by considering what happens in Minkowski space.]
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A plane-wave spacetime has line element

ds2 = Hdu2 + 2du dv + dx2 + dy2,

where H = x2 − y2. Show that the line element is unchanged by the coordinate
transformation

u = ū, v = v̄ + x̄eū − 1
2e

2ū, x = x̄− eū, y = ȳ. (∗)

Show more generally that the line element is unchanged by coordinate transforma-
tions of the form

u = ū+ a, v = v̄ + bx̄+ c, x = x̄+ p, y = ȳ,

where a, b, c and p are functions of ū, which you should determine and which depend in
total on four parameters (arbitrary constants of integration).

Deduce (without further calculation) that the line element is unchanged by a 6-
parameter family of coordinate transformations, of which a 5-parameter family leave
invariant the surfaces u = constant.

For a general coordinate transformation xa = xa(x̄b), give an expression for the
transformed Ricci tensor R̄cd in terms of the Ricci tensor Rab and the transformation

matrices
∂xa

∂x̄c
. Calculate R̄x̄x̄ when the transformation is given by (∗) and deduce that

Rvv = Rvx.

Paper 2, Section II

36E General Relativity
Show how the geodesic equations and hence the Christoffel symbols Γa

bc can be
obtained from a Lagrangian.

In units with c = 1, the FLRW spacetime line element is

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) .

Show that Γ1
01 = ȧ/a.

You are given that, for the above metric, G0
0 = −3ȧ2/a2 and G1

1 = −2ä/a− ȧ2/a2,
where Ga

b is the Einstein tensor, which is diagonal. Verify by direct calculation that
∇bGa

b = 0.

Solve the vacuum Einstein equations in the presence of a cosmological constant to de-
termine the form of a(t).
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The vector field V a is the normalised (VaV

a = −c2) tangent to a congruence of
timelike geodesics, and Bab = ∇bVa.

Show that:

(i) V aBab = V bBab = 0 ;

(ii) V c∇cBab = −Bc
bBac −Rd

acbV
cVd .

[You may use the Ricci identity ∇c∇bXa = ∇b∇cXa −Rd
acbXd .]

Now assume that Bab is symmetric and let θ = Ba
a. By writing Bab = B̃ab +

1
4θgab,

or otherwise, show that
dθ

dτ
6 −1

4θ
2 −R00 ,

where R00 = RabV
aV b and

dθ

dτ
≡ V a∇aθ. [You may use without proof the result that

B̃abB̃
ab > 0.]

Assume, in addition, that the stress-energy tensor Tab takes the perfect-fluid form
(ρ+ p/c2)VaVb + pgab and that ρc2 + 3p > 0. Show that

dθ−1

dτ
>

1

4
,

and deduce that, if θ(0) < 0, then |θ(τ)| will become unbounded for some value of τ less
than 4/|θ(0)|.
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37E General Relativity
For a timelike geodesic in the equatorial plane (θ = 1

2π) of the Schwarzschild space-
time with line element

ds2 = −(1− rs/r)c
2dt2 + (1− rs/r)

−1dr2 + r2(dθ2 + sin2 θ dφ2) ,

derive the equation
1
2 ṙ

2 + V (r) = 1
2(E/c)2 ,

where
2V (r)

c2
= 1− rs

r
+

h2

c2r2
− h2rs

c2r3

and h and E are constants. The dot denotes the derivative with respect to an affine
parameter τ satisfying c2dτ2 = −ds2.

Given that there is a stable circular orbit at r = R, show that

h2

c2
=

R2ǫ

2− 3ǫ
,

where ǫ = rs/R.

Compute Ω, the orbital angular frequency (with respect to τ).

Show that the angular frequency ω of small radial perturbations is given by

ω2R2

c2
=

ǫ(1− 3ǫ)

2− 3ǫ
.

Deduce that the rate of precession of the perihelion of the Earth’s orbit, Ω − ω,
is approximately 3Ω3T 2, where T is the time taken for light to travel from the Sun to
the Earth. [You should assume that the Earth’s orbit is approximately circular, with
rs/R ≪ 1 and E ≃ c2.]
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36D General Relativity
Consider the metric describing the interior of a star,

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2
(
dθ2 + sin2 θ dφ2

)
,

defined for 0 6 r 6 r0 by

eα(r) =
3

2
e−β0 − 1

2
e−β(r) ,

with
e−2β(r) = 1−Ar2 .

Here A = 2M/r30 , where M is the mass of the star, β0 = β(r0), and we have taken units
in which we have set G = c = 1.

(i) The star is made of a perfect fluid with energy-momentum tensor

Tab = (p+ ρ)uaub + p gab .

Here ua is the 4-velocity of the fluid which is at rest, the density ρ is constant throughout
the star (0 6 r 6 r0) and the pressure p = p(r) depends only on the radial coordinate.
Write down the Einstein field equations and show that they may be written as

Rab = 8π(p + ρ)uaub + 4π(ρ − p)gab .

(ii) Using the formulae given below, or otherwise, show that for 0 6 r 6 r0, one has

4π(ρ+ p) =
(α′ + β′)

r
e−2β(r) ,

4π(ρ− p) =

(
β′ − α′

r
− 1

r2

)
e−2β(r) +

1

r2
,

where primes denote differentiation with respect to r. Hence show that

ρ =
3A

8π
, p(r) =

3A

8π

(
e−β(r) − e−β0

3e−β0 − e−β(r)

)
.

[The non-zero components of the Ricci tensor are

R00 = e2α−2β

(
α′′ − α′β′ + α′2 +

2α′

r

)

R11 = −α′′ + α′β′ − α′2 +
2β′

r

R22 = 1 + e−2β
[
(β′ − α′)r − 1

]

R33 = sin2 θR22 .

Note that

α′ =
1

2
Ar eβ−α , β′ = Ar e2β . ]

Part II, 2013 List of Questions [TURN OVER

2013



46

Paper 2, Section II

36D General Relativity
A spacetime contains a one-parameter family of geodesics xa = xa(λ, µ), where λ is

a parameter along each geodesic, and µ labels the geodesics. The tangent to the geodesics
is T a = ∂xa/∂λ, and Na = ∂xa/∂µ is a connecting vector. Prove that

∇µT
a = ∇λN

a ,

and hence derive the equation of geodesic deviation:

∇2
λN

a +Ra
bcd T

bN cT d = 0 .

[You may assume Ra
bcd = −Ra

bdc and the Ricci identity in the form

(∇λ∇µ −∇µ∇λ)T
a = Ra

bcd T
bT cNd . ]

Consider the two-dimensional space consisting of the sphere of radius r with line
element

ds2 = r2(dθ2 + sin2 θ dφ2) .

Show that one may choose T a = (1, 0), Na = (0, 1), and that

∇θN
a = cot θ Na .

Hence show that R = 2/r2, using the geodesic deviation equation and the identity in any
two-dimensional space

Ra
bcd =

1

2
R(δac gbd − δad gbc) ,

where R is the Ricci scalar.

Verify your answer by direct computation of R.

[You may assume that the only non-zero connection components are

Γφ
φθ = Γφ

θφ = cot θ

and
Γθ
φφ = − sin θ cos θ .

You may also use the definition

Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

ecΓ
e
bd − Γa

edΓ
e
bc . ]
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Paper 3, Section II

37D General Relativity
The Schwarzschild metric for a spherically symmetric black hole is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
,

where we have taken units in which we set G = c = 1. Consider a photon moving within
the equatorial plane θ = π

2 , along a path xa(λ) with affine parameter λ. Using a variational
principle with Lagrangian

L = gab
dxa

dλ

dxb

dλ
,

or otherwise, show that

(
1− 2M

r

)(
dt

dλ

)
= E and r2

(
dφ

dλ

)
= h ,

for constants E and h. Deduce that

(
dr

dλ

)2

= E2 − h2

r2

(
1− 2M

r

)
. (∗)

Assume now that the photon approaches from infinity. Show that the impact
parameter (distance of closest approach) is given by

b =
h

E
.

Denote the right hand side of equation (∗) as f(r). By sketching f(r) in each of the
cases below, or otherwise, show that:

(a) if b2 > 27M2, the photon is deflected but not captured by the black hole;

(b) if b2 < 27M2, the photon is captured;

(c) if b2 = 27M2, the photon orbit has a particular form, which should be described.
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Paper 1, Section II

37D General Relativity
The curve γ, xa = xa(λ), is a geodesic with affine parameter λ. Write down the

geodesic equation satisfied by xa(λ).

Suppose the parameter is changed to µ(λ), where dµ/dλ > 0. Obtain the
corresponding equation and find the condition for µ to be affine. Deduce that, whatever
parametrization ν is used along the curve γ, the tangent vector Ka to γ satisfies

(∇ν K)[aKb] = 0 .

Now consider a spacetime with metric gab, and conformal transformation

g̃ab = Ω2(xc)gab .

The curve γ is a geodesic of the metric connection of gab. What further restriction has to
be placed on γ so that it is also a geodesic of the metric connection of g̃ab? Justify your
answer.
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Paper 4, Section II

36B General Relativity
The metric for a homogenous isotropic universe, in comoving coordinates, can be

written as
ds2 = −dt2 + a2{dr2 + f2[dθ2 + sin2 θ dφ2]} ,

where a = a(t) and f = f(r) are some functions.

Write down expressions for the Hubble parameter H and the deceleration parameter
q in terms of a(η) and h ≡ d log a/dη, where η is conformal time, defined by dη = a−1dt.

The universe is composed of a perfect fluid of density ρ and pressure p = (γ − 1)ρ,
where γ is a constant. Defining Ω = ρ/ρc, where ρc = 3H2/8πG, show that

k

h2
= Ω− 1 , q = αΩ ,

dΩ

dη
= 2qh(Ω − 1) ,

where k is the curvature parameter (k = +1, 0 or −1) and α ≡ 1
2(3γ − 2). Hence deduce

that
dΩ

da
=

2α

a
Ω(Ω− 1)

and

Ω =
1

1−Aa2α
,

where A is a constant. Given that A =
k

2GM
, sketch curves of Ω against a in the case

when γ > 2/3.

[You may assume an Einstein equation, for the given metric, in the form

h2

a2
+

k

a2
=

8

3
πGρ

and the energy conservation equation

dρ

dt
+ 3H(ρ+ p) = 0 .]
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Paper 2, Section II

36B General Relativity
The metric of any two-dimensional rotationally-symmetric curved space can be

written in terms of polar coordinates, (r, θ), with 0 6 θ < 2π, r > 0, as

ds2 = e2φ(dr2 + r2dθ2) ,

where φ = φ(r). Show that the Christoffel symbols Γr
rθ, Γ

θ
rr and Γθ

θθ are each zero, and
compute Γr

rr, Γ
r
θθ and Γθ

rθ = Γθ
θr.

The Ricci tensor is defined by

Rab = Γc
ab,c − Γc

ac,b + Γc
cdΓ

d
ab − Γd

acΓ
c
bd

where a comma here denotes partial derivative. Prove that Rrθ = 0 and that

Rrr = −φ′′ − φ′

r
, Rθθ = r2Rrr .

Suppose now that, in this space, the Ricci scalar takes the constant value −2. Find
a differential equation for φ(r).

By a suitable coordinate transformation r → χ(r), θ unchanged, this space of
constant Ricci scalar can be described by the metric

ds2 = dχ2 + sinh2 χdθ2 .

From this coordinate transformation, find coshχ and sinhχ in terms of r. Deduce that

eφ(r) =
2A

1−A2r2
,

where 0 6 Ar < 1, and A is a positive constant.

[You may use

∫
dχ

sinhχ
=

1

2
log(coshχ− 1)− 1

2
log(coshχ+ 1) + constant .]
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37B General Relativity
(i) The Schwarzschild metric is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) .

Consider a time-like geodesic xa(τ), where τ is the proper time, lying in the plane θ = π/2.
Use the Lagrangian L = gabẋ

aẋb to derive the equations governing the geodesic, showing
that

r2φ̇ = h ,

with h constant, and hence demonstrate that

d2u

dφ2
+ u =

M

h2
+ 3Mu2 ,

where u = 1/r. State which term in this equation makes it different from an analogous
equation in Newtonian theory.

(ii) Now consider Kruskal coordinates, in which the Schwarzschild t and r are
replaced by U and V , defined for r > 2M by

U ≡
( r

2M
− 1

)1/2
er/(4M) cosh

(
t

4M

)

V ≡
( r

2M
− 1

)1/2
er/(4M) sinh

(
t

4M

)

and for r < 2M by

U ≡
(
1− r

2M

)1/2
er/(4M) sinh

(
t

4M

)

V ≡
(
1− r

2M

)1/2
er/(4M) cosh

(
t

4M

)
.

Given that the metric in these coordinates is

ds2 =
32M3

r
e−r/(2M)(−dV 2 + dU2) + r2(dθ2 + sin2 θdφ2) ,

where r = r(U, V ) is defined implicitly by

( r

2M
− 1

)
er/(2M) = U2 − V 2 ,

sketch the Kruskal diagram, indicating the positions of the singularity at r = 0, the event
horizon at r = 2M , and general lines of constant r and of constant t.
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37B General Relativity
(i) Using the condition that the metric tensor gab is covariantly constant, derive an

expression for the Christoffel symbol Γa
bc = Γa

cb.

(ii) Show that

Γa
ba =

1

2
gacgac,b .

Hence establish the covariant divergence formula

V a
;a =

1√−g

∂

∂xa
(√−g V a

)
,

where g is the determinant of the metric tensor.

[It may be assumed that ∂a(log detM) = trace (M−1∂aM) for any invertible matrix M ].

(iii) The Kerr-Newman metric, describing the spacetime outside a rotating black
hole of mass M , charge Q and angular momentum per unit mass a, is given in appropriate
units by

ds2 =− (dt− a sin2 θ dφ)2
∆

ρ2

+
(
(r2 + a2)dφ− a dt

)2 sin2 θ
ρ2

+

(
dr2

∆
+ dθ2

)
ρ2 ,

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2 + Q2. Explain why this metric is
stationary, and make a choice of one of the parameters which reduces it to a static metric.

Show that, in the static metric obtained, the equation

(gabΦ,b);a = 0

for a function Φ = Φ(t, r) admits solutions of the form

Φ = sin(ωt)R(r) ,

where ω is constant and R(r) satisfies an ordinary differential equation which should be
found.
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37D General Relativity
Consider a metric of the form

ds2 = −2 du dv + dx2 + dy2 − 2H(u, x, y)du2 .

Let xa(λ) describe an affinely-parametrised geodesic, where xa ≡ (x1, x2, x3, x4) =
(u, v, x, y). Write down explicitly the Lagrangian

L = gabẋ
aẋb ,

with ẋa = dxa/dλ, using the given metric. Hence derive the four geodesic equations. In
particular, show that

v̈ + 2

(
∂H

∂x
ẋ+

∂H

∂y
ẏ

)
u̇+

∂H

∂u
u̇2 = 0.

By comparing these equations with the standard form of the geodesic equation,
show that Γ2

13 = ∂H/∂x and derive the other Christoffel symbols.

The Ricci tensor, Rab, is defined by

Rab = Γd
ab,d − Γd

ad,b + Γd
dfΓ

f
ba − Γd

bfΓ
f
da .

By considering the case a = 1, b = 1, show that the vacuum Einstein field equations imply

∂2H

∂x2
+

∂2H

∂y2
= 0 .
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36D General Relativity
The curvature tensor Ra

bcd satisfies

Va;bc − Va;cb = VeR
e
abc

for any covariant vector field Va. Hence express Re
abc in terms of the Christoffel symbols

and their derivatives. Show that

Re
abc = −Re

acb .

Further, by setting Va = ∂φ/∂xa, deduce that

Re
abc +Re

cab +Re
bca = 0 .

Using local inertial coordinates or otherwise, obtain the Bianchi identities.

Define the Ricci tensor in terms of the curvature tensor and show that it is
symmetric. [You may assume that Rabcd = −Rbacd.] Write down the contracted Bianchi
identities.

In certain spacetimes of dimension n > 2, Rabcd takes the form

Rabcd = K(gac gbd − gad gbc) .

Obtain the Ricci tensor and curvature scalar. Deduce, under some restriction on n which
should be stated, that K is a constant.
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36D General Relativity
The metric of the Schwarzschild solution is

ds2 = −
(
1− 2M

r

)
dt2 +

1(
1− 2M

r

)dr2 + r2(dθ2 + sin2 θ dφ2) . (∗)

Show that, for an incoming radial light ray, the quantity

v = t+ r + 2M log
∣∣∣ r

2M
− 1

∣∣∣

is constant.

Express ds2 in terms of r, v, θ and φ. Determine the light-cone structure in these
coordinates, and use this to discuss the nature of the apparent singularity at r = 2M .

An observer is falling radially inwards in the region r < 2M . Assuming that the
metric for r < 2M is again given by (∗), obtain a bound for dτ , where τ is the proper
time of the observer, in terms of dr. Hence, or otherwise, determine the maximum proper
time that can elapse between the events at which the observer crosses r = 2M and is torn
apart at r = 0.
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36B General Relativity

Consider a spacetime M with a metric gab(x
c) and a corresponding connection Γa

bc.

Write down the differential equation satisfied by a geodesic xa(λ), where λ is an affine

parameter.

Show how the requirement that

δ

∫
gab(x

c)
d

dλ
xa(λ)

d

dλ
xb(λ) dλ = 0 ,

where δ denotes variation of the path, gives the geodesic equation and determines Γa
bc.

Show that the timelike geodesics for the 2–manifold with line element

ds2 = t−2 (dx2 − dt2)

are given by

t2 = x2 + αx+ β ,

where α and β are constants.
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36B General Relativity

A vector field ka which satisfies

ka;b + kb;a = 0

is called a Killing vector field. Prove that ka is a Killing vector field if and only if

kcgab,c + kc,b gac + kc,a gbc = 0 .

Prove also that if V a satisfies

V a
;b V

b = 0 ,

then

(V aka),b V
b = 0 (∗)

for any Killing vector field ka.

In the two–dimensional space–time with coordinates xa = (u, v) and line element

ds2 = −du2 + u2dv2 ,

verify that (0, 1), e−v(1, u−1) and ev(−1, u−1) are Killing vector fields. Show, by using (∗)
with V a the tangent vector to a geodesic, that geodesics in this space–time are given by

αev + βe−v = 2 γu−1 ,

where α, β and γ are arbitrary real constants.
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36B General Relativity

The Schwarzschild line element is given by

ds2 = −Fdt2 + F −1dr2 + r2 (dθ2 + sin2 θ dφ2) ,

where F = 1− rs/r and rs is the Schwarzschild radius. Obtain the equation of geodesic

motion of photons moving in the equatorial plane, θ = π/2, in the form

(dr
dτ

)2
= E2 − h2F

r2
,

where τ is proper time, and E and h are constants whose physical significance should be

indicated briefly.

Defining u = 1/r show that light rays are determined by

(du
dφ

)2
=

(1
b

)2
− u2 + rs u

3 ,

where b = h/E and rs may be taken to be small. Show that, to zeroth order in rs, a light

ray is a straight line passing at distance b from the origin. Show that, to first order in rs,

the light ray is deflected through an angle 2rs/b. Comment briefly on some observational

evidence for the result.
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36D General Relativity

Write down the differential equations governing geodesic curves xa(λ) both when λ

is an affine parameter and when it is a general one.

A conformal transformation of a spacetime is given by

gab → g̃ab = Ω2(x)gab.

Obtain a formula for the new Christoffel symbols Γ̃a
bc in terms of the old ones and the

derivatives of Ω. Hence show that null geodesics in the metric gab are also geodesic in the

metric g̃ab.

Show that the Riemann tensor has only one independent component in two dimen-

sions, and hence derive

R = 2det(gab)R0101,

where R is the Ricci scalar.

It is given that in a 2-dimensional spacetime M , R transforms as

R → R̃ = Ω−2(R− 2� log Ω),

where �φ = gab∇a∇b φ. Assuming that the equation �φ = ρ(x) can always be solved,

show that Ω can be chosen to set g̃ to be the metric of 2-dimensional Minkowski spacetime.

Hence show that all null curves in M are geodesic.

Discuss the null geodesics if the line element of M is

ds2 = −t−1dt2 + t dθ2,

where t ∈ (−∞, 0) or (0,∞) and θ ∈ [0, 2π].
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36D General Relativity

A spacetime has line element

ds2 = −dt2 + t2p1dx21 + t2p2dx22 + t2p3dx23 ,

where p1, p2 and p3 are constants. Calculate the Christoffel symbols.

Find the constraints on p1, p2 and p3 for this spacetime to be a solution of the

vacuum Einstein equations with zero cosmological constant. For which values is the

spacetime flat?

Show that it is not possible to have all of p1, p2 and p3 strictly positive, so that if

they are all non-zero, the spacetime expands in at least one direction and contracts in at

least one direction.

[The Riemann tensor is given in terms of the Christoffel symbols by

Ra
bcd = Γa

db,c − Γa
cb,d + Γa

cfΓ
f
db − Γa

dfΓ
f
cb .

]

Paper 4, Section II

36D General Relativity

The Schwarzschild metric is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
,

where M is the mass in gravitational units. By using the radial component of the geodesic

equations, or otherwise, show for a particle moving on a geodesic in the equatorial plane

θ = π/2 with r constant that (
dφ

dt

)2

=
M

r3
.

Show that such an orbit is stable for r > 6M .

An astronaut circles the Earth freely for a long time on a circular orbit of radius R,

while the astronaut’s twin remains motionless on Earth, which is assumed to be spherical,

with radius R0, and non-rotating. Show that, on returning to Earth, the astronaut will

be younger than the twin only if 2R < 3R0.
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1/II/35E General Relativity

For the metric

ds2 =
1

r2

(
−dt2 + dr2

)
, r > 0 ,

obtain the geodesic equations of motion. For a massive particle show that

(
dr

dt

)2

= 1− 1

k2r2
,

for some constant k. Show that the particle moves on trajectories

r2 − t2 =
1

k2
, kr = sec τ , kt = tan τ ,

where τ is the proper time, if the origins of t, τ are chosen appropriately.

2/II/35E General Relativity

Let xa(λ) be a path P with tangent vector T a = d
dλx

a(λ). For vectors Xa(x(λ))
and Y a(x(λ)) defined on P let

∇TXa =
d

dλ
Xa + Γabc(x(λ))XbT c,

where Γabc(x) is the metric connection for a metric gab(x). ∇TY a is defined similarly.
Suppose P is geodesic and λ is an affine parameter. Explain why ∇TT a = 0. Show that
if ∇TXa = ∇TY a = 0 then gab(x(λ))Xa(x(λ))Y b(x(λ)) is constant along P .

If xa(λ, µ) is a family of geodesics which depend on µ, let Sa = ∂
∂µx

a and define

∇SXa =
∂

∂µ
Xa + Γabc(x(λ))XbSc.

Show that ∇TSa = ∇ST a and obtain

∇T 2Sa ≡ ∇T (∇TSa) = RabcdT
bT cSd.

What is the physical relevance of this equation in general relativity? Describe briefly how
this is relevant for an observer moving under gravity.

[You may assume [∇T ,∇S ]Xa = RabcdX
bT cSd.]
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4/II/36E General Relativity

A solution of the Einstein equations is given by the metric

ds2 = −
(

1− 2M

r

)
dt2 +

1(
1− 2M

r

) dr2 + r2(dθ2 + sin2 θdφ2) .

For an incoming light ray, with constant θ, φ, show that

t = v − r − 2M log
∣∣∣ r
2M
− 1
∣∣∣ ,

for some fixed v and find a similar solution for an outgoing light ray. For the outgoing
case, assuming r > 2M , show that in the far past r

2M −1 ∝ exp( t
2M ) and in the far future

r ∼ t.
Obtain the transformed metric after the change of variables (t, r, θ, φ)→ (v, r, θ, φ).

With coordinates t̂ = v − r, r sketch, for fixed θ, φ, the trajectories followed by light rays.
What is the significance of the line r = 2M?

Show that, whatever path an observer with initial r = r0 < 2M takes, he must
reach r = 0 in a finite proper time.
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1/II/35A General Relativity

Starting from the Riemann tensor for a metric gab, define the Ricci tensor Rab and
the scalar curvature R.

The Riemann tensor obeys

∇eRabcd +∇cRabde +∇dRabec = 0 .

Deduce that
∇aRab =

1
2∇bR . (∗)

Write down Einstein’s field equations in the presence of a matter source, with energy-
momentum tensor Tab. How is the relation (∗) important for the consistency of Einstein’s
equations?

Show that, for a scalar function φ, one has

∇2∇aφ = ∇a∇2φ+Rab∇bφ .

Assume that
Rab = ∇a∇bφ

for a scalar field φ. Show that the quantity

R+∇aφ∇aφ

is then a constant.
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2/II/35A General Relativity

The symbol ∇a denotes the covariant derivative defined by the Christoffel connec-
tion Γa

bc for a metric gab. Explain briefly why

(∇a∇b −∇b∇a)φ = 0,

(∇a∇b −∇b∇a)vc 6= 0,

in general, where φ is a scalar field and vc is a covariant vector field.

A Killing vector field va satisfies the equation

Sab ≡ ∇avb +∇bva = 0 .

By considering the quantity ∇aSbc +∇bSac −∇cSab , show that

∇a∇bvc = −Rd
abcvd .

Find all Killing vector fields va in the case of flat Minkowski space-time.

For a metric of the form

ds2 = −f(x) dt2 + gij(x) dx
idxj , i, j = 1, 2, 3 ,

where x denotes the coordinates xi, show that Γ0
00 = Γ0

ij = 0 and that Γ0
0i = Γ0

i0 =
1
2 (∂if) /f . Deduce that the vector field va = (1, 0, 0, 0) is a Killing vector field.

[You may assume the standard symmetries of the Riemann tensor.]
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Consider a particle on a trajectory xa(λ). Show that the geodesic equations, with
affine parameter λ, coincide with the variational equations obtained by varying the integral

I =

∫ λ1

λ0

gab(x)
dxa

dλ

dxb

dλ
dλ ,

the end-points being fixed.

In the case that f(r) = 1− 2GMu, show that the space-time metric is given in the
form

ds2 = −f(r) dt2 + 1

f(r)
dr2 + r2(dθ2 + sin2 θ dφ2) ,

for a certain function f(r). Assuming the particle motion takes place in the plane θ =
π

2
show that

dφ

dλ
=

h

r2
,

dt

dλ
=

E

f(r)
,

for h,E constants. Writing u = 1/r, obtain the equation

(
du

dφ

)2

+ f(r)u2 = − k

h2
f(r) +

E2

h2
,

where k can be chosen to be 1 or 0, according to whether the particle is massive or massless.
In the case that f(r) = 1−GMu, show that

d2u

dφ2
+ u = k

GM

h2
+ 3GMu2 .

In the massive case, show that there is an approximate solution of the form

u =
1

`

(
1 + e cos (αφ)

)
,

where

1− α =
3GM

`
.

What is the interpretation of this solution?
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Let φ(x) be a scalar field and ∇a denote the Levi–Civita covariant derivative
operator of a metric tensor gab. Show that

∇a∇bφ = ∇b∇aφ .

If the Ricci tensor, Rab, of the metric gab satisfies

Rab = ∂aφ∂bφ ,

find the energy momentum tensor Tab and use the contracted Bianchi identity to show
that, if ∂aφ 6= 0, then

∇a∇aφ = 0 . (∗)

Show further that (∗) implies

∂a
(√−g gab∂bφ

)
= 0 .
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The Schwarzschild metric is

ds2 =

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
−
(
1− 2M

r

)
dt2 .

Writing u = 1/r, obtain the equation

d2u

dφ2
+ u = 3Mu2 , (∗)

determining the spatial orbit of a null (massless) particle moving in the equatorial plane
θ = π/2.

Verify that two solutions of (∗) are

(i) u =
1

3M
, and

(ii) u =
1

3M
− 1

M

1

coshφ+ 1
.

What is the significance of solution (i)? Sketch solution (ii) and describe its relation to
solution (i).

Show that, near φ = cosh−1 2, one may approximate the solution (ii) by

r sin(φ− cosh−1 2) ≈
√
27M ,

and hence obtain the impact parameter.
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What are local inertial co-ordinates? What is their physical significance and how
are they related to the equivalence principle?

If Va are the components of a covariant vector field, show that

∂a Vb − ∂b Va

are the components of an anti-symmetric second rank covariant tensor field.

If Ka are the components of a contravariant vector field and gab the components
of a metric tensor, let

Qab = Kc∂c gab + gac ∂bK
c + gcb ∂aK

c .

Show that
Qab = 2∇(aKb) ,

where Ka = gabK
b, and ∇a is the Levi–Civita covariant derivative operator of the metric

gab.

In a particular co-ordinate system (x1, x2, x3, x4), it is given that Ka = (0, 0, 0, 1),
Qab = 0. Deduce that, in this co-ordinate system, the metric tensor gab is independent of
the co-ordinate x4. Hence show that

∇aKb =
1
2

(
∂aKb − ∂bKa

)
,

and that

E = −Ka
dxa

dλ
,

is constant along every geodesic xa(λ) in every co-ordinate system.

What further conditions must one impose on Ka and dxa/dλ to ensure that the
metric is stationary and that E is proportional to the energy of a particle moving along
the geodesic?
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Suppose (x(τ), t(τ)) is a timelike geodesic of the metric

ds2 =
dx2

1 + x2
− (1 + x2) dt2 ,

where τ is proper time along the world line. Show that dt/dτ = E/(1 + x2), where E > 1
is a constant whose physical significance should be stated. Setting a2 = E2− 1, show that

dτ =
dx√
a2 − x2

, dt =
E dx

(1 + x2)
√
a2 − x2

. (∗)

Deduce that x is a periodic function of proper time τ with period 2π. Sketch dx/dτ as a
function of x and superpose on this a sketch of dx/dt as a function of x. Given the identity

∫ a

−a

E dx

(1 + x2)
√
a2 − x2

= π ,

deduce that x is also a periodic function of t with period 2π.

Next consider the family of metrics

ds2 =
[1 + f(x)]2 dx2

1 + x2
− (1 + x2) dt2 ,

where f is an odd function of x, f(−x) = −f(x), and |f(x)| < 1 for all x. Derive
expressions analogous to (∗) above. Deduce that x is a periodic function of τ and also
that x is a periodic function of t. What are the periods?

2/II/35C General Relativity

State without proof the properties of local inertial coordinates xa centred on an
arbitrary spacetime event p. Explain their physical significance.

Obtain an expression for ∂aΓb
c
d at p in inertial coordinates. Use it to derive the

formula
Rabcd = 1

2

(
∂b∂cgad + ∂a∂dgbc − ∂b∂dgac − ∂a∂cgbd

)

for the components of the Riemann tensor at p in local inertial coordinates. Hence deduce
that at any point in any chart Rabcd = Rcdab.

Consider the metric

ds2 =
ηab dx

a dxb

(1 + L−2ηabxaxb)2
,

where ηab = diag(1, 1, 1,−1) is the Minkowski metric tensor and L is a constant. Compute
the Ricci scalar R = Rab

ab at the origin xa = 0.
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State clearly, but do not prove, Birkhoff’s Theorem about spherically symmetric
spacetimes. Let (r, θ, φ) be standard spherical polar coordinates and define F (r) =
1− 2M/r, where M is a constant. Consider the metric

ds2 =
dr2

F (r)
+ r2(dθ2 + sin2 θ dφ2)− F (r) dt2.

Explain carefully why this is appropriate for the region outside a spherically symmetric
star that is collapsing to form a black hole.

By considering radially infalling timelike geodesics xa = (r(τ), 0, 0, t(τ)), where τ
is proper time along the curve, show that a freely falling observer will reach the event
horizon after a finite proper time. Show also that a distant observer would see the horizon
crossing only after an infinite time.
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