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Paper 1, Section II

37A Electrodynamics
Consider spacetime with coordinates xµ = (ct,x) and metric ηµν = diag(−1, 1, 1, 1),

where µ, ν = 0, 1, 2, 3 and c is the speed of light. An electromagnetic field described by
the vector potential Aµ(x) fills spacetime, and a particle of mass m and charge q moves
through it along the worldline xµ(λ), where λ is a parameter along the worldline.

(a) Explain using the requirements of Lorentz invariance and gauge invariance why
the action

S = −mc
∫

(−ηµν ẋµẋν)
1
2 dλ+ q

∫
Aµ(x)ẋµdλ

is suitable for describing the relativistic mechanics of the particle, where ẋµ = dxµ/dλ.

(b) By varying the action with respect to a worldline with fixed end points, obtain
the Euler-Lagrange equations of motion

m
duµ

dτ
= qFµ

νu
ν

where uµ(τ) = dxµ/dτ is the four-velocity, Fµν = ∂µAν − ∂νAµ is the field strength tensor
and τ is the proper time.

(c) Show that the rate of change of the particle energy ε = γmc2 satisfies

dε

dt
= qE · v

where v = dx/dt is the particle velocity, E is the electric field and γ = 1/
√

1 − v2/c2.

(d) Hence, or otherwise, derive the following expression for the acceleration of the
particle

dv

dt
=

q

mγ
[E + v ×B− 1

c2
v(v ·E)],

where B is the magnetic field. Derive the non-relativistic limit of the above expression
and comment on its relationship with the Lorentz force law.
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Paper 3, Section II

36A Electrodynamics
The retarded four-potential Aµ(x, t) = (φ/c,A) due to a charge density Jµ(x′, t′) is

Aµ(x, t) =
µ0
4π

∫
Jµ(x′, t′)
|x− x′| d

3x′,

where the integral is over all space.

(a) Explain briefly the physical meaning of the above expression and why causality
requires t′ = tret, where tret = t− |x− x′|/c.

(b) Consider a particle of charge q moving along the worldline yµ = (ct,y(t)) and
let R(t) = x − y(t) be the vector from the location of the charge at time t to the field
point x. Explain why the implicit equation

tret +
R(tret)

c
= t,

determining the retarded potential, can have only one solution.

(c) Hence, or otherwise, obtain the Lienard-Wiechert potentials

φ(x, t) =
q

4πε0

1

R− v
c ·R

and A(x, t) =
µ0
4π

qv

R− v
c ·R

for the charge, where v = dy/dt is the particle velocity. Clearly specify the time at which
the right hand sides are to be evaluated.

(d) For a charge moving without acceleration, show by explicit computation that
the resulting potentials satisfy the gauge-fixing condition

1

c2
∂φ

∂t
+∇ ·A = 0.

Part II, Paper 1
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Paper 4, Section II

36A Electrodynamics
Consider a dielectric medium whose electromagnetic properties are described by the

electric displacement D, the magnetisation H, the electric field E and the magnetic field
B.

(a) Write down the Maxwell equations for these four fields in the presence of a free
charge density ρ and a free current density J.

(b) Hence establish the identity

E · ∂D
∂t

+ H · ∂B
∂t

+ ∇ · (E×H) = −E · J.

(c) Consider a linear dielectric medium with the constitutive relations

Di = εijEj , Bi = µijHj

where εij and µij are symmetric matrices, independent of t, representing the anisotropic
dielectric response of the material, and the summation convention applies here and below.
For a volume V enclosed by the surface S, derive the integral relation

∂

∂t

∫

V

1

2
(εijEiEj + µijHiHj)dV +

∫

S
(E×H) · dS = −

∫

V
E · J dV.

In the absence of free currents, interpret the above relation in terms of an energy density
ε and an energy flux N, clearly identifying each.

(d) Consider a linear dielectric medium with

Di = εijEj , Bi = µδijHj ,

where µ and εij are independent of space and time, and δij is the Kronecker delta.
Assuming plane waves

E(x, t) = e sin(k · x− ωt), B(x, t) = b sin(k · x− ωt)

in this medium, show that Maxwell’s equations in the absence of free charges and currents
imply that the wave vector k, the frequency ω and polarisation e must satisfy

[k× (k× e)]i + ω2µεijej = 0.

(e) Show that the energy flux N identified above, applied to the situation in part
(d), points in the direction of wave propagation when the polarisation is an eigenvector of
the matrix εij .

Part II, Paper 1 [TURN OVER]
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Paper 1, Section II
37B Electrodynamics

Consider a localised electromagnetic field in vacuum with electric and magnetic
fields E and B respectively in the absence of charges and currents.

(a) Show that the energy density ε = ε0
2 E

2 + 1
2µ0

B2 obeys a local conservation law

∂tε+ ∇ ·N = 0 .

Hence obtain an expression for the vector N and remark on its physical significance.
Here ε0 and µ0 are the electric and magnetic permeabilities of the vacuum.

(b) Show that the momentum density g = ε0E×B obeys a local conservation law

∂tgj +∇iσij = 0 .

Hence obtain an expression for the second-rank tensor σij and remark on its physical
significance.

(c) Defining the tensor

Tµν =

[
ε cgj

Ni/c σij

]

show that the results of (a) and (b) can be expressed as ∂µT
µν = 0.

(d) Using the fact that the tensor σij is symmetric, show that the integral over all
space of the angular momentum density L = x× g is independent of time. Here x is the
position with respect to the origin of an inertial frame.

(e) Show that the symmetry of σij in all inertial frames requires µ0ε0 = 1/c2.

Part II, Paper 1
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Paper 3, Section II
36B Electrodynamics

Consider a time-dependent localised electromagnetic field in vacuum with a four-
current density Jµ and vector potential Aµ.

(a) Determine the differential equation that relates the four-current density to the
vector potential in the gauge choice ∂µA

µ = 0.

(b) Show that the solution to the above differential equation can be expressed as

Aµ(x, t) =
µ0
4π

∫
Jµ(x′, t′)
|x− x′| d

3x′

where you should specify the form of t′.

(c) Show that the time derivative of the dipole moment p satisfies

ṗ =

∫
J(x, t) d3x

where J is the current density.

(d) A small circular loop of radius r is centred at the origin. The unit vector normal
to the plane of the loop is n. A current I(t) =

∑∞
n=0 In sin(nωt) flows in the loop. Find

the three vector potential A(x, t) to first order in r/|x|.

Paper 4, Section II
36B Electrodynamics

(a) Explain what is meant by a dielectric material.

(b) Define the polarisation of, and the bound charge in, a dielectric material. Explain
the reason for the distinction between the electric field E and the electric displacement D
in a dielectric material.

Consider a sphere of a dielectric material of radius R and permittivity ε1 embedded
in another dielectric material of infinite extent and permittivity ε2. A point charge q is
placed at the centre of the sphere. Determine the bound charge on the surface of the
sphere.

(c) Define the magnetisation of, and the bound current in, a dielectric material.
Explain the reason for making a distinction between the magnetic flux density B and the
magnetic intensity H in a dielectric material.

Consider a cylinder of dielectric material of infinite length, radius R and permeab-
ility µ1 embedded in another dielectric material of infinite extent and permeability µ2. A
line current I is placed on the axis of the cylinder. Determine the magnitude and direction
of the bound current density on the surface of the cylinder.
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Paper 1, Section II

37C Electrodynamics
(a) An electromagnetic field is specified by a four-vector potential

Aµ(x, t) =
(
φ(x, t)/c , A(x, t)

)
.

Define the corresponding field-strength tensor Fµν and state its transformation property
under a general Lorentz transformation.

(b) Write down two independent Lorentz scalars that are quadratic in the field
strength and express them in terms of the electric and magnetic fields, E = −∇φ−∂A/∂t
and B = ∇×A. Show that both these scalars vanish when evaluated on an electromagnetic
plane-wave solution of Maxwell’s equations of arbitrary wavevector and polarisation.

(c) Find (non-zero) constant, homogeneous background fields E(x, t) = E0 and
B(x, t) = B0 such that both the Lorentz scalars vanish. Show that, for any such
background, the field-strength tensor obeys

Fµρ F
ρ
σF

σ
ν = 0 .

(d) Hence find the trajectory of a relativistic particle of mass m and charge q in
this background. You should work in an inertial frame where the particle is at rest at the
origin at t = 0 and in which B0 = (0, 0, B0).

Part II, 2021 List of Questions [TURN OVER]
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Paper 3, Section II

36C Electrodynamics
(a) Derive the Larmor formula for the total power P emitted through a large sphere

of radius R by a non-relativistic particle of mass m and charge q with trajectory x(t).
You may assume that the electric and magnetic fields describing radiation due to a source
localised near the origin with electric dipole moment p(t) can be approximated as

BRad(x, t) = − µ0
4πrc

x̂× p̈(t− r/c) ,
ERad(x, t) = − c x̂×BRad(x, t) .

Here, the radial distance r = |x| is assumed to be much larger than the wavelength of
emitted radiation which, in turn, is large compared to the spatial extent of the source.

(b) A non-relativistic particle of mass m, moving at speed v along the x-axis in the
positive direction, encounters a step potential of width L and height V0 > 0 described by

V (x) =





0 , x < 0 ,

f(x) , 0 6 x 6 L ,

V0 , x > L ,

where f(x) is a monotonically increasing function with f(0) = 0 and f(L) = V0. The
particle carries charge q and loses energy by emitting electromagnetic radiation. Assume
that the total energy loss through emission ∆ERad is negligible compared with the
particle’s initial kinetic energy E = mv2/2. For E > V0, show that the total energy
lost is

∆ERad =
q2µ0

6πm2c

√
m

2

∫ L

0
dx

1√
E − f(x)

(
df

dx

)2

.

Find the total energy lost also for the case E < V0.

(c) Take f(x) = V0x/L and explicitly evaluate the particle energy loss ∆ERad in
each of the cases E > V0 and E < V0. What is the maximum value attained by ∆ERad as
E is varied?

Part II, 2021 List of Questions
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Paper 4, Section II

36C Electrodynamics
(a) Define the electric displacement D(x, t) for a medium which exhibits a linear

response with polarisation constant ε to an applied electric field E(x, t) with polarisation
constant ε. Write down the effective Maxwell equation obeyed by D(x) in the time-
independent case and in the absence of any additional mobile charges in the medium.
Describe appropriate boundary conditions for the electric field at an interface between two
regions with differing values of the polarisation constant. [You should discuss separately
the components of the field normal to and tangential to the interface.]

(b) Consider a sphere of radius a, centred at the origin, composed of dielectric
material with polarisation constant ε placed in a vacuum and subjected to a constant,
asymptotically homogeneous, electric field, E(x, t) = E(x) with E(x) → E0 as |x| → ∞.
Using the ansatz

E(x) =

{
αE0 , |x| < a ,

E0 +
(
β(x̂ ·E0)x̂ + δE0

)
/|x|3 , |x| > a ,

with constants α, β and δ to be determined, find a solution to Maxwell’s equations with
appropriate boundary conditions at |x| = a.

(c) By comparing your solution with the long-range electric field due to a dipole
consisting of electric charges ±q located at displacements ±d/2 find the induced electric
dipole moment of the dielectric sphere.

Part II, 2021 List of Questions [TURN OVER]
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Paper 1, Section II

37D Electrodynamics
A relativistic particle of rest mass m and electric charge q follows a worldline

xµ(λ) in Minkowski spacetime where λ = λ(τ) is an arbitrary parameter which increases
monotonically with the proper time τ . We consider the motion of the particle in a
background electromagnetic field with four-vector potential Aµ(x) between initial and
final values of the proper time denoted τi and τf respectively.

(i) Write down an action for the particle’s motion. Explain what is meant by a
gauge transformation of the electromagnetic field. How does the action change under a
gauge transformation?

(ii) Derive an equation of motion for the particle by considering the variation of
the action with respect to the worldline xµ(λ). Setting λ = τ show that your equation of
motion reduces to the Lorentz force law,

m
duµ

dτ
= qFµνuν , (∗)

where uµ = dxµ/dτ is the particle’s four-velocity and Fµν = ∂µAν − ∂νAµ is the Maxwell
field-strength tensor.

(iii) Working in an inertial frame with spacetime coordinates xµ = (ct, x, y, z),
consider the case of a constant, homogeneous magnetic field of magnitude B, pointing in
the z-direction, and vanishing electric field. In a gauge where Aµ = (0, 0, Bx, 0), show
that the equation of motion (∗) is solved by circular motion in the x-y plane with proper
angular frequency ω = qB/m.

(iv) Let v denote the speed of the particle in this inertial frame with Lorentz factor
γ(v) = 1/

√
1 − v2/c2. Find the radius R = R(v) of the circle as a function of v. Setting

τf = τi + 2π/ω, evaluate the action S = S(v) for a single period of the particle’s motion.

Part II, 2020 List of Questions [TURN OVER]
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Paper 3, Section II

36D Electrodynamics
The Maxwell stress tensor σ of the electromagnetic fields is a two-index Cartesian

tensor with components

σij = −ε0
(
EiEj −

1

2
|E|2δij

)
− 1

µ0

(
BiBj −

1

2
|B|2δij

)
,

where i, j = 1, 2, 3, and Ei and Bi denote the Cartesian components of the electric and
magnetic fields E(x, t) and B(x, t) respectively.

(i) Consider an electromagnetic field sourced by charge and current densities denoted
by ρ(x, t) and J(x, t) respectively. Using Maxwell’s equations and the Lorentz force law,
show that the components of σ obey the equation

3∑

j=1

∂σij
∂xj

+
∂gi
∂t

= − (ρE + J×B)i ,

where gi, for i = 1, 2, 3, are the components of a vector field g(x, t) which you should give
explicitly in terms of E and B. Explain the physical interpretation of this equation and
of the quantities σ and g.

(ii) A localised source near the origin, x = 0, emits electromagnetic radiation. Far
from the source, the resulting electric and magnetic fields can be approximated as

B(x, t) ' B0(x) sin (ωt− k · x) , E(x, t) ' E0(x) sin (ωt− k · x) ,

where B0(x) =
µ0ω

2

4πrc
x̂×p0 and E0(x) = −cx̂×B0(x) with r = |x| and x̂ = x/r. Here,

k = (ω/c)x̂ and p0 is a constant vector.

Calculate the pressure exerted by these fields on a spherical shell of very large radius
R centred on the origin. [You may assume that E and B vanish for r > R and that the
shell material is absorbant, i.e. no reflected wave is generated.]

Part II, 2020 List of Questions
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Paper 4, Section II

36D Electrodynamics
(a) A dielectric medium exhibits a linear response if the electric displacement D(x, t)

and magnetizing field H(x, t) are related to the electric and magnetic fields, E(x, t) and
B(x, t), as

D = εE , B = µH ,

where ε and µ are constants characterising the electric and magnetic polarisability of the
material respectively. Write down the Maxwell equations obeyed by the fields D, H, B
and E in this medium in the absence of free charges or currents.

(b) Two such media with constants ε− and ε+ (but the same µ) fill the regions x < 0
and x > 0 respectively in three-dimensions with Cartesian coordinates (x, y, z).

(i) Starting from Maxwell’s equations, derive the appropriate boundary conditions
at x = 0 for a time-independent electric field E(x).

(ii) Consider a candidate solution of Maxwell’s equations describing the reflection
and transmission of an incident electromagnetic wave of wave vector kI and angular
frequency ωI off the interface at x = 0. The electric field is given as,

E(x, t) =





∑
X=I,R

Im [EX exp (ikX · x − iωXt)] , x < 0 ,

Im [ET exp (ikT · x − iωT t)] , x > 0 ,

where EI , ER and ET are constant real vectors and Im[z] denotes the imaginary part of a
complex number z. Give conditions on the parameters EX ,kX , ωX for X = I,R, T , such
that the above expression for the electric field E(x, t) solves Maxwell’s equations for all
x 6= 0, together with an appropriate magnetic field B(x, t) which you should determine.

(iii) We now parametrize the incident wave vector as kI = kI(cos(θI )̂ix + sin(θI )̂iz),
where îx and îz are unit vectors in the x- and z-directions respectively, and choose the
incident polarisation vector to satisfy EI · îx = 0. By imposing appropriate boundary
conditions for E(x, t) at x = 0, which you may assume to be the same as those for
the time-independent case considered above, determine the Cartesian components of the
wavevector kT as functions of kI , θI , ε+ and ε−.

(iv) For ε+ < ε− find a critical value θcrI of the angle of incidence θI above which
there is no real solution for the wavevector kT . Write down a solution for E(x, t) when
θI > θcrI and comment on its form.

Part II, 2020 List of Questions [TURN OVER]
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Paper 4, Section II

35E Electrodynamics
Consider a medium in which the electric displacement D(t,x) and magnetising

field H(t,x) are linearly related to the electric and magnetic fields respectively with
corresponding polarisation constants ε and µ;

D = εE, B = µH.

Write down Maxwell’s equations for E, B, D and H in the absence of free charges and
currents.

Consider EM waves of the form,

E(t,x) = E0 sin (k · x− ωt) ,

B(t,x) = B0 sin (k · x− ωt) .

Find conditions on the electric and magnetic polarisation vectors E0 andB0, wave-vector k
and angular frequency ω such that these fields satisfy Maxwell’s equations for the medium
described above. At what speed do the waves propagate?

Consider two media, filling the regions x < 0 and x > 0 in three dimensional space,
and having two different values ε− and ε+ of the electric polarisation constant. Suppose
an electromagnetic wave is incident from the region x < 0 resulting in a transmitted wave
in the region x > 0 and also a reflected wave for x < 0. The angles of incidence, reflection
and transmission are denoted θI , θR and θT respectively. By constructing a corresponding
solution of Maxwell’s equations, derive the law of reflection θI = θR and Snell’s law of
refraction, n− sin θI = n+ sin θT where n± = c

√
ε±µ are the indices of refraction of the

two media.

Consider the special case in which the electric polarisation vectors EI , ER and ET of
the incident, reflected and transmitted waves are all normal to the plane of incidence (i.e.
the plane containing the corresponding wave-vectors). By imposing appropriate boundary
conditions for E and H at x = 0, show that,

|ER|
|ET |

=
1

2

(
1− tan θR

tan θT

)
.

Part II, 2019 List of Questions
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Paper 3, Section II

36E Electrodynamics
A time-dependent charge distribution ρ(t,x) localised in some region of size a near

the origin varies periodically in time with characteristic angular frequency ω. Explain
briefly the circumstances under which the dipole approximation for the fields sourced by
the charge distribution is valid.

Far from the origin, for r = |x| ≫ a, the vector potential A(t,x) sourced by the
charge distribution ρ(t,x) is given by the approximate expression

A(t,x) ≃ µ0
4πr

∫
d3x′ J

(
t− r/c,x′),

where J(t,x) is the corresponding current density. Show that, in the dipole approximation,
the large-distance behaviour of the magnetic field is given by,

B(t,x) ≃ − µ0
4πrc

x̂× p̈ (t− r/c) ,

where p(t) is the electric dipole moment of the charge distribution. Assuming that, in the
same approximation, the corresponding electric field is given as E = −cx̂ × B, evaluate
the flux of energy through the surface element of a large sphere of radius R centred at the
origin. Hence show that the total power P (t) radiated by the charge distribution is given
by

P (t) =
µ0
6πc

|p̈ (t−R/c)|2 .

A particle of charge q and mass m undergoes simple harmonic motion in the x-direction
with time period T = 2π/ω and amplitude A such that

x(t) = A sin (ωt) ix . (⋆)

Here ix is a unit vector in the x-direction. Calculate the total power P (t) radiated through
a large sphere centred at the origin in the dipole approximation and determine its time
averaged value,

〈P 〉 =
1

T

∫ T

0
P (t) dt .

For what values of the parameters A and ω is the dipole approximation valid?

Now suppose that the energy of the particle with trajectory (⋆) is given by the usual
non-relativistic formula for a harmonic oscillator i.e. E = m|ẋ|2/2 +mω2|x|2/2, and that
the particle loses energy due to the emission of radiation at a rate corresponding to the
time-averaged power 〈P 〉. Work out the half-life of this system (i.e. the time t1/2 such
that E(t1/2) = E(0)/2). Explain why the non-relativistic approximation for the motion
of the particle is reliable as long as the dipole approximation is valid.

Part II, 2019 List of Questions [TURN OVER
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Paper 1, Section II

36E Electrodynamics
A relativistic particle of charge q and massmmoves in a background electromagnetic

field. The four-velocity uµ(τ) of the particle at proper time τ is determined by the equation
of motion,

m
duµ

dτ
= qFµνu

ν .

Here Fµν = ηνρF
µρ, where Fµν is the electromagnetic field strength tensor and Lorentz

indices are raised and lowered with the metric tensor η = diag{−1,+1,+1,+1}. In the
case of a constant, homogeneous field, write down the solution of this equation giving
uµ(τ) in terms of its initial value uµ(0) .

[In the following you may use the relation, given below, between the components of
the field strength tensor Fµν , for µ, ν = 0, 1, 2, 3, and those of the electric and magnetic
fields E = (E1, E2, E3) and B = (B1, B2, B3),

Fi0 = −F0i =
1

c
Ei, Fij = εijkBk

for i, j = 1, 2, 3.]

Suppose that, in some inertial frame with spacetime coordinates x = (x, y, z) and
t, the electric and magnetic fields are parallel to the x-axis with magnitudes E and B
respectively. At time t = τ = 0 the 3-velocity v = dx/dt of the particle has initial value
v(0) = (0, v0, 0). Find the subsequent trajectory of the particle in this frame, giving
coordinates x, y, z and t as functions of the proper time τ .

Find the motion in the x-direction explicitly, giving x as a function of coordinate
time t. Comment on the form of the solution at early and late times. Show that, when
projected onto the y-z plane, the particle undergoes circular motion which is periodic in
proper time. Find the radius R of the circle and proper time period of the motion ∆τ in
terms of q, m, E, B and v0. The resulting trajectory therefore has the form of a helix
with varying pitch Pn := ∆xn/R where ∆xn is the distance in the x-direction travelled by
the particle during the n’th period of its motion in the y-z plane. Show that, for n≫ 1,

Pn ∼ A exp

(
2πEn

cB

)
,

where A is a constant which you should determine.

Part II, 2019 List of Questions
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Paper 1, Section II

36D Electrodynamics
Define the field strength tensor Fµν(x) for an electromagnetic field specified by

a 4-vector potential Aµ(x). How do the components of Fµν change under a Lorentz
transformation? Write down two independent Lorentz-invariant quantities which are
quadratic in the field strength tensor.

[Hint: The alternating tensor εµνρσ takes the values +1 and −1 when (µ, ν, ρ, σ) is
an even or odd permutation of (0, 1, 2, 3) respectively and vanishes otherwise. You may
assume this is an invariant tensor of the Lorentz group. In other words, its components
are the same in all inertial frames.]

In an inertial frame with spacetime coordinates xµ = (ct,x), the 4-vector potential
has components Aµ = (φ/c,A) and the electric and magnetic fields are given as

E = −∇φ− ∂A

∂t
B = ∇×A.

Evaluate the components of Fµν in terms of the components of E and B. Show that the
quantities

S = |B|2 − 1

c2
|E|2 and T = E ·B

are the same in all inertial frames.

A relativistic particle of mass m, charge q and 4-velocity uµ(τ) moves according to
the Lorentz force law,

duµ

dτ
=

q

m
Fµ

νu
ν . (∗)

Here τ is the proper time. For the case of a constant, uniform field, write down a solution
of (∗) giving uµ(τ) in terms of its initial value uµ(0) as an infinite series in powers of the
field strength.

Suppose further that the fields are such that both S and T defined above are zero.
Work in an inertial frame with coordinates xµ = (ct, x, y, z) where the particle is at rest at
the origin at t = 0 and the magnetic field points in the positive z-direction with magnitude
|B| = B. The electric field obeys E · ŷ = 0. Show that the particle moves on the curve
y2 = Ax3 for some constant A which you should determine.

Part II, 2018 List of Questions
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Paper 4, Section II

36D Electrodynamics
(a) Define the polarisation of a dielectric material and explain what is meant by the

term bound charge.

Consider a sample of material with spatially dependent polarisation P(x) occupying
a region V with surface S. Show that, in the absence of free charge, the resulting scalar
potential φ(x) can be ascribed to bulk and surface densities of bound charge.

Consider a sphere of radius R consisting of a dielectric material with permittivity
ǫ surrounded by a region of vacuum. A point-like electric charge q is placed at the centre
of the sphere. Determine the density of bound charge on the surface of the sphere.

(b) Define the magnetization of a material and explain what is meant by the term
bound current.

Consider a sample of material with spatially-dependent magnetization M(x) occu-
pying a region V with surface S. Show that, in the absence of free currents, the resulting
vector potential A(x) can be ascribed to bulk and surface densities of bound current.

Consider an infinite cylinder of radius r consisting of a material with permeability µ
surrounded by a region of vacuum. A thin wire carrying current I is placed along the axis
of the cylinder. Determine the direction and magnitude of the resulting bound current
density on the surface of the cylinder. What is the magnetization M(x) on the surface of
the cylinder?

Part II, 2018 List of Questions [TURN OVER
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Paper 3, Section II

37D Electrodynamics
Starting from the covariant form of the Maxwell equations and making a suitable

choice of gauge which you should specify, show that the 4-vector potential due to an
arbitrary 4-current Jµ(x) obeys the wave equation,

(
∇2 − 1

c2
∂2

∂t2

)
Aµ = −µ0Jµ,

where xµ = (ct,x).

Use the method of Green’s functions to show that, for a localised current distribu-
tion, this equation is solved by

Aµ(t,x) =
µ0
4π

∫
d3x′

Jµ(tret,x
′)

|x− x′| ,

for some tret that you should specify.

A point particle, of charge q, moving along a worldline yµ(τ) parameterised by
proper time τ , produces a 4-vector potential

Aµ(x) =
µ0qc

4π

ẏµ(τ⋆)

|Rν(τ⋆)ẏν(τ⋆)|

where Rµ(τ) = xµ − yµ(τ). Define τ⋆(x) and draw a spacetime diagram to illustrate its
physical significance.

Suppose the particle follows a circular trajectory,

y(t) = (R cos(ω t), R sin(ω t), 0)

(with y0 = ct), in some inertial frame with coordinates (ct, x, y, z). Evaluate the resulting
4-vector potential at a point on the z-axis as a function of z and t.
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Paper 1, Section II

35D Electrodynamics
In some inertial reference frame S, there is a uniform electric field E directed along

the positive y-direction and a uniform magnetic field B directed along the positive z-
direction. The magnitudes of the fields are E and B, respectively, with E < cB. Show that
it is possible to find a reference frame in which the electric field vanishes, and determine
the relative speed βc of the two frames and the magnitude of the magnetic field in the
new frame.
[Hint: You may assume that under a standard Lorentz boost with speed v = βc along the
x-direction, the electric and magnetic field components transform as




E′
x

E′
y

E′
z


 =




Ex

γ(β)(Ey − vBz)
γ(β)(Ez + vBy)


 and




B′
x

B′
y

B′
z


 =




Bx

γ(β)(By + vEz/c
2)

γ(β)(Bz − vEy/c
2)


 ,

where the Lorentz factor γ(β) = (1− β2)−1/2.]

A point particle of mass m and charge q moves relativistically under the influence
of the fields E and B. The motion is in the plane z = 0. By considering the motion in
the reference frame in which the electric field vanishes, or otherwise, show that, with a
suitable choice of origin, the worldline of the particle has components in the frame S of
the form

ct(τ) = γ(u/c)γ(β)

[
cτ +

βu

ω
sinωτ

]
,

x(τ) = γ(u/c)γ(β)
[
βcτ +

u

ω
sinωτ

]
,

y(τ) =
uγ(u/c)

ω
cosωτ .

Here, u is a constant speed with Lorentz factor γ(u/c), τ is the particle’s proper time, and
ω is a frequency that you should determine.

Using dimensionless coordinates,

x̃ =
ω

uγ(u/c)
x and ỹ =

ω

uγ(u/c)
y ,

sketch the trajectory of the particle in the (x̃, ỹ)-plane in the limiting cases 2πβ ≪ u/c
and 2πβ ≫ u/c.
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35D Electrodynamics
By considering the force per unit volume f = ρE+J×B on a charge density ρ and

current density J due to an electric field E and magnetic field B, show that

∂gi
∂t

+
∂σij
∂xj

= −fi ,

where g = ǫ0E×B and the symmetric tensor σij should be specified.

Give the physical interpretation of g and σij and explain how σij can be used to
calculate the net electromagnetic force exerted on the charges and currents within some
region of space in static situations.

The plane x = 0 carries a uniform charge σ per unit area and a current K per unit
length along the z-direction. The plane x = d carries the opposite charge and current.
Show that between these planes

σij =
σ2

2ǫ0




−1 0 0
0 1 0
0 0 1


+

µ0K
2

2




1 0 0
0 −1 0
0 0 1


 , (∗)

and σij = 0 for x < 0 and x > d.

Use (∗) to find the electromagnetic force per unit area exerted on the charges and
currents in the x = 0 plane. Show that your result agrees with direct calculation of the
force per unit area based on the Lorentz force law.

If the current K is due to the motion of the charge σ with speed v, is it possible for
the force between the planes to be repulsive?
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35D Electrodynamics
A dielectric material has a real, frequency-independent relative permittivity ǫr with

|ǫr − 1| ≪ 1. In this case, the macroscopic polarization that develops when the dielectric
is placed in an external electric field Eext(t,x) is P(t,x) ≈ ǫ0(ǫr − 1)Eext(t,x). Explain
briefly why the associated bound current density is

Jbound(t,x) ≈ ǫ0(ǫr − 1)
∂Eext(t,x)

∂t
.

[You should ignore any magnetic response of the dielectric.]

A sphere of such a dielectric, with radius a, is centred on x = 0. The sphere scatters
an incident plane electromagnetic wave with electric field

E(t,x) = E0e
i(k·x−ωt) ,

where ω = c|k| and E0 is a constant vector. Working in the Lorenz gauge, show that
at large distances r = |x|, for which both r ≫ a and ka2/r ≪ 2π, the magnetic vector
potential Ascatt(t,x) of the scattered radiation is

Ascatt(t,x) ≈ −iωE0
ei(kr−ωt)

r

(ǫr − 1)

4πc2

∫

|x′|6a
eiq·x

′
d3x′ ,

where q = k− kx̂ with x̂ = x/r.

In the far-field, where kr ≫ 1, the electric and magnetic fields of the scattered
radiation are given by

Escatt(t,x) ≈ −iωx̂× [x̂×Ascatt(t,x)] ,

Bscatt(t,x) ≈ ikx̂×Ascatt(t,x) .

By calculating the Poynting vector of the scattered and incident radiation, show that
the ratio of the time-averaged power scattered per unit solid angle to the time-averaged
incident power per unit area (i.e. the differential cross-section) is

dσ

dΩ
= (ǫr − 1)2k4

(
sin(qa)− qa cos(qa)

q3

)2

|x̂× Ê0|2 ,

where Ê0 = E0/|E0| and q = |q|.
[You may assume that, in the Lorenz gauge, the retarded potential due to a localised current
distribution is

A(t,x) =
µ0
4π

∫
J(tret,x

′)
|x− x′| d3x′ ,

where the retarded time tret = t− |x− x′|/c.]
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34E Electrodynamics
A point particle of charge q and mass m moves in an electromagnetic field with

4-vector potential Aµ(x), where x
µ is position in spacetime. Consider the action

S = −mc
∫ (

−ηµν
dxµ

dλ

dxν

dλ

)1/2
dλ + q

∫
Aµ

dxµ

dλ
dλ , (∗)

where λ is an arbitrary parameter along the particle’s worldline and ηµν = diag(−1,+1,+1,+1)
is the Minkowski metric.

(a) By varying the action with respect to xµ(λ), with fixed endpoints, obtain the
equation of motion

m
duµ

dτ
= qFµ

νu
ν ,

where τ is the proper time, uµ = dxµ/dτ is the velocity 4-vector, and Fµν = ∂µAν − ∂νAµ

is the field strength tensor.

(b) This particle moves in the field generated by a second point charge Q that is
held at rest at the origin of some inertial frame. By choosing a suitable expression for Aµ

and expressing the first particle’s spatial position in spherical polar coordinates (r, θ, φ),
show from the action (∗) that

E ≡ ṫ− Γ/r ,

ℓc ≡ r2φ̇ sin2 θ

are constants, where Γ = −qQ/(4πǫ0mc2) and overdots denote differentiation with respect
to τ .

(c) Show that when the motion is in the plane θ = π/2,

E +
Γ

r
=

√
1 +

ṙ2

c2
+
ℓ2

r2
.

Hence show that the particle’s orbit is bounded if E < 1, and that the particle can reach
the origin in finite proper time if Γ > |ℓ|.
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34E Electrodynamics
The current density in an antenna lying along the z-axis takes the form

J(t,x) =

{
ẑ I0 sin (kd− k|z|) e−iωtδ(x)δ(y) |z| 6 d

0 |z| > d
,

where I0 is a constant and ω = ck. Show that at distances r = |x| for which both r ≫ d
and r ≫ kd2/(2π), the retarded vector potential in Lorenz gauge is

A(t,x) ≈ ẑ
µ0I0
4πr

e−iω(t−r/c)

∫ d

−d
sin
(
kd− k|z′|

)
e−ikz′ cos θ dz′ ,

where cos θ = r̂ · ẑ and r̂ = x/|x|. Evaluate the integral to show that

A(t,x) ≈ ẑ
µ0I0
2πkr

(
cos(kd cos θ)− cos(kd)

sin2 θ

)
e−iω(t−r/c) .

In the far-field, where kr ≫ 1, the electric and magnetic fields are given by

E(t,x) ≈ −iωr̂× [r̂×A(t,x)]

B(t,x) ≈ ikr̂×A(t,x) .

By calculating the Poynting vector, show that the time-averaged power radiated per unit
solid angle is

dP
dΩ

=
cµ0I

2
0

8π2

(
cos(kd cos θ)− cos(kd)

sin θ

)2
.

[You may assume that in Lorenz gauge, the retarded potential due to a localised current
distribution is

A(t,x) =
µ0
4π

∫
J(tret,x

′)
|x− x′| d3x′ ,

where the retarded time tret = t− |x− x′|/c.]
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34E Electrodynamics
(a) A uniform, isotropic dielectric medium occupies the half-space z > 0. The region

z < 0 is in vacuum. State the boundary conditions that should be imposed on E, D, B
and H at z = 0.

(b) A linearly polarized electromagnetic plane wave, with magnetic field in the
(x, y)-plane, is incident on the dielectric from z < 0. The wavevector k makes an acute
angle θI to the normal ẑ. If the dielectric has frequency-independent relative permittivity
ǫr, show that the fraction of the incident power that is reflected is

R =

(
n cos θI − cos θT
n cos θI + cos θT

)2

,

where n =
√
ǫr, and the angle θT should be specified. [You should ignore any magnetic

response of the dielectric.]

(c) Now suppose that the dielectric moves at speed βc along the x-axis, the incident
angle θI = 0, and the magnetic field of the incident radiation is along the y-direction.
Show that the reflected radiation propagates normal to the surface z = 0, has the same
frequency as the incident radiation, and has magnetic field also along the y-direction.
[Hint: You may assume that under a standard Lorentz boost with speed v = βc along the
x-direction, the electric and magnetic field components transform as




E′
x

E′
y

E′
z


 =




Ex

γ(Ey − vBz)
γ(Ez + vBy)


 and




B′
x

B′
y

B′
z


 =




Bx

γ(By + vEz/c
2)

γ(Bz − vEy/c
2)


 ,

where γ = (1− β2)−1/2.]

(d) Show that the fraction of the incident power reflected from the moving dielectric
is

Rβ =

(
n/γ −

√
1− β2/n2

n/γ +
√

1− β2/n2

)2

.
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33A Electrodynamics

A point particle of charge q has trajectory yµ(τ) in Minkowski space, where τ is
its proper time. The resulting electromagnetic field is given by the Liénard–Wiechert
4-potential

Aµ(x) = −q µ0 c

4π

uµ(τ∗)
Rν(τ∗)uν(τ∗)

, where Rν = xν − yν(τ) and uµ = dyµ/dτ .

Write down the condition that determines the point yµ(τ∗) on the trajectory of the particle
for a given value of xµ. Express this condition in terms of components, setting xµ = (ct,x)
and yµ = (ct′,y), and define the retarded time tr.

Suppose that the 3-velocity of the particle v(t′) = ẏ(t′) = dy/dt′ is small in size
compared to c, and suppose also that r = |x| ≫ |y|. Working to leading order in 1/r and
to first order in v, show that

φ(x) =
q µ0 c

4πr
( c + r̂ · v(tr) ) , A(x) =

q µ0

4πr
v(tr) , where r̂ = x/r .

Now assume that tr can be replaced by t− = t−(r/c) in the expressions for φ and A
above. Calculate the electric and magnetic fields to leading order in 1/r and hence show
that the Poynting vector is (in this approximation)

N(x) =
q2µ0

(4π)2 c

r̂

r2

∣∣∣ r̂× v̇(t−)
∣∣∣
2
.

If the charge q is performing simple harmonic motion y(t′) = An cosωt′, where n is
a unit vector and Aω ≪ c, find the total energy radiated during one period of oscillation.
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34A Electrodynamics

(i) Consider the action

S = − 1

4µ0c

∫ (
FµνF

µν + 2λ2AµA
µ
)
d4x +

1

c

∫
AµJ

µ d4x ,

where Aµ(x) is a 4-vector potential, Fµν = ∂µAν −∂νAµ is the field strength tensor, Jµ(x)
is a conserved current, and λ > 0 is a constant. Derive the field equation

∂µF
µν − λ2Aν = −µ0J

ν .

For λ = 0 the action S describes standard electromagnetism. Show that in this case
the theory is invariant under gauge transformations of the field Aµ(x), which you should
define. Is the theory invariant under these same gauge transformations when λ > 0 ?

Show that when λ > 0 the field equation above implies

∂µ∂
µAν − λ2Aν = −µ0J

ν . (∗)

Under what circumstances does (∗) hold in the case λ = 0?

(ii) Now suppose that Aµ(x) and Jµ(x) obeying (∗) reduce to static 3-vectors A(x)
and J(x) in some inertial frame. Show that there is a solution

A(x) = −µ0

∫
G( |x−x′ | )J(x′) d3x′

for a suitable Green’s function G(R) with G(R) → 0 as R → ∞. Determine G(R) for any
λ > 0. [Hint: You may find it helpful to consider first the case λ = 0 and then the case

λ > 0, using the result ∇2
( 1

R
f(R)

)
= ∇2

( 1

R

)
f(R) +

1

R
f ′′(R) , where R = |x−x′ | . ]

If J(x) is zero outside some bounded region, comment on the effect of the value of λ
on the behaviour of A(x) when |x| is large. [No further detailed calculations are required.]
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34A Electrodynamics

Briefly explain how to interpret the components of the relativistic stress–energy
tensor in terms of the density and flux of energy and momentum in some inertial frame.

(i) The stress–energy tensor of the electromagnetic field is

T µν
em =

1

µ0

(
FµαF ν

α − 1

4
ηµνFαβFαβ

)
,

where Fµν is the field strength, ηµν is the Minkowski metric, and µ0 is the permeability of
free space. Show that ∂µT

µν
em = −F ν

µJ
µ , where Jµ is the current 4-vector.

[ Maxwell’s equations are ∂µF
µν = −µ0J

ν and ∂ρFµν + ∂νFρµ + ∂µFνρ = 0 . ]

(ii) A fluid consists of point particles of rest mass m and charge q. The fluid can be
regarded as a continuum, with 4-velocity uµ(x) depending on the position x in spacetime.
For each x there is an inertial frame Sx in which the fluid particles at x are at rest. By
considering components in Sx, show that the fluid has a current 4-vector field

Jµ = q n0u
µ ,

and a stress–energy tensor
T µν
fluid = mn0u

µuν ,

where n0(x) is the proper number density of particles (the number of particles per unit
spatial volume in Sx in a small region around x). Write down the Lorentz 4-force on a
fluid particle at x. By considering the resulting 4-acceleration of the fluid, show that the
total stress–energy tensor is conserved, i.e.

∂µ
(
T µν
em + T µν

fluid

)
= 0 .
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35C Electrodynamics
(i) The action S for a point particle of rest mass m and charge q moving along a

trajectory xµ(λ) in the presence of an electromagnetic 4-vector potential Aµ is

S = −mc

∫ (
−ηµν

dxµ

dλ

dxν

dλ

)1/2

dλ+ q

∫
Aµ

dxµ

dλ
dλ ,

where λ is an arbitrary parametrization of the path and ηµν is the Minkowski metric. By
varying the action with respect to xµ(λ), derive the equation of motion mẍµ = qFµ

ν ẋ
ν ,

where Fµν = ∂µAν −∂νAµ and overdots denote differentiation with respect to proper time
for the particle.

(ii) The particle moves in constant electric and magnetic fields with non-zero
Cartesian components Ez = E and By = B, with B > E/c > 0 in some inertial frame.
Verify that a suitable 4-vector potential has components

Aµ = (0, 0, 0,−Bx −Et)

in that frame.

Find the equations of motion for x, y, z and t in terms of proper time τ . For the
case of a particle that starts at rest at the spacetime origin at τ = 0, show that

z̈ +
q2

m2

(
B2 − E2

c2

)
z =

qE

m
.

Find the trajectory xµ(τ) and sketch its projection onto the (x, z) plane.
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36C Electrodynamics
The 4-vector potential Aµ(t,x) (in the Lorenz gauge ∂µA

µ = 0) due to a localised
source with conserved 4-vector current Jµ is

Aµ(t,x) =
µ0

4π

∫
Jµ(tret,x

′)
|x− x′| d3x′ ,

where tret = t− |x − x′|/c. For a source that varies slowly in time, show that the spatial
components of Aµ at a distance r = |x| that is large compared to the spatial extent of the
source are

A(t,x) ≈ µ0

4πr

dP

dt

∣∣∣∣
t−r/c

,

where P is the electric dipole moment of the source, which you should define. Explain
what is meant by the far-field region, and calculate the leading-order part of the magnetic
field there.

A point charge q moves non-relativistically in a circle of radius a in the (x, y) plane
with angular frequency ω (such that aω ≪ c). Show that the magnetic field in the far-field
at the point x with spherical polar coordinates r, θ and φ has components along the θ and
φ directions given by

Bθ ≈ −µ0ω
2qa

4πrc
sin[ω(t− r/c)− φ] ,

Bφ ≈ µ0ω
2qa

4πrc
cos[ω(t− r/c)− φ] cos θ .

Calculate the total power radiated by the charge.
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36C Electrodynamics
(i) Starting from the field-strength tensor Fµν = ∂µAν−∂νAµ, where A

µ = (φ/c,A)
is the 4-vector potential with components such that

E = −∂A

∂t
−∇φ and B = ∇×A ,

derive the transformation laws for the components of the electric field E and the magnetic
field B under the standard Lorentz boost x′µ = Λµ

νx
ν with

Λµ
ν =




γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1


 .

(ii) Two point charges, each with electric charge q, are at rest and separated by a
distance d in some inertial frame S. By transforming the fields from the rest frame S,
calculate the magnitude and direction of the force between the two charges in an inertial
frame in which the charges are moving with speed βc in a direction perpendicular to their
separation.

(iii) The 4-force for a particle with 4-momentum pµ is Fµ = dpµ/dτ , where τ is
proper time. Show that the components of Fµ in an inertial frame in which the particle
has 3-velocity v are

Fµ = γ (F · v/c,F) ,
where γ = (1 − v · v/c2)−1/2 and F is the 3-force acting on the particle. Hence verify
that your result in (ii) above is consistent with Lorentz transforming the electromagnetic
3-force from the rest frame S.

Part II, 2014 List of Questions

2014



35

Paper 4, Section II

35B Electrodynamics
(i) For a time-dependent source, confined within a domain D, show that the time

derivative ḋ of the dipole moment d satisfies

ḋ =

∫

D
d3y (y) ,

where  is the current density.

(ii) The vector potential A(x, t) due to a time-dependent source is given by

A =
1

r
f (t− r/c)k ,

where r = |x| 6= 0, and k is the unit vector in the z direction. Calculate the resulting
magnetic field B(x, t). By considering the magnetic field for small r show that the dipole
moment of the effective source satisfies

µ0

4π
ḋ = f(t)k .

Calculate the asymptotic form of the magnetic field B at very large r.

(iii) Using the equation
∂E

∂t
= c2∇×B ,

calculate E at very large r. Show that E,B and r̂ = x/|x| form a right-handed triad, and
moreover |E| = c|B|. How do |E| and |B| depend on r? What is the significance of this?

(iv) Calculate the power P (θ, φ) emitted per unit solid angle and sketch its
dependence on θ. Show that the emitted radiation is polarised and describe how the
plane of polarisation (that is, the plane in which E and r̂ lie) depends on the direction of
the dipole. Suppose the dipole moment has constant amplitude and constant frequency
and so the radiation is monochromatic with wavelength λ. How does the emitted power
depend on λ?
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36B Electrodynamics
(i) Obtain Maxwell’s equations in empty space from the action functional

S[Aµ] = − 1

µ0

∫
d4x

1

4
FµνF

µν ,

where Fµν = ∂µAν − ∂νAµ.

(ii) A modification of Maxwell’s equations has the action functional

S̃[Aµ] = − 1

µ0

∫
d4x

{1

4
FµνF

µν +
1

2λ2
AµA

µ
}
,

where again Fµν = ∂µAν − ∂νAµ and λ is a constant. Obtain the equations of motion of
this theory and show that they imply ∂µA

µ = 0.

(iii) Show that the equations of motion derived from S̃ admit solutions of the form

Aµ = Aµ
0e

ikνxν
,

where Aµ
0 is a constant 4-vector, and the 4-vector kµ satisfies Aµ

0kµ = 0 and kµk
µ = −1/λ2.

(iv) Show further that the tensor

Tµν =
1

µ0

{
FµσFν

σ − 1

4
ηµνFαβF

αβ − 1

2λ2

(
ηµνAαA

α − 2AµAν

)}

is conserved, that is ∂µTµν = 0.
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36B Electrodynamics
(i) Starting from

Fµν =




0 E1/c E2/c E3/c
−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0




and performing a Lorentz transformation with γ = 1/
√

1− u2/c2, using

Λµ
ν =




γ −γu/c 0 0
−γu/c γ 0 0

0 0 1 0
0 0 0 1


 ,

show how E and B transform under a Lorentz transformation.

(ii) By taking the limit c → ∞, obtain the behaviour of E and B under a
Galilei transfomation and verify the invariance under Galilei transformations of the non-
relativistic equation

m
dv

dt
= q(E+ v×B) .

(iii) Show that Maxwell’s equations admit solutions of the form

E = E0 f(t− n · x/c) , B = B0 f(t− n · x/c) , (⋆)

where f is an arbitrary function, n is a unit vector, and the constant vectors E0 and B0

are subject to restrictions which should be stated.

(iv) Perform a Galilei transformation of a solution (⋆), with n = (1, 0, 0). Show
that, by a particular choice of u, the solution may brought to the form

Ẽ = Ẽ0g(x̃) , B̃ = B̃0g(x̃) , (†)

where g is an arbitrary function and x̃ is a spatial coordinate in the rest frame. By
showing that (†) is not a solution of Maxwell’s equations in the boosted frame, conclude
that Maxwell’s equations are not invariant under Galilei transformations.
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35B Electrodynamics
The charge and current densities are given by ρ(t,x) 6= 0 and j(t,x) respectively.

The electromagnetic scalar and vector potentials are given by φ(t,x) and A(t,x) respec-
tively. Explain how one can regard jµ = (ρ, j) as a four-vector that obeys the current
conservation rule ∂µj

µ = 0.

In the Lorenz gauge ∂µA
µ = 0, derive the wave equation that relates Aµ = (φ,A)

to jµ and hence show that it is consistent to treat Aµ as a four-vector.

In the Lorenz gauge, with jµ = 0, a plane wave solution for Aµ is given by

Aµ = ǫµ exp(ikνx
ν) ,

where ǫµ, kµ and xµ are four-vectors with

ǫµ = (ǫ0, ǫ), kµ = (k0,k), xµ = (t,x) .

Show that kµk
µ = kµǫ

µ = 0.

Interpret the components of kµ in terms of the frequency and wavelength of the
wave.

Find what residual gauge freedom there is and use it to show that it is possible to
set ǫ0 = 0. What then is the physical meaning of the components of ǫ?

An observer at rest in a frame S measures the angular frequency of a plane wave
travelling parallel to the z-axis to be ω. A second observer travelling at velocity v in S
parallel to the z-axis measures the radiation to have frequency ω′. Express ω′ in terms
of ω.
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Paper 3, Section II

36B Electrodynamics
The non-relativistic Larmor formula for the power, P , radiated by a particle of

charge q and mass m that is being accelerated with an acceleration a is

P =
µ0

6π
q2|a|2 .

Starting from the Liénard–Wiechert potentials, sketch a derivation of this result. Explain
briefly why the relativistic generalization of this formula is

P =
µ0

6π

q2

m2

(
dpµ

dτ

dpν

dτ
ηµν

)
,

where pµ is the relativistic momentum of the particle and τ is the proper time along the
worldline of the particle.

A particle of mass m and charge q moves in a plane perpendicular to a constant
magnetic field B. At time t = 0 as seen by an observer O at rest, the particle has energy
E = γm. At what rate is electromagnetic energy radiated by this particle?

At time t according to the observer O, the particle has energy E′ = γ′m. Find an
expression for γ′ in terms of γ and t.

Paper 1, Section II

36B Electrodynamics
A particle of mass m and charge q moves relativistically under the influence of a

constant electric field E in the positive z-direction, and a constant magnetic field B also
in the positive z-direction.

In some inertial observer’s coordinate system, the particle starts at

x = R, y = 0, z = 0, t = 0,

with velocity given by
ẋ = 0, ẏ = u, ż = 0,

where the dot indicates differentiation with respect to the proper time of the particle.
Show that the subsequent motion of the particle, as seen by the inertial observer, is a
helix.

a) What is the radius of the helix as seen by the inertial observer?

b) What are the x and y coordinates of the axis of the helix?

c) What is the z coordinate of the particle after a proper time τ has elapsed, as
measured by the particle?
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Paper 1, Section II

36C Electrodynamics

In the Landau–Ginzburg model of superconductivity, the energy of the system is

given, for constants α and β, by

E =

∫ {
1

2µ0
B2 +

1

2m
[(i~∇− qA)ψ∗ · (−i~∇− qA)ψ] + αψ∗ψ + β(ψ∗ψ)2

}
d3x ,

where B is the time-independent magnetic field derived from the vector potential A, and

ψ is the wavefunction of the charge carriers, which have mass m and charge q.

Describe the physical meaning of each of the terms in the integral.

Explain why in a superconductor one must choose α < 0 and β > 0. Find an

expression for the number density n of the charge carriers in terms of α and β.

Show that the energy is invariant under the gauge transformations

A → A+∇Λ , ψ → ψ eiqΛ/~ .

Assuming that the number density n is uniform, show that, if E is a minimum under

variations of A, then

curlB = −µ0q
2n

m
(A− ~

q
∇φ) ,

where φ = argψ.

Find a formula for ∇2B and use it to explain why there cannot be a magnetic field

inside the bulk of a superconductor.

Paper 3, Section II

36C Electrodynamics

Explain how time-dependent distributions of electric charge ρ(x, t) and current

j(x, t) can be combined into a four-vector ja(x) that obeys ∂aj
a = 0.

This current generates a four-vector potential Aa(x). Explain how to find Aa in the

gauge ∂aA
a = 0.

A small circular loop of wire of radius r is centred at the origin. The unit vector

normal to the plane of the loop is n. A current Io sinωt flows in the loop. Find the

three-vector potential A(x, t) to leading order in r/|x|.
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Paper 4, Section II

35C Electrodynamics

Suppose that there is a distribution of electric charge given by the charge density

ρ(x). Develop the multipole expansion, up to quadrupole terms, for the electrostatic

potential φ and define the dipole and quadrupole moments of the charge distribution.

A tetrahedron has a vertex at (1, 1, 1) where there is a point charge of strength 3q.

At each of the other vertices located at (1,−1,−1), (−1, 1,−1) and (−1,−1, 1) there is a

point charge of strength −q.

What is the dipole moment of this charge distribution?

What is the quadrupole moment?
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Paper 1, Section II

35B Electrodynamics

The vector potential Aµ is determined by a current density distribution jµ in the

gauge ∂µA
µ = 0 by

�Aµ = −µ 0 j
µ , � = − ∂2

∂t2
+∇2 ,

in units where c = 1.

Describe how to justify the result

Aµ(x, t) =
µ0

4π

∫
d 3x′

jµ(x′, t′)
|x− x′| , t′ = t− |x− x′| .

A plane square loop of thin wire, edge lengths l, has its centre at the origin and lies

in the (x, y) plane. For t < 0, no current is flowing in the loop, but at t = 0 a constant

current I is turned on.

Find the vector potential at the point (0, 0, z) as a function of time due to a single

edge of the loop.

What is the electric field due to the entire loop at (0, 0, z) as a function of time?

Give a careful justification of your answer.
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Paper 3, Section II

36B Electrodynamics

A particle of rest-mass m, electric charge q, is moving relativistically along the path

xµ(s) where s parametrises the path.

Write down an action for which the extremum determines the particle’s equation of

motion in an electromagnetic field given by the potential Aµ(x).

Use your action to derive the particle’s equation of motion in a form where s is the

proper time.

Suppose that the electric and magnetic fields are given by

E = (0, 0, E) ,

B = (0, B, 0) .

where E and B are constants and B > E > 0.

Find xµ(s) given that the particle starts at rest at the origin when s = 0.

Describe qualitatively the motion of the particle.

Paper 4, Section II

35B Electrodynamics

In a superconductor the number density of charge carriers of charge q is ns . Suppose

that there is a time-independent magnetic field described by the three-vector potential A.

Derive an expression for the superconducting current.

Explain how your answer is gauge invariant.

Suppose that for z < 0 there is a constant magnetic field B0 in a vacuum and, for

z > 0, there is a uniform superconductor. Derive the magnetic field for z > 0.
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Paper 1, Section II

35C Electrodynamics

The action for a modified version of electrodynamics is given by

I =

∫
d4x

(
−1

4
FabF

ab − 1

2
m2AaA

a + µ0J
aAa

)
,

where m is an arbitrary constant, Fab = ∂aAb − ∂bAa and Ja is a conserved current.

(i) By varying Aa, derive the field equations analogous to Maxwell’s equations by

demanding that δI = 0 for an arbitrary variation δAa.

(ii) Show that ∂aA
a = 0.

(iii) Suppose that the current Ja(x) is a function of position only. Show that

Aa(x) =
µ0

4π

∫
d3x′

Ja(x′)
|x− x′|e

−m|x−x′|.

Paper 3, Section II

36C Electrodynamics

A particle of charge of q moves along a trajectory ya(s) in spacetime where s is the

proper time on the particle’s world-line.

Explain briefly why, in the gauge ∂aA
a = 0, the potential at the spacetime point x

is given by

Aa(x) =
µ0q

2π

∫
ds

dya

ds
θ
(
x0 − y0(s)

)
δ
(
(xc − yc(s))(xd − yd(s))ηcd

)
.

Evaluate this integral for a point charge moving relativistically along the z-axis,

x = y = 0, at constant velocity v so that z = vt.

Check your result by starting from the potential of a point charge at rest

A = 0,

φ =
µ0q

4π(x2 + y2 + z2)1/2
,

and making an appropriate Lorentz transformation.
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Paper 4, Section II

35C Electrodynamics

In a superconductor, the charge carriers have a charge q, massm and number density

n. Describe how to construct the superconducting current in terms of the vector potential

A and the wavefunction of the charge carriers.

Show that the current is gauge invariant.

Derive the Helmholtz equation

∇2B = B/ℓ2

for a time-independent magnetic field and evaluate the length scale ℓ in terms of n, q

and m.

Why does this imply that magnetic flux cannot exist in a superconductor?
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1/II/34D Electrodynamics

Frame S ′ is moving with uniform speed v in the x-direction relative to a laboratory
frame S. The components of the electric and magnetic fields E and B in the two frames
are related by the Lorentz transformation

E′x = Ex, E′y = γ(Ey − vBz), E′z = γ(Ez + vBy),

B′x = Bx, B′y = γ(By + vEz), B′z = γ(Bz − vEy),

where γ = 1/
√

1− v2 and units are chosen so that c = 1. How do the components of the
spatial vector F = E + iB (where i =

√
−1) transform?

Show that F′ is obtained from F by a rotation through θ about a spatial axis n,
where n and θ should be determined. Hence, or otherwise, show that there are precisely two
independent scalars associated with F which are preserved by the Lorentz transformation,
and obtain them.

[Hint: since |v| < 1 there exists a unique real ψ such that v = tanhψ.]

3/II/35D Electrodynamics

The retarded scalar potential ϕ(t,x) produced by a charge distribution ρ(t,x) is
given by

ϕ(t,x) =
1

4πε0

∫

Ω

d3x′
ρ(t− |x− x′|,x′)

|x− x′| ,

where Ω denotes all 3-space. Describe briefly and qualitatively the physics underlying this
formula.

Write the integrand in the formula above as a 1-dimensional integral over a new time
coordinate τ . Next consider a special source, a point charge q moving along a trajectory
x = x0(t) so that

ρ(t,x) = qδ(3)(x− x0(t)),

where δ(3)(x) denotes the 3-dimensional delta function. By reversing the order of
integration, or otherwise, obtain the Liénard–Wiechert potential

ϕ(t,x) =
1

4πε0

q

R− v ·R ,

where v and R are to be determined.

Write down the corresponding formula for the vector potential A(t,x).
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4/II/35D Electrodynamics

The Maxwell field tensor is given by

F ab =




0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0


 .

A general 4-velocity is written as Ua = γ(1,v), where γ = (1 − |v|2)−1/2, and c = 1. A
general 4-current density is written as Ja = (ρ, j), where ρ is the charge density and j is
the 3-current density. Show that

F abUb = γ(E · v, E + v ×B).

In the rest frame of a conducting medium, Ohm’s law states that j = σE where
σ is the conductivity. Show that the relativistic generalization to a frame in which the
medium moves with uniform velocity v is

Ja − (JbUb)U
a = σF abUb.

Show that this implies

j = ρv + σγ(E + v ×B− (v ·E)v).

Simplify this formula, given that the charge density vanishes in the rest frame of the
medium.
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1/II/34E Electrodynamics

Frame S ′ is moving with uniform speed v in the z-direction relative to a laboratory
frame S. Using Cartesian coordinates and units such that c = 1, the relevant Lorentz
transformation is

t′ = γ(t− vz), x′ = x, y′ = y, z′ = γ(z − vt) ,

where γ = 1/
√
1− v2. A straight thin wire of infinite extent lies along the z-axis and

carries charge and current line densities σ and J per unit length, as measured in S.
Stating carefully your assumptions show that the corresponding quantities in S ′ are given
by

σ′ = γ(σ − vJ), J ′ = γ(J − vσ) .

Using cylindrical polar coordinates, and the integral forms of the Maxwell equations
∇ ·E = µ0ρ and ∇×B = µ0j, derive the electric and magnetic fields outside the wire in
both frames.

In a standard notation the Lorentz transformation for the electric and magnetic
fields is

E‖
′ = E‖, B‖

′ = B‖, E⊥
′ = γ(E⊥ + v ×B⊥), B⊥

′ = γ(B⊥ − v ×E⊥).

Is your result consistent with this?
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3/II/35E Electrodynamics

Consider a particle of charge q moving with 3-velocity v. If the particle is moving
slowly then Larmor’s formula asserts that the instantaneous radiated power is

P =
µ0

6π
q2
∣∣∣∣
dv

dt

∣∣∣∣
2

.

Suppose, however, that the particle is moving relativistically. Give reasons why
one should conclude that P is a Lorentz invariant. Writing the 4-velocity as Ua = (γ, γv)
where γ = 1/

√
1− |v|2 and c = 1, show that

U̇a = (γ3α, γ3αv + γv̇)

where α = v · v̇ and ḟ = df/ds where s is the particle’s proper time. Show also that

U̇aU̇a = −γ4α2 − γ2|v̇|2.

Deduce the relativistic version of Larmor’s formula.

Suppose the particle moves in a circular orbit perpendicular to a uniform magnetic
field B. Show that

P =
µ0

6π

q4

m2
(γ2 − 1)|B|2,

where m is the mass of the particle, and comment briefly on the slow motion limit.

4/II/35E Electrodynamics

An action

S[ϕ] =

∫
d4xL(ϕ,ϕ,a)

is given, where ϕ(x) is a scalar field. Explain heuristically how to compute the functional
derivative δS/δϕ.

Consider the action for electromagnetism,

S[Aa] = −
∫

d4x

{
1

4µ0
F abFab + JaAa

}
.

Here Ja is the 4-current density, Aa is the 4-potential and Fab = Ab,a−Aa,b is the Maxwell
field tensor. Obtain Maxwell’s equations in 4-vector form.

Another action that is sometimes suggested is

Ŝ[Aa] = −
∫

d4x

{
1

2µ0
Aa,bAa,b + JaAa

}
.

Under which additional assumption can Maxwell’s equations be obtained using this action?

Using this additional assumption establish the relationship between the actions S
and Ŝ.
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1/II/34E Electrodynamics

S and S ′ are two reference frames with S ′ moving with constant speed v in the
x-direction relative to S. The co-ordinates xa and x′a are related by dx′a = La

b dx
b where

La
b =




γ −γv 0 0
−γv γ 0 0
0 0 1 0
0 0 0 1


 ,

and γ = (1 − v2)−1/2. What is the transformation rule for the scalar potential ϕ and
vector potential A between the two frames?

As seen in S ′ there is an infinite uniform stationary distribution of charge along
the x-axis with uniform line density σ. Determine the electric and magnetic fields E and
B both in S ′ and S. Check your answer by verifying explicitly the invariance of the two
quadratic Lorentz invariants.

Comment briefly on the limit |v| � 1.

3/II/35E Electrodynamics

A particle of rest mass m and charge q is moving along a trajectory xa(s), where
s is the particle’s proper time, in a given external electromagnetic field with 4-potential
Aa(xc). Consider the action principle δS = 0 where the action is S =

∫
L ds and

L(s, xa, ẋa) = −m
√
ηabẋaẋb − qAa(x

c)ẋa,

and variations are taken with fixed endpoints.

Show first that the action is invariant both under reparametrizations s → αs + β
where α and β are constants and also under a change of electromagnetic gauge. Next
define the generalized momentum Pa = ∂L/∂ẋa, and obtain the equation of motion

mẍa = qF a
bẋ

b, (∗)

where the tensor F a
b should be defined and you may assume that d/ds (ηabẋ

aẋb) = 0.
Then verify from (∗) that indeed d/ds (ηabẋaẋb) = 0.

How does Pa differ from the momentum pa of an uncharged particle? Comment
briefly on the principle of minimal coupling.
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4/II/35E Electrodynamics

The retarded scalar potential produced by a charge distribution ρ(t′,x′) is

ϕ(t,x) =
1

4πε0

∫
d3x′

ρ(t−R,x′)
R

,

where R = |R| and R = x − x′. By use of an appropriate delta function rewrite the
integral as an integral over both d3x′ and dt′ involving ρ(t′,x′).

Now specialize to a point charge q moving on a path x′ = x0(t
′) so that we may

set
ρ(t′,x′) = q δ(3)(x′ − x0(t

′)).

By performing the volume integral first obtain the Liénard–Wiechert potential

ϕ(t,x) =
q

4πε0

1

(R∗ − v ·R∗)
,

where R∗ and v should be specified.

Obtain the corresponding result for the magnetic potential.
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1/II/34B Electrodynamics

In a frame F the electromagnetic fields (E,B) are encoded into the Maxwell field
4-tensor F ab and its dual ∗F ab, where

F ab =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0




and

∗F ab =




0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0


 .

[Here the signature is ( + − − − ) and units are chosen so that c = 1.] Obtain two
independent Lorentz scalars of the electromagnetic field in terms of E and B.

Suppose that E ·B > 0 in the frame F . Given that there exists a frame F ′ in which
E′ ×B′ = 0, show that

E′ =

[
(E ·B)

(
K +

√
1 +K2

)]1/2
, B′ =

[
E ·B

K +
√
1 +K2

]1/2
,

where (E′, B′) are the magnitudes of (E′,B′), and

K =
1

2

(
|E|2 − |B|2

)
/
(
E ·B

)
.

[Hint: there is no need to consider the Lorentz transformations for E′ and B′.]
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3/II/35B Electrodynamics

A non-relativistic particle of rest massm and charge q is moving slowly with velocity
v(t). The power dP/dΩ radiated per unit solid angle in the direction of a unit vector n is

dP

dΩ
=

µ0

16π2
|n× qv̇|2 .

Obtain Larmor’s formula

P =
µ0 q

2

6π
|v̇|2 .

The particle has energy E and, starting from afar, makes a head-on collision with a fixed
central force described by a potential V (r), where V (r) > E for r < r0 and V (r) < E for
r > r0. Let W be the total energy radiated by the particle. Given that W � E , show that

W ≈ µ0 q
2

3πm2

√
m

2

∫ ∞

r0

(
dV

dr

)2
dr√

V (r0)− V (r)
.
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4/II/35B Electrodynamics

In Ginzburg–Landau theory, superconductivity is due to “supercarriers” of mass
ms and charge qs, which are described by a macroscopic wavefunction ψ with “Mexican
hat” potential

V = α(T )|ψ|2 + 1

2
β|ψ|4 .

Here, β > 0 is constant and α(T ) is a function of temperature T such that α(T ) > 0 for
T > Tc but α(T ) < 0 for T < Tc, where Tc is a critical temperature. In the presence of a
magnetic field B = ∇×A, the total energy of the superconducting system is

E[ψ,ψ∗,A] =

∫
d3x

[
1

2µ0
Ak,j

(
Ak,j −Aj,k

)
+

~2

2ms

∣∣∣ψ,k + i
qs
~
Akψ

∣∣∣
2

+ V

]
.

Use this to derive the equations

− ~2

2ms

(∇− i
qs
~
A
)2
ψ +

(
α+ β|ψ|2

)
ψ = 0 (∗)

and
∇×B ≡ ∇(∇ ·A

)
−∇2A = µ0 j , (†)

where

j = − iqs~
2ms

(
ψ∗∇ψ − ψ∇ψ∗)− q2s

ms
|ψ|2A

=
qs
2ms

[ψ∗ (−i~∇− qsA)ψ + ψ (i~∇− qsA)ψ∗] .

Suppose that we write the wavefunction as

ψ =
√
ns e

iθ ,

where ns is the (real positive) supercarrier density and θ is a real phase function. Given
that (

∇− iqs
~

A

)
ψ = 0 ,

show that ns is constant and that ~∇θ = qsA. Given also that T < Tc, deduce that (∗)
allows such solutions for a certain choice of ns, which should be determined. Verify that
your results imply j = 0. Show also that B = 0 and hence that (†) is solved.

Let S be a surface within the superconductor with closed boundary C. Show that
the magnetic flux through S is

Φ ≡
∫

S
B · dS =

~
qs

[
θ
]
C .

Discuss, briefly, flux quantization.
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