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Paper 1, Section I

7E Further Complex Methods
Starting from the Euler product formula for the gamma function,

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
,

show that
1

Γ(z)
= zeγz

∞∏

k=1

(
1 +

z

k

)
e−z/k,

where Euler’s constant is defined by γ = limn→∞(1+ 1
2 + · · ·+ 1

n− log n). You may assume
that γ = 0.5772 . . ..

The digamma function ψ(z) is defined by ψ(z) = d(log Γ(z))/dz. Show that

ψ(z) = −γ − 1

z
+ z

∞∑

k=1

1

(z + k)k
.

Use this formula to deduce that, for z real and positive, ψ′(z) > 0 and hence that
ψ(z) has a single zero on the positive real axis which is located in the interval (1, 2).

Paper 2, Section I

7E Further Complex Methods
The Riemann zeta function ζ(s) is defined by

ζ(s) =

∞∑

n=1

n−s,

which converges for Re(s) > 1.

Show for Re(s) > 1 that

(1 − 21−s)ζ(s) =
∞∑

n=1

(−1)n−1n−s =
1

Γ(s)

∫ ∞

0

ts−1

1 + et
dt.

Deduce, giving brief justification, an expression for the analytic continuation of ζ(s)
into the region Re(s) > 0.

Hence show that ζ(s) has a simple pole at s = 1 and evaluate the corresponding
residue.

Part II, Paper 1

2023
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Paper 3, Section I

7E Further Complex Methods
Consider the differential equation

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0.

State the conditions on p(z) and q(z) for the point z = z0, with z0 finite, to be (i)
an ordinary point and (ii) a regular singular point. Derive the corresponding conditions
for z0 = ∞.

Determine the most general forms of p(z) and q(z) for which z = 0 and z = ∞ are
regular singular points and all other points are ordinary points. Give the corresponding
general form of the solution.

Deduce the further restriction on the form of p(z) and q(z) if z = 0 is the only
regular singular point and all other points are ordinary points.

Paper 4, Section I

7E Further Complex Methods
The hypergeometric function F (a, b; c; z) is the solution of the hypergeometric

equation, i.e. the Fuchsian equation determined by the Papperitz symbol

P





0 1 ∞
0 0 a z

1− c c− a− b b





with F (a, b; c; z) analytic at z = 0 and satisfying F (a, b; c; 0) = 1.

Explain carefully the meaning of each of the elements appearing in the Papperitz
symbol, including any aspects that are required for it to correspond to the hypergeometric
equation.

Show that
F (a, c− b; c; z

z − 1
) = (1− z)aF (a, b; c; z),

stating clearly any general results for transforming Fuchsian differential equations or
manipulating Papperitz symbols that you use.

Part II, Paper 1 [TURN OVER]

2023



48

Paper 1, Section II

14E Further Complex Methods
The Laguerre differential equation is

zy′′ + (1− z)y′ + λy = 0,

where λ is a real constant.

Show that z = 0 is a regular singular point of the Laguerre equation. Briefly explain
why in the neighbourhood of z = 0 the equation has only one solution, y1(z), that takes the
form of a power series, up to multiplication by a constant. A second, linearly independent,
solution is y2(z). What do you expect to be the leading term in an expansion of y2(z) in
the neighbourhood of z = 0?

Seek solutions to the Laguerre equation of the form

y(z) =

∫

γ
eztf(t)dt,

determining the form required for the function f(t) and the conditions required on the
contour γ.

Assume that Re(z) > 0. Consider separately each of the cases:

(i) λ < 0 and λ non-integer;

(ii) λ > 0 and λ non-integer;

(iii) λ equal to a negative integer;

(iv) λ equal to a non-negative integer.

Show that in each of these cases one possible choice of γ, say γ1, is a finite closed
contour, and another, say γ2, is a contour starting at a finite value of t and extending to
−∞. Provide a sketch giving a clear specification of these contours in each of the cases
(i)-(iv).

Show that the y(z) obtained from the finite closed contour γ1 is a constant multiple
of the solution y1(z) and that in case (iv) this solution is a polynomial in z. What can
you say about the form of this solution in case (iii)?

Part II, Paper 1

2023
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Paper 2, Section II

13E Further Complex Methods
The functions g(z) and h(z) are defined by

g(z) =

∫ z

0

1

(1− t2)1/2 dt and h(z) =

∫ z

0

1

(1− t2)1/2
1

(1− k2t2)1/2 dt,

where each integral can be taken along any curve C in the complex t-plane that does not
pass through a branch point of the integrand. In both cases the value of the integrand is
chosen to be 1 at t = 0.

(a) First consider g(z). Let G(z) be the value of g(z) evaluated when C is forbidden
from crossing the real axis except in the interval (−1, 1), with z allowed to lie anywhere
in the complex plane except on the parts (−∞,−1] and [1,∞) of the real axis. C0 in the
diagram below is such a contour.

(i) Explain why G(z) is a single valued function of z, but g(z) may not be.

(ii) Evaluate g(z) in terms of G(z) when C is each of C1 and C2 shown in the
diagram below.

(iii) Give, with brief reasoning, all possible values of g(z) as the curve C is
varied.

xx
1-1

x z
C0

C1
C2

(b) Now consider h(z). Let k be real with 0 < k < 1. Let H(z) be the value of h(z)
evaluated when C is forbidden from crossing the real axis except in the interval (−1, 1),
with z allowed to lie anywhere in the complex plane except on the parts (−∞,−1] and
[1,∞) of the real axis.

(i) Explain why H(z) is a single valued function of z, but h(z) may not be.

(ii) Show, by identifying suitable contours C, that possible values of h(z)
include 4K +H(z), 2K −H(z) and 2iL+H(z), where

K =

∫ 1

0

1

(1− t2)1/2
1

(1− k2t2)1/2 dt and L =

∫ 1/k

1

1

(t2 − 1)1/2
1

(1− k2t2)1/2 dt.

(c) Deduce that the inverse function H(w) defined by h(H(w)) = w is a doubly
periodic function and give expressions for the two periods.

(d) Assuming that H is a meromorphic function, explain briefly why it must have
at least one pole.

Part II, Paper 1 [TURN OVER]
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Paper 1, Section I
7E Further Complex Methods

Show that

P
∫ ∞

−∞

sz−1

s− t ds = πitz−1,

where t is real and positive, 0 < Re(z) < 1 and the branch of sz is chosen so that, for
z real, sz is real and positive for s real and positive and sz = (−s)zeiπz for s real and
negative.

Deduce that for z real with 0 < z < 1

∫ ∞

0

sz−1

s+ t
ds = πtz−1cosecπz

and

P
∫ ∞

0

sz−1

s− t ds = −πt
z−1 cotπz.

Why do these results actually hold for a large set of non-real z?

Paper 2, Section I
7E Further Complex Methods

A complex function Arcsinh(z) may be defined by

Arcsinh(z) =

∫ z

0

1

(1 + t2)1/2
dt ,

where the integrand (1 + t2)−1/2 is equal to 1/
√

2 at t = 1 and has a branch cut along the
imaginary axis between the points ±i (deformed very slightly to the left of the origin).

Explain how to choose the path of integration to ensure that Arcsinh(z) is analytic
and single valued in 0 6 arg z < 2π, except for z on the branch cut specified for (1+t2)−1/2.

Evaluate Arcsinh(− sinh(u)), where u is real and u > 0.

Deduce that if arcsinh(z) is an analytic continuation of Arcsinh(z) to the whole
complex plane, omitting the branch cut, but without restriction on arg(z), then it is
multivalued. What are the possible values of arcsinh(sinh(u)), with u real and u > 0?

Part II, Paper 1 [TURN OVER]

2022
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Paper 3, Section I
7E Further Complex Methods

Consider the partial differential equation

∂T

∂t
= κ

∂2T

∂x2

in x > 0 subject to the initial condition T (x, 0) = 0 for all x > 0 and the boundary
condition T (0, t) = sinωt for t > 0.

Show that the Laplace transform of T (x, t) takes the form

T̃ (x, p) = T̃0(p) exp(−(p/κ)1/2x)

and determine the function T̃0(p).

Consider I(t) =
∫∞
0 T (x, t) dx. Write down an expression for Ĩ(p).

Applying the Bromwich contour inversion expression for Laplace transforms gives
the result that for t > 0

I(t) = A cos(ωt) +B sin(ωt) +
1

π

∫ ∞

0

ωκ1/2

(s2 + ω2)

e−st

s1/2
ds ,

where A and B are independent of t. Draw a diagram showing the Bromwich contour and
explain clearly how the terms appearing in the above expression arise.

Paper 4, Section I
7E Further Complex Methods

What type of equation has solutions described by the following Papperitz symbol?

P




z1 z2 z3
α1 α2 α3 z
β1 β2 β3





Explain the meaning of each of the quantities appearing in the symbol.

The hypergeometric function F (a, b, c; z) is defined by

F (a, b; c; z) = P





0 1 ∞
0 0 a z

1− c c− a− b b





with F (a, b; c; z) analytic at z = 0 and satisfying F (a, b; c; 0) = 1.

Explain carefully why there are constants A and B such that

F (a, b; c; z) = Az−aF (a, 1 + a− c; 1 + a− b; z−1) +Bz−bF (b, 1 + b− c; 1 + b− a; z−1).

[You may neglect complications associated with special cases such as a = b.]

Part II, Paper 1

2022
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Paper 1, Section II
14E Further Complex Methods

The polylogarithm function Lis(z) is defined for complex values of z (|z| < 1) and s
(all complex s) by

Lis(z) =
∞∑

n=1

zn

ns
.

(a) Briefly justify why the conditions given on z and s given above are appropriate.

Consider the integral

I(z, s) =
Γ(1− s)

2πi

∫ (0+)

−∞

zts−1

e−t − z dt , (1)

where the integral is taken along a Hankel contour, as indicated by the limits.

(b) Show that I(z, s) provides an analytic continuation of Lis(z) for all z /∈ (1,∞).
[Hint: You may assume where needed the Hankel representation of the Gamma function,

Γ(z) = (2i sinπz)−1
∫ (0+)
−∞ ettz−1 dt, and the result Γ(z)Γ(1− z) = πcosec(πz).]

Include in your answer a sketch of the Hankel contour, with particular attention to
the path of the contour relative to any singularities in the integrand when z is close to,
but not on the part (1,∞) of the real axis.

(c) Describe how to evaluate I(z, s) when s is a non-positive integer. Hence give
explicit expressions for Lis(z) for s = 0, s = −1 and s = −2.

(d) For s > 0 show that I(z, s) can be expressed in the form

I(z, s) =

∫ ∞

0
K(z, s, t) dt,

where t is a real variable and K(z, s, t) is to be determined. Comment on the required
interpretation of the expression (1) when s is a positive integer.

Without detailed calculation, explain (for s > 0) why I(z, s) jumps by the value
2πi(log x)s−1/Γ(s) when z moves from just below (1,∞) to just above (1,∞) at the point
x (x > 1).

Part II, Paper 1 [TURN OVER]
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Paper 2, Section II
13E Further Complex Methods

Consider the differential equation

d3w

dz3
− zw = 0 .

Use Laplace’s method to find solutions of the form

w(z) =

∫

γ
ezt f(t) dt ,

where γ is a contour in the complex t-plane. Determine the function f(t) and state clearly
the condition required for the contour γ.

Draw a sketch of the complex t-plane showing the possible choices of γ, relating
these to the behaviour of f(t).

Show that three different suitable contours γi, i = 1, 2, 3, may be formed from the
positive real axis plus parts of the real axis or the imaginary axis, with each γi defining a
function wi(z). Write down expressions for the values of wi(0), w′

i(0) and w′′
i (0) (i = 1, 2, 3)

and evaluate them in terms of Gamma functions.

Give an expression for

det



w1(0) w′

1(0) w′′
1(0)

w2(0) w′
2(0) w′′

2(0)
w3(0) w′

3(0) w′′
3(0)


.

Deduce that the functions wi(z) (i = 1, 2, 3) are linearly independent.

Part II, Paper 1

2022
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Paper 1, Section I

7E Further Complex Methods
Evaluate the integral

P
∫ ∞

0

sinx

x(x2 − 1)
dx ,

stating clearly any standard results involving contour integrals that you use.

Paper 2, Section I

7E Further Complex Methods
The function w(z) satisfies the differential equation

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0 , (†)

where p(z) and q(z) are complex analytic functions except, possibly, for isolated singular-
ities in C = C ∪ {∞} (the extended complex plane).

(a) Given equation (†), state the conditions for a point z0 ∈ C to be

(i) an ordinary point,

(ii) a regular singular point,

(iii) an irregular singular point.

(b) Now consider z0 = ∞ and use a suitable change of variables z → t, with
y(t) = w(z), to rewrite (†) as a differential equation that is satisfied by y(t). Hence,
deduce the conditions for z0 = ∞ to be

(i) an ordinary point,

(ii) a regular singular point,

(iii) an irregular singular point.

[In each case, you should express your answer in terms of the functions p and q.]

(c) Use the results above to prove that any equation of the form (†) must have at
least one singular point in C.

Part II, 2021 List of Questions

2021
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Paper 3, Section I

7E Further Complex Methods
The Beta function is defined by

B(p, q) =

∫ 1

0
tp−1(1− t)q−1 dt

for Re p > 0 and Re q > 0 .

(a) Prove that B(p, q) = B(q, p) and find B(1, q) .

(b) Show that (p+ z)B(p, z + 1) = zB(p, z) .

(c) For each fixed p with Re p > 0, use part (b) to obtain the analytic continuation
of B(p, z) as an analytic function of z ∈ C, with the exception of the points z =
0,−1,−2,−3, ... .

(d) Use part (c) to determine the type of singularity that the function B(p, z) has
at z = 0,−1,−2,−3, ... , for fixed p with Re p > 0 .

Paper 4, Section I

7E Further Complex Methods
(a) Explain in general terms the meaning of the Papperitz symbol

P





a b c
α β γ z
α′ β′ γ′



 .

State a condition satisfied by α, β, γ, α′, β′ and γ′. [You need not write down any
differential equations explicitly, but should provide explicit explanation of the meaning
of a, b, c, α, β, γ, α′, β′ and γ′.]

(b) The Papperitz symbol

P





1 −1 ∞
−m/2 m/2 n z
m/2 −m/2 1− n



 , (†)

where n,m are constants, can be transformed into

P





0 1 ∞
0 0 n

1− z
2

m −m 1− n




. (∗)

(i) Provide an explicit description of the transformations required to obtain (∗) from
(†).

(ii) One of the solutions to the P -equation that corresponds to (∗) is a hypergeometric
function F (a, b; c; z′). Express a, b, c and z′ in terms of n, m and z.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 1, Section II

14E Further Complex Methods
(a) Functions g1(z) and g2(z) are analytic in a connected open set D ⊆ C with

g1 = g2 in a non-empty open subset D̃ ⊂ D. State the identity theorem.

(b) Let D1 and D2 be connected open sets with D1 ∩ D2 6= ∅. Functions f1(z) and
f2(z) are analytic on D1 and D2 respectively with f1 = f2 on D1∩D2. Explain briefly what
is meant by analytic continuation of f1 and use part (a) to prove that analytic continuation
to D2 is unique.

(c) The function F (z) is defined by

F (z) =

∫ ∞

−∞

eit

(t− z)ndt ,

where Im z > 0 and n is a positive integer. Use the method of contour deformation to
construct the analytic continuation of F (z) into Im z 6 0.

(d) The function G(z) is defined by

G(z) =

∫ ∞

−∞

eit

(t− z)ndt ,

where Im z 6= 0 and n is a positive integer. Prove that G(z) experiences a discontinuity
when z crosses the real axis. Determine the value of this discontinuity. Hence, explain
why G(z) cannot be used as an analytic continuation of F (z).

Part II, 2021 List of Questions

2021



49

Paper 2, Section II

13E Further Complex Methods
The temperature T (x, t) in a semi-infinite bar (0 6 x < ∞) satisfies the heat

equation
∂T

∂t
= κ

∂2T

∂x2
, for x > 0 and t > 0 ,

where κ is a positive constant.

For t < 0, the bar is at zero temperature. For t > 0, the temperature is subject to
the boundary conditions

T (0, t) = a(1− e−bt),
where a and b are positive constants, and T (x, t)→ 0 as x→∞.

(a) Show that the Laplace transform of T (x, t) with respect to t takes the form

T̂ (x, p) = f̂(p)e−x
√
p/κ ,

and find f̂(p). Hence write T̂ (x, p) in terms of a, b, κ, p and x.

(b) By performing the inverse Laplace transform using contour integration, show
that for t > 0

T (x, t) = a

[
1− e−bt cos

(√ b

κ
x
)]

+
2ab

π
P
∫ ∞

0

e−v
2t sin(xv/

√
κ)

v(v2 − b) dv .

Part II, 2021 List of Questions [TURN OVER]
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Paper 1, Section I

7E Further Complex Methods
The function I(z), defined by

I(z) =

∫ ∞

0
tz−1e−tdt ,

is analytic for Re z > 0.

(i) Show that I(z + 1) = zI(z).

(ii) Use part (i) to construct an analytic continuation of I(z) into Re z 6 0, except
at isolated singular points, which you need to identify.

Paper 2, Section I

7E Further Complex Methods
Evaluate ∫

C

dz

sin3 z
,

where C is the circle |z| = 4 traversed in the counter-clockwise direction.

Paper 3, Section I

7E Further Complex Methods
The Weierstrass elliptic function is defined by

P(z) =
1

z2
+
∑

m,n

[
1

(z − ωm,n)2
− 1

ωm,n2

]
,

where ωm,n = mω1 + nω2, with non-zero periods (ω1, ω2) such that ω1/ω2 is not real, and
where (m,n) are integers not both zero.

(i) Show that, in a neighbourhood of z = 0,

P(z) =
1

z2
+

1

20
g2z

2 +
1

28
g3z

4 +O(z6) ,

where
g2 = 60

∑

m,n

(ωm,n)−4, g3 = 140
∑

m,n

(ωm,n)−6.

(ii) Deduce that P satisfies

(
dP
dz

)2

= 4P3 − g2P − g3.

Part II, 2020 List of Questions

2020
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Paper 4, Section I

7E Further Complex Methods
The Hilbert transform of a function f(x) is defined by

H(f)(y) :=
1

π
P
∫ +∞

−∞

f(x)

y − xdx .

Calculate the Hilbert transform of f(x) = cosωx, where ω is a non-zero real
constant.

Paper 1, Section II

14E Further Complex Methods
Use the change of variable z = sin2 x, to rewrite the equation

d2y

dx2
+ k2y = 0, (†)

where k is a real non-zero number, as the hypergeometric equation

d2w

dz2
+

(
C

z
+

1 +A+B − C
z − 1

)
dw

dz
+

AB

z(z − 1)
w = 0, (‡)

where y(x) = w(z), and A,B and C should be determined explicitly.

(i) Show that (‡) is a Papperitz equation, with 0, 1 and ∞ as its regular singular
points. Hence, write the corresponding Papperitz symbol,

P





0 1 ∞
0 0 A z

1− C C −A−B B



 ,

in terms of k.

(ii) By solving (†) directly or otherwise, find the hypergeometric function
F (A,B;C; z) that is the solution to (‡) and is analytic at z = 0 corresponding to the
exponent 0 at z = 0, and satisfies F (A,B;C; 0) = 1 ; moreover, write it in terms of k and
x.

(iii) By performing a suitable exponential shifting find the second solution, inde-
pendent of F (A,B;C; z), which corresponds to the exponent 1 − C, and hence write
F (1+k2 , 1−k2 ; 3

2 ; z) in terms of k and x.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 2, Section II

13E Further Complex Methods
A semi-infinite elastic string is initially at rest on the x-axis with 0 6 x < ∞.

The transverse displacement of the string, y(x, t), is governed by the partial differential
equation

∂2y

∂t2
= c2

∂2y

∂x2
,

where c is a positive real constant. For t > 0 the string is subject to the boundary
conditions y(0, t) = f(t) and y(x, t) → 0 as x→ ∞.

(i) Show that the Laplace transform of y(x, t) takes the form

ŷ(x, p) = f̂(p) e−px/c .

(ii) For f(t) = sinωt, with ω ∈ R+, find f̂(p) and hence write ŷ(x, p) in terms of
ω, c, p and x. Obtain y(x, t) by performing the inverse Laplace transform using contour
integration. Provide a physical interpretation of the result.

Part II, 2020 List of Questions

2020
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Paper 4, Section I

7A Further Complex Methods
A single-valued function Arcsin(z) can be defined, for 0 6 arg z < 2π, by means of

an integral as:

Arcsin(z) =

∫ z

0

dt

(1− t2)1/2
. (†)

(a) Choose a suitable branch-cut with the integrand taking a value +1 at the origin
on the upper side of the cut, i.e. at t = 0+, and describe suitable paths of integration in
the two cases 0 6 arg z 6 π and π < arg z < 2π.

(b) Construct the multivalued function arcsin(z) by analytic continuation.

(c) Express arcsin
(
e2πiz

)
in terms of Arcsin(z) and deduce the periodicity property

of sin(z).

Paper 3, Section I

7A Further Complex Methods
The equation

zw′′ + w = 0

has solutions of the form

w(z) =

∫

γ
eztf(t)dt,

for suitably chosen contours γ and some suitable function f(t).

(a) Find f(t) and determine the required condition on γ, which you should express
in terms of z and t.

(b) Use the result of part (a) to specify a possible contour with the help of a clearly
labelled diagram.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section I

7A Further Complex Methods
Assume that |f(z)/z| → 0 as |z| → ∞ and that f(z) is analytic in the upper

half-plane (including the real axis). Evaluate

P
∫ ∞

−∞

f(x)

x(x2 + a2)
dx,

where a is a positive real number.
[You must state clearly any standard results involving contour integrals that you use.]

Paper 1, Section I

7A Further Complex Methods
The Beta function is defined by

B(p, q) :=

∫ 1

0
tp−1(1− t)q−1dt =

Γ(p)Γ(q)

Γ(p+ q)
,

where Re p > 0, Re q > 0, and Γ is the Gamma function.

(a) By using a suitable substitution and properties of Beta and Gamma functions,
show that ∫ 1

0

dx√
1− x4

=
[Γ(1/4)]2√

32π
.

(b) Deduce that

K
(
1/
√
2
)
=

4 [Γ(5/4)]2√
π

,

where K(k) is the complete elliptic integral, defined as

K(k) :=

∫ 1

0

dt√
(1− t2)(1− k2t2)

.

[Hint: You might find the change of variable x = t(2− t2)−1/2 helpful in part (b).]

Part II, 2019 List of Questions

2019
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Paper 2, Section II

13A Further Complex Methods
The Riemann zeta function is defined as

ζ(z) :=

∞∑

n=1

1

nz
(†)

for Re(z) > 1, and by analytic continuation to the rest of C except at singular points.
The integral representation of (†) for Re(z) > 1 is given by

ζ(z) =
1

Γ(z)

∫ ∞

0

tz−1

et − 1
dt (‡)

where Γ is the Gamma function.

(a) The Hankel representation is defined as

ζ(z) =
Γ(1− z)

2πi

∫ (0+)

−∞

tz−1

e−t − 1
dt . (⋆)

Explain briefly why this representation gives an analytic continuation of ζ(z) as defined
in (‡) to all z other than z = 1, using a diagram to illustrate what is meant by the upper
limit of the integral in (⋆).

[You may assume Γ(z)Γ(1 − z) = π/ sin(πz).]

(b) Find

Res

(
t−z

e−t − 1
, t = 2πin

)
,

where n is an integer and the poles are simple.

(c) By considering ∫

γ

t−z

e−t − 1
dt ,

where γ is a suitably modified Hankel contour and using the result of part (b), derive the
reflection formula:

ζ(1− z) = 21−zπ−z cos
(
1
2πz

)
Γ(z)ζ(z) .

Part II, 2019 List of Questions [TURN OVER

2019



48

Paper 1, Section II

14A Further Complex Methods
(a) Consider the Papperitz symbol (or P-symbol):

P





a b c
α β γ z
α′ β′ γ′



 . (†)

Explain in general terms what this P -symbol represents.

[You need not write down any differential equations explicitly, but should provide an
explanation of the meaning of a, b, c, α, β, γ, α′ , β′ and γ′.]

(b) Prove that the action of [(z−a)/(z−b)]δ on (†) results in the exponential shifting,

P





a b c
α+ δ β − δ γ z
α′ + δ β′ − δ γ′



 . (‡)

[Hint: It may prove useful to start by considering the relationship between two solutions, ω
and ω1, which satisfy the P -equations described by the respective P -symbols (†) and (‡).]

(c) Explain what is meant by a Möbius transformation of a second order differential
equation. By using suitable transformations acting on (†), show how to obtain the P -
symbol

P





0 1 ∞
0 0 a z

1− c c− a− b b



 , (⋆)

which corresponds to the hypergeometric equation.

(d) The hypergeometric function F (a, b, c; z) is defined to be the solution of the
differential equation corresponding to (⋆) that is analytic at z = 0 with F (a, b, c; 0) = 1,
which corresponds to the exponent zero. Use exponential shifting to show that the second
solution, which corresponds to the exponent 1− c, is

z1−cF (a− c+ 1, b− c+ 1, 2− c; z).
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Paper 1, Section I

7B Further Complex Methods
The Beta and Gamma functions are defined by

B(p, q) =

∫ 1

0
tp−1(1− t)q−1dt,

Γ(p) =

∫ ∞

0
e−ttp−1dt,

where Re p > 0, Re q > 0.

(a) By using a suitable substitution, or otherwise, prove that

B(z, z) = 21−2zB(z, 12)

for Re z > 0. Extending B by analytic continuation, for which values of z ∈ C does this
result hold?

(b) Prove that

B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
,

for Re p > 0, Re q > 0.

Paper 2, Section I

7B Further Complex Methods
Show that ∫ ∞

−∞

cosnx− cosmx

x2
dx = π(m− n),

in the sense of Cauchy principal value, where n and m are positive integers. [State clearly
any standard results involving contour integrals that you use.]

Paper 3, Section I

7B Further Complex Methods
Using a suitable branch cut, show that

∫ a

−a
(a2 − x2)1/2dx =

a2π

2
,

where a > 0.
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Paper 4, Section I

7B Further Complex Methods
State the conditions for a point z = z0 to be a regular singular point of a linear

second-order homogeneous ordinary differential equation in the complex plane.

Find all singular points of the Bessel equation

z2y′′(z) + zy′(z) +
(
z2 − 1

4

)
y(z) = 0 , (∗)

and determine whether they are regular or irregular.

By writing y(z) = f(z)/
√
z, find two linearly independent solutions of (∗). Comment

on the relationship of your solutions to the nature of the singular points.

Paper 2, Section II

13B Further Complex Methods
Consider a multi-valued function w(z).

(a) Explain what is meant by a branch point and a branch cut.

(b) Consider z = ew.

(i) By writing z = reiθ, where 0 6 θ < 2π, and w = u + iv, deduce the
expression for w(z) in terms of r and θ. Hence, show that w is infinitely
valued and state its principal value.

(ii) Show that z = 0 and z = ∞ are the branch points of w. Deduce that the
line Im z = 0, Re z > 0 is a possible choice of branch cut.

(iii) Use the Cauchy–Riemann conditions to show that w is analytic in the cut

plane. Show that
dw

dz
=

1

z
.
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Paper 1, Section II

14B Further Complex Methods
The equation

zw′′ + 2aw′ + zw = 0, (†)
where a is a constant with Re a > 0, has solutions of the form

w(z) =

∫

γ
eztf(t)dt,

for suitably chosen contours γ and some suitable function f(t).

(a) Find f(t) and determine the condition on γ, which you should express in terms
of z, t and a.

(b) Use the results of part (a) to show that γ can be a finite contour and specify
two possible finite contours with the help of a clearly labelled diagram. Hence, find the
corresponding solution of the equation (†) in the case a = 1.

(c) In the case a = 1 and real z, show that γ can be an infinite contour and specify
two possible infinite contours with the help of a clearly labelled diagram. [Hint: Consider
separately the cases z > 0 and z < 0.] Hence, find a second, linearly independent solution
of the equation (†) in this case.
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Paper 1, Section I

7E Further Complex Methods
Calculate the value of the integral

P

∫ ∞

−∞

e−ix

xn
dx ,

where P stands for Principal Value and n is a positive integer.

Paper 2, Section I

7E Further Complex Methods
Euler’s formula for the Gamma function is

Γ(z) =
1

z

∞∏

n=1

(
1 +

1

n

)z (
1 +

z

n

)−1
.

Use Euler’s formula to show

Γ(2z)

22zΓ(z)Γ(z + 1
2)

= C,

where C is a constant.

Evaluate C.

[Hint: You may use Γ(z)Γ(1 − z) = π/ sin(πz).]

Paper 3, Section I

7E Further Complex Methods
Find all the singular points of the differential equation

z
d2y

dz2
+ (2− z)

dy

dz
− y = 0

and determine whether they are regular or irregular singular points.

By writing y(z) = f(z)/z, find two linearly independent solutions to this equation.

Comment on the relationship of your solutions to the nature of the singular points
of the original differential equation.
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Paper 4, Section I

7E Further Complex Methods
Consider the differential equation

z
d2y

dz2
− 2

dy

dz
+ zy = 0 . (⋆)

Laplace’s method finds a solution of this differential equation by writing y(z) in the
form

y(z) =

∫

C
eztf(t)dt ,

where C is a closed contour.

Determine f(t). Hence find two linearly independent real solutions of (⋆) for z real.
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Paper 2, Section II

12E Further Complex Methods
The hypergeometric equation is represented by the Papperitz symbol

P





0 1 ∞
0 0 a z

1− c c− a− b b



 (∗)

and has solution y0(z) = F (a, b, c; z).

Functions y1(z) and y2(z) are defined by

y1(z) = F (a, b, a+ b+ 1− c; 1− z)

and
y2(z) = (1− z)c−a−bF (c− a, c− b, c− a− b+ 1; 1 − z),

where c− a− b is not an integer.

Show that y1(z) and y2(z) obey the hypergeometric equation (∗).
Explain why y0(z) can be written in the form

y0(z) = Ay1(z) +By2(z),

where A and B are independent of z but depend on a, b and c.

Suppose that

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt

with Re(c) > Re(b) > 0 and | arg(1− z)| < π. Find expressions for A and B.
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Paper 1, Section II

13E Further Complex Methods
The Riemann zeta function is defined by

ζR(s) =
∞∑

n=1

n−s

for Re(s) > 1.

Show that

ζR(s) =
1

Γ(s)

∫ ∞

0

ts−1

et − 1
dt.

Let I(s) be defined by

I(s) =
Γ(1− s)

2πi

∫

C

ts−1

e−t − 1
dt,

where C is the Hankel contour.

Show that I(s) provides an analytic continuation of ζR(s) for a range of s which
should be determined.

Hence evaluate ζR(−1).
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Paper 4, Section I

7A Further Complex Methods
Consider the equation for w(z):

w′′ + p(z)w′ + q(z)w = 0 . (∗)

State necessary and sufficient conditions on p(z) and q(z) for z = 0 to be (i) an ordinary
point or (ii) a regular singular point . Derive the corresponding conditions for the point
z = ∞.

Determine the most general equation of the form (∗) that has regular singular points
at z = 0 and z = ∞, with all other points being ordinary.

Paper 3, Section I

7A Further Complex Methods
The functions f(x) and g(x) have Laplace transforms F (p) and G(p) respectively,

and f(x) = g(x) = 0 for x 6 0. The convolution h(x) of f(x) and g(x) is defined by

h(x) =

∫ x

0
f(y) g(x−y) dy for x > 0 and h(x) = 0 for x 6 0 .

Express the Laplace transform H(p) of h(x) in terms of F (p) and G(p).

Now suppose that f(x) = xα and g(x) = xβ for x > 0, where α, β > −1. Find
expressions for F (p) and G(p) by using a standard integral formula for the Gamma
function. Find an expression for h(x) by using a standard integral formula for the Beta
function. Hence deduce that

Γ(z)Γ(w)

Γ(z + w)
= B(z, w)

for all Re(z) > 0, Re(w) > 0.

Paper 1, Section I

7A Further Complex Methods
Evaluate the integral

f(p) = P
∫ ∞

−∞
dx

eipx

x4 − 1
,

where p is a real number, for (i) p > 0 and (ii) p < 0.
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Paper 2, Section I

7A Further Complex Methods
The Euler product formula for the Gamma function is

Γ(z) = lim
n→∞

n! nz

z(z + 1) . . . (z + n)
.

Use this to show that
Γ(2z)

22z Γ(z) Γ(z + 1
2)

= c ,

where c is a constant, independent of z. Find the value of c.

Paper 2, Section II

12A Further Complex Methods
The Hurwitz zeta function ζH(s, q) is defined for Re(q) > 0 by

ζH(s, q) =
∞∑

n=0

1

(q + n)s
.

State without proof the complex values of s for which this series converges.

Consider the integral

I(s, q) =
Γ(1− s)

2πi

∫

C
dz

zs−1 e qz

1− e z

where C is the Hankel contour. Show that I(s, q) provides an analytic continuation of
the Hurwitz zeta function for all s 6= 1. Include in your account a careful discussion of
removable singularities. [Hint: Γ(s) Γ(1− s) = π/ sin(πs).]

Show that I(s, q) has a simple pole at s = 1 and find its residue.
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Paper 1, Section II

13A Further Complex Methods
(a) Legendre’s equation for w(z) is

(z2 − 1)w′′ + 2zw′ − ℓ(ℓ+ 1)w = 0 , where ℓ = 0, 1, 2, . . . .

Let C be a closed contour. Show by direct substitution that for z within C
∫

C
dt

(t2 − 1)ℓ

(t− z)ℓ+1

is a non-trivial solution of Legendre’s equation.

(b) Now consider

Qν(z) =
1

4i sin νπ

∫

C′
dt

(t2 − 1)ν

(t− z)ν+1

for real ν > −1 and ν 6= 0, 1, 2, . . . . The closed contour C′ is defined to start at the
origin, wind around t = 1 in a counter-clockwise direction, then wind around t = −1 in
a clockwise direction, then return to the origin, without encircling the point z. Assuming
that z does not lie on the real interval −1 6 x 6 1, show by deforming C′ onto this interval
that functions Qℓ(z) may be defined as limits of Qν(z) with ν → ℓ = 0, 1, 2, . . . .

Find an explicit expression for Q0(z) and verify that it satisfies Legendre’s equation
with ℓ = 0.
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Paper 4, Section I

6B Further Complex Methods

Explain how the Papperitz symbol

P





z1 z2 z3
α1 β1 γ1 z
α2 β2 γ2





represents a differential equation with certain properties. [You need not write down the
differential equation explicitly.]

The hypergeometric function F (a, b, c ; z) is defined to be the solution of the equation
given by the Papperitz symbol

P





0 ∞ 1
0 a 0 z

1− c b c− a− b





that is analytic at z = 0 and such that F (a, b, c ; 0) = 1. Show that

F (a, b, c ; z) = (1− z)−aF
(
a, c−b, c ;

z

z − 1

)
,

indicating clearly any general results for manipulating Papperitz symbols that you use.

Paper 3, Section I

6B Further Complex Methods

Define what is meant by the Cauchy principal value in the particular case

P
∫ ∞

−∞

cos x

x2 − a2
dx ,

where the constant a is real and strictly positive. Evaluate this expression explicitly,
stating clearly any standard results involving contour integrals that you use.
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Paper 2, Section I

6B Further Complex Methods

Give a brief description of what is meant by analytic continuation.

The dilogarithm function is defined by

Li2(z) =

∞∑

n=1

zn

n2
, |z| < 1 .

Let

f(z) = −
∫

C

1

u
ln(1− u) du

where C is a contour that runs from the origin to the point z. Show that f(z) provides an

analytic continuation of Li2(z) and describe its domain of definition in the complex plane,

given a suitable branch cut.

Paper 1, Section I

6B Further Complex Methods

Evaluate the real integral ∫ ∞

0

x1/2 lnx

1 + x2
dx

where x1/2 is taken to be the positive square root.

What is the value of ∫ ∞

0

x1/2

1 + x2
dx ?
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Paper 2, Section II

11B Further Complex Methods

The Riemann zeta function is defined by the sum

ζ(s) =
∞∑

n=1

n−s ,

which converges for Re s > 1. Show that

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1

et − 1
dt , Re s > 1 . (∗)

The analytic continuation of ζ(s) is given by the Hankel contour integral

ζ(s) =
Γ(1− s)

2πi

∫ 0+

−∞

ts−1

e−t − 1
dt .

Verify that this agrees with the integral (∗) above when Re s > 1 and s is not an integer.
[You may assume Γ(s)Γ(1− s) = π/ sin πs .] What happens when s = 2, 3, 4, . . . ?

Evaluate ζ(0). Show that (e−t − 1)−1 + 1
2 is an odd function of t and hence, or

otherwise, show that ζ(−2n) = 0 for any positive integer n.

Paper 1, Section II

11B Further Complex Methods

Consider the differential equation

xy′′ + (a− x)y′ − by = 0 (∗)

where a and b are constants with Re (b) > 0 and Re (a − b) > 0. Laplace’s method for
finding solutions involves writing

y(x) =

∫

C
extf(t) dt

for some suitable contour C and some suitable function f(t). Determine f(t) for
the equation (∗) and use a clearly labelled diagram to specify contours C giving two
independent solutions when x is real in each of the cases x > 0 and x < 0.

Now let a = 3 and b = 1. Find explicit expressions for two independent solutions
to (∗). Find, in addition, a solution y(x) with y(0) = 1.
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Paper 4, Section I

8B Further Complex Methods
Let f : C → C be a function such that

f(z + ω1) = f(z) , f(z + ω2) = f(z) , (1)

where ω1, ω2 ∈ C\{0} and ω1/ω2 is not real. Show that if f is analytic on C then it is a
constant. [Liouville’s theorem may be used if stated.] Give an example of a non-constant
meromorphic function which satisfies (1).

Paper 3, Section I

8B Further Complex Methods
State the conditions for a point z = z0 to be a regular singular point of a linear

second-order homogeneous ordinary differential equation in the complex plane.

Find all singular points of the Airy equation

w′′(z)− zw(z) = 0 ,

and determine whether they are regular or irregular.

Paper 1, Section I

8B Further Complex Methods
Show that the Cauchy–Riemann equations for f : C → C are equivalent to

∂f

∂z̄
= 0 ,

where z = x + iy, and ∂/∂z̄ should be defined in terms of ∂/∂x and ∂/∂y. Use Green’s
theorem, together with the formula dz dz̄ = −2i dx dy, to establish the generalised Cauchy
formula ∮

γ
f(z, z̄) dz = −

∫ ∫

D

∂f

∂z̄
dz dz̄ ,

where γ is a contour in the complex plane enclosing the region D and f is sufficiently
differentiable.

Part II, 2014 List of Questions [TURN OVER

2014



42

Paper 2, Section I

8B Further Complex Methods
Suppose z = 0 is a regular singular point of a linear second-order homogeneous

ordinary differential equation in the complex plane. Define the monodromy matrix M
around z = 0.

Demonstrate that if

M =

(
1 1
0 1

)

then the differential equation admits a solution of the form a(z) + b(z) log z, where a(z)
and b(z) are single-valued functions.

Paper 2, Section II

14B Further Complex Methods
Use the Euler product formula

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)

to show that:

(i) Γ(z + 1) = zΓ(z) ;

(ii)
1

Γ(z)
= zeγz

∞∏

k=1

(
1 +

z

k

)
e−z/k, where γ = lim

n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
.

Deduce that
d

dz
log (Γ(z)) = −γ − 1

z
+ z

∞∑

k=1

1

k(z + k)
.
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Paper 1, Section II

14B Further Complex Methods
Obtain solutions of the second-order ordinary differential equation

zw′′ − w = 0

in the form

w(z) =

∫

γ
f(t)e−zt dt,

where the function f and the choice of contour γ should be determined from the differential
equation.

Show that a non-trivial solution can be obtained by choosing γ to be a suitable
closed contour, and find the resulting solution in this case, expressing your answer in the
form of a power series.

Describe a contour γ that would provide a second linearly independent solution for
the case Re(z) > 0.
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Paper 4, Section I

8E Further Complex Methods
Let the function f(z) be analytic in the upper half-plane and such that |f(z)| → 0

as |z| → ∞. Show that

P
∫ ∞

−∞

f(x)

x
dx = iπf(0) ,

where P denotes the Cauchy principal value.

Use the Cauchy integral theorem to show that

P
∫ ∞

−∞

u(x, 0)

x− t
dx = −πv(t, 0) , P

∫ ∞

−∞

v(x, 0)

x− t
dx = πu(t, 0) ,

where u(x, y) and v(x, y) are the real and imaginary parts of f(z).

Paper 3, Section I

8E Further Complex Methods
Let a real-valued function u = u(x, y) be the real part of a complex-valued function

f = f(z) which is analytic in the neighbourhood of a point z = 0, where z = x + iy.
Derive a formula for f in terms of u and use it to find an analytic function f whose real
part is

x3 + x2 − y2 + xy2

(x+ 1)2 + y2

and such that f(0) = 0.

Paper 2, Section I

8E Further Complex Methods
(i) Find all branch points of (z3 − 1)1/4 on an extended complex plane.

(ii) Use a branch cut to evaluate the integral

∫ 2

−2
(4− x2)1/2dx .
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Paper 1, Section I

8E Further Complex Methods
Prove that there are no second order linear ordinary homogeneous differential

equations for which all points in the extended complex plane are analytic.

Find all such equations which have one regular singular point at z = 0.

Paper 2, Section II

14E Further Complex Methods
The Beta function is defined for Re(z) > 0 as

B(z, q) =

∫ 1

0
tq−1(1− t)z−1dt, (Re(q) > 0) ,

and by analytic continuation elsewhere in the complex z-plane.

Show that:

(i) (z + q)B(z + 1, q) = zB(z, q);

(ii) Γ(z)2 = B(z, z)Γ(2z).

By considering Γ(z/2m) for all positive integers m, deduce that Γ(z) 6= 0 for all z
with Re(z) > 0.

Paper 1, Section II

14E Further Complex Methods
Show that the equation

(z − 1)w′′ − zw′ + (4− 2z)w = 0

has solutions of the form w(z) =
∫
γ exp (zt)f(t)dt, where

f(t) =
exp (−t)

(t− a)(t− b)2

and the contour γ is any closed curve in the complex plane, where a and b are real constants
which should be determined.

Use this to find the general solution, evaluating the integrals explicitly.
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Paper 4, Section I

8E Further Complex Methods
Use the Laplace kernel method to write integral representations in the complex

t-plane for two linearly independent solutions of the confluent hypergeometric equation

z
d2w(z)

dz2
+ (c− z)

dw(z)

dz
− aw(z) = 0 ,

in the case that Re(z) > 0, Re(c) > Re(a) > 0, a and c− a are not integers.

Paper 3, Section I

8E Further Complex Methods
The Beta function, denoted by B(z1, z2), is defined by

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
, z1, z2 ∈ C ,

where Γ(z) denotes the Gamma function. It can be shown that

B(z1, z2) =

∫ ∞

0

vz2−1 dv

(1 + v)z1+z2
, Re z1 > 0 , Re z2 > 0 .

By computing this integral for the particular case of z1+z2 = 1, and by employing analytic
continuation, deduce that Γ(z) satisfies the functional equation

Γ(z)Γ(1− z) =
π

sinπz
, z ∈ C.
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Paper 2, Section I

8E Further Complex Methods
The hypergeometric function F (a, b; c; z) is defined as the particular solution of the

second order linear ODE characterised by the Papperitz symbol

P





0 1 ∞
0 0 a z

1− c c− a− b b





that is analytic at z = 0 and satisfies F (a, b; c; 0) = 1.

Using the fact that a second solution w(z) of the above ODE is of the form

w(z) = z1−cu(z) ,

where u(z) is analytic in the neighbourhood of the origin, express w(z) in terms of F .

Paper 1, Section I

8E Further Complex Methods
Recall that if f(z) is analytic in a neighbourhood of z0 6= 0, then

f(z) + f(z0) = 2u

(
z + z0

2
,
z − z0
2i

)
,

where u(x, y) is the real part of f(z). Use this fact to construct the imaginary part of an
analytic function whose real part is given by

u(x, y) = y

∫ ∞

−∞

g(t) dt

(t− x)2 + y2
, x, y ∈ R, y 6= 0 ,

where g(t) is real and has sufficient smoothness and decay.

Part II, 2012 List of Questions

2012



39

Paper 2, Section II

14E Further Complex Methods
Let the complex function q(x, t) satisfy

i
∂q(x, t)

∂t
+

∂2q(x, t)

∂x2
= 0 , 0 < x < ∞ , 0 < t < T ,

where T is a positive constant. The unified transform method implies that the solution of
any well-posed problem for the above equation is given by

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ik2tq̂0(k)dk

− 1

2π

∫

L
eikx−ik2t

[
kg̃0(ik

2, t)− ig̃1(ik
2, t)

]
dk , (1)

where L is the union of the rays (i∞, 0) and (0,∞), q̂0(k) denotes the Fourier transform
of the initial condition q0(x), and g̃0, g̃1 denote the t-transforms of the boundary values
q(0, t), qx(0, t):

q̂0(k) =

∫ ∞

0
e−ikxq0(x)dx, Im k 6 0 ,

g̃0(k, t) =

∫ t

0
eksq(0, s)ds , g̃1(k, t) =

∫ t

0
eksqx(0, s)ds , k ∈ C , 0 < t < T .

Furthermore, q0(x), q(0, t) and qx(0, t) are related via the so-called global relation

eik
2tq̂(k, t) = q̂0(k) + kg̃0(ik

2, t)− ig̃1(ik
2, t) , Im k 6 0 , (2)

where q̂(k, t) denotes the Fourier transform of q(x, t).

(a) Assuming the validity of (1) and (2), use the global relation to eliminate g̃1 from
equation (1).

(b) For the particular case that

q0(x) = e−a2x , 0 < x < ∞ ; q(0, t) = cos bt , 0 < t < T ,

where a and b are real numbers, use the representation obtained in (a) to express the
solution in terms of an integral along the real axis and an integral along L (you should not
attempt to evaluate these integrals). Show that it is possible to deform these two integrals
to a single integral along a new contour L̃, which you should sketch.

[You may assume the validity of Jordan’s lemma.]
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Paper 1, Section II

14E Further Complex Methods
(a) Suppose that F (z), z = x+ iy, x, y ∈ R, is analytic in the upper-half complex

z-plane and O (1/z) as z → ∞, y > 0. Show that the real and imaginary parts of F (x),
denoted by U(x) and V (x) respectively, satisfy the so-called Kramers–Kronig formulae:

U(x) = HV (x) , V (x) = −HU(x) , x ∈ R .

Here, H denotes the Hilbert transform, i.e.,

(Hf) (x) =
1

π
PV

∫ ∞

−∞

f(ξ)

ξ − x
dξ ,

where PV denotes the principal value integral.

(b) Let the real function u(x, y) satisfy the Laplace equation in the upper-half
complex z-plane, i.e.,

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0 , −∞ < x < ∞, y > 0 .

Assuming that u(x, y) decays for large |x| and for large y, show that F = uz is an analytic
function for Im z > 0, z = x+iy. Then, find an expression for uy(x, 0) in terms of ux(x, 0).
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Paper 1, Section I

8E Further Complex Methods
Show that the following integral is well defined:

I(a, b) =

∫ ∞

0

(
e−bx

eiaex − 1
− ebx

e−iaex − 1

)
dx, 0 < a < ∞, a 6= 2nπ, n ∈ Z, 0 < b < 1 .

Express I(a, b) in terms of a combination of hypergeometric functions.

[You may assume without proof that the hypergeometric function F (a, b; c; z) can be
expressed in the form

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt ,

for appropriate restrictions on c, b, z. Furthermore,

Γ(z + 1) = zΓ(z) .
]

Paper 2, Section I

8E Further Complex Methods
Find the two complex-valued functions F+(z) and F−(z) such that all of the

following hold:

(i) F+(z) and F−(z) are analytic for Im z > 0 and Im z < 0 respectively, where
z = x+ iy, x, y ∈ R.

(ii) F+(x)− F−(x) = 1
x4+1 , x ∈ R .

(iii) F±(z) = O
(
1
z

)
, z → ∞ , Im z 6= 0 .
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Paper 3, Section I

8E Further Complex Methods
Explain the meaning of zj in the Weierstrass canonical product formula

f(z) = f(0) exp

[
f ′(0)
f(0)

z

] ∞∏

j=1

{(
1− z

zj

)
e

z
zj

}
.

Show that
sin(πz)

πz
=

∞∏

n=1

(
1− z2

n2

)
.

Deduce that

π cot(πz) =
1

z
+ 2

∞∑

n=1

z

z2 − n2
.

Paper 4, Section I

8E Further Complex Methods
Let F (z) be defined by

F (z) =

∫ ∞

0

e−zt

1 + t2
dt, | arg z| < π

2
.

Let F̃ (z) be defined by

F̃ (z) = P
∫ ∞e−

iπ
2

0

e−zζ

1 + ζ2
dζ , 0 < arg z < π ,

where P denotes principal value integral and the contour is the negative imaginary axis.

By computing F (z)− F̃ (z), obtain a formula for the analytic continuation of F (z)
for π

2 6 arg z < π.
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Paper 1, Section II

14E Further Complex Methods

(i) By assuming the validity of the Fourier transform pair, prove the validity of the
following transform pair:

q̂(k) =

∫ ∞

0
e−ikxq(x) dx , Im k 6 0 , (1a)

q(x) =
1

2π

∫ ∞

−∞
eikxq̂(k) dk +

c

2π

∫

L
eikxq̂(−k) dk , 0 < x < ∞ , (1b)

where c is an arbitrary complex constant and L is the union of the two rays arg k = π
2

and arg k = 0 with the orientation shown in the figure below:

The contour L.

(ii) Verify that the partial differential equation

iqt + qxx = 0, 0 < x < ∞ , t > 0 , (2)

can be rewritten in the following form:

(
e−ikx+ik2tq

)
t
−

[
e−ikx+ik2t (−kq + iqx)

]
x
= 0 , k ∈ C . (3)

Consider equation (2) supplemented with the conditions

q(x, 0) = q0(x) , 0 < x < ∞ ,

q(x, t) vanishes sufficiently fast for all t as x → ∞ . (4)

By using equations (1a) and (3), show that

q̂(k, t) = e−ik2tq̂0(k) + e−ik2t
[
kg̃0(k

2, t)− ig̃1(k
2, t)

]
, Im k 6 0 , (5)

where

q̂0(k) =

∫ ∞

0
e−ikxq0(x) dx , Im k 6 0 ,

Part II, 2011 List of Questions [TURN OVER
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g̃0(k, t) =

∫ t

0
eikτq(0, τ) dτ , g̃1(k, t) =

∫ t

0
eikτqx(0, τ) dτ , k ∈ C , t > 0 .

Use (1b) to invert equation (5) and furthermore show that

∫ ∞

−∞
eikx−ik2t

[
kg̃0(k

2, t) + ig̃1(k
2, t)

]
dk =

∫

L
eikx−ik2t

[
kg̃0(k

2, t) + ig̃1(k
2, t)

]
dk, t > 0 , x > 0 .

Hence determine the constant c so that the solution of equation (2), with the
conditions (4) and with the condition that either q(0, t) or qx(0, t) is given, can
be expressed in terms of an integral involving q̂0(k) and either g̃0 or g̃1.
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Paper 2, Section II

14E Further Complex Methods
Consider the following sum related to Riemann’s zeta function:

S :=

[ a
2π ]∑

m=1

ms−1, s = σ + it, σ, t ∈ R, a > 2π, a 6= 2πN, N ∈ Z+,

where [a/2π] denotes the integer part of a/2π.

(i) By using an appropriate branch cut, show that

S =
e−

iπs
2

(2π)s

∫

L
f(z, s) dz , f(z, s) =

e−z

1− e−z
zs−1 ,

where L is the circle in the complex z-plane centred at i(a+b)/2 with radius (a−b)/2,
0 < b < 2π.

(ii) Use the above representation to show that, for a > 2π and 0 < b < 2π,

[ a
2π ]∑

m=1

ms−1 =
1

(2π)s

[
e−

iπs
2

∫

Ca
b

f(z, s) dz − e
iπs
2

∫

C−b
−a

f(z, s) dz +
as

s
− bs

s

]
,

where f(z, s) is defined in (i) and the curves Ca
b , C

−b
−a are the following semi-circles

in the right half complex z-plane:

The curves Ca
b and C−b

−a.

Ca
b =

{
i(a+ b)

2
+

(a− b)

2
eiθ, −π

2
< θ <

π

2

}
,

C−b
−a =

{−i(a+ b)

2
+

(a− b)

2
eiθ, −π

2
< θ <

π

2

}
.

Part II, 2011 List of Questions [TURN OVER

2011



35

Paper 1, Section I

8E Further Complex Methods
Let the complex-valued function f(z) be analytic in the neighbourhood of the point

z0 and let u(x, y) be the real part of f(z). Show that

f(z) = 2u

(
z + z̄0

2
,
z − z̄0
2i

)
− f(z0) , z = x+ iy .

Hence find the analytic function whose real part is

e−y[x cos x− y sinx ] .

Paper 2, Section I

8E Further Complex Methods
Define

F±(x) = lim
ǫ→0

1

2πi

∫ ∞

−∞

f(t)

t− (x± iǫ)
dt , x ∈ R .

Using the fact that

F±(x) = ± f(x)

2
+

1

2πi
P

∫ ∞

−∞

f(t)

t− x
dt , x ∈ R ,

where P denotes the Cauchy principal value, find two complex-valued functions F+(z)
and F−(z) which satisfy the following conditions

1. F+(z) and F−(z) are analytic for Im z > 0 and Im z < 0 respectively, z = x+ iy ;

2. F+(x)− F−(x) =
sinx

x
, x ∈ R ;

3. F±(z) = O
(
1
z

)
, z → ∞ , Im z 6= 0 .
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Paper 3, Section I

8E Further Complex Methods
Let Γ(z) and ζ(z) denote the gamma and the zeta functions respectively, namely

Γ(z) =

∫ ∞

0
x z−1 e−x dx , Re z > 0 ,

ζ(z) =
∞∑

m=1

1

mz
, Re z > 1 .

By employing a series expansion of (1− e−x)−2, prove the following identity

∫ ∞

0

xz

(ex − 1)2
dx = Γ(z + 1)

[
ζ(z)− ζ(z + 1)

]
, Re z > 1 .

Paper 4, Section I

8E Further Complex Methods
The hypergeometric function F (a, b; c; z) can be expressed in the form

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1 (1− tz)−a dt ,

for appropriate restrictions on c, b, z.

Express the following integral in terms of a combination of hypergeometric functions

I(u,A) =

∫ π
2

−π
2

eit(u+1)

eit + iA
dt , |A| > 1 .

[You may use without proof that Γ(z + 1) = zΓ(z) .]
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Paper 1, Section II

14E Further Complex Methods
Consider the partial differential equation for u(x, t),

∂u

∂t
=

∂2u

∂x2
+ β

∂u

∂x
, β > 0 , 0 < x < ∞ , t > 0 , (∗)

where u(x, t) is required to vanish rapidly for all t as x → ∞.

(i) Verify that the PDE (∗) can be written in the following form

(
e−ikx+(k2−iβk)tu

)
t
=

(
e−ikx+(k2−iβk)t

[
(ik + β)u+ ux

])
x
.

(ii) Define û(k, t) =
∫∞
0 e−ikx u(x, t) dx, which is analytic for Im k 6 0. Determine

û(k, t) in terms of û(k, 0) and also the functions f0, f1 defined by

f0(ω, t) =

∫ t

0
e−ω(t−t′) u(0, t′) dt′ , f1(ω, t) =

∫ t

0
e−ω(t−t′) ux(0, t

′) dt′ .

(iii) Show that in the inverse transform expression for u(x, t) the integrals involving
f0, f1 may be transformed to the contour

L =
{
k ∈ C : Re (k2 − iβk) = 0, Im k > β

}
.

By considering û(k′, t) where k′ = −k + iβ and k ∈ L, show that it is possible to obtain
an equation which allows f1 to be eliminated.

(iv) Obtain an integral expression for the solution of (∗) subject to the the initial-
boundary value conditions of given u(x, 0), u(0, t).

[You need to show that ∫

L
eikx û(k′, t) dk = 0 , x > 0 ,

by an appropriate closure of the contour which should be justified.]
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Paper 2, Section II

14E Further Complex Methods
Let

I(z) = i

∮

C

uz−1

u2 − 4u+ 1
du ,

where C is a closed anti-clockwise contour which consists of the unit circle joined to a loop
around a branch cut along the negative axis between −1 and 0. Show that

I(z) = F (z) +G(z) ,

where

F (z) = 2 sin(πz)

∫ 1

0

xz−1

x2 + 4x+ 1
dx , Re z > 0 ,

and

G(z) =
1

2

∫ π

−π

ei(z− 1) θ

1 + 2 sin2 θ
2

dθ , z ∈ C .

Evaluate I(z) using Cauchy’s theorem. Explain how this may be used to obtain an
analytic continuation of F (z) valid for all z ∈ C.
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Paper 1, Section I

8B Further Complex Methods
Find all second order linear ordinary homogenous differential equations which have

a regular singular point at z = 0, a regular singular point at z = ∞, and for which every
other point in the complex z-plane is an analytic point.

[You may use without proof Liouville’s theorem.]

Paper 2, Section I

8B Further Complex Methods
The Hilbert transform f̂ of a function f is defined by

f̂(x) =
1

π
P

∫ ∞

−∞

f(y)

y − x
dy ,

where P denotes the Cauchy principal value.

(i) Compute the Hilbert transform of (1− cos t)/t.

(ii) Solve the following Riemann–Hilbert problem: Find f+(z) and f−(z), which
are analytic functions in the upper and lower half z-planes respectively, such that

f+(x)− f−(x) =
1− cos x

x
, x ∈ R ,

f±(z) = O

(
1

z

)
, z → ∞ , Im z 6= 0 .

Part II, 2009 List of Questions

2009



41

Paper 3, Section I

8B Further Complex Methods
Suppose that the real function u(x, y) satisfies Laplace’s equation in the upper half

complex z-plane, z = x+ iy, x ∈ R, y > 0, where

u(x, y) → 0 as
√

x2 + y2 → ∞, u(x, 0) = g(x), x ∈ R.

The function u(x, y) can then be expressed in terms of the Poisson integral

u(x, y) =
1

π

∫ ∞

−∞

yg(ξ)

(x− ξ)2 + y2
dξ, x ∈ R, y > 0.

By employing the formula

f(z) = 2u

(
z + ā

2
,
z − ā

2i

)
− f(a),

where a is a complex constant with Im a > 0, show that the analytic function whose real
part is u(x, y) is given by

f(z) =
1

iπ

∫ ∞

−∞

g(ξ)

ξ − z
dξ + ic, Im z > 0,

where c is a real constant.

Paper 4, Section I

8D Further Complex Methods
Show that

Γ(α)Γ(β) = Γ(α+ β)

∫ 1

0
tα−1(1− t)β−1dt, Re α > 0, Re β > 0,

where Γ(z) denotes the Gamma function

Γ(z) =

∫ ∞

0
xz−1e−xdx, Re z > 0.
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Paper 1, Section II

14B Further Complex Methods
Let F (z) be defined by

F (z) =

∫ ∞

0

e−2zt

1 + t3
dt, | arg z| < π

2
.

Let F̃ (z) be defined by

F̃ (z) =

∫ −i∞

0

e−2zζ

1 + ζ3
dζ, α < arg z < β,

where the above integral is along the negative imaginary axis of the complex ζ-plane and
the real constants α and β are to be determined.

Using Cauchy’s theorem, or otherwise, compute F (z)−F̃ (z) and hence find a formula
for the analytic continuation of F (z) for π

2 6 arg z < π.

Paper 2, Section II

14C Further Complex Methods
Consider the initial-boundary value problem

∂u

∂t
=

∂2u

∂x2
, 0 < x < ∞, t > 0,

u(x, 0) = xe−x, 0 6 x < ∞,

u(0, t) = sin t, t > 0,

where u vanishes sufficiently fast for all t as x → ∞.

(i) Express the solution as an integral (which you should not evaluate) in the complex
k−plane.

(ii) Explain how to use appropriate contour deformation so that the relevant
integrand decays exponentially as |k| → ∞.
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1/I/8C Further Complex Methods

The function F is defined by

F (z) =

∫ ∞

0

tz−1

(t+ 1)2
dt.

For which values of z does the integral converge?

Show that, for these values,

F (z) =
π(1− z)
sin(πz)

.

2/I/8C Further Complex Methods

The Beta function is defined for Re z > 0 by

B(z, q) =

∫ 1

0

tq−1(1− t)z−1dt (Re q > 0)

and by analytic continuation elsewhere in the complex z-plane.

Show that (
z + q

z

)
B(z + 1, q) = B(z, q)

and explain how this result can be used to obtain the analytic continuation of B(z, q).
Hence show that B(z, q) is analytic except for simple poles and find the residues at the
poles.

Part II 2008
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3/I/8C Further Complex Methods

What is the effect of the Möbius transformation z → z

z − 1
on the points z = 0,

z =∞ and z = 1?

By considering

(z − 1)−aP





0 ∞ 1
0 a 0 z(z − 1)−1

1− c c− b b− a



 ,

or otherwise, show that (z − 1)−aF (a, c− b; c; z(z − 1)−1) is a branch of the P -function

P





0 ∞ 1
0 a 0 z

1− c b c− a− b



 .

Give a linearly independent branch.

1/II/14C Further Complex Methods

Show that under the change of variable z = sin2 x the equation

d2w

dx2
+ n2w = 0

becomes
d2w

dz2
+

2z − 1

2z(z − 1)

dw

dz
− n2

4(z − 1)z
w = 0.

Show that this is a Papperitz equation and that the corresponding P -function is

P





0 ∞ 1

0 1
2n 0 z

1
2 − 1

2n
1
2




.

Deduce that F ( 1
2n,− 1

2n; 1
2 ; sin2 x) = cosnx.

Part II 2008
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4/I/8C Further Complex Methods

The Hilbert transform f̂ of a function f is defined by

f̂(t) =
1

π
P
∫ ∞

−∞

f(τ)

t− τ dτ,

where P denotes the Cauchy principal value.

Show that the Hilbert transform of
sin t

t
is

1− cos t

t
.

2/II/14C Further Complex Methods

(i) The function f is defined by

f(z) =

∫

C

tz−1dt ,

where C is the circle |t| = r, described anti-clockwise starting on the positive real axis and
where the value of tz−1 at each point on C is determined by analytic continuation along
C with arg t = 0 at the starting point. Verify by direct integration that f is an entire
function, the values of which depend on r.

(ii) The function J is defined by

J(z) =

∫

γ

et(t2 − 1)zdt,

where γ is a figure of eight, starting at t = 0, looping anti-clockwise round t = 1 and
returning to t = 0, then looping clockwise round t = −1 and returning again to t = 0.
The value of (t2−1)z is determined by analytic continuation along γ with arg(t2−1) = −π
at the start. Show that, for Re z > −1,

J(z) = −2i sinπz I(z),

where

I(z) =

∫ 1

−1

et(t2 − 1)zdt.

Explain how this provides the analytic continuation of I(z). Classify the singular points
of the analytically continued function, commenting on the points z = 0, 1, . . . .

Explain briefly why the analytic continuation could not be obtained by this method
if γ were replaced by the circle |t| = 2.

Part II 2008
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1/I/8B Further Complex Methods

The coefficients p(z) and q(z) of the differential equation

w′′(z) + p(z)w′(z) + q(z)w(z) = 0 (∗)

are analytic in the punctured disc 0 < |z| < R, and w1(z) and w2(z) are linearly
independent solutions in the neighbourhood of the point z0 in the disc. By considering the
effect of analytically continuing w1 and w2, show that the equation (∗) has a non-trivial
solution of the form

w(z) = zσ
∞∑

n=−∞
cnz

n .

2/I/8B Further Complex Methods

The function I(z) is defined by

I(z) =
1

Γ(z)

∫ ∞

0

tz−1

et + 1
dt .

For what values of z is I(z) analytic?

By considering I(z)−ζ(z), where ζ(z) is the Riemann zeta function which you may
assume is given by

ζ(z) =
1

Γ(z)

∫ ∞

0

tz−1

et − 1
dt (Re z > 1) ,

show that I(z) =
(
1− 21−z

)
ζ(z) . Deduce from this result that the analytic continuation

of I(z) is an entire function. [You may use properties of ζ(z) without proof.]

Part II 2007
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3/I/8B Further Complex Methods

Let w1(z) and w2(z) be any two linearly independent branches of the P -function





0 ∞ 1
α β γ z
α′ β′ γ′



 ,

where α+ α′ + β + β′ + γ + γ′ = 1, and let W (z) be the Wronskian of w1(z) and w2(z).

(i) How is W (z) related to the Wronskian of the principal branches of the P -function
at z = 0?

(ii) Show that z−α−α′+1(1− z)−γ−γ′+1W (z) is an entire function.

(iii) Given that zβ+β′+1W (z) is bounded as z → ∞, show that

W (z) = Azα+α′−1(1− z)γ+γ′−1,

where A is a non-zero constant.

1/II/14B Further Complex Methods

The function J(z) is defined by

J(z) =

∫

P
tz−1(1− t)b−1dt

where b is a constant (which is not an integer). The path of integration, P, is the
Pochhammer contour, defined as follows. It starts at a point A on the axis between 0
and 1, then it circles the points 1 and 0 in the negative sense, then it circles the points 1
and 0 in the positive sense, returning to A. At the start of the path, arg(t) = arg(1−t) = 0
and the integrand is defined at other points on P by analytic continuation along P.

(i) For what values of z is J(z) analytic? Give brief reasons for your answer.

(ii) Show that, in the case Re z > 0 and Re b > 0 ,

J(z) = −4e−πi(z+b) sin(πz) sin(πb) B(z, b) ,

where B(z, b) is the Beta function.

(iii) Deduce that the only singularities of B(z, b) are simple poles. Explain carefully
what happens if z is a positive integer.
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4/I/8B Further Complex Methods

The hypergeometric function F (a, b; c; z) is defined by

F (a, b; c; z) = K

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt

where |arg(1− tz)| < π and K is a constant determined by the condition F (a, b; c; 0) = 1.

(i) Express K in terms of Gamma functions.

(ii) By considering the nth derivative F (n)(a, b; c; 0), show that F (a, b; c; z) = F (b, a; c; z).

2/II/14B Further Complex Methods

Show that the equation

zw′′ − (1 + z)w′ + 2(1− z)w = 0

has solutions of the form w(z) =
∫
γ
eztf(t) dt, where

f(t) =
1

(t− 2)(t+ 1)2
,

provided that γ is suitably chosen.

Hence find the general solution, evaluating the integrals explicitly. Show that the
general solution is entire, but that there is no solution that satisfies w(0) = 0 and w′(0) 6= 0.
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1/I/8E Further Complex Methods

The function f(t) satisfies f(t) = 0 for t < 1 and

f(t+ 1)− 1
2 f(t) = H(t) ,

where H(t) is the Heaviside step function. By taking Laplace transforms, show that, for
t > 1,

f(t) = 2 + 21−t
∞∑

n=−∞

e2πnit

2πni− log 2
,

and verify directly from the inversion integral that your solution satisfies f(t) = 0 for
t < 1.

2/I/8E Further Complex Methods

The function F (t) is defined, for Re t > −1, by

F (t) =

∫ ∞

0

ute−u

1 + u
du

and by analytic continuation elsewhere in the complex t-plane. By considering the integral
of a suitable function round a Hankel contour, obtain the analytic continuation of F (t)
and hence show that singularities of F (t) can occur only at z = −1, −2, −3, . . . .

3/I/8E Further Complex Methods

Show that, for b 6= 0,

P
∫ ∞

0

cosu

u2 − b2
du = − π

2b
sin b

where P denotes the Cauchy principal value.
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3/II/14E Further Complex Methods

It is given that the hypergeometric function F (a, b; c; z) is the solution of the
hypergeometric equation determined by the Papperitz symbol

P





0 ∞ 1
0 a 0 z

1− c b c− a− b



 (∗)

that is analytic at z = 0 and satisfies F (a, b; c; 0) = 1, and that for Re(c− a− b) > 0

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

[You may assume that a, b, c are such that F (a, b; c; 1) exists.]

(a) Show, by manipulating Papperitz symbols, that

F (a, b; c; z) = (1− z)−aF

(
a, c− b; c;

z

z − 1

)
(| arg(1− z)| < π).

(b) Let w1(z) = (−z)−aF

(
a, 1 + a− c; 1 + a− b;

1

z

)
, where | arg(−z)| < π. Show

that w1(z) satisfies the hypergeometric equation determined by (∗).
(c) By considering the limit z → ∞ in parts (a) and (b) above, deduce that, for

| arg(−z)| < π,

F (a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
w1(z) + (a similar term with a and b interchanged).

4/I/8E Further Complex Methods

By means of the change of variable u = rs, v = r(1−s) in a suitable double integral,
or otherwise, show that for Re z > 0

[
Γ
(
1
2z
)]2

= B
(
1
2z,

1
2z
)
Γ(z) .

Deduce that, if Γ(z) = 0 for some z with Re z > 0, then Γ
(
z/2m

)
= 0 for any positive

integer m.

Prove that Γ(z) 6= 0 for any z.
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4/II/14E Further Complex Methods

Let I =

∫ 1

0

[
x(1− x2)

]1/3
dx .

(a) Express I in terms of an integral of the form

∮
(z3 − z)1/3 dz, where the path of

integration is a large circle. You should explain carefully which branch of (z3−z)1/3
you choose, by using polar co-ordinates with respect to the branch points. Hence
show that I = 1

6π cosec
1
3π.

(b) Give an alternative method of evaluating I, by making a suitable change of variable
and expressing I in terms of a beta function.
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1/I/8A Further Complex Methods

Explain what is meant by the Papperitz symbol

P




z1 z2 z3
α β γ z
α′ β′ γ′



 .

The hypergeometric function F (a, b; c; z) is defined as the solution of the equation
determined by the Papperitz symbol

P





0 ∞ 1
0 a 0 z

1− c b c− a− b





that is analytic at z = 0 and satisfies F (a, b; c; 0) = 1.

Show, explaining each step, that

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z).

2/I/8A Further Complex Methods

The Hankel representation of the gamma function is

Γ(z) =
1

2i sin(πz)

∫ (0+)

−∞
tz−1etdt ,

where the path of integration is the Hankel contour.

Use this representation to find the residue of Γ(z) at z = −n, where n is a non-
negative integer.

Is there a pole at z = n, where n is a positive integer? Justify your answer carefully,
working only from the above representation of Γ(z).
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3/I/8A Further Complex Methods

The functions f and g have Laplace transforms f̂ and ĝ, and satisfy f(t) = 0 = g(t)
for t < 0. The convolution h of f and g is defined by

h(u) =

∫ u

0

f(u− v)g(v)dv

and has Laplace transform ĥ. Prove (the convolution theorem) that ĥ(p) = f̂(p)ĝ(p) .

Given that
∫ t

0
(t − s)−1/2s−1/2 ds = π (t > 0), deduce the Laplace transform of

the function f(t), where

f(t) =

{
t−1/2, t > 0
0, t 6 0.

3/II/14A Further Complex Methods

Show that the equation

zw′′ + 2kw′ + zw = 0 ,

where k is constant, has solutions of the form

w(z) =

∫

γ

(t2 + 1)k−1eztdt

provided that the path γ is chosen so that
[
(t2 + 1)kezt

]
γ
= 0 .

(i) In the case Re k > 0, show that there is a choice of γ for which w(0) = iB(k, 12 ).

(ii) In the case k = n/2, where n is any integer, show that γ can be a finite contour
and that the corresponding solution satisfies w(0) = 0 if n 6 −1.
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4/I/8A Further Complex Methods

Write down necessary and sufficient conditions on the functions p(z) and q(z) for
the point z = 0 to be (i) an ordinary point and (ii) a regular singular point of the equation

w′′ + p(z)w′ + q(z)w = 0. (∗)

Show that the point z = ∞ is an ordinary point if and only if

p(z) = 2z−1 + z−2P (z−1), q(z) = z−4Q(z−1),

where P and Q are analytic in a neighbourhood of the origin.

Find the most general equation of the form (∗) that has a regular singular point at
z = 0 but no other singular points.

4/II/14A Further Complex Methods

Two representations of the zeta function are

ζ(z) =
Γ(1− z)

2πi

∫ (0+)

−∞

tz−1

e−t − 1
dt and ζ(z) =

∞∑

1

n−z ,

where, in the integral representation, the path is the Hankel contour and the principal
branch of tz−1, for which | arg z| < π, is to be used. State the range of z for which each
representation is valid.

Evaluate the integral ∫

γ

tz−1

e−t − 1
dt,

where γ is a closed path consisting of the straight line z = πi + x, with |x| < 2Nπ, and
the semicircle |z − πi| = 2Nπ, with Im z > π, where N is a positive integer.

Making use of this result and assuming, when necessary, that the integral along the
curved part of γ is negligible when N is large, derive the functional equation

ζ(z) = 2zπz−1 sin(πz/2)Γ(1− z)ζ(1− z)

for z 6= 1.
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