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Paper 1, Section II

32A Dynamical Systems
(a) State and prove Dulac’s theorem. State the Poincaré-Bendixson theorem.

(b) Consider the system

ẋ = r − x(1 + s) + x2y (1)

ẏ = sx− x2y, (2)

where r and s are positive numbers. Show that there is a unique fixed point. Show that
for a suitable choice of α to be determined, with 0 < α < r, trajectories enter the closed
region bounded by x = α, y = s/α, x + y = r + s/α and y = 0. Deduce that when
s− 1 > r2 the system has a periodic orbit.

Paper 2, Section II

33A Dynamical Systems
(a) Define a Lyapunov function for a system ẋ = f(x) on Rn with a fixed point

x∗. Explain what it means for a fixed point of the flow to be Lyapunov stable. State and
prove Lyapunov’s first stability theorem.

(b) Consider the second order differential equation

ẍ = F (x) − µẋ,

where µ > 0 and F (x) = −2x(1 − x2)2. Show that there are three fixed points in the
(x, ẋ) plane. Show that one of these is the origin and that it is Lyapunov stable. Show
further that the origin is asymptotically stable, and that the ω-limit set of each point in
the phase space is one of the three fixed points, justifying your answer carefully.

Part II, Paper 1

2023



37

Paper 3, Section II

31A Dynamical Systems
Consider the dependence of the system

ẋ = (a2 − x)(a− y2) (1)

ẏ = x− y (2)

on the parameter a. Find the fixed points and plot their location on the (a, x)-plane.
Hence, or deduce, that there are bifurcations at a = 0 and a = a∗ > 0 which is to be
determined.

Investigate the bifurcation at a = 0 by making the substitutions X = x−a2 and Y = y−a2.
Find the extended centre manifold in the form Y (X, a) correct to second order. Find the
evolution on the extended centre manifold and hence determine the stability of the fixed
points.

Use a plot to show which branches of the fixed points in the (a, x)-plane are stable
and which are unstable and state, without calculation, the type of bifurcation at a∗.
Hence sketch the structure of the (x, y) phase plane close to the bifurcation at a∗ where
|a− a∗| � 1 in the cases i) a < a∗ and ii) a > a∗.

Paper 4, Section II

32A Dynamical Systems
For the map xn+1 = F (xn, λ) := λxn(1 − x2n) with λ > 0 and xn ∈ [0, 1], show the
following:

(i) There is an upper limit on λ if points are not to be mapped outside the domain [0, 1].
Find this value.

(ii) For λ < 1 the origin is the only fixed point and is stable.

(iii) If λ > 1, then the origin is unstable and a new fixed point x∗ exists. This new fixed
point x∗ is stable for 1 < λ < 2 and unstable for λ > 2.

(iv) For λ close to but larger than 2, and with Xn = xn− x∗ and 0 < µ = λ− 2� 1, the
map can be locally represented as

Xn+1 = −Xn + αµXn + βX2
n + γX3

n +O(µ2), (∗)

where α, β and γ are constants that you should evaluate in terms of appropriate
derivatives of F . Hence show that the 2-cycle born in the bifurcation at λ = 2 has
points

x± = x∗ ±
√ −αµ
γ + β2

.

[You do not need to substitute the expressions you found for α, β and γ into this
formula.]

(v) The 2-cycle is stable for λ > 2, with λ− 2 small.

Part II, Paper 1 [TURN OVER]
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Paper 1, Section II
32B Dynamical Systems

(a) Consider a dynamical system of the form

ẋ = f(x, y) ,

ẏ = g(x, y) + εp(x, y) ,

which is Hamiltonian for ε = 0. Explain the energy balance method. What does it tell us
about periodic orbits of this system for small ε?

(b) (i) For 0 < ε � 1, use the energy balance method to seek leading-order
approximations to periodic orbits of this system

ẋ = y ,

ẏ = −4x+ ε
[
(1− 2x2)ky − (1− 3x2)y3

]
,

where k > 0.

[Hint:
∫ 2π
0 sin4 θdθ = 3

4π and
∫ 2π
0 sin6 θdθ = 5

8π.]

(ii) For the cases 0 < k < 6 and for k > 6, deduce the stability of any periodic
orbits.

(iii) What can we deduce from this approach about the existence of periodic orbits
near k = 6?

Part II, Paper 1 [TURN OVER]

2022
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Paper 2, Section II
33B Dynamical Systems

(a) Let F : I → I be a continuous one-dimensional map of an interval I ∈ R. Define
what it means for F to have a horseshoe.

Define what it means for F to be chaotic. [Glendinning’s definition should be used
throughout this question.]

Prove that if F has a 3-cycle then F 2 has a horseshoe. [You may assume corollaries
of the Intermediate Value Theorem.]

(b) Suppose now that F has a 4-cycle, and consider each of these orderings of the
points of the 4-cycle:

(i) x0 < x1 < x2 < x3

(ii) x0 < x1 < x3 < x2

(iii) x0 < x2 < x1 < x3

For each of these orderings, construct a suitable directed graph. Based on each of
these directed graphs, determine if the corresponding F must be chaotic and also give the
minimum number of distinct 3-cycles that F must have.

Give an explicit example of a continuous map F : [0, 1] → [0, 1] which has a 4-cycle
and is not chaotic. [Hint: choose a suitable ordering for the points on the 4-cycle, construct
a function which is piece-wise linear between these points, and examine the dynamics of
this map.]

Part II, Paper 1
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Paper 3, Section II
31B Dynamical Systems

Consider the system

ẋ = −ax+ 3y + x(x2 + y2)

ẏ = −x− ay + y(x2 + y2) ,

where a > 0 is a real constant. Throughout this question, you should state carefully any
theorems or standard results used.

(a) Show that the origin is asymptotically stable.

(b) Define the term Lyapunov function. For the system above, for what values of
k is V (x, y) = x2 + ky2 a valid Lyapunov function in some neighbourhood of the origin?
Give your answer in the form k1(a) < k < k2(a) where k1(a) and k2(a) should be given
explicitly.

(c) By considering V (x, y) for k = 1, what can be deduced about the domain of
stability (for values of a for which V (x, y) is a valid Lyapunov function)?

(d) State the Poincaré-Bendixson theorem. Show that the system above has a
periodic orbit.

Paper 4, Section II
32B Dynamical Systems

Consider the dynamical system

ẋ = x(y − k − 3x+ x2)

ẏ = y(y − 1 − x) ,

where k is a constant.

(a) Find all the fixed points of this system. By considering the existence and location
of the fixed points, determine the values of k for which bifurcations occur. For each of
these, what types of bifurcation are suggested from this approach?

(b) For the fixed points whose positions are independent of k, determine their linear
stability. Verify that these results are consistent with the bifurcations suggested above.

(c) Focusing only on the bifurcations which occur for 0 6 k 6 1
2 , use centre manifold

theory to analyse these bifurcations. In particular, for each bifurcation derive an equation
for the dynamics on the extended centre manifold and hence classify the bifurcation. [Hint:
There are two bifurcations in this range.]

Part II, Paper 1 [TURN OVER]
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Paper 1, Section II

32A Dynamical Systems
(a) State the properties defining a Lyapunov function for a dynamical system

ẋ = f(x). State Lyapunov’s first theorem and La Salle’s invariance principle.

(b) Consider the system

ẋ = y ,

ẏ = −2x(1 − x2)

(1 + x2)3
− ky .

Show that for k > 0 the origin is asymptotically stable, stating clearly any arguments that
you use.

[
Hint:

d

dx

x2

(1 + x2)2
=

2x(1 − x2)

(1 + x2)3
.
]

(c) Sketch the phase plane, (i) for k = 0 and (ii) for 0 < k � 1, giving brief details
of any reasoning and identifying the fixed points. Include the domain of stability of the
origin in your sketch for case (ii).

(d) For k > 0 show that the trajectory x(t) with x(0) = (1, y0), where y0 > 0,

satisfies 0 < y(t) <
√
y20 + 1

2 for t > 0. Show also that, for any ε > 0, the trajectory

cannot remain outside the region 0 < y < ε.

Paper 2, Section II

33A Dynamical Systems
Consider a modified van der Pol system defined by

ẋ = y − µ(13x
3 − x),

ẏ = −x+ F,

where µ > 0 and F are constants.

(a) A parallelogram PQRS of width 2L is defined by

P =
(
L, µf(L)

)
, Q =

(
L, 2L− µf(L)

)
,

R =
(
−L, −µf(L)

)
, S =

(
−L, µf(L) − 2L

)
,

where f(L) = 1
3L

3−L. Show that if L is sufficiently large then trajectories never leave the
region inside the parallelogram.

Hence show that if F 2 < 1 there must be a periodic orbit. Explain your reasoning
carefully.

(b) Use the energy-balance method to analyse the behaviour of the system for µ� 1,
identifying the difference in behaviours between F 2 < 1 and F 2 > 1.

(c) Describe the behaviour of the system for µ � 1, using sketches of the phase
plane to illustrate your arguments for the cases 0 < F < 1 and F > 1.

Part II, 2021 List of Questions [TURN OVER]

2021



38

Paper 3, Section II

31A Dynamical Systems
Consider the system

ẋ = µy + βxy + y2,

ẏ = x− y − x2,

where µ and β are constants with β > 0.

(a) Find the fixed points, and classify those on y = 0. State how the number of
fixed points depends on µ and β. Hence, or otherwise, deduce the values of µ at which
stationary bifurcations occur for fixed β > 0.

(b) Sketch bifurcation diagrams in the (µ, x)-plane for the cases 0 < β < 1, β = 1
and β > 1, indicating the stability of the fixed points and the type of the bifurcations in
each case. [You are not required to prove that the stabilities or bifurcation types are as
you indicate.]

(c) For the case β = 1, analyse the bifurcation at µ = −1 using extended centre
manifold theory and verify that the evolution equation on the centre manifold matches
the behaviour you deduced from the bifurcation diagram in part (b).

(d) For 0 < µ + 1 � 1, sketch the phase plane in the immediate neighbourhood of
where the bifurcation of part (c) occurs.

Paper 4, Section II

32A Dynamical Systems
(a) A continuous map F of an interval into itself has a periodic orbit of period 3.

Prove that F also has periodic orbits of period n for all positive integers n.

(b) What is the minimum number of distinct orbits of F of periods 2, 4 and 5?
Explain your reasoning with a directed graph. [Formal proof is not required.]

(c) Consider the piecewise linear map F : [0, 1] → [0, 1] defined by linear segments
between F (0) = 1

2 , F (12) = 1 and F (1) = 0. Calculate the orbits of periods 2, 4 and 5
that are obtained from the directed graph in part (b).

[In part (a) you may assume without proof:

(i) If U and V are non-empty closed bounded intervals such that V ⊆ F (U)
then there is a closed bounded interval K ⊆ U such that F (K) = V .

(ii) The Intermediate Value Theorem. ]

Part II, 2021 List of Questions
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Paper 1, Section II

32E Dynamical Systems
(i) For the dynamical system

ẋ = −x(x2 − 2µ)(x2 − µ+ a) , (†)

sketch the bifurcation diagram in the (µ, x) plane for the three cases a < 0, a = 0 and
a > 0. Describe the bifurcation points that occur in each case.

(ii) For the case when a < 0 only, confirm the types of bifurcation by finding the
system to leading order near each of the bifurcations.

(iii) Explore the structural stability of these bifurcations by adding a small positive
constant ε to the right-hand side of (†) and by sketching the bifurcation diagrams, for the
three cases a < 0, a = 0 and a > 0. Which of the original bifurcations are structurally
stable?

Paper 2, Section II

32E Dynamical Systems
(a) State and prove Dulac’s criterion. State clearly the Poincaré–Bendixson

theorem.

(b) For (x, y) ∈ R2 and k > 0, consider the dynamical system

ẋ = kx− 5y − (3x+ y)(5x2 − 6xy + 5y2) ,

ẏ = 5x+ (k − 6)y − (x+ 3y)(5x2 − 6xy + 5y2).

(i) Use Dulac’s criterion to find a range of k for which this system does not have
any periodic orbit.

(ii) Find a suitable f(k) > 0 such that trajectories enter the disc x2 + y2 6 f(k)
and do not leave it.

(iii) Given that the system has no fixed points apart from the origin for k < 10, give
a range of k for which there will exist at least one periodic orbit.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 3, Section II

31E Dynamical Systems
(a) A dynamical system ẋ = f(x) has a fixed point at the origin. Define the terms

asymptotic stability, Lyapunov function and domain of stability of the fixed point x = 0.
State and prove Lyapunov’s first theorem and state (without proof) La Salle’s invariance
principle.

(b) Consider the system

ẋ = −2x+ x3 + sin(2y) ,

ẏ = −x− y3.

(i) Show that trajectories cannot leave the square S = {(x, y) : |x| < 1, |y| < 1}.
Show also that there are no fixed points in S other than the origin. Is this enough to
deduce that S is in the domain of stability of the origin?

(ii) Construct a Lyapunov function of the form V = x2/2 + g(y). Deduce that the
origin is asymptotically stable.

(iii) Find the largest rectangle of the form |x| < x0, |y| < y0 on which V is a strict
Lyapunov function. Is this enough to deduce that this region is in the domain of stability
of the origin?

(iv) Purely from using the Lyapunov function V , what is the most that can be
deduced about the domain of stability of the origin?

Paper 4, Section II

32E Dynamical Systems
(a) Let F : I → I be a continuous map defined on an interval I ⊂ R. Define what it

means (i) for F to have a horseshoe and (ii) for F to be chaotic. [Glendinning’s definition
should be used throughout this question.]

(b) Consider the map defined on the interval [−1, 1] by

F (x) = 1− µ|x|

with 0 < µ 6 2.

(i) Sketch F (x) and F 2(x) for a case when 0 < µ < 1 and a case when 1 < µ < 2.

(ii) Describe fully the long term dynamics for 0 < µ < 1. What happens for µ = 1?

(iii) When does F have a horseshoe? When does F 2 have a horseshoe?

(iv) For what values of µ is the map F chaotic?

Part II, 2020 List of Questions
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Paper 4, Section II

31E Dynamical Systems
Consider the dynamical system

ẋ = x+ y2 − a ,

ẏ = y(4x− x2 − a) ,

for (x, y) ∈ R2, a ∈ R.

Find all fixed points of this system. Find the three different values of a at which
bifurcations appear. For each such value give the location (x, y) of all bifurcations. For
each of these, what types of bifurcation are suggested from this analysis?

Use centre manifold theory to analyse these bifurcations. In particular, for each
bifurcation derive an equation for the dynamics on the extended centre manifold and
hence classify the bifurcation.

Paper 3, Section II

31E Dynamical Systems
Consider a dynamical system of the form

ẋ = x(1− y + ax) ,

ẏ = ry(−1 + x− by) ,

on Λ = {(x, y) : x > 0 and y > 0}, where a, b and r are real constants and r > 0.

(a) For a = b = 0, by considering a function of the form V (x, y) = f(x)+g(y), show
that all trajectories in Λ are either periodic orbits or a fixed point.

(b) Using the same V , show that no periodic orbits in Λ persist for small a and b if
ab < 0 .

[Hint: for a = b = 0 on the periodic orbits with period T , show that
∫ T
0 (1−x)dt = 0

and hence that
∫ T
0 x(1− x)dt =

∫ T
0

[
−(1− x)2 + (1− x)

]
dt < 0.]

(c) By considering Dulac’s criterion with φ = 1/(xy), show that there are no periodic
orbits in Λ if ab < 0.

(d) Purely by consideration of the existence of fixed points in Λ and their Poincaré
indices, determine those (a, b) for which the possibility of periodic orbits can be excluded.

(e) Combining the results above, sketch the a-b plane showing where periodic orbits
in Λ might still be possible.

Part II, 2019 List of Questions

2019
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Paper 2, Section II

31E Dynamical Systems
For a map F : Λ → Λ give the definitions of chaos according to (i) Devaney (D-

chaos) and (ii) Glendinning (G-chaos).

Consider the dynamical system

F (x) = ax (mod 1)

on Λ = [0, 1), for a > 1 (note that a is not necessarily an integer). For both definitions of
chaos, show that this system is chaotic.

Paper 1, Section II

31E Dynamical Systems
For a dynamical system of the form ẋ = f(x), give the definition of the alpha-limit

set α(x) and the omega-limit set ω(x) of a point x.

Consider the dynamical system

ẋ = x2 − 1 ,

ẏ = kxy ,

where x = (x, y) ∈ R2 and k is a real constant. Answer the following for all values of k,
taking care over boundary cases (both in k and in x).

(i) What symmetries does this system have?

(ii) Find and classify the fixed points of this system.

(iii) Does this system have any periodic orbits?

(iv) Give α(x) and ω(x) (considering all x ∈ R2).

(v) For x0 = (0, y0), give the orbit of x0 (considering all y0 ∈ R). You should give
your answer in the form y = y(x, y0, k), and specify the range of x.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 1, Section II

31E Dynamical Systems
Consider the system

ẋ = −2ax+ 2xy , ẏ = 1− x2 − y2 ,

where a is a constant.

(a) Find and classify the fixed points of the system. For a = 0 show that the linear
classification of the non-hyperbolic fixed points is nonlinearly correct. For a 6= 0 show that
there are no periodic orbits. [Standard results for periodic orbits may be quoted without
proof.]

(b) Sketch the phase plane for the cases (i) a = 0, (ii) a = 1
2 , and (iii) a = 3

2 ,
showing any separatrices clearly.

(c) For what values of a do stationary bifurcations occur? Consider the bifurcation
with a > 0. Let y0, a0 be the values of y, a at which the bifurcation occurs, and define
Y = y − y0, µ = a − a0. Assuming that µ = O(x2), find the extended centre manifold
Y = Y (x, µ) to leading order. Further, determine the evolution equation on the centre
manifold to leading order. Hence identify the type of bifurcation.

Paper 4, Section II

32E Dynamical Systems
Let F : I → I be a continuous one-dimensional map of an interval I ⊂ R. Define

what it means (i) for F to have a horseshoe (ii) for F to be chaotic. [Glendinning’s
definition should be used throughout this question.]

Prove that if F has a 3-cycle x1 < x2 < x3 then F is chaotic. [You may assume the
intermediate value theorem and any corollaries of it.]

State Sharkovsky’s theorem.

Use the above results to deduce that if F has an N -cycle, where N is any integer
that is not a power of 2, then F is chaotic.

Explain briefly why if F is chaotic then F has N -cycles for many values of N that
are not powers of 2. [You may assume that a map with a horseshoe acts on some set Λ
like the Bernoulli shift map acts on [0,1).]

The logistic map is not chaotic when µ < µ∞ ≈ 3.57 and it has 3-cycles when
µ > 1 +

√
8 ≈ 3.84. What can be deduced from these statements about the values of µ

for which the logistic map has a 10-cycle?

Part II, 2018 List of Questions [TURN OVER
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Paper 3, Section II

32E Dynamical Systems
Consider the system

ẋ = y , ẏ = µ1x+ µ2y − (x+ y)3 ,

where µ1 and µ2 are parameters.

By considering a function of the form V (x, y) = f(x + y) + 1
2y

2, show that when
µ1 = µ2 = 0 the origin is globally asymptotically stable. Sketch the phase plane for this
case.

Find the fixed points for the general case. Find the values of µ1 and µ2 for which
the fixed points have (i) a stationary bifurcation and (ii) oscillatory (Hopf) bifurcations.
Sketch these bifurcation values in the (µ1, µ2)-plane.

For the case µ2 = −1, find the leading-order approximation to the extended centre
manifold of the bifurcation as µ1 varies, assuming that µ1 = O(x2). Find also the evolution
equation on the extended centre manifold to leading order. Deduce the type of bifurcation,
and sketch the bifurcation diagram in the (µ1, x)-plane.

Part II, 2018 List of Questions

2018
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Paper 2, Section II

32E Dynamical Systems
Consider the system

ẋ = y, ẏ = x− x3 + ǫ(1− αx2)y ,

where α and ǫ are real constants, and 0 6 ǫ≪ 1. Find and classify the fixed points.

Show that when ǫ = 0 the system is Hamiltonian and find H. Sketch the phase
plane for this case.

Suppose now that 0 < ǫ≪ 1. Show that the small change inH following a trajectory
of the perturbed system around an orbit H = H0 of the unperturbed system is given to
leading order by an equation of the form

∆H = ǫ

∫ x2

x1

F (x;α,H0) dx ,

where F should be found explicitly, and where x1 and x2 are the minimum and maximum
values of x on the unperturbed orbit.

Use the energy-balance method to find the value of α, correct to leading order in
ǫ, for which the system has a homoclinic orbit. [Hint: The substitution u = 1− 1

2x
2 may

prove useful.]

Over what range of α would you expect there to be periodic solutions that enclose
only one of the fixed points?

Part II, 2018 List of Questions [TURN OVER

2018
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Paper 1, Section II

30A Dynamical Systems
Consider the dynamical system

ẋ = −x+ x3 + βxy2 ,

ẏ = −y + βx2y + y3 ,

where β > −1 is a constant.

(a) Find the fixed points of the system, and classify them for β 6= 1.

Sketch the phase plane for each of the cases (i) β = 1
2 (ii) β = 2 and (iii) β = 1.

(b) Given β > 2, show that the domain of stability of the origin includes the union over
k ∈ R of the regions

x2 + k2y2 <
4k2(1 + k2)(β − 1)

β2(1 + k2)2 − 4k2
.

By considering k ≫ 1, or otherwise, show that more information is obtained from
the union over k than considering only the case k = 1.

[
Hint: If B > A,C then max

u∈[0,1]

{
Au2 + 2Bu(1− u) + C(1− u)2

}
=

B2 −AC

2B −A− C
.
]

Part II, 2017 List of Questions
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Paper 2, Section II

30A Dynamical Systems

(a) State Liapunov’s first theorem and La Salle’s invariance principle. Use these results
to show that the fixed point at the origin of the system

ẍ+ kẋ+ sin3 x = 0 , k > 0,

is asymptotically stable.

(b) State the Poincaré–Bendixson theorem. Show that the forced damped pendulum

θ̇ = p, ṗ = −kp− sin θ + F , k > 0, (∗)

with F > 1, has a periodic orbit that encircles the cylindrical phase space
(θ, p) ∈ R[mod 2π]× R, and that it is unique.

[You may assume that the Poincaré–Bendixson theorem also holds on a cylinder,
and comment, without proof, on the use of any other standard results.]

(c) Now consider (∗) for F, k = O(ǫ), where ǫ ≪ 1. Use the energy-balance method to
show that there is a homoclinic orbit in p > 0 if F = Fh(k), where Fh ≈ 4k/π > 0.

Explain briefly why there is no homoclinic orbit in p 6 0 for F > 0.

Part II, 2017 List of Questions [TURN OVER
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Paper 3, Section II

30A Dynamical Systems
State, without proof, the centre manifold theorem. Show that the fixed point at the

origin of the system

ẋ = y − x+ ax3 ,

ẏ = rx− y − yz ,

ż = xy − z ,

where a 6= 1 is a constant, is nonhyperbolic at r = 1. What are the dimensions of the
linear stable and (non-extended) centre subspaces at this point?

Make the substitutions 2u = x+y, 2v = x−y and µ = r−1 and derive the resultant
equations for u̇, v̇ and ż.

The extended centre manifold is given by

v = V (u, µ), z = Z(u, µ) ,

where V and Z can be expanded as power series about u = µ = 0. What is known about
V and Z from the centre manifold theorem? Assuming that µ = O(u2), determine Z to
O(u2) and V to O(u3). Hence obtain the evolution equation on the centre manifold correct
to O(u3), and identify the type of bifurcation distinguishing between the cases a > 1 and
a < 1.

If now a = 1, assume that µ = O(u4) and extend your calculations of Z to O(u4) and
of the dynamics on the centre manifold to O(u5). Hence sketch the bifurcation diagram
in the neighbourhood of u = µ = 0.

Part II, 2017 List of Questions
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Paper 4, Section II

31A Dynamical Systems
Consider the one-dimensional map F : R → R defined by

xi+1 = F (xi;µ) = xi(ax
2
i + bxi + µ),

where a and b are constants, µ is a parameter and a 6= 0.

(a) Find the fixed points of F and determine the linear stability of x = 0. Hence show
that there are bifurcations at µ = 1, at µ = −1 and, if b 6= 0, at µ = 1 + b2/(4a).

Sketch the bifurcation diagram for each of the cases:

(i) a > b = 0, (ii) a, b > 0 and (iii) a, b < 0.

In each case show the locus and stability of the fixed points in the (µ, x)-plane, and
state the type of each bifurcation. [Assume that there are no further bifurcations
in the region sketched.]

(b) For the case F (x) = x(µ− x2) (i.e. a = −1, b = 0), you may assume that

F 2(x) = x+ x(µ− 1− x2)(µ + 1− x2)(1 − µx2 + x4).

Show that there are at most three 2-cycles and determine when they exist. By
considering F ′(xi)F ′(xi+1), or otherwise, show further that one 2-cycle is always
unstable when it exists and that the others are unstable when µ >

√
5. Sketch the

bifurcation diagram showing the locus and stability of the fixed points and 2-cycles.
State briefly what you would expect to occur for µ >

√
5.

Part II, 2017 List of Questions [TURN OVER

2017



31

Paper 3, Section II

29E Dynamical Systems
Consider the dependence of the system

ẋ = (a− x2)(a2 − y) ,

ẏ = x− y

on the parameter a. Find the fixed points and plot their location in the (a, x)-plane.
Hence, or otherwise, deduce that there are bifurcations at a = 0 and a = 1.

Investigate the bifurcation at a = 1 by making the substitutions u = x−1, v = y−1
and µ = a − 1. Find the extended centre manifold in the form v(u, µ) correct to second
order. Find the evolution equation on the extended centre manifold to second order, and
determine the stability of its fixed points.

Use a plot to show which branches of fixed points in the (a, x)-plane are stable and
which are unstable, and state, without calculation, the type of bifurcation at a = 0. Hence
sketch the structure of the (x, y) phase plane very close to the origin for |a| ≪ 1 in the
cases (i) a < 0 and (ii) a > 0.

Paper 1, Section II

29E Dynamical Systems
Consider the dynamical system

ẋ = x(y − a) ,

ẏ = 1− x− y2 ,

where −1 < a < 1. Find and classify the fixed points of the system.

Use Dulac’s criterion with a weighting function of the form φ = xp and a suitable
choice of p to show that there are no periodic orbits for a 6= 0. For the case a = 0 use
the same weighting function to find a function V (x, y) which is constant on trajectories.
[Hint: φẋ is Hamiltonian.]

Calculate the stable manifold at (0,−1) correct to quadratic order in x.

Sketch the phase plane for the cases (i) a = 0 and (ii) a = 1
2 .
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Paper 4, Section II

30E Dynamical Systems
Consider the map defined on R by

F (x) =

{
3x x 6 1

2

3(1− x) x > 1
2

and let I be the open interval (0, 1). Explain what it means for F to have a horseshoe on
I by identifying the relevant intervals in the definition.

Let Λ = {x : Fn(x) ∈ I,∀n > 0}. Show that F (Λ) = Λ.

Find the sets Λ1 = {x : F (x) ∈ I} and Λ2 = {x : F 2(x) ∈ I}.
Consider the ternary (base-3) representation x = 0 · x1x2x3 . . . of numbers in I.

Show that

F (0 · x1x2x3 . . . ) =
{
x1 · x2x3x4 . . . x 6 1

2

σ(x1) · σ(x2)σ(x3)σ(x4) . . . x > 1
2

,

where the function σ(xi) of the ternary digits should be identified. What is the ternary
representation of the non-zero fixed point? What do the ternary representations of
elements of Λ have in common?

Show that F has sensitive dependence on initial conditions on Λ, that F is
topologically transitive on Λ, and that periodic points are dense in Λ. [Hint: You may
assume that Fn(0 · x1 . . . xn−10xn+1xn+2 . . . ) = 0 · xn+1xn+2 . . . for x ∈ Λ.]

Briefly state the relevance of this example to the relationship between Glendinning’s
and Devaney’s definitions of chaos.
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Paper 2, Section II

30E Dynamical Systems
Consider the nonlinear oscillator

ẋ = y − µx(12 |x| − 1) ,

ẏ = −x .

(a) Use the Hamiltonian for µ = 0 to find a constraint on the size of the domain of
stability of the origin when µ < 0.

(b) Assume that given µ > 0 there exists an R such that all trajectories eventually
remain within the region |x| 6 R. Show that there must be a limit cycle, stating carefully
any result that you use. [You need not show that there is only one periodic orbit.]

(c) Use the energy-balance method to find the approximate amplitude of the limit
cycle for 0 < µ≪ 1.

(d) Find the approximate shape of the limit cycle for µ ≫ 1, and calculate the
leading-order approximation to its period.
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Paper 4, Section II

28B Dynamical Systems

Let f : I → I be a continuous one-dimensional map of an interval I ⊂ R. Explain
what is meant by the statements (i) that f has a horseshoe and (ii) that f is chaotic
(according to Glendinning’s definition).

Assume that f has a 3-cycle {x0, x1, x2} with x1 = f(x0), x2 = f(x1), x0 = f(x2)
and, without loss of generality, x0 < x1 < x2. Prove that f2 has a horseshoe. [You may
assume the intermediate value theorem.]

Represent the effect of f on the intervals Ia = [x0, x1] and Ib = [x1, x2] by means of
a directed graph, explaining carefully how the graph is constructed. Explain what feature
of the graph implies the existence of a 3-cycle.

The map g : I → I has a 5-cycle {x0, x1, x2, x3, x4} with xi+1 = g(xi), 0 6 i 6 3
and x0 = g(x4), and x0 < x1 < x2 < x3 < x4. For which n, 1 6 n 6 4, is an n-cycle of g
guaranteed to exist? Is g guaranteed to be chaotic? Is g guaranteed to have a horseshoe?
Justify your answers. [You may use a suitable directed graph as part of your arguments.]

How do your answers to the above change if instead x4 < x2 < x1 < x3 < x0?

Paper 3, Section II

28B Dynamical Systems

Consider the dynamical system

ẋ = −µ+ x2 − y,

ẏ = y(a− x),

where a is to be regarded as a fixed real constant and µ as a real parameter.

Find the fixed points of the system and determine the stability of the system
linearized about the fixed points. Hence identify the values of µ at given a where
bifurcations occur.

Describe informally the concepts of centre manifold theory and apply it to analyse
the bifurcations that occur in the above system with a = 1. In particular, for each
bifurcation derive an equation for the dynamics on the extended centre manifold and
hence classify the bifurcation.

What can you say, without further detailed calculation, about the case a = 0?
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Paper 2, Section II

28B Dynamical Systems

(a) An autonomous dynamical system ẋ = f(x) in R2 has a periodic orbit x = X(t) with
period T . The linearized evolution of a small perturbation x = X(t) + η(t) is given
by ηi(t) = Φij(t)ηj(0). Obtain the differential equation and initial condition satisfied
by the matrix Φ(t).

Define the Floquet multipliers of the orbit. Explain why one of the multipliers is always
unity and give a brief argument to show that the other is given by

exp

(∫ T

0
∇ · f(X(t)) dt

)
.

(b) Use the energy-balance method for nearly Hamiltonian systems to find leading-order
approximations to the two limit cycles of the equation

ẍ+ ǫ(2ẋ3 + 2x3 − 4x4ẋ− ẋ) + x = 0,

where 0 < ǫ ≪ 1.

Determine the stability of each limit cycle, giving reasoning where necessary.

[You may assume that
∫ 2π
0 cos4 θ dθ = 3π/4 and

∫ 2π
0 cos6 θ dθ = 5π/8.]
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Paper 1, Section II

28B Dynamical Systems

(a) What is a Lyapunov function?

Consider the dynamical system for x(t) =
(
x(t), y(t)

)
given by

ẋ = −x+ y + x(x2 + y2) ,

ẏ = −y − 2x+ y(x2 + y2) .

Prove that the origin is asymptotically stable (quoting carefully any standard results
that you use).

Show that the domain of attraction of the origin includes the region x2 + y2 < r21
where the maximum possible value of r1 is to be determined.

Show also that there is a region E = {x |x2+y2 > r22} such that x(0) ∈ E implies that
|x(t)| increases without bound. Explain your reasoning carefully. Find the smallest
possible value of r2.

(b) Now consider the dynamical system

ẋ = x− y − x(x2 + y2) ,

ẏ = y + 2x− y(x2 + y2) .

Prove that this system has a periodic solution (again, quoting carefully any standard
results that you use).

Demonstrate that this periodic solution is unique.
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Paper 4, Section I

7D Dynamical Systems
Consider the map xn+1 = λxn(1 − x2n) for −1 6 xn 6 1. What is the maximum

value, λmax, for which the interval [−1, 1] is mapped into itself?

Analyse the first two bifurcations that occur as λ increases from 0 towards λmax,
including an identification of the values of λ at which the bifurcation occurs and the type
of bifurcation.

What type of bifurcation do you expect as the third bifurcation? Briefly give your
reasoning.

Paper 3, Section I

7D Dynamical Systems
Define the Poincaré index of a closed curve C for a vector field f(x), x ∈ R2.

Explain carefully why the index of C is fully determined by the fixed points of the
dynamical system ẋ = f(x) that lie within C.

What is the Poincaré index for a closed curve C if it (a) encloses only a saddle point,
(b) encloses only a focus and (c) encloses only a node?

What is the Poincaré index for a closed curve C that is a periodic trajectory of the
dynamical system?

A dynamical system in R2 has 2 saddle points, 1 focus and 1 node. What is the
maximum number of different periodic orbits? [For the purposes of this question, two
orbits are said to be different if they enclose different sets of fixed points.]
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Paper 2, Section I

7D Dynamical Systems
Consider the system

ẋ = −x+ y + y2,

ẏ = µ− xy .

Show that when µ = 0 the fixed point at the origin has a stationary bifurcation.

Find the centre subspace of the extended system linearised about (x, y, µ) = (0, 0, 0).

Find an approximation to the centre manifold giving y as a function of x and µ,
including terms up to quadratic order.

Hence deduce an expression for ẋ on the centre manifold, and identify the type of
bifurcation at µ = 0.

Paper 1, Section I

7D Dynamical Systems
Consider the system

ẋ = y + xy ,

ẏ = x− 3
2y + x2.

Show that the origin is a hyperbolic fixed point and find the stable and unstable
invariant subspaces of the linearised system.

Calculate the stable and unstable manifolds correct to quadratic order, expressing
y as a function of x for each.
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Paper 4, Section II

14D Dynamical Systems
A dynamical system ẋ = f(x) has a fixed point at the origin. Define the terms

Lyapunov stability, asymptotic stability and Lyapunov function with respect to this fixed
point. State and prove Lyapunov’s first theorem and state (without proof) La Salle’s
invariance principle.

(a) Consider the system

ẋ = y ,

ẏ = −y − x3 + x5.

Construct a Lyapunov function of the form V = f(x)+g(y). Deduce that the origin
is asymptotically stable, explaining your reasoning carefully. Find the greatest value of
y0 such that use of this Lyapunov function guarantees that the trajectory through (0, y0)
approaches the origin as t → ∞.

(b) Consider the system

ẋ = x+ 4y + x2 + 2y2,

ẏ = −3x− 3y .

Show that the origin is asymptotically stable and that the basin of attraction of the
origin includes the region x2 + xy + y2 < 1

4 .
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Paper 3, Section II

14D Dynamical Systems
Let f : I → I be a continuous one-dimensional map of an interval I ⊂ R. Explain

what is meant by saying that f has a horseshoe.

A map g on the interval [a, b] is a tent map if

(i) g(a) = a and g(b) = a;

(ii) for some c with a < c < b, g is linear and increasing on the interval [a, c], linear and
decreasing on the interval [c, b], and continuous at c.

Consider the tent map defined on the interval [0, 1] by

f(x) =

{
µx 0 6 x 6 1

2

µ(1− x) 1
2 6 x 6 1

with 1 < µ 6 2. Find the corresponding expressions for f2(x) = f(f(x)).

Find the non-zero fixed point x0 and the points x−1 <
1
2 < x−2 that satisfy

f2(x−2) = f(x−1) = x0 = f(x0) .

Sketch graphs of f and f2 showing the points corresponding to x−2, x−1 and x0.
Indicate the values of f and f2 at their maxima and minima and also the gradients of
each piece of their graphs.

Identify a subinterval of [0, 1] on which f2 is a tent map. Hence demonstrate that
f2 has a horseshoe if µ > 21/2.

Explain briefly why f4 has a horseshoe when µ > 21/4.

Why are there periodic points of f arbitrarily close to x0 for µ > 21/2, but no such
points for 21/4 6 µ < 21/2? Explain carefully any results or terms that you use.
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Paper 4, Section I

7C Dynamical Systems
Consider the system

ẋ = y + ax+ bx3 ,

ẏ = −x .

What is the Poincaré index of the single fixed point? If there is a closed orbit, why must
it enclose the origin?

By writing ẋ = ∂H/∂y + g(x) and ẏ = −∂H/∂x for suitable functions H(x, y) and
g(x), show that if there is a closed orbit C then

∮

C
(ax+ bx3)x dt = 0 .

Deduce that there is no closed orbit when ab > 0.

If ab < 0 and a and b are both O(ǫ), where ǫ is a small parameter, then there is a
single closed orbit that is to within O(ǫ) a circle of radius R centred on the origin. Deduce
a relation between a, b and R.

Paper 3, Section I

7C Dynamical Systems
A one-dimensional map is defined by

xn+1 = F (xn, µ) ,

where µ is a parameter. What is the condition for a bifurcation of a fixed point x∗ of F?

Let F (x, µ) = x(x2−2x+µ). Find the fixed points and show that bifurcations occur
when µ = −1, µ = 1 and µ = 2. Sketch the bifurcation diagram, showing the locus and
stability of the fixed points in the (x, µ) plane and indicating the type of each bifurcation.
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Paper 2, Section I

7C Dynamical Systems
Let ẋ = f(x) be a two-dimensional dynamical system with a fixed point at x = 0.

Define a Lyapunov function V (x) and explain what it means for x = 0 to be Lyapunov
stable.

For the system

ẋ = −x− 2y + x3 ,

ẏ = −y + x+ 1
2y

3 + x2y ,

determine the values of C for which V = x2+Cy2 is a Lyapunov function in a sufficiently
small neighbourhood of the origin.

For the case C = 2 , find V1 and V2 such that V (x) < V1 at t = 0 implies that
V → 0 as t → ∞ and V (x) > V2 at t = 0 implies that V → ∞ as t → ∞.

Paper 1, Section I

7C Dynamical Systems
Consider the dynamical system ẋ = f(x) in Rn which has a hyperbolic fixed point

at the origin.

Define the stable and unstable invariant subspaces of the system linearised about
the origin. Give a constraint on the dimensions of these two subspaces.

Define the local stable and unstable manifolds of the origin for the system. How are
these related to the invariant subspaces of the linearised system?

For the system

ẋ = −x+ x2 + y2 ,

ẏ = y + y2 − x2 ,

calculate the stable and unstable manifolds of the origin, each correct up to and including
cubic order.
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Paper 3, Section II

14C Dynamical Systems
Let f : I → I be a continuous map of an interval I ⊂ R. Explain what is meant

by the statements (a) f has a horseshoe and (b) f is chaotic according to Glendinning’s
definition of chaos.

Assume that f has a 3-cycle {x0, x1, x2} with x1 = f(x0), x2 = f(x1), x0 = f(x2),
x0 < x1 < x2. Prove that f2 has a horseshoe. [You may assume the Intermediate Value
Theorem.]

Represent the effect of f on the intervals Ia = [x0, x1] and Ib = [x1, x2] by means of
a directed graph. Explain how the existence of the 3-cycle corresponds to this graph.

The map g : I → I has a 4-cycle {x0, x1, x2, x3} with x1 = g(x0), x2 = g(x1),
x3 = g(x2) and x0 = g(x3). If x0 < x3 < x2 < x1 is g necessarily chaotic? [You may use
a suitable directed graph as part of your argument.]

How does your answer change if x0 < x2 < x1 < x3?
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Paper 4, Section II

14C Dynamical Systems
Consider the dynamical system

ẋ = (x+ y + a)(x− y + a) ,

ẏ = y − x2 − b ,

where a > 0.

Find the fixed points of the dynamical system. Show that for any fixed value of a
there exist three values b1 > b2 > b3 of b where a bifurcation occurs. Show that b2 = b3
when a = 1/2.

In the remainder of this question set a = 1/2.

(i) Being careful to explain your reasoning, show that the extended centre manifold
for the bifurcation at b = b1 can be written in the form X = αY + βµ + p(Y, µ),
where X and Y denote the departures from the values of x and y at the fixed point,
b = b1 + µ, α and β are suitable constants (to be determined) and p is quadratic to
leading order. Derive a suitable approximate form for p, and deduce the nature of
the bifurcation and the stability of the different branches of the steady state solution
near the bifurcation.

(ii) Repeat the calculations of part (i) for the bifurcation at b = b2.

(iii) Sketch the x values of the fixed points as functions of b, indicating the nature of the
bifurcations and where each branch is stable.
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Paper 4, Section I

7D Dynamical Systems
Describe the different types of bifurcation from steady states of a one-dimensional

map of the form xn+1 = f(xn), and give examples of simple equations exhibiting each
type.

Consider the map xn+1 = αx2n(1− xn), 0 < xn < 1. What is the maximum value of
α for which the interval is mapped into itself?

Show that as α increases from zero to its maximum value there is a saddle-node
bifurcation and a period-doubling bifurcation, and determine the values of α for which
they occur.

Paper 3, Section I

7D Dynamical Systems
State without proof Lyapunov’s first theorem, carefully defining all the terms that

you use.

Consider the dynamical system

ẋ = −2x+ y − xy + 3y2 − xy2 + x3 ,

ẏ = −2y − x− y2 − 3xy + 2x2y .

By choosing a Lyapunov function V (x, y) = x2+y2, prove that the origin is asymptotically
stable.

By factorising the expression for V̇ , or otherwise, show that the basin of attraction
of the origin includes the set V < 7/4.
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Paper 2, Section I

7D Dynamical Systems
Consider the dynamical system

ẋ = µx+ x3 − axy, ẏ = µ− x2 − y ,

where a is a constant.

(a) Show that there is a bifurcation from the fixed point (0, µ) at µ = 0.

(b) Find the extended centre manifold at leading non-trivial order in x. Hence find
the type of bifurcation, paying particular attention to the special values a = 1
and a = −1. [Hint. At leading order, the extended centre manifold is of the form
y = µ+ αx2 + βµx2 + γx4, where α, β, γ are constants to be determined.]

Paper 1, Section I

7D Dynamical Systems
State the Poincaré–Bendixson theorem.

A model of a chemical process obeys the second-order system

ẋ = 1− x(1 + a) + x2y, ẏ = ax− x2y ,

where a > 0. Show that there is a unique fixed point at (x, y) = (1, a) and that it is
unstable if a > 2. Show that trajectories enter the region bounded by the lines x = 1/q,
y = 0, y = aq and x+ y = 1 + aq, provided q > (1 + a). Deduce that there is a periodic
orbit when a > 2.

Paper 4, Section II

14D Dynamical Systems
What is meant by the statement that a continuous map of an interval I into itself

has a horseshoe? State without proof the properties of such a map.

Define the property of chaos of such a map according to Glendinning.

A continuous map f : I → I has a periodic orbit of period 5, in which the elements
xj, j = 1, . . . , 5 satisfy xj < xj+1, j = 1, . . . , 4 and the points are visited in the order
x1 → x3 → x4 → x2 → x5 → x1. Show that the map is chaotic. [The Intermediate Value
theorem can be used without proof.]
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Paper 3, Section II

14D Dynamical Systems
Consider the dynamical system

ẍ− (a− bx)ẋ+ x− x2 = 0, a, b > 0 . (1)

(a) Show that the fixed point at the origin is an unstable node or focus, and that
the fixed point at x = 1 is a saddle point.

(b) By considering the phase plane (x, ẋ), or otherwise, show graphically that the
maximum value of x for any periodic orbit is less than one.

(c) By writing the system in terms of the variables x and z = ẋ− (ax− bx2/2), or
otherwise, show that for any periodic orbit C

∮

C
(x− x2)(2ax− bx2) dt = 0 . (2)

Deduce that if a/b > 1/2 there are no periodic orbits.

(d) If a = b = 0 the system (1) is Hamiltonian and has homoclinic orbit

X(t) =
1

2

(
3 tanh2

(
t

2

)
− 1

)
, (3)

which approaches X = 1 as t → ±∞. Now suppose that a, b are very small and that
we seek the value of a/b corresponding to a periodic orbit very close to X(t). By using
equation (3) in equation (2), find an approximation to the largest value of a/b for a periodic
orbit when a, b are very small.

[Hint. You may use the fact that (1−X) = 3
2sech

2( t2) = 3 d
dt(tanh(

t
2 ))]
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Paper 1, Section I

7C Dynamical Systems
Find the fixed points of the dynamical system (with µ 6= 0)

ẋ = µ2x− xy ,

ẏ = −y + x2 ,

and determine their type as a function of µ.

Find the stable and unstable manifolds of the origin correct to order 4.

Paper 2, Section I

7C Dynamical Systems
State the Poincaré–Bendixson theorem for two-dimensional dynamical systems.

A dynamical system can be written in polar coordinates (r, θ) as

ṙ = r − r3(1 + α cos θ) ,

θ̇ = 1− r2β cos θ ,

where α and β are constants with 0 < α < 1.

Show that trajectories enter the annulus (1 + α)−1/2 < r < (1− α)−1/2.

Show that if there is a fixed point (r0, θ0) inside the annulus then r20 = (β − α)/β
and cos θ0 = 1/(β − α).

Use the Poincaré–Bendixson theorem to derive conditions on β that guarantee the
existence of a periodic orbit.
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Paper 3, Section I

7C Dynamical Systems
For the map xn+1 = λxn(1− x2n), with λ > 0, show the following:

(i) If λ < 1, then the origin is the only fixed point and is stable.

(ii) If λ > 1, then the origin is unstable. There are two further fixed points which are
stable for 1 < λ < 2 and unstable for λ > 2.

(iii) If λ < 3
√
3/2, then xn has the same sign as the starting value x0 if |x0| < 1.

(iv) If λ < 3, then |xn+1| < 2
√
3/3 when |xn| < 2

√
3/3. Deduce that iterates starting

sufficiently close to the origin remain bounded, though they may change sign.

[Hint: For (iii) and (iv) a graphical representation may be helpful.]

Paper 4, Section I

7C Dynamical Systems

(i) Explain the use of the energy balance method for describing approximately the
behaviour of nearly Hamiltonian systems.

(ii) Consider the nearly Hamiltonian dynamical system

ẍ+ ǫẋ(−1 + αx2 − βx4) + x = 0 , 0 < ǫ ≪ 1 ,

where α and β are positive constants. Show that, for sufficiently small ǫ, the system
has periodic orbits if α2 > 8β, and no periodic orbits if α2 < 8β. Show that in the
first case there are two periodic orbits, and determine their approximate size and
their stability.

What can you say about the existence of periodic orbits when α2 = 8β?

[You may assume that

∫ 2π

0
sin2 t dt = π ,

∫ 2π

0
sin2 t cos2 t dt =

π

4
,

∫ 2π

0
sin2 t cos4 t dt =

π

8
.

]
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Paper 3, Section II

14C Dynamical Systems
Explain what is meant by a steady-state bifurcation of a fixed point x0(µ) of a

dynamical system ẋ = f(x, µ) in Rn, where µ is a real parameter.

Consider the system in x > 0, y > 0, with µ > 0,

ẋ = x(1− y2 − x2) ,

ẏ = y(µ− y − x2) .

(i) Show that both the fixed point (0, µ) and the fixed point (1, 0) have a steady-state
bifurcation when µ = 1.

(ii) By finding the first approximation to the extended centre manifold, construct the
normal form near the bifurcation point (1, 0) when µ is close to unity, and show
that there is a transcritical bifurcation there. Explain why the symmetries of the
equations mean that the bifurcation at (0, 1) must be of pitchfork type.

(iii) Show that two fixed points with x, y > 0 exist in the range 1 < µ < 5/4. Show that
the solution with y < 1/2 is stable. Identify the bifurcation that occurs at µ = 5/4.

(iv) Draw a sketch of the values of y at the fixed points as functions of µ, indicating the
bifurcation points and the regions where each branch is stable. [Detailed calculations
are not required.]

Paper 4, Section II

14C Dynamical Systems

(i) State and prove Lyapunov’s First Theorem, and state (without proof) La Salle’s
Invariance Principle. Show by example how the latter result can be used to prove
asymptotic stability of a fixed point even when a strict Lyapunov function does not
exist.

(ii) Consider the system

ẋ = −x+ 2y + x3 + 2x2y + 2xy2 + 2y3 ,

ẏ = −y − x− 2x3 +
1

2
x2y − 3xy2 + y3 .

Show that the origin is asymptotically stable and that the basin of attraction of the
origin includes the region x2 + 2y2 < 2/3.
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Paper 1, Section I

7D Dynamical Systems

Consider the 2-dimensional flow

ẋ = −µx+ y , ẏ =
x2

1 + x2
− νy ,

where x(t) and y(t) are non-negative, the parameters µ and ν are strictly positive and

µ 6= ν. Sketch the nullclines in the x, y plane. Deduce that for µ < µc (where µc is to be

determined) there are three fixed points. Find them and determine their type.

Sketch the phase portrait for µ < µc and identify, qualitatively on your sketch,

the stable and unstable manifolds of the saddle point. What is the final outcome of this

system?

Paper 2, Section I

7D Dynamical Systems

Consider the 2-dimensional flow

ẋ = µ

(
1

3
x3 − x

)
+ y , ẏ = −x ,

where the parameter µ > 0. Using Lyapunov’s approach, discuss the stability of the fixed

point and its domain of attraction. Relevant definitions or theorems that you use should

be stated carefully, but proofs are not required.

Paper 3, Section I

7D Dynamical Systems

Let I = [ 0, 1). The sawtooth (Bernoulli shift) map F : I → I is defined by

F (x) = 2x [ mod 1 ] .

Describe the effect of F using binary notation. Show that F is continuous on I except at

x = 1
2 . Show also that F has N -periodic points for all N > 2 . Are they stable?

Explain why F is chaotic, using Glendinning’s definition.
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Paper 4, Section I

7D Dynamical Systems

Consider the 2-dimensional flow

ẋ = y +
1

4
x

(
1− 2x2 − 2y2

)
, ẏ = −x+

1

2
y
(
1− x2 − y2

)
.

Use the Poincaré–Bendixson theorem, which should be stated carefully, to obtain a domain

D in the xy-plane, within which there is at least one periodic orbit.

Paper 3, Section II

14D Dynamical Systems

Describe informally the concepts of extended stable manifold theory. Illustrate your

discussion by considering the 2-dimensional flow

ẋ = µx+ xy − x3 , ẏ = −y + y2 − x2 ,

where µ is a parameter with |µ| ≪ 1, in a neighbourhood of the origin. Determine the

nature of the bifurcation.

Paper 4, Section II

14D Dynamical Systems

Let I = [ 0, 1 ] and consider continuous maps F : I → I. Give an informal outline

description of the two different bifurcations of fixed points of F that can occur.

Illustrate your discussion by considering in detail the logistic map

F (x) = µx (1− x) ,

for µ ∈ (0, 1 +
√
6 ] .

Describe qualitatively what happens for µ ∈ (1 +
√
6, 4].

[You may assume without proof that

x− F 2(x) = x (µx− µ+ 1) (µ2x2 − µ(µ+ 1)x+ µ+ 1 ) . ]

Part II, 2010 List of Questions [TURN OVER
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Paper 1, Section I

7E Dynamical Systems
Let ẋ = f(x) be a two-dimensional dynamical system with a fixed point at x = 0.

Define a Lyapunov function V (x) and explain what it means for x = 0 to be Lyapunov
stable.

Determine the values of β for which V = x2 + βy2 is a Lyapunov function in a
sufficiently small neighbourhood of the origin for the system

ẋ = −x+ 2y + 2xy − x2 − 4y2,

ẏ = −y + xy.

What can be deduced about the basin of attraction of the origin using V when
β = 2?

Paper 2, Section I

7E Dynamical Systems
For each of the one-dimensional systems

(i) ẋ = µ2 − a2 + 2ax2 − x4,

(ii) ẋ = x(µ2 − a2 + 2ax2 − x4),

determine the location and stability of all the fixed points. For each system sketch
bifurcation diagrams in the (µ, x) plane in each of the two cases a > 0 and a < 0. Identify
and carefully describe all the bifurcation points that occur.

[Detailed calculations are not required, but bifurcation diagrams must be clearly labelled,
and the locations of bifurcation points should be given.]

Paper 3, Section I

7E Dynamical Systems
Consider the one-dimensional real map xn+1 = F (xn) = rx2n(1− xn), where r > 0.

Locate the fixed points and explain for what ranges of the parameter r each fixed point
exists. For what range of r does F map the open interval (0, 1) into itself?

Determine the location and type of all the bifurcations from the fixed points which
occur. Sketch the location of the fixed points in the (r, x) plane, indicating stability.

Part II, 2009 List of Questions [TURN OVER
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Paper 4, Section I

7E Dynamical Systems
Consider the two-dimensional dynamical system ẋ = f(x) given in polar coordinates

by
ṙ = (r − r2)(r − g(θ)),

θ̇ = r,
(∗)

where g(θ) is continuously differentiable and 2π-periodic. Find a periodic orbit γ for
(∗) and, using the hint or otherwise, compute the Floquet multipliers of γ in terms of
g(θ). Explain why one of the Floquet multipliers is independent of g(θ). Give a sufficient
condition for γ to be asymptotically stable.

Investigate the stability of γ and the dynamics of (∗) in the case g(θ) = 2 sin θ.

[Hint: The determinant of the fundamental matrix Φ(t) satisfies

d

dt
detΦ = (∇ · f) detΦ.

]

Paper 3, Section II

14E Dynamical Systems
Consider the dynamical system

ẋ = −ax− 2xy,

ẏ = x2 + y2 − b,

where a > 0 and b > 0.

(i) Find and classify the fixed points. Show that a bifurcation occurs when
4b = a2 > 0.

(ii) After shifting coordinates to move the relevant fixed point to the origin, and
setting a = 2

√
b − µ, carry out an extended centre manifold calculation to reduce the

two-dimensional system to one of the canonical forms, and hence determine the type of
bifurcation that occurs when 4b = a2 > 0. Sketch phase portraits in the cases 0 < a2 < 4b
and 0 < 4b < a2.

(iii) Sketch the phase portrait in the case a = 0. Prove that periodic orbits exist if
and only if a = 0.

Part II, 2009 List of Questions

2009
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Paper 4, Section II

14E Dynamical Systems
Let I, J be closed bounded intervals in R, and let F : R → R be a continuous map.

Explain what is meant by the statement that ‘I F -covers J ’ (written I → J). For
a collection of intervals I0, . . . , Ik define the associated directed graph Γ and transition
matrix A. Derive an expression for the number of (not necessarily least) period-n points
of F in terms of A.

Let F have a 5-cycle

x0 < x1 < x2 < x3 < x4

such that xi+1 = F (xi) for i = 0, . . . , 4 where indices are taken modulo 5. Write down
the directed graph Γ and transition matrix A for the F -covering relations between the
intervals [xi, xi+1]. Compute the number of n-cycles which are guaranteed to exist for F ,
for each integer 1 6 n 6 4, and the intervals the points move between.

Explain carefully whether or not F is guaranteed to have a horseshoe. Must F be
chaotic? Could F be a unimodal map? Justify your answers.

Similarly, a continuous map G : R → R has a 5-cycle

x3 < x1 < x0 < x2 < x4.

For what integer values of n, 1 6 n 6 4, is G guaranteed to have an n-cycle?

Is G guaranteed to have a horseshoe? Must G be chaotic? Justify your answers.
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1/I/7A Dynamical Systems

Sketch the phase plane of the system

ẋ = y,

ẏ = −x+ x2 − ky,

(i) for k = 0 and (ii) for k = 1/10. Include in your sketches any trajectories that are the
separatrices of a saddle point. In case (ii) shade the domain of stability of the origin.

3/II/14A Dynamical Systems

Define the Poincaré index of a simple closed curve, not necessarily a trajectory, and
the Poincaré index of an isolated fixed point x0 for a dynamical system ẋ = f(x) in R2.
State the Poincaré index of a periodic orbit.

Consider the system
ẋ = y + ax− bx3,

ẏ = x3 − x,
where a and b are constants and a 6= 0.

(a) Find and classify the fixed points, and state their Poincaré indices.

(b) By considering a suitable function H(x, y), show that any periodic orbit Γ
satisfies ∮

Γ

(x− x3)(ax− bx3)dt = 0,

where x(t) is evaluated along the orbit.

(c) Deduce that if b/a < 1 then the second-order differential equation

ẍ− (a− 3bx2)ẋ+ x− x3 = 0

has no periodic solutions.

Part II 2008

2008
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2/I/7A Dynamical Systems

Explain the difference between a stationary bifurcation and an oscillatory bifurca-
tion for a fixed point x0 of a dynamical system ẋ = f(x;µ) in Rn with a real parameter
µ.

The normal form of a Hopf bifurcation in polar coordinates is

ṙ = µr − ar3 +O(r5),

θ̇ = ω + cµ− br2 +O(r4),

where a, b, c and ω are constants, a 6= 0, and ω > 0. Sketch the phase plane near the
bifurcation for each of the cases (i) µ < 0 < a, (ii) 0 < µ, a, (iii) µ, a < 0 and (iv)
a < 0 < µ.

Let R be the radius and T the period of the limit cycle when one exists. Sketch
how R varies with µ for the case when the limit cycle is subcritical. Find the leading-order
approximation to dT/dµ for |µ| � 1.

4/II/14A Dynamical Systems

Explain the difference between a hyperbolic and a nonhyperbolic fixed point x0 for
a dynamical system ẋ = f(x) in Rn.

Consider the system in R2, where µ is a real parameter,

ẋ = x(µ− x+ y2),

ẏ = y(1− x− y2).

Show that the fixed point (µ, 0) has a bifurcation when µ = 1, while the fixed points
(0,±1) have a bifurcation when µ = −1.

[The fixed point at (0,−1) should not be considered further.]

Analyse each of the bifurcations at (µ, 0) and (0, 1) in turn as follows. Make a
change of variable of the form X = x − x0(µ), ν = µ − µ0. Identify the (non-extended)
stable and centre linear subspaces at the bifurcation in terms of X and Y . By finding
the leading-order approximation to the extended centre manifold, construct the evolution
equation on the extended centre manifold, and determine the type of bifurcation. Sketch
the local bifurcation diagram, showing which fixed points are stable.

[Hint: the leading-order approximation to the extended centre manifold of the
bifurcation at (0, 1) is Y = aX for some coefficient a.]

Show that there is another fixed point in y > 0 for µ < 1, and that this fixed point
connects the two bifurcations.

Part II 2008
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3/I/7A Dynamical Systems

State the normal-form equations for (i) a saddle-node bifurcation, (ii) a transcritical
bifurcation and (iii) a pitchfork bifurcation, for a one-dimensional map xn+1 = F (xn;µ).

Consider a period-doubling bifurcation of the form

xn+1 = −xn + α+ βxn + γx2
n + δx3

n +O(x4
n),

where xn = O(µ1/2), α, β = O(µ), and γ, δ = O(1) as µ→ 0. Show that

Xn+2 = Xn + µ̂Xn −AX3
n +O(X4

n),

where Xn = xn − 1
2α, and the parameters µ̂ and A are to be identified in terms of α, β,

γ and δ. Deduce the condition for the bifurcation to be supercritical.

4/I/7A Dynamical Systems

Let F : I → I be a continuous one-dimensional map of an interval I ⊂ R. State
when F is chaotic according to Glendinning’s definition.

Prove that if F has a 3-cycle then F 2 has a horseshoe.

[You may assume the Intermediate Value Theorem.]

Part II 2008

2008
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1/I/7E Dynamical Systems

Given a non-autonomous kth-order differential equation

dky

dtk
= g

(
t, y,

dy

dt
,
d2y

dt2
, . . . ,

dk−1y

dtk−1

)

with y ∈ R, explain how it may be written in the autonomous first-order form ẋ = f(x)
for suitably chosen vectors x and f .

Given an autonomous system ẋ = f(x) in Rn, define the corresponding flow φt(x).
What is φs(φt(x)) equal to? Define the orbit O(x) through x and the limit set ω(x) of x.
Define a homoclinic orbit.

3/II/14E Dynamical Systems

The Lorenz equations are

ẋ = σ(y − x)

ẏ = rx− y − xz

ż = xy − bz

where r, σ and b are positive constants and (x, y, z) ∈ R3.

(i) Show that the origin is globally asymptotically stable for 0 < r < 1 by considering
a function V (x, y, z) = 1

2 (x
2 + Ay2 + Bz2) with a suitable choice of constants A

and B.

(ii) State, without proof, the Centre Manifold Theorem.

Show that the fixed point at the origin is nonhyperbolic at r = 1. What are the
dimensions of the linear stable and (non-extended) centre subspaces at this point?

(iii) Let σ = 1 from now on. Make the substitutions u = x+ y, v = x− y and µ = r− 1
and derive the resulting equations for u̇, v̇ and ż.

The extended centre manifold is given by

v = V (u, µ), z = Z(u, µ)

where V and Z can be expanded as power series about u = µ = 0. What
is known about V and Z from the Centre Manifold Theorem? Assuming that
µ = O(u2), determine Z correct to O(u2) and V to O(u3). Hence obtain the
evolution equation on the extended centre manifold correct to O(u3), and identify
the type of bifurcation.

Part II 2007

2007



21

2/I/7E Dynamical Systems

Find and classify the fixed points of the system

ẋ = (1− x2)y ,

ẏ = x(1− y2) .

What are the values of their Poincaré indices? Prove that there are no periodic orbits.
Sketch the phase plane.

4/II/14E Dynamical Systems

Consider the one-dimensional map F : R → R defined by

xi+1 = F (xi) = xi(ax
2
i + bxi + µ),

where a and b are constants, µ is a parameter and a 6= 0.

(i) Find the fixed points of F and determine the linear stability of x = 0. Hence show
that there are bifurcations at µ = 1, at µ = −1 and, if b 6= 0, at µ = 1 + b2/4a.

Sketch the bifurcation diagram for each of the cases:

(1) a > b = 0, (2) a, b > 0 and (3) a, b < 0.

In each case show the locus and stability of the fixed points in the (µ, x)-plane, and
state the type of each bifurcation. [Assume that there are no further bifurcations
in the region sketched.]

(ii) For the case F (x) = x(µ− x2) (i.e. a = −1, b = 0), you may assume that

F 2(x) = x+ x(µ− 1− x2)(µ+ 1− x2)(1− µx2 + x4) .

Show that there are at most three 2-cycles and determine when they exist. By
considering F ′(xi)F ′(xi+1), or otherwise, show further that one 2-cycle is always
unstable when it exists and that the others are unstable when µ >

√
5. Sketch the

bifurcation diagram showing the locus and stability of the fixed points and 2-cycles.
State briefly what you would expect to occur in the region µ >

√
5.
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3/I/7E Dynamical Systems

State the Poincaré–Bendixson Theorem for a system ẋ = f(x) in R2.

Prove that if k2 < 4 then the system

ẋ = x− y − x3 − xy2 − k2xy2

ẏ = y + x− x2y − y3 − k2x2y

has a periodic orbit in the region 2/(2 + k2) 6 x2 + y2 6 1.

4/I/7E Dynamical Systems

By considering the binary representation of the sawtooth map, F (x) = 2x [mod 1]
for x ∈ [0, 1), show that:

(i) F has sensitive dependence on initial conditions on [0, 1).

(ii) F has topological transitivity on [0, 1).

(iii) Periodic points are dense in [0, 1).

Find all the 4-cycles of F and express them as fractions.

Part II 2007
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1/I/7E Dynamical Systems

Find the fixed points of the system

ẋ = x(x+ 2y − 3) ,

ẏ = y(3− 2x− y) .

Local linearization shows that all the fixed points with xy = 0 are saddle points. Why
can you be certain that this remains true when nonlinear terms are taken into account?
Classify the fixed point with xy 6= 0 by its local linearization. Show that the equation
has Hamiltonian form, and thus that your classification is correct even when the nonlinear
effects are included.

Sketch the phase plane.

1/II/14E Dynamical Systems

(a) An autonomous dynamical system ẋ = f(x) in R2 has a periodic orbit x = X(t)
with period T . The linearized evolution of a small perturbation x = X(t) + η(t) is
given by ηi(t) = Φij(t)ηj(0). Obtain the differential equation and initial condition
satisfied by the matrix Φ(t).

Define the Floquet multipliers of the orbit. Explain why one of the multipliers is
always unity and show that the other is given by

exp

(∫ T

0

∇ · f(X(t)
)
dt

)
.

(b) Use the ‘energy-balance’ method for nearly Hamiltonian systems to find a leading-
order approximation to the amplitude of the limit cycle of the equation

ẍ+ ε(αx2 + βẋ2 − γ)ẋ+ x = 0 ,

where 0 < ε� 1 and (α+ 3β)γ > 0.

Compute a leading-order approximation to the nontrivial Floquet multiplier of the
limit cycle and hence determine its stability.

[You may assume that

∫ 2π

0

sin2 θ cos2 θ dθ = π/4 and

∫ 2π

0

cos4 θ dθ = 3π/4.]

Part II 2006
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2/I/7E Dynamical Systems

Explain what is meant by a strict Lyapunov function on a domain D containing the
origin for a dynamical system ẋ = f(x) in Rn. Define the domain of stability of a fixed
point x0.

By considering the function V = 1
2 (x

2+y2) show that the origin is an asymptotically
stable fixed point of

ẋ = −2x+ y + x3 − xy2 ,

ẏ = −x− 2y + 6x2y + 4y3 .

Show also that its domain of stability includes x2+y2 < 1
2 and is contained in x2+y2 6 2.

2/II/14E Dynamical Systems

Let F : I → I be a continuous one-dimensional map of an interval I ⊂ R. Explain
what is meant by saying (a) that F has a horseshoe, (b) that F is chaotic (Glendinning’s
definition).

Consider the tent map defined on the interval [0, 1] by

F (x) =

{
µx 0 6 x < 1

2
µ(1− x) 1

2 6 x 6 1

with 1 < µ 6 2.

Find the non-zero fixed point x0 and the points x−1 <
1
2 < x−2 that satisfy

F 2(x−2) = F (x−1) = x0 .

Sketch a graph of F and F 2 showing the points corresponding to x−2, x−1 and x0.
Hence show that F 2 has a horseshoe if µ > 21/2.

Explain briefly why F 4 has a horseshoe when 21/4 6 µ < 21/2 and why there are
periodic points arbitrarily close to x0 for µ > 21/2, but no such points for 21/4 6 µ < 21/2.

Part II 2006
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3/I/7E Dynamical Systems

State the normal-form equations for (a) a saddle-node bifurcation, (b) a transcritical
bifurcation, and (c) a pitchfork bifurcation, for a dynamical system ẋ = f(x, µ).

Consider the system

ẋ = µ+ y − x2 + 2xy + 3y2

ẏ = −y + 2x2 + 3xy .

Compute the extended centre manifold near x = y = µ = 0, and the evolution equation
on the centre manifold, both correct to second order in x and µ. Deduce the type of
bifurcation and show that the equation can be put in normal form, to the same order, by
a change of variables of the form T = αt, X = x− βµ, µ̃ = γ(µ) for suitably chosen α, β
and γ(µ).

4/I/7E Dynamical Systems

Consider the logistic map F (x) = µx(1 − x) for 0 6 x 6 1, 0 6 µ 6 4. Show that
there is a period-doubling bifurcation of the nontrivial fixed point at µ = 3. Show further
that the bifurcating 2-cycle (x1, x2) is given by the roots of

µ2x2 − µ(µ+ 1)x+ µ+ 1 = 0 .

Show that there is a second period-doubling bifurcation at µ = 1 +
√
6.
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1/I/7B Dynamical Systems

State Dulac’s Criterion and the Poincaré–Bendixson Theorem regarding the exis-
tence of periodic solutions to the dynamical system ẋ = f(x) in R2. Hence show that

ẋ = y

ẏ = −x+ y(µ− 2x2 − y2)

has no periodic solutions if µ < 0 and at least one periodic solution if µ > 0.

1/II/14B Dynamical Systems

Consider the equations

ẋ = (a− x2)(a2 − y)

ẏ = x− y

as a function of the parameter a. Find the fixed points and plot their location in the (a, x)
plane. Hence, or otherwise, deduce that there are bifurcations at a = 0 and a = 1.

Investigate the bifurcation at a = 1 by making the substitutions u = x−1, v = y−x
and µ = a− 1. Find the equation of the extended centre manifold to second order. Find
the evolution equation on the centre manifold to second order, and determine the stability
of its fixed points.

Show which branches of fixed points in the (a, x) plane are stable and which are
unstable, and state, without calculation, the type of bifurcation at a = 0. Hence sketch
the structure of the (x, y) phase plane very near the origin for |a| � 1 in the cases (i)
a < 0 and (ii) a > 0.

The system is perturbed to ẋ = (a − x2)(a2 − y) + ε, where 0 < ε � 1, with
ẏ = x − y still. Sketch the possible changes to the bifurcation diagram near a = 0 and
a = 1. [Calculation is not required.]

Part II 2005
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2/I/7B Dynamical Systems

Define Lyapunov stability and quasi-asymptotic stability of a fixed point x0 of a
dynamical system ẋ = f(x).

By considering a Lyapunov function of the form V = g(x)+y2, show that the origin
is an asymptotically stable fixed point of

ẋ = −y − x3

ẏ = x5 .

[Lyapunov’s Second Theorem may be used without proof, provided you show that its
conditions apply.]

2/II/14B Dynamical Systems

Prove that if a continuous map F of an interval into itself has a periodic orbit of
period three then it also has periodic orbits of least period n for all positive integers n.

Explain briefly why there must be at least two periodic orbits of least period 5.

[You may assume without proof:

(i) If U and V are non-empty closed bounded intervals such that V ⊆ F (U) then there
is a closed bounded interval K ⊆ U such that F (K) = V .

(ii) The Intermediate Value Theorem.]

3/I/7B Dynamical Systems

Define the stable and unstable invariant subspaces of the linearisation of a dynam-
ical system ẋ = f(x) at a saddle point located at the origin in Rn. How, according to the
Stable Manifold Theorem, are the stable and unstable manifolds related to the invariant
subspaces?

Calculate the stable and unstable manifolds, correct to cubic order, for the system

ẋ = x+ x2 + 2xy + 3y2

ẏ = −y + 3x2 .

Part II 2005
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4/I/7B Dynamical Systems

Find and classify the fixed points of the system

ẋ = x(1− y)

ẏ = −y + x2 .

Sketch the phase plane.

What is the ω-limit for the point (2,−1)? Which points have (0, 0) as their ω-limit?

Part II 2005
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