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Paper 1, Section II

26G Differential Geometry
(a) Let X, Y be smooth manifolds and f : X → Y be a smooth map. What does

it mean for y0 to be a regular value of f? Give an example of a smooth map f that has
a regular value, together with a regular value of f , justifying your answer. State Sard’s
theorem.

(b) Let X and Y be compact manifolds of dimension n and f : X → Y be a smooth
map. Define the degree mod 2 of f , quoting carefully (but without proof) the results from
the course necessary to make this well defined.

(c) Let S ⊂ R3 be a surface and p ∈ S. Define the exponential map expp, explaining
carefully its domain. Explain also briefly why the exponential map is smooth. Give an
explicit example where the domain of expp is not TpS, and an example where expp is not
surjective, justifying carefully your answers.

(d) Let S ⊂ R3 be a compact surface, and let V be a smooth vector field on S.
Consider the map φ : S → S defined by φ(p) = expp(V (p)). Explain why this map is
well-defined and smooth. What is its degree mod 2?

Paper 2, Section II

26G Differential Geometry
(a) For regular curves in R3, parametrised by arc length s, define curvature k and

torsion τ and derive the Frénet formulas. Indicate carefully all additional assumptions for
these to be well defined.

(b) Suppose two regular curves in R3 both have curvature identically zero and the
same arc length. Are they related by a proper Euclidean motion? Justify your answer.
Does the answer change if we replace curvature identically zero with curvature identically
one?

(c) We say that a quantity Q(γ, s), defined for all regular curves γ parametrised by
arc length s, is a pointwise Euclidean invariant of curves if

Q(γ, s) = Q(E ◦ γ, s) for all proper Euclidean motions E, and

Q(γs0 , s) = Q(γ, s− s0) for all s0 ∈ R, where γs0(s) := γ(s− s0).
Show that Q(γ, s) := k(s) and Q(γ, s) := τ(s), where k and τ refer to the curvature
and torsion of the curve γ respectively, are both examples of such pointwise Euclidean
invariants of curves.

(d) One can trivially construct other such pointwise Euclidean invariants by applying
functions of curvature and torsion, e.g. defining Q(γ, s) := k2(s) or Q(γ, s) := k(s) + τ(s).
Are these the only examples, i.e. is it true that if Q(γ, s) is any pointwise Euclidean
invariant, then Q(γ, s) = f(k(s), τ(s)) for some function f (independent of the curve γ)?
Justify your answer.

Part II, Paper 1

2023
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Paper 3, Section II

25G Differential Geometry
(a) Let S ⊂ R3 be an oriented surface. Define the Gaussian curvature K(p)

and mean curvature H(p) of S at p. Prove that these are Euclidean invariants, i.e. if
E : R3 → R3 is a proper Euclidean motion and S̃ = E(S) and K̃, H̃ denote the
Gaussian and mean curvature of S̃ (with a choice of orientation that you should describe),
respectively, then K̃(E(p)) = K(p), H̃(E(p)) = H(p). Do the Gaussian and mean
curvatures depend on the orientation?

(b) Show that there is no Euclidean motion taking a piece of the cylinder to a piece
of the plane, and infer that for a general surface S, the property K = 0 identically does not
imply that there is a Euclidean motion taking S to a piece of the plane. Exhibit similarly
two surfaces each with K = 1 identically, no respective pieces of which are related by a
Euclidean motion, and similarly two surfaces each with K = −1 identically.

(c) Let R ⊂ R3 be a compact submanifold of dimension 3 with connected boundary
S = ∂R. Note that S ⊂ R3 is an orientable surface and can be oriented by the unique
normal vector N pointing towards R. Now let S̃ ⊂ R be a surface (without boundary).
Suppose p ∈ S ∩ S̃. Show that H̃(p) > H(p), where H and H̃ denote the mean curvature
of S and S̃, respectively, where both surfaces are (locally) oriented at p by the N described
above. Is it necessarily the case that K̃(p) > K(p)? Justify your answer.

Paper 4, Section II

25G Differential Geometry
(a) Given a compact orientable surface with smooth boundary, define the area

element dA, Euler characteristic χ, and geodesic curvature kg of the boundary, explaining
briefly why the first two are well defined. State the Gauss–Bonnet theorem for the surface.
[You need not consider the case of corners.]

(b) Let S be a compact orientable surface without boundary, and let γ : I → S
be a smooth closed curve on S, parametrised by arc length, which separates S into
two surfaces with boundary, S1 and S2, such that S is the union S = S1 ∪ S2 where
∂S1 = ∂S2 = S1 ∩ S2 = γ(I). Suppose there exists an isometry φ : S1 → S2, and
moreover, for each x, y ∈ γ(I), an isometry φx,y : S → S such that φx,y(γ(I)) = γ(I) and
such that φx,y(x) = y. Show that γ is a geodesic.

(c) In the above problem, suppose we drop the assumption of the existence of the
isometry φ. Is γ still necessarily a geodesic?

(d) Alternatively, suppose we drop the assumption of the existence of the isometries
φx,y. Is γ still necessarily a geodesic?

Part II, Paper 1 [TURN OVER]

2023
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Paper 1, Section II
26I Differential Geometry

Let S ⊂ R3 be an oriented surface. Define its Gauss map N . For each p ∈ S, show
that the derivative of N defines a self-adjoint operator on TpS, and define the principal
curvatures of S at a point p. What does it mean for p to be an umbilical point? What
does it mean for S to be a minimal surface?

(a) We say that a smooth map f : S → R between two surfaces in R3 is conformal
if

〈Dfp(u), Dfp(v)〉 = λ(p)〈u, v〉
for all p ∈ S and u, v ∈ TpS, where λ(p) > 0.

Show that, if S does not have any umbilical points, then S is a minimal surface if
and only if its Gauss map is conformal.

(b) Now drop the assumption about umbilical points. If S is a minimal surface,
must its Gauss map be conformal? If the Gauss map is conformal, must S be a minimal
surface? Justify your answers.

(c) Suppose S is a connected minimal surface. Can the image of its Gauss map be
a great circle in S2?

Paper 2, Section II
26I Differential Geometry

Define a k-dimensional smooth manifold, and a regular value of a smooth map
between smooth manifolds. State the inverse function theorem, and use it to prove the
preimage theorem.

Suppose X and Y are smooth manifolds and f : X → Y is a smooth map. If X is
compact, show that the set of regular values of f in Y is open.

Consider the space

Xa = {x+ y − z2 − w2 = a} ∩ {x2 + y2 − z4/2 = 0} ,

where x, y, z, w are the standard coordinates on R4, and a ∈ R is a constant. Show that
Xa is a 2-dimensional manifold whenever a 6= 0. Is X0 a manifold? Justify your answer.

Part II, Paper 1 [TURN OVER]
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Paper 3, Section II
25I Differential Geometry

Let S ⊂ R3 be a surface. Define the first fundamental form of S. If R ⊂ R3 is also
a surface, we say that a smooth map φ : S → R is a local isometry if Dφ preserves the
first fundamental form at each point.

(a) Let α : I → S be a curve, and let V be a vector field along α. Define the
covariant derivative of V . What does it mean for α to be geodesic? If φ : S → R is a local
isometry, show that for an arbitrary geodesic α : I → S, φ◦α is also a geodesic. [You may
use without proof the fact that Christoffel symbols only depend on the first fundamental
form.] Must the converse be true? Give a proof or counterexample.

(b) Define the Gauss curvature of S. Suppose φ : S → R is a local isometry, and
let KS and KR denote the Gauss curvatures of S and R respectively. Is it true that
KR ◦ φ = KS? State any theorem you use.

(c) Let R be the surface of revolution defined by the curve γ(u) = (eu, 0, u), with
−∞ < u <∞. Let S be the surface of revolution defined by the curve δ(s) = (cosh s, 0, s),
with 0 < s <∞.

(i) Show that there is a diffeomorphism φ : S → R such that KR ◦ φ = KS .

(ii) Does there exist a local isometry ψ : S → R? Justify your answer.

[Hint: You may use without proof that the surface of revolution defined by the curve
(f, 0, g) has Gauss curvature given by

(f ′g′′ − f ′′g′)g′
((f ′)2 + (g′)2)2f

.

Standard facts about surfaces of revolution may be used without proof if clearly stated.]

Paper 4, Section II
25I Differential Geometry

(a) State Wirtinger’s inequality. State and prove the isoperimetric inequality for
domains Ω ⊂ R2 with compact closure and C1 boundary ∂Ω.

(b) Let Q ⊂ R2 be a cyclic quadrilateral, meaning that there is a circle through its
four vertices. Say its edges have lengths a, b, c and d (in cyclic order). Assume Q′ ⊂ R2

is another quadrilateral with edges of lengths a, b, c and d (in the same order). Show that
Area(Q) > Area(Q′). Explain briefly for which Q′ equality holds.

Part II, Paper 1

2022
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Paper 1, Section II

26F Differential Geometry
(a) Let S ⊂ R3 be a surface. Give a parametrisation-free definition of the first

fundamental form of S. Use this definition to derive a description of it in terms of the
partial derivatives of a local parametrisation φ : U ⊂ R2 → S.

(b) Let a be a positive constant. Show that the half-cone

Σ = {(x, y, z) | z2 = a(x2 + y2), z > 0}

is locally isometric to the Euclidean plane. [Hint: Use polar coordinates on the plane.]

(c) Define the second fundamental form and the Gaussian curvature of S. State
Gauss’ Theorema Egregium. Consider the set

V = {(x, y, z) |x2 + y2 + z2 − 2xy − 2yz = 0}\{(0, 0, 0)} ⊂ R3.

(i) Show that V is a surface.

(ii) Calculate the Gaussian curvature of V at each point. [Hint: Complete the
square.]

Paper 2, Section II

26F Differential Geometry
Let U be a domain in R2, and let φ : U → R3 be a smooth map. Define what it

means for φ to be an immersion. What does it mean for an immersion to be isothermal?

Write down a formula for the mean curvature of an immersion in terms of the first
and second fundamental forms. What does it mean for an immersed surface to be minimal?
Assume that φ(u, v) =

(
x(u, v), y(u, v), z(u, v)

)
is an isothermal immersion. Prove that it

is minimal if and only if x, y, z are harmonic functions of u, v.

For u ∈ R, v ∈ [0, 2π], and smooth functions f, g : R → R, assume that

φ(u, v) =
(
f(u) cos v, f(u) sin v, g(u)

)

is an isothermal immersion. Find all possible pairs (f, g) such that this immersion is
minimal.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 3, Section II

25F Differential Geometry
Let X and Y be smooth boundaryless manifolds. Suppose f : X → Y is a smooth

map. What does it mean for y ∈ Y to be a regular value of f? State Sard’s theorem and
the stack-of-records theorem.

Suppose g : X → Y is another smooth map. What does it mean for f and g to be
smoothly homotopic? Assume now that X is compact, and has the same dimension as Y .
Suppose that y ∈ Y is a regular value for both X and Y . Prove that

#f−1(y) = #g−1(y) (mod 2).

Let U ⊂ Sn be a non-empty open subset of the sphere. Suppose that h : Sn → Sn

is a smooth map such that #h−1(y) = 1 (mod 2) for all y ∈ U . Show that there must exist
a pair of antipodal points on Sn which is mapped to another pair of antipodal points by
h.

[You may assume results about compact 1-manifolds provided they are accurately
stated.]

Paper 4, Section II

25F Differential Geometry
Let I ⊂ R be an interval, and S ⊂ R3 be a surface. Assume that α : I → S is a

regular curve parametrised by arc-length. Define the geodesic curvature of α. What does
it mean for α to be a geodesic curve?

State the global Gauss–Bonnet theorem including boundary terms.

Suppose that S ⊂ R3 is a surface diffeomorphic to a cylinder. How large can the
number of simple closed geodesics on S be in each of the following cases?

(i) S has Gaussian curvature everywhere zero;

(ii) S has Gaussian curvature everywhere positive;

(iii) S has Gaussian curvature everywhere negative.

In cases where there can be two or more simple closed geodesics, must they always be
disjoint? Justify your answer.

[A formula for the Gaussian curvature of a surface of revolution may be used without
proof if clearly stated. You may also use the fact that a piecewise smooth curve on a
cylinder without self-intersections either bounds a domain homeomorphic to a disc or is
homotopic to the waist-curve of the cylinder. ]

Part II, 2021 List of Questions

2021
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Paper 1, Section II

26I Differential Geometry
(a) Let X ⊂ RN be a manifold. Give the definition of the tangent space TpX of X

at a point p ∈ X.

(b) Show that X := {−x20 + x21 + x22 + x23 = −1} ∩ {x0 > 0} defines a submanifold
of R4 and identify explicitly its tangent space TxX for any x ∈ X.

(c) Consider the matrix group O(1, 3) ⊂ R42 consisting of all 4 × 4 matrices A
satisfying

AtMA = M

where M is the diagonal 4× 4 matrix M = diag(−1, 1, 1, 1).

(i) Show that O(1, 3) forms a group under matrix multiplication, i.e. it is closed
under multiplication and every element in O(1, 3) has an inverse in O(1, 3).

(ii) Show that O(1, 3) defines a 6-dimensional manifold. Identify the tangent space
TAO(1, 3) for any A ∈ O(1, 3) as a set {AY }Y ∈S where Y ranges over a linear subspace
S ⊂ R42 which you should identify explicitly.

(iii) Let X be as defined in (b) above. Show that O+(1, 3) ⊂ O(1, 3) defined as
the set of all A ∈ O(1, 3) such that Ax ∈ X for all x ∈ X is both a subgroup and a
submanifold of full dimension.

[You may use without proof standard theorems from the course concerning regular values
and transversality.]

Part II, 2020 List of Questions [TURN OVER]

2020



30

Paper 2, Section II

25I Differential Geometry
(a) State the fundamental theorem for regular curves in R3.

(b) Let α : R → R3 be a regular curve, parameterised by arc length, such that
its image α(R) ⊂ R3 is a one-dimensional submanifold. Suppose that the set α(R) is
preserved by a nontrivial proper Euclidean motion φ : R3 → R3.

Show that there exists σ0 ∈ R corresponding to φ such that φ(α(s)) = α(±s + σ0)
for all s ∈ R, where the choice of ± sign is independent of s. Show also that the curvature
k(s) and torsion τ(s) of α satisfy

k(±s+ σ0) = k(s) and (1)

τ(±s+ σ0) = τ(s), (2)

with equation (2) valid only for s such that k(s) > 0. In the case where the sign is + and
σ0 = 0, show that α(R) is a straight line.

(c) Give an explicit example of a curve α satisfying the requirements of (b) such
that neither of k(s) and τ(s) is a constant function, and such that the curve α is closed,
i.e. such that α(s) = α(s+ s0) for some s0 > 0 and all s. [Here a drawing would suffice.]

(d) Suppose now that α : R → R3 is an embedded regular curve parameterised by
arc length s. Suppose further that k(s) > 0 for all s and that k(s) and τ(s) satisfy (1) and
(2) for some σ0, where the choice ± is independent of s, and where σ0 6= 0 in the case of
+ sign. Show that there exists a nontrivial proper Euclidean motion φ such that the set
α(R) is preserved by φ. [You may use the theorem of part (a) without proof.]

Part II, 2020 List of Questions

2020
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Paper 3, Section II

25I Differential Geometry
(a) Show that for a compact regular surface S ⊂ R3, there exists a point p ∈ S such

that K(p) > 0, where K denotes the Gaussian curvature. Show that if S is contained in
a closed ball of radius R in R3, then there is a point p such that K(p) > R−2.

(b) For a regular surface S ⊂ R3, give the definition of a geodesic polar coordinate
system at a point p ∈ S. Show that in such a coordinate system, limr→0G(r, θ) = 0,
limr→0(

√
G)r(r, θ) = 1, E(r, θ) = 1 and F (r, θ) = 0. [You may use without proof standard

properties of the exponential map provided you state them clearly.]

(c) Let S ⊂ R3 be a regular surface. Show that if K 6 0, then any geodesic polar
coordinate ball B(p, ε0) ⊂ S of radius ε0 around p has area satisfying

Area B(p, ε0) > πε20.

[You may use without proof the identity (
√
G)rr(r, θ) = −

√
GK.]

(d) Let S ⊂ R3 be a regular surface, and now suppose −∞ < K 6 C for some
constant 0 < C < ∞. Given any constant 0 < γ < 1, show that there exists ε0 > 0,
depending only on C and γ, so that if B(p, ε) ⊂ S is any geodesic polar coordinate ball of
radius ε 6 ε0, then

Area B(p, ε) > γπε2.

[Hint: For any fixed θ0, consider the function f(r) :=
√
G(r, θ0)−α sin(

√
Cr), for all 0 <

α < 1√
C

. Derive the relation f ′′ > −Cf and show f(r) > 0 for an appropriate range of r.

The following variant of Wirtinger’s inequality may be useful and can be assumed without
proof: if g is a C1 function on [0, L] vanishing at 0, then

∫ L
0 |g(x)|2dx 6 L

2π

∫ L
0 |g′(x)|2dx.]

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 4, Section II

25I Differential Geometry
(a) State the Gauss–Bonnet theorem for compact regular surfaces S ⊂ R3 without

boundary. Identify all expressions occurring in any formulae.

(b) Let S ⊂ R3 be a compact regular surface without boundary and suppose that
its Gaussian curvature K(x) > 0 for all x ∈ S. Show that S is diffeomorphic to the sphere.

Let Sn be a sequence of compact regular surfaces in R3 and let Kn(x) denote the
Gaussian curvature of Sn at x ∈ Sn. Suppose that

lim sup
n→∞

inf
x∈Sn

Kn(x) > 0. (?)

(c) Give an example to show that it does not follow that for all sufficiently large n
the surface Sn is diffeomorphic to the sphere.

(d) Now assume, in addition to (?), that all of the following conditions hold:

(1) There exists a constant R <∞ such that for all n, Sn is contained in a ball of radius
R around the origin.

(2) There exists a constant M <∞ such that Area(Sn) 6M for all n.

(3) There exists a constant ε0 > 0 such that for all n, all points p ∈ Sn admit a geodesic
polar coordinate system centred at p of radius at least ε0.

(4) There exists a constant C <∞ such that on all such geodesic polar neighbourhoods,
|∂rKn| 6 C for all n, where r denotes a geodesic polar coordinate.

(i) Show that for all sufficiently large n, the surface Sn is diffeomorphic to the
sphere. [Hint: It may be useful to identify a geodesic polar ball B(pn, ε0) in each Sn for
which

∫
B(pn,ε0)

KndA is bounded below by a positive constant independent of n.]

(ii) Explain how your example from (c) fails to satisfy one or more of these extra
conditions (1)–(4).

[You may use without proof the standard computations for geodesic polar coordinates:
E = 1, F = 0, limr→0G(r, θ) = 0, limr→0(

√
G)r(r, θ) = 1, and (

√
G)rr = −K

√
G.]

Part II, 2020 List of Questions

2020
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Paper 4, Section II

25H Differential Geometry
(a) Let γ : (a, b) → R2 be a regular curve without self-intersection given by

γ(v) = (f(v), g(v)) with f(v) > 0 for v ∈ (a, b) and let S be the surface of revolution
defined globally by the parametrisation

φ : (0, 2π) × (a, b) → R3,

where φ(u, v) = (f(v) cos u, f(v) sin u, g(v)), i.e. S = φ((0, 2π)× (a, b)). Compute its mean
curvature H and its Gaussian curvature K.

(b) Define what it means for a regular surface S ⊂ R3 to be minimal. Give an
example of a minimal surface which is not locally isometric to a cone, cylinder or plane.
Justify your answer.

(c) Let S be a regular surface such that K ≡ 1. Is it necessarily the case that given
any p ∈ S, there exists an open neighbourhood U ⊂ S of p such that U lies on some sphere
in R3? Justify your answer.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 3, Section II

25H Differential Geometry
(a) Let α : (a, b) → R2 be a regular curve without self intersection given by

α(v) = (f(v), g(v)) with f(v) > 0 for v ∈ (a, b).

Consider the local parametrisation given by

φ : (0, 2π) × (a, b) → R3,

where φ(u, v) = (f(v) cos u, f(v) sin u, g(v)).

(i) Show that the image φ((0, 2π) × (a, b)) defines a regular surface S in R3.

(ii) If γ(s) = φ(u(s), v(s)) is a geodesic in S parametrised by arc length, then show
that f(v(s))2u′(s) is constant in s. If θ(s) denotes the angle that the geodesic
makes with the parallel S ∩ {z = g(v(s))}, then show that f(v(s)) cos θ(s) is
constant in s.

(b) Now assume that α(v) = (f(v), g(v)) extends to a smooth curve α : [a, b] → R2

such that f(a) = 0, f(b) = 0, f ′(a) 6= 0, f ′(b) 6= 0. Let S be the closure of S in R3.

(i) State a necessary and sufficient condition on α(v) for S to be a compact regular
surface. Justify your answer.

(ii) If S is a compact regular surface, and γ : (−∞,∞) → S is a geodesic, show that
there exists a non-empty open subset U ⊂ S such that γ((−∞,∞)) ∩ U = ∅.

Part II, 2019 List of Questions

2019
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Paper 2, Section II

25H Differential Geometry
(a) Let α : (a, b) → R3 be a smooth regular curve parametrised by arclength. For

s ∈ (a, b), define the curvature k(s) and (where defined) the torsion τ(s) of α. What
condition must be satisfied in order for the torsion to be defined? Derive the Frenet
equations.

(b) If τ(s) is defined and equal to 0 for all s ∈ (a, b), show that α lies in a plane.

(c) State the fundamental theorem for regular curves in R3, giving necessary and
sufficient conditions for when curves α(s) and α̃(s) are related by a proper Euclidean
motion.

(d) Now suppose that α̃ : (a, b) → R3 is another smooth regular curve parametrised
by arclength, and that k̃(s) and τ̃(s) are its curvature and torsion. Determine whether
the following statements are true or false. Justify your answer in each case.

(i) If τ(s) = 0 whenever it is defined, then α lies in a plane.

(ii) If τ(s) is defined and equal to 0 for all but one value of s in (a, b), then α lies
in a plane.

(iii) If k(s) = k̃(s) for all s, τ(s) and τ̃(s) are defined for all s 6= s0, and τ(s) = τ̃(s)
for all s 6= s0, then α and α̃ are related by a rigid motion.

Paper 1, Section II

26H Differential Geometry
Let n > 1 be an integer.

(a) Show that Sn = {x ∈ Rn+1 : x21+ · · ·+x2n+1 = 1} defines a submanifold of Rn+1

and identify explicitly its tangent space TxSn for any x ∈ Sn.

(b) Show that the matrix group SO(n) ⊂ Rn2
defines a submanifold. Identify

explicitly the tangent space TRSO(n) for any R ∈ SO(n).

(c) Given v ∈ Sn, show that the set Sv = {R ∈ SO(n + 1) : Rv = v} defines a
submanifold Sv ⊂ SO(n + 1) and compute its dimension. For v 6= w, is it ever the case
that Sv and Sw are transversal?

[You may use standard theorems from the course concerning regular values and
transversality.]

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 4, Section II

25I Differential Geometry
Let S ⊂ R3 be a surface.

(a) Define what it means for a curve γ : I → S to be a geodesic, where I = (a, b)
and −∞ 6 a < b 6 ∞.

(b) A geodesic γ : I → S is said to be maximal if any geodesic γ̃ : Ĩ → S with I ⊂ Ĩ
and γ̃|I = γ satisfies I = Ĩ. A surface is said to be geodesically complete if all maximal
geodesics are defined on I = (−∞,∞), otherwise, the surface is said to be geodesically
incomplete. Give an example, with justification, of a non-compact geodesically complete
surface S which is not a plane.

(c) Assume that along any maximal geodesic

γ : (−T−, T+) → S,

the following holds:
T± <∞ =⇒ lim sup

s→T±
|K(γ(±s))| = ∞. (∗)

Here K denotes the Gaussian curvature of S.

(i) Show that S is inextendible, i.e. if S̃ ⊂ R3 is a connected surface with
S ⊂ S̃, then S̃ = S.

(ii) Give an example of a surface S which is geodesically incomplete and sat-
isfies (∗). Do all geodesically incomplete inextendible surfaces satisfy (∗)?
Justify your answer.

[You may use facts about geodesics from the course provided they are clearly stated.]

Part II, 2018 List of Questions

2018
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Paper 3, Section II

25I Differential Geometry
Let S ⊂ R3 be a surface.

(a) Define the Gaussian curvature K of S in terms of the coefficients of the first
and second fundamental forms, computed with respect to a local parametrization φ(u, v)
of S.

Prove the Theorema Egregium, i.e. show that the Gaussian curvature can be
expressed entirely in terms of the coefficients of the first fundamental form and their
first and second derivatives with respect to u and v.

(b) State the global Gauss–Bonnet theorem for a compact orientable surface S.

(c) Now assume that S is non-compact and diffeomorphic to S2 \{(1, 0, 0)} but that
there is a point p ∈ R3 such that S ∪ {p} is a compact subset of R3. Is it necessarily the
case that

∫
SKdA = 4/π? Justify your answer.

Paper 2, Section II

25I Differential Geometry
Let γ(t) : [a, b] → R3 denote a regular curve.

(a) Show that there exists a parametrization of γ by arc length.

(b) Under the assumption that the curvature is non-zero, define the torsion of γ.
Give an example of two curves γ1 and γ2 in R3 whose curvature (as a function of arc
length s) coincides and is non-vanishing, but for which the curves are not related by a
rigid motion, i.e. such that γ1(s) is not identically ρ(R,T )(γ2(s)) where R ∈ SO(3), T ∈ R3

and
ρ(R,T )(v) := T +Rv.

(c) Give an example of a simple closed curve γ, other than a circle, which is preserved
by a non-trivial rigid motion, i.e. which satisfies

ρ(R,T )(v) ∈ γ([a, b]) for all v ∈ γ([a, b])

for some choice of R ∈ SO(3), T ∈ R3 with (R,T ) 6= (Id, 0). Justify your answer.

(d) Now show that a simple closed curve γ which is preserved by a nontrivial smooth
1-parameter family of rigid motions is necessarily a circle, i.e. show the following:

Let (R,T ) : (−ǫ, ǫ) → SO(3) ×R3 be a regular curve. If for all t̃ ∈ (−ǫ, ǫ),

ρ(R(t̃),T (t̃))(v) ∈ γ([a, b]) for all v ∈ γ([a, b]),

then γ([a, b]) is a circle. [You may use the fact that the set of fixed points of a non-trivial
rigid motion is either ∅ or a line L ⊂ R3.]
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Paper 1, Section II

26I Differential Geometry
(a) Let X ⊂ Rn be a manifold and p ∈ X. Define the tangent space TpX and show

that it is a vector subspace of Rn, independent of local parametrization, of dimension
equal to dimX.

(b) Now show that TpX depends continuously on p in the following sense: if pi is a
sequence in X such that pi → p ∈ X, and wi ∈ TpiX is a sequence such that wi → w ∈ Rn,
then w ∈ TpX. If dimX > 0, show that all w ∈ TpX arise as such limits where pi is a
sequence in X \ p.

(c) Consider the set Xa ⊂ R4 defined by Xa = {x21+2x22 = a2}∩{x3 = ax4}, where
a ∈ R. Show that, for all a ∈ R, the set Xa is a smooth manifold. Compute its dimension.

(d) For Xa as above, does TpXa depend continuously on p and a for all a ∈ R? In
other words, let ai ∈ R, pi ∈ Xai be sequences with ai → a ∈ R, pi → p ∈ Xa. Suppose
that wi ∈ TpiXai and wi → w ∈ R4. Is it necessarily the case that w ∈ TpXa? Justify
your answer.
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Paper 2, Section II

23I Differential Geometry
Let α : I → R3 be a regular smooth curve. Define the curvature k and torsion τ of

α and derive the Frenet formulae. Give the assumption which must hold for torsion to be
well-defined, and state the Fundamental Theorem for curves in R3.

Let α be as above and α̃ : I → R3 be another regular smooth curve with curvature
k̃ and torsion τ̃ . Suppose k̃(s) = k(s) 6= 0 and τ̃(s) = τ(s) for all s ∈ I, and that there
exists a non-empty open subinterval J ⊂ I such that α̃|J = α|J . Show that α̃ = α.

Now let S ⊂ R3 be an oriented surface and let α : I → S ⊂ R3 be a regular
smooth curve contained in S. Define normal curvature and geodesic curvature. When is
α a geodesic? Give an example of a surface S and a geodesic α whose normal curvature
vanishes identically. Must such a surface S contain a piece of a plane? Can such a geodesic
be a simple closed curve? Justify your answers.

Show that if α is a geodesic and the Gaussian curvature of S satisfies K > 0, then
we have the inequality k(s) 6 2|H(α(s))|, where H denotes the mean curvature of S and
k the curvature of α. Give an example where this inequality is sharp.

Paper 3, Section II

23I Differential Geometry
Let S ⊂ RN be a manifold and let α : [a, b] → S ⊂ RN be a smooth regular curve

on S. Define the total length L(α) and the arc length parameter s. Show that α can be
reparametrized by arc length.

Let S ⊂ R3 denote a regular surface, let p, q ∈ S be distinct points and let
α : [a, b] → S be a smooth regular curve such that α(a) = p, α(b) = q. We say that α is
length minimising if for all smooth regular curves α̃ : [a, b] → S with α̃(a) = p, α̃(b) = q,
we have L(α̃) > L(α). By deriving a formula for the derivative of the energy functional
corresponding to a variation of α, show that a length minimising curve is necessarily a
geodesic. [You may use the following fact: given a smooth vector field V (t) along α with
V (a) = V (b) = 0, there exists a variation α(s, t) of α such that ∂sα(s, t)|s=0 = V (t).]

Let S2 ⊂ R3 denote the unit sphere and let S denote the surface S2 \ (0, 0, 1). For
which pairs of points p, q ∈ S does there exist a length minimising smooth regular curve
α : [a, b] → S with α(a) = p and α(b) = q? Justify your answer.
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Paper 4, Section II

24I Differential Geometry
Let S ⊂ R3 be a surface and p ∈ S. Define the exponential map expp and compute

its differential d expp |0. Deduce that expp is a local diffeomorphism.

Give an example of a surface S and a point p ∈ S for which the exponential map
expp fails to be defined globally on TpS. Can this failure be remedied by extending the

surface? In other words, for any such S, is there always a surface S ⊂ Ŝ ⊂ R3 such that
the exponential map êxpp defined with respect to Ŝ is globally defined on TpS = TpŜ ?

State the version of the Gauss–Bonnet theorem with boundary term for a surface
S ⊂ R3 and a closed disc D ⊂ S whose boundary ∂D can be parametrized as a smooth
closed curve in S.

Let S ⊂ R3 be a flat surface, i.e. K = 0. Can there exist a closed disc D ⊂ S, whose
boundary ∂D can be parametrized as a smooth closed curve, and a surface S̃ ⊂ R3 such
that all of the following hold:

(i) (S \D) ∪ ∂D ⊂ S̃;

(ii) letting D̃ be (S̃ \ (S \D))∪ ∂D, we have that D̃ is a closed disc in S̃ with boundary
∂D̃ = ∂D;

(iii) the Gaussian curvature K̃ of S̃ satisfies K̃ > 0, and there exists a p ∈ S̃ such that
K̃(p) > 0?

Justify your answer.

Paper 1, Section II

25I Differential Geometry
Define what it means for a subset X ⊂ RN to be a manifold.

For manifolds X and Y , state what it means for a map f : X → Y to be smooth.
For such a smooth map, and x ∈ X, define the differential map dfx.

What does it mean for y ∈ Y to be a regular value of f? Give an example of a map
f : X → Y and a y ∈ Y which is not a regular value of f .

Show that the set SLn(R) of n × n real-valued matrices with determinant 1 can
naturally be viewed as a manifold SLn(R) ⊂ Rn2

. What is its dimension? Show that
matrix multiplication f : SLn(R) × SLn(R) → SLn(R), defined by f(A,B) = AB, is
smooth. [Standard theorems may be used without proof if carefully stated.] Describe the
tangent space of SLn(R) at the identity I ∈ SLn(R) as a subspace of Rn2

.

Show that if n > 2 then the set of real-valued matrices with determinant 0, viewed
as a subset of Rn2

, is not a manifold.

Part II, 2017 List of Questions [TURN OVER

2017



29

Paper 3, Section II

22G Differential Geometry
Explain what it means for an embedded surface S in R3 to be minimal. What

is meant by an isothermal parametrization φ : U → V ⊂ R3 of an embedded surface
V ⊂ R3? Prove that if φ is isothermal then φ(U) is minimal if and only if the components
of φ are harmonic functions on U . [You may assume the formula for the mean curvature
of a parametrized embedded surface,

H =
eG− 2fF + gE

2(EG − F 2)
,

where E,F,G (respectively e, f, g) are the coefficients of the first (respectively second)
fundamental forms.]

Let S be an embedded connected minimal surface in R3 which is closed as a subset
of R3, and let Π ⊂ R3 be a plane which is disjoint from S. Assuming that local isothermal
parametrizations always exist, show that if the Euclidean distance between S and Π is
attained at some point P ∈ S, i.e. d(P,Π) = infQ∈S d(Q,Π), then S is a plane parallel to
Π.

Paper 4, Section II

23G Differential Geometry
For S ⊂ R3 a smooth embedded surface, define what is meant by a geodesic curve

on S. Show that any geodesic curve γ(t) has constant speed |γ̇(t)|.
For any point P ∈ S, show that there is a parametrization φ : U → V of some open

neighbourhood V of P in S, with U ⊂ R2 having coordinates (u, v), for which the first
fundamental form is

du2 +G(u, v)dv2,

for some strictly positive smooth function G on U . State a formula for the Gaussian
curvature K of S in V in terms of G. If K ≡ 0 on V , show that G is a function of v only,
and that we may reparametrize so that the metric is locally of the form du2 + dw2, for
appropriate local coordinates (u,w).

[You may assume that for any P ∈ S and nonzero ξ ∈ TPS, there exists (for some
ǫ > 0) a unique geodesic γ : (−ǫ, ǫ) → S with γ(0) = P and γ̇(0) = ξ, and that such
geodesics depend smoothly on the initial conditions P and ξ.]
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Paper 2, Section II

23G Differential Geometry
If an embedded surface S ⊂ R3 contains a line L, show that the Gaussian curvature

is non-positive at each point of L. Give an example where the Gaussian curvature is zero
at each point of L.

Consider the helicoid S given as the image of R2 in R3 under the map

φ(u, v) = (sinh v cosu, sinh v sinu, u).

What is the image of the corresponding Gauss map? Show that the Gaussian curvature
at a point φ(u, v) ∈ S is given by −1/ cosh4 v, and hence is strictly negative everywhere.
Show moreover that there is a line in S passing through any point of S.

[General results concerning the first and second fundamental forms on an oriented
embedded surface S ⊂ R3 and the Gauss map may be used without proof in this question.]

Paper 1, Section II

24G Differential Geometry
Define what is meant by the regular values and critical values of a smooth map

f : X → Y of manifolds. State the Preimage Theorem and Sard’s Theorem.

Suppose now that dimX = dimY . If X is compact, prove that the set of regular
values is open in Y , but show that this may not be the case if X is non-compact.

Construct an example with dimX = dimY and X compact for which the set of
critical values is not a submanifold of Y .

[Hint: You may find it helpful to consider the case X = S1 and Y = R. Properties
of bump functions and the function e−1/x2

may be assumed in this question.]
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Paper 4, Section II

21G Differential Geometry

Let U(n) denote the set of n × n unitary complex matrices. Show that U(n) is a

smooth (real) manifold, and find its dimension. [You may use any general results from

the course provided they are stated correctly.] For A any matrix in U(n) and H an n× n

complex matrix, determine when H represents a tangent vector to U(n) at A.

Consider the tangent spaces to U(n) equipped with the metric induced from the

standard (Euclidean) inner product 〈·, ·〉 on the real vector space of n×n complex matrices,

given by 〈L,K〉 = Re trace (LK∗), where Re denotes the real part and K∗ denotes the

conjugate transpose of K. Suppose that H represents a tangent vector to U(n) at the

identity matrix I. Sketch an explicit construction of a geodesic curve on U(n) passing

through I and with tangent direction H, giving a brief proof that the acceleration of the

curve is always orthogonal to the tangent space to U(n).

[Hint: You will find it easier to work directly with n × n complex matrices, rather

than the corresponding 2n× 2n real matrices.]

Paper 3, Section II

21G Differential Geometry

Show that the surface S of revolution x2 + y2 = cosh2 z in R3 is homeomorphic to

a cylinder and has everywhere negative Gaussian curvature. Show moreover the existence

of a closed geodesic on S.

Let S ⊂ R3 be an arbitrary embedded surface which is homeomorphic to a cylinder

and has everywhere negative Gaussian curvature. By using a suitable version of the

Gauss–Bonnet theorem, show that S contains at most one closed geodesic. [If required,

appropriate forms of the Jordan curve theorem in the plane may also be used without

proof.]
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Paper 2, Section II

22G Differential Geometry

If U denotes a domain in R2, what is meant by saying that a smooth map φ : U → R3

is an immersion? Define what it means for such an immersion to be isothermal. Explain

what it means to say that an immersed surface is minimal.

Let φ(u, v) = (x(u, v), y(u, v), z(u, v)) be an isothermal immersion. Show that it is

minimal if and only if x, y, z are harmonic functions of u, v. [You may use the formula

for the mean curvature given in terms of the first and second fundamental forms, namely

H = (eG − 2fF + gE)/(2{EG − F 2}) . ]
Produce an example of an immersed minimal surface which is not an open subset of

a catenoid, helicoid, or a plane. Prove that your example does give an immersed minimal

surface in R3.

Paper 1, Section II

22G Differential Geometry

Let Ω ⊂ R2 be a domain (connected open subset) with boundary ∂Ω a continuously

differentiable simple closed curve. Denoting by A(Ω) the area of Ω and l(∂Ω) the length

of the curve ∂Ω, state and prove the isoperimetric inequality relating A(Ω) and l(∂Ω)

with optimal constant, including the characterization for equality. [You may appeal to

Wirtinger’s inequality as long as you state it precisely.]

Does the result continue to hold if the boundary ∂Ω is allowed finitely many points at

which it is not differentiable? Briefly justify your answer by giving either a counterexample

or an indication of a proof.
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Paper 4, Section II

24G Differential Geometry

Let I = [0, l] be a closed interval, k(s), τ(s) smooth real valued functions on I with

k strictly positive at all points, and t0,n0,b0 a positively oriented orthonormal triad of

vectors in R3. An application of the fundamental theorem on the existence of solutions to

ODEs implies that there exists a unique smooth family of triples of vectors t(s),n(s),b(s)

for s ∈ I satisfying the differential equations

t′ = kn, n′ = −kt− τb, b′ = τn,

with initial conditions t(0) = t0, n(0) = n0 and b(0) = b0, and that {t(s),n(s),b(s)}
forms a positively oriented orthonormal triad for all s ∈ I. Assuming this fact, consider

α : I → R3 defined by α(s) =
∫ s
0 t(t)dt; show that α defines a smooth immersed curve

parametrized by arc-length, which has curvature and torsion given by k(s) and τ(s), and

that α is uniquely determined by this property up to rigid motions of R3. Prove that α

is a plane curve if and only if τ is identically zero.

If a > 0, calculate the curvature and torsion of the smooth curve given by

α(s) = (a cos(s/c), a sin(s/c), bs/c), where c =
√

a2 + b2.

Suppose now that α : [0, 2π] → R3 is a smooth simple closed curve parametrized by

arc-length with curvature everywhere positive. If both k and τ are constant, show that

k = 1 and τ = 0. If k is constant and τ is not identically zero, show that k > 1. Explain

what it means for α to be knotted; if α is knotted and τ is constant, show that k(s) > 2

for some s ∈ [0, 2π]. [You may use standard results from the course if you state them

precisely.]
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Paper 3, Section II

24G Differential Geometry

Let α : I → S be a parametrized curve on a smooth embedded surface S ⊂ R3.

Define what is meant by a vector field V along α and the concept of such a vector field

being parallel. If V and W are both parallel vector fields along α, show that the inner

product 〈V (t),W (t)〉 is constant.
Given a local parametrization φ : U → S, define the Christoffel symbols Γi

jk on U .

Given a vector v0 ∈ Tα(0)S, prove that there exists a unique parallel vector field V (t) along

α with V (0) = v0 (recall that V (t) is called the parallel transport of v0 along α).

Suppose now that the image of α also lies on another smooth embedded surface

S′ ⊂ R3 and that Tα(t)S = Tα(t)S
′ for all t ∈ I. Show that parallel transport of a vector

v0 is the same whether calculated on S or S′. Suppose S is the unit sphere in R3 with

centre at the origin and let α : [0, 2π] → S be the curve on S given by

α(t) = (sinφ cos t, sinφ sin t, cosφ)

for some fixed angle φ. Suppose v0 ∈ TPS is the unit tangent vector to α at P = α(0) =

α(2π) and let v1 be its image in TPS under parallel transport along α. Show that the

angle between v0 and v1 is 2π cosφ.

[Hint: You may find it useful to consider the circular cone S′ which touches the sphere S

along the curve α.]

Paper 2, Section II

25G Differential Geometry

Define the terms Gaussian curvature K and mean curvature H for a smooth

embedded oriented surface S ⊂ R3. [You may assume the fact that the derivative of

the Gauss map is self-adjoint.] If K = H2 at all points of S, show that both H and K are

locally constant. [Hint: Use the symmetry of second partial derivatives of the field of unit

normal vectors.]

If K = H2 = 0 at all points of S, show that the unit normal vector N to S is

locally constant and that S is locally contained in a plane. If K = H2 is a strictly positive

constant on S and φ : U → S is a local parametrization (where U is connected) on S with

unit normal vector N(u, v) for (u, v) ∈ U , show that φ(u, v) + N(u, v)/H is constant on

U . Deduce that S is locally contained in a sphere of radius 1/|H|.
If S is connected with K = H2 at all points of S, deduce that S is contained in

either a plane or a sphere.
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Paper 1, Section II

25G Differential Geometry

Define the concepts of (smooth) manifold and manifold with boundary for subsets

of RN .

Let X ⊂ R6 be the subset defined by the equations

x21 + x22 + x23 − x24 = 1, x24 − x25 − x26 = −1.

Prove that X is a manifold of dimension four.

For a > 0, let B(a) ⊂ R6 denote the spherical ball x21 + . . . + x26 6 a. Prove that

X ∩ B(a) is empty if a < 2, is a manifold diffeomorphic to S2 × S1 if a = 2, and is a

manifold with boundary if a > 2, with each component of the boundary diffeomorphic to

S2 × S1.

[You may quote without proof any general results from lectures that you may need.]
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Paper 4, Section II

24H Differential Geometry

Define what is meant by the geodesic curvature kg of a regular curve α : I → S

parametrized by arc length on a smooth oriented surface S ⊂ R3. If S is the unit sphere

in R3 and α : I → S is a parametrized geodesic circle of radius φ, with 0 < φ < π/2,

justify the fact that |kg| = cotφ.

State the general form of the Gauss–Bonnet theorem with boundary on an oriented

surface S, explaining briefly the terms which occur.

Let S ⊂ R3 now denote the circular cone given by z > 0 and x2 + y2 = z2 tan2 φ,

for a fixed choice of φ with 0 < φ < π/2, and with a fixed choice of orientation. Let

α : I → S be a simple closed piecewise regular curve on S, with (signed) exterior angles

θ1, . . . , θN at the vertices (that is, θi is the angle between limits of tangent directions, with

sign determined by the orientation). Suppose furthermore that the smooth segments of α

are geodesic curves. What possible values can θ1 + · · ·+ θN take? Justify your answer.

[You may assume that a simple closed curve in R2 bounds a region which is homeomorphic

to a disc. Given another simple closed curve in the interior of this region, you may assume

that the two curves bound a region which is homeomorphic to an annulus.]
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Paper 3, Section II

24H Differential Geometry

We say that a parametrization φ : U → S ⊂ R3 of a smooth surface S is isothermal

if the coefficients of the first fundamental form satisfy F = 0 and E = G = λ(u, v)2, for

some smooth non-vanishing function λ on U . For an isothermal parametrization, prove

that

φuu + φvv = 2λ2HN,

whereN denotes the unit normal vector andH the mean curvature, which you may assume

is given by the formula

H =
g + e

2λ2
,

where g = −〈Nu, φu〉 and e = −〈Nv, φv〉 are coefficients in the second fundamental form.

Given a parametrization φ(u, v) = (x(u, v), y(u, v), z(u, v)) of a surface S ⊂ R3, we

consider the complex valued functions on U :

θ1 = xu − ixv, θ2 = yu − iyv, θ3 = zu − izv . (1)

Show that φ is isothermal if and only if θ21 + θ22 + θ23 = 0. If φ is isothermal, show that

S is a minimal surface if and only if θ1, θ2, θ3 are holomorphic functions of the complex

variable ζ = u+ iv.

Consider the holomorphic functions on D := C \ R>0 (with complex coordinate

ζ = u+ iv on C) given by

θ1 :=
1

2
(1− ζ−2), θ2 := − i

2
(1 + ζ−2), θ3 := −ζ−1. (2)

Find a smooth map φ(u, v) = (x(u, v), y(u, v), z(u, v)) : D → R3 for which φ(−1, 0) = 0

and the θi defined by (2) satisfy the equations (1). Show furthermore that φ extends to a

smooth map φ̃ : C∗ → R3. If w = x+ iy is the complex coordinate on C, show that

φ̃(exp(iw)) = (cosh y cos x+ 1, cosh y sinx, y).
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Paper 2, Section II

25H Differential Geometry

Let α : [0, L] → R3 be a regular curve parametrized by arc length having nowhere-

vanishing curvature. State the Frenet relations between the tangent, normal and binormal

vectors at a point, and their derivatives.

Let S ⊂ R3 be a smooth oriented surface. Define the Gauss map N : S → S2, and

show that its derivative at P ∈ S, dNP : TPS → TPS, is self-adjoint. Define the Gaussian

curvature of S at P .

Now suppose that α : [0, L] → R3 has image in S and that its normal curvature is

zero for all s ∈ [0, L]. Show that the Gaussian curvature of S at a point P = α(s) of the

curve is K(P ) = −τ(s)2, where τ(s) denotes the torsion of the curve.

If S ⊂ R3 is a standard embedded torus, show that there is a curve on S for which

the normal curvature vanishes and the Gaussian curvature of S is zero at all points of the

curve.

Paper 1, Section II

25H Differential Geometry

For f : X → Y a smooth map of manifolds, define the concepts of critical point,

critical value and regular value.

With the obvious identification of C with R2, and hence also of C3 with R6, show

that the complex-valued polynomial z31 + z22 + z23 determines a smooth map f : R6 → R2

whose only critical point is at the origin. Hence deduce that V := f−1((0, 0)) \ {0} ⊂ R6

is a 4-dimensional manifold, and find the equations of its tangent space at any given point

(z1, z2, z3) ∈ V .

Now let S5 ⊂ C3 = R6 be the unit 5-sphere, defined by |z1|2 + |z2|2 + |z3|2 = 1.

Given a point P = (z1, z2, z3) ∈ S5∩V , by considering the vector (2z1, 3z2, 3z3) ∈ C3 = R6

or otherwise, show that not all tangent vectors to V at P are tangent to S5. Deduce that

S5 ∩ V ⊂ R6 is a compact three-dimensional manifold.

[Standard results may be quoted without proof if stated carefully.]
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Paper 4, Section II

24I Differential Geometry
For manifolds X,Y ⊂ Rn, define the terms tangent space to X at a point x ∈ X

and derivative dfx of a smooth map f : X → Y . State the Inverse Function Theorem for
smooth maps between manifolds without boundary.

Now let X be a submanifold of Y and f : X → Y the inclusion map. By considering
the map f−1 : f(X) → X, or otherwise, show that dfx is injective for each x ∈ X.

Show further that there exist local coordinates around x and around y = f(x) such
that f is given in these coordinates by

(x1, . . . , xl) ∈ Rl 7→ (x1, . . . , xl, 0, . . . , 0) ∈ Rk ,

where l = dimX and k = dimY . [You may assume that any open ball in Rl is
diffeomorphic to Rl.]

Paper 3, Section II

24I Differential Geometry
For a surface S ⊂ R3, define what is meant by the exponential mapping expp at

p ∈ S, geodesic polar coordinates (r, θ) and geodesic circles.

Let E,F,G be the coefficients of the first fundamental form in geodesic polar
coordinates (r, θ). Prove that limr→0

√
G(r, θ) = 0 and limr→0(

√
G)r(r, θ) = 1. Give

an expression for the Gaussian curvature K in terms of G.

Prove that the Gaussian curvature at a point p ∈ S satisfies

K(p) = lim
r→0

12(πr2 −Ap(r))

πr4
,

where Ap(r) is the area of the region bounded by the geodesic circle of radius r centred
at p.

[You may assume that E = 1, F = 0 and d(expp)0 is an isometry. Taylor’s theorem
with any form of the remainder may be assumed if accurately stated.]
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Paper 2, Section II

25I Differential Geometry
Define the Gauss map N for an oriented surface S ⊂ R3. Show that at each p ∈ S

the derivative of the Gauss map

dNp : TpS → TN(p)S
2 = TpS

is self-adjoint. Define the principal curvatures k1, k2 of S.

Now suppose that S is compact (and without boundary). By considering the square
of the distance to the origin, or otherwise, prove that S has a point p with k1(p)k2(p) > 0.

[You may assume that the intersection of S with a plane through the normal direction at
p ∈ S contains a regular curve through p.]

Paper 1, Section II

25I Differential Geometry
Define the geodesic curvature kg of a regular curve in an oriented surface S ⊂ R3.

When is kg = 0 along a curve?

Explain briefly what is meant by the Euler characteristic χ of a compact surface
S ⊂ R3. State the global Gauss–Bonnet theorem with boundary terms.

Let S be a surface with positive Gaussian curvature that is diffeomorphic to the
sphere S2 and let γ1,γ2 be two disjoint simple closed curves in S. Can both γ1 and γ2 be
geodesics? Can both γ1 and γ2 have constant geodesic curvature? Justify your answers.

[You may assume that the complement of a simple closed curve in S2 consists of two open
connected regions.]
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Paper 4, Section I

7D Dynamical Systems
Describe the different types of bifurcation from steady states of a one-dimensional

map of the form xn+1 = f(xn), and give examples of simple equations exhibiting each
type.

Consider the map xn+1 = αx2n(1− xn), 0 < xn < 1. What is the maximum value of
α for which the interval is mapped into itself?

Show that as α increases from zero to its maximum value there is a saddle-node
bifurcation and a period-doubling bifurcation, and determine the values of α for which
they occur.

Paper 3, Section I

7D Dynamical Systems
State without proof Lyapunov’s first theorem, carefully defining all the terms that

you use.

Consider the dynamical system

ẋ = −2x+ y − xy + 3y2 − xy2 + x3 ,

ẏ = −2y − x− y2 − 3xy + 2x2y .

By choosing a Lyapunov function V (x, y) = x2+y2, prove that the origin is asymptotically
stable.

By factorising the expression for V̇ , or otherwise, show that the basin of attraction
of the origin includes the set V < 7/4.
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Paper 2, Section I

7D Dynamical Systems
Consider the dynamical system

ẋ = µx+ x3 − axy, ẏ = µ− x2 − y ,

where a is a constant.

(a) Show that there is a bifurcation from the fixed point (0, µ) at µ = 0.

(b) Find the extended centre manifold at leading non-trivial order in x. Hence find
the type of bifurcation, paying particular attention to the special values a = 1
and a = −1. [Hint. At leading order, the extended centre manifold is of the form
y = µ+ αx2 + βµx2 + γx4, where α, β, γ are constants to be determined.]

Paper 1, Section I

7D Dynamical Systems
State the Poincaré–Bendixson theorem.

A model of a chemical process obeys the second-order system

ẋ = 1− x(1 + a) + x2y, ẏ = ax− x2y ,

where a > 0. Show that there is a unique fixed point at (x, y) = (1, a) and that it is
unstable if a > 2. Show that trajectories enter the region bounded by the lines x = 1/q,
y = 0, y = aq and x+ y = 1 + aq, provided q > (1 + a). Deduce that there is a periodic
orbit when a > 2.

Paper 4, Section II

14D Dynamical Systems
What is meant by the statement that a continuous map of an interval I into itself

has a horseshoe? State without proof the properties of such a map.

Define the property of chaos of such a map according to Glendinning.

A continuous map f : I → I has a periodic orbit of period 5, in which the elements
xj, j = 1, . . . , 5 satisfy xj < xj+1, j = 1, . . . , 4 and the points are visited in the order
x1 → x3 → x4 → x2 → x5 → x1. Show that the map is chaotic. [The Intermediate Value
theorem can be used without proof.]
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Paper 3, Section II

14D Dynamical Systems
Consider the dynamical system

ẍ− (a− bx)ẋ+ x− x2 = 0, a, b > 0 . (1)

(a) Show that the fixed point at the origin is an unstable node or focus, and that
the fixed point at x = 1 is a saddle point.

(b) By considering the phase plane (x, ẋ), or otherwise, show graphically that the
maximum value of x for any periodic orbit is less than one.

(c) By writing the system in terms of the variables x and z = ẋ− (ax− bx2/2), or
otherwise, show that for any periodic orbit C

∮

C
(x− x2)(2ax− bx2) dt = 0 . (2)

Deduce that if a/b > 1/2 there are no periodic orbits.

(d) If a = b = 0 the system (1) is Hamiltonian and has homoclinic orbit

X(t) =
1

2

(
3 tanh2

(
t

2

)
− 1

)
, (3)

which approaches X = 1 as t → ±∞. Now suppose that a, b are very small and that
we seek the value of a/b corresponding to a periodic orbit very close to X(t). By using
equation (3) in equation (2), find an approximation to the largest value of a/b for a periodic
orbit when a, b are very small.

[Hint. You may use the fact that (1−X) = 3
2sech

2( t2) = 3 d
dt(tanh(

t
2 ))]
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Paper 4, Section II

35B Electrodynamics
The charge and current densities are given by ρ(t,x) 6= 0 and j(t,x) respectively.

The electromagnetic scalar and vector potentials are given by φ(t,x) and A(t,x) respec-
tively. Explain how one can regard jµ = (ρ, j) as a four-vector that obeys the current
conservation rule ∂µj

µ = 0.

In the Lorenz gauge ∂µA
µ = 0, derive the wave equation that relates Aµ = (φ,A)

to jµ and hence show that it is consistent to treat Aµ as a four-vector.

In the Lorenz gauge, with jµ = 0, a plane wave solution for Aµ is given by

Aµ = ǫµ exp(ikνx
ν) ,

where ǫµ, kµ and xµ are four-vectors with

ǫµ = (ǫ0, ǫ), kµ = (k0,k), xµ = (t,x) .

Show that kµk
µ = kµǫ

µ = 0.

Interpret the components of kµ in terms of the frequency and wavelength of the
wave.

Find what residual gauge freedom there is and use it to show that it is possible to
set ǫ0 = 0. What then is the physical meaning of the components of ǫ?

An observer at rest in a frame S measures the angular frequency of a plane wave
travelling parallel to the z-axis to be ω. A second observer travelling at velocity v in S
parallel to the z-axis measures the radiation to have frequency ω′. Express ω′ in terms
of ω.
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Paper 3, Section II

36B Electrodynamics
The non-relativistic Larmor formula for the power, P , radiated by a particle of

charge q and mass m that is being accelerated with an acceleration a is

P =
µ0

6π
q2|a|2 .

Starting from the Liénard–Wiechert potentials, sketch a derivation of this result. Explain
briefly why the relativistic generalization of this formula is

P =
µ0

6π

q2

m2

(
dpµ

dτ

dpν

dτ
ηµν

)
,

where pµ is the relativistic momentum of the particle and τ is the proper time along the
worldline of the particle.

A particle of mass m and charge q moves in a plane perpendicular to a constant
magnetic field B. At time t = 0 as seen by an observer O at rest, the particle has energy
E = γm. At what rate is electromagnetic energy radiated by this particle?

At time t according to the observer O, the particle has energy E′ = γ′m. Find an
expression for γ′ in terms of γ and t.

Paper 1, Section II

36B Electrodynamics
A particle of mass m and charge q moves relativistically under the influence of a

constant electric field E in the positive z-direction, and a constant magnetic field B also
in the positive z-direction.

In some inertial observer’s coordinate system, the particle starts at

x = R, y = 0, z = 0, t = 0,

with velocity given by
ẋ = 0, ẏ = u, ż = 0,

where the dot indicates differentiation with respect to the proper time of the particle.
Show that the subsequent motion of the particle, as seen by the inertial observer, is a
helix.

a) What is the radius of the helix as seen by the inertial observer?

b) What are the x and y coordinates of the axis of the helix?

c) What is the z coordinate of the particle after a proper time τ has elapsed, as
measured by the particle?
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Paper 4, Section II

37C Fluid Dynamics II
A steady, two-dimensional flow in the region y > 0 takes the form (u, v) =

(Ex,−Ey) at large y, where E is a positive constant. The boundary at y = 0 is rigid
and no-slip. Consider the velocity field u = ∂ψ/∂y, v = −∂ψ/∂x with stream function
ψ = Exδf(η), where η = y/δ and δ = (ν/E)1/2 and ν is the kinematic viscosity. Show
that this velocity field satisfies the Navier–Stokes equations provided that f(η) satisfies

f ′′′ + ff ′′ − (f ′)2 = −1 .

What are the conditions on f at η = 0 and as η → ∞?

Paper 2, Section II

37C Fluid Dynamics II
An incompressible viscous liquid occupies the long thin region 0 6 y 6 h(x) for

0 6 x 6 ℓ, where h(x) = d1 + αx with h(0) = d1, h(ℓ) = d2 < d1 and d1 ≪ ℓ. The top
boundary at y = h(x) is rigid and stationary. The bottom boundary at y = 0 is rigid and
moving at velocity (U, 0, 0). Fluid can move in and out of the ends x = 0 and x = ℓ, where
the pressure is the same, namely p0.

Explaining the approximations of lubrication theory as you use them, find the
velocity profile in the long thin region, and show that the volume flux Q (per unit width
in the z-direction) is

Q =
Ud1d2
d1 + d2

.

Find also the value of h(x) (i) where the pressure is maximum, (ii) where the tangential
viscous stress on the bottom y = 0 vanishes, and (iii) where the tangential viscous stress
on the top y = h(x) vanishes.
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Paper 3, Section II

38C Fluid Dynamics II
For two Stokes flows u(1)(x) and u(2)(x) inside the same volume V with different

boundary conditions on its boundary S, prove the reciprocal theorem

∫

S
σ
(1)
ij nju

(2)
i dS =

∫

S
σ
(2)
ij nju

(1)
i dS ,

where σ(1) and σ(2) are the stress fields associated with the flows.

When a rigid sphere of radius a translates with velocity U through unbounded fluid
at rest at infinity, it may be shown that the traction per unit area, σ · n, exerted by the
sphere on the fluid has the uniform value 3µU/2a over the sphere surface. Find the drag
on the sphere.

Suppose that the same sphere is now free of external forces and is placed with its
centre at the origin in an unbounded Stokes flow given in the absence of the sphere as
u∗(x). By applying the reciprocal theorem to the perturbation to the flow generated by
the presence of the sphere, and assuming this tends to zero sufficiently rapidly at infinity,
show that the instantaneous velocity of the centre of the sphere is

1

4πa2

∫
u∗(x) dS ,

where the integral is taken over the sphere of radius a.

Paper 1, Section II

38C Fluid Dynamics II
Define the strain-rate tensor eij in terms of the velocity components ui. Write down

the relation between eij , the pressure p and the stress σij in an incompressible Newtonian
fluid of viscosity µ. Show that the local rate of stress-working σij∂ui/∂xj is equal to the
local rate of dissipation 2µeijeij .

An incompressible fluid of density ρ and viscosity µ occupies the semi-infinite region
y > 0 above a rigid plane boundary y = 0 which oscillates with velocity (V cosωt, 0, 0).
The fluid is at rest at infinity. Determine the velocity field produced by the boundary
motion after any transients have decayed.

Show that the time-averaged rate of dissipation is

1
4

√
2V 2 (µρω)1/2

per unit area of the boundary. Verify that this is equal to the time average of the rate of
working by the boundary on the fluid per unit area.
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Paper 4, Section I

8E Further Complex Methods
Use the Laplace kernel method to write integral representations in the complex

t-plane for two linearly independent solutions of the confluent hypergeometric equation

z
d2w(z)

dz2
+ (c− z)

dw(z)

dz
− aw(z) = 0 ,

in the case that Re(z) > 0, Re(c) > Re(a) > 0, a and c− a are not integers.

Paper 3, Section I

8E Further Complex Methods
The Beta function, denoted by B(z1, z2), is defined by

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
, z1, z2 ∈ C ,

where Γ(z) denotes the Gamma function. It can be shown that

B(z1, z2) =

∫ ∞

0

vz2−1 dv

(1 + v)z1+z2
, Re z1 > 0 , Re z2 > 0 .

By computing this integral for the particular case of z1+z2 = 1, and by employing analytic
continuation, deduce that Γ(z) satisfies the functional equation

Γ(z)Γ(1− z) =
π

sinπz
, z ∈ C.
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Paper 2, Section I

8E Further Complex Methods
The hypergeometric function F (a, b; c; z) is defined as the particular solution of the

second order linear ODE characterised by the Papperitz symbol

P





0 1 ∞
0 0 a z

1− c c− a− b b





that is analytic at z = 0 and satisfies F (a, b; c; 0) = 1.

Using the fact that a second solution w(z) of the above ODE is of the form

w(z) = z1−cu(z) ,

where u(z) is analytic in the neighbourhood of the origin, express w(z) in terms of F .

Paper 1, Section I

8E Further Complex Methods
Recall that if f(z) is analytic in a neighbourhood of z0 6= 0, then

f(z) + f(z0) = 2u

(
z + z0

2
,
z − z0
2i

)
,

where u(x, y) is the real part of f(z). Use this fact to construct the imaginary part of an
analytic function whose real part is given by

u(x, y) = y

∫ ∞

−∞

g(t) dt

(t− x)2 + y2
, x, y ∈ R, y 6= 0 ,

where g(t) is real and has sufficient smoothness and decay.
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Paper 2, Section II

14E Further Complex Methods
Let the complex function q(x, t) satisfy

i
∂q(x, t)

∂t
+

∂2q(x, t)

∂x2
= 0 , 0 < x < ∞ , 0 < t < T ,

where T is a positive constant. The unified transform method implies that the solution of
any well-posed problem for the above equation is given by

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ik2tq̂0(k)dk

− 1

2π

∫

L
eikx−ik2t

[
kg̃0(ik

2, t)− ig̃1(ik
2, t)

]
dk , (1)

where L is the union of the rays (i∞, 0) and (0,∞), q̂0(k) denotes the Fourier transform
of the initial condition q0(x), and g̃0, g̃1 denote the t-transforms of the boundary values
q(0, t), qx(0, t):

q̂0(k) =

∫ ∞

0
e−ikxq0(x)dx, Im k 6 0 ,

g̃0(k, t) =

∫ t

0
eksq(0, s)ds , g̃1(k, t) =

∫ t

0
eksqx(0, s)ds , k ∈ C , 0 < t < T .

Furthermore, q0(x), q(0, t) and qx(0, t) are related via the so-called global relation

eik
2tq̂(k, t) = q̂0(k) + kg̃0(ik

2, t)− ig̃1(ik
2, t) , Im k 6 0 , (2)

where q̂(k, t) denotes the Fourier transform of q(x, t).

(a) Assuming the validity of (1) and (2), use the global relation to eliminate g̃1 from
equation (1).

(b) For the particular case that

q0(x) = e−a2x , 0 < x < ∞ ; q(0, t) = cos bt , 0 < t < T ,

where a and b are real numbers, use the representation obtained in (a) to express the
solution in terms of an integral along the real axis and an integral along L (you should not
attempt to evaluate these integrals). Show that it is possible to deform these two integrals
to a single integral along a new contour L̃, which you should sketch.

[You may assume the validity of Jordan’s lemma.]
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Paper 1, Section II

25I Differential Geometry
Let X and Y be manifolds and f : X → Y a smooth map. Define the notions

critical point, critical value, regular value of f . Prove that if y is a regular value of f , then
f−1(y) (if non-empty) is a smooth manifold of dimension dimX − dimY .

[The Inverse Function Theorem may be assumed without proof if accurately stated.]

Let Mn(R) be the set of all real n × n matrices and SO(n) ⊂ Mn(R) the group of
all orthogonal matrices with determinant 1. Show that SO(n) is a smooth manifold and
find its dimension.

Show further that SO(n) is compact and that its tangent space at A ∈ SO(n) is
given by all matrices H such that AHt +HAt = 0.

Paper 2, Section II

25I Differential Geometry
Let α : I → R3 be a smooth curve parametrized by arc-length, with α′′(s) 6= 0 for

all s ∈ I. Define what is meant by the Frenet frame t(s), n(s), b(s), the curvature and
torsion of α. State and prove the Frenet formulae.

By considering 〈α, t×n〉, or otherwise, show that, if for each s ∈ I the vectors α(s),
t(s) and n(s) are linearly dependent, then α(s) is a plane curve.

State and prove the isoperimetric inequality for C1 regular plane curves.

[You may assume Wirtinger’s inequality, provided you state it accurately.]
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Paper 3, Section II

24I Differential Geometry
For an oriented surface S in R3, define the Gauss map, the second fundamental form

and the normal curvature in the direction w ∈ TpS at a point p ∈ S.

Let k̃1, . . . , k̃m be normal curvatures at p in the directions v1, . . . , vm, such that the
angle between vi and vi+1 is π/m for each i = 1, . . . ,m− 1 (m > 2). Show that

k̃1 + . . .+ k̃m = mH ,

where H is the mean curvature of S at p.

What is a minimal surface? Show that if S is a minimal surface, then its Gauss
map N at each point p ∈ S satisfies

〈dNp(w1), dNp(w2)〉 = µ(p)〈w1, w2〉 , for all w1, w2 ∈ TpS , (∗)

where µ(p) ∈ R depends only on p. Conversely, if the identity (∗) holds at each point in S,
must S be minimal? Justify your answer.

Paper 4, Section II

24I Differential Geometry
Define what is meant by a geodesic. Let S ⊂ R3 be an oriented surface. Define the

geodesic curvature kg of a smooth curve γ : I → S parametrized by arc-length.

Explain without detailed proofs what are the exponential map expp and the geodesic
polar coordinates (r, θ) at p ∈ S. Determine the derivative d(expp)0. Prove that the
coefficients of the first fundamental form of S in the geodesic polar coordinates satisfy

E = 1 , F = 0 , G(0, θ) = 0 , (
√
G)r(0, θ) = 1 .

State the global Gauss–Bonnet formula for compact surfaces with boundary. [You
should identify all terms in the formula.]

Suppose that S is homeomorphic to a cylinder S1 × R and has negative Gaussian
curvature at each point. Prove that S has at most one simple (i.e. without self-
intersections) closed geodesic.

[Basic properties of geodesics may be assumed, if accurately stated.]
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Paper 1, Section II

25H Differential Geometry
(i) State the definition of smooth manifold with boundary and define the notion

of boundary. Show that the boundary ∂X is a manifold (without boundary) with
dim ∂X = dim X − 1 .

(ii) Let 0 < a < 1 and let x1 , x2 , x3 , x4 denote Euclidean coordinates on R4.
Show that the set

X = {x 2
1 +x 2

2 +x 2
3 −x 2

4 6 a} ∩ {x 2
1 +x 2

2 +x 2
3 +x 2

4 = 1} ∩ {x 2
1 +2x 2

2 +x 2
3 +x 2

4 = 3/2}

is a manifold with boundary and compute its dimension. You may appeal to standard
results concerning regular values of smooth functions.

(iii) Determine if the following statements are true or false, giving reasons:

a. If X and Y are manifolds, f : X → Y smooth and Z ⊂ Y a submanifold of
codimension r such that f is not transversal to Z, then f−1(Z) is not a submanifold
of codimension r in X.

b. If X and Y are manifolds and f : X → Y is smooth, then the set of regular values
of f is open in Y .

c. If X and Y are manifolds and f : X → Y is smooth then the set of critical points
is of measure 0 in X.

Paper 2, Section II

25H Differential Geometry
(i) State and prove the isoperimetric inequality for plane curves. You may appeal

to Wirtinger’s inequality as long as you state it precisely.

(ii) State Fenchel’s theorem for curves in space.

(iii) Let α : I → R2 be a closed regular plane curve bounding a region K. Suppose
K ⊃ [ p1, p1 + d1] × [ p2, p2 + d2] , for d1 > 0 , d2 > 0 , i.e. K contains a rectangle of
dimensions d1 , d2 . Let k(s) denote the signed curvature of α with respect to the inward
pointing normal, where α is parametrised anticlockwise. Show that there exists an s0 ∈ I
such that k(s0) 6

√
π/(d1d2) .
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Paper 3, Section II

24H Differential Geometry
(i) State and prove the Theorema Egregium.

(ii) Define the notions principal curvatures, principal directions and umbilical point.

(iii) Let S ⊂ R3 be a connected compact regular surface (without boundary), and
let D ⊂ S be a dense subset of S with the following property. For all p ∈ D, there exists
an open neighbourhood Up of p in S such that for all θ ∈ [ 0, 2π), ψp,θ(Up) = Up , where
ψp,θ : R3 → R3 denotes rotation by θ around the line through p perpendicular to Tp S .
Show that S is in fact a sphere.

Paper 4, Section II

24H Differential Geometry
(i) Let S ⊂ R3 be a regular surface. Define the notions exponential map, geodesic

polar coordinates, geodesic circles.

(ii) State and prove Gauss’ lemma.

(iii) Let S be a regular surface. For fixed r > 0, and points p, q in S, let Sr(p),
Sr(q) denote the geodesic circles around p, q, respectively, of radius r. Show the following
statement: for each p ∈ S , there exists an r = r(p) > 0 and a neighborhood Up containing
p such that for all q ∈ Up , the sets Sr(p) and Sr(q) are smooth 1-dimensional manifolds
which intersect transversally. What is the cardinality mod 2 of Sr(p) ∩ Sr(q)?

Part II, 2010 List of Questions [TURN OVER

2010



29

Paper 1, Section II

25H Differential Geometry
(i) Define manifold and manifold with boundary for subsets X ⊂ RN .

(ii) Let X and Y be manifolds and f : X → Y a smooth map. Define what it means
for y ∈ Y to be a regular value of f .

(iii) Let n > 0 and let Sn denote the set {(x1, . . . , xn+1) ∈ Rn+1 :
∑n+1

i=1 (x
i)2 = 1}.

Let Bn+1 denote the set {(x1, . . . , xn+1) ∈ Rn+1 :
∑n+1

i=1 (x
i)2 6 1}. Show that Sn is an

n-dimensional manifold and Bn+1 is an (n+1)-dimensional manifold with boundary, with
∂Bn+1 = Sn.

[You may use standard theorems involving regular values of smooth functions provided
that you state them clearly.]

(iv) For n > 0, consider the map h : Sn → Sn taking x to −x. Show that h is
smooth. Now let f be a smooth map f : Sn → Sn such that f ◦ h = f . Show that f is not
smoothly homotopic to the identity map.

Paper 2, Section II

25H Differential Geometry
(a) Let α : I → R3 be a smooth regular curve, parametrized by arc length, such

that α′′(s) 6= 0 for all s ∈ I. Define the Frenet frame associated to α and derive the Frenet
formulae, identifying curvature and torsion.

(b) Let α, α̃ : I → R3 be as above such that k̃(s) = k(s), τ̃(s) = −τ(s), where k, k̃
denote the curvature of α, α̃, respectively, and τ , τ̃ denote the torsion. Show that there
exists a T ∈ O3 and v ∈ R3 such that

α = T ◦ α̃+ v.

[You may appeal to standard facts about ordinary differential equations provided that
they are clearly stated.]

(c) Let α : I → R2 be a closed regular plane curve, bounding a region K. Let A(K)
denote the area of K, and let k(s) denote the signed curvature at α(s).

Show that there exists a point s0 ∈ I such that

k(s0) 6
√

π/A(K).

[You may appeal to any standard theorem provided that it is clearly stated.]
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Paper 3, Section II

24H Differential Geometry
(a) State and prove the Theorema Egregium.

(b) Let X be a minimal surface without boundary in R3 which is closed as a subset
of R3, and assume that X is not contained in a closed ball. Let Π be a plane in R3 with
the property that Dn → ∞ as n → ∞, where for n = 0, 1, . . .,

Dn = inf
x∈X,d(x,0)>n

d(x,Π).

Here d(x, y) denotes the Euclidean distance between x and y and d(x,Π) = infy∈Π d(x, y).
Assume moreover that X contains no planar points. Show that X intersects Π.

Paper 4, Section II

24H Differential Geometry
(a) Let X be a compact surface (without boundary) in R3. State the global Gauss–

Bonnet formula for X, identifying all terms in the formula.

(b) Let X ⊂ R3 be a surface. Define what it means for a curve γ : I → X to be a
geodesic. State a theorem concerning the existence of geodesics and define the exponential
map.

(c) Let ψ : X → Y be an isometry and let γ be a geodesic. Show that ψ ◦ γ is
a geodesic. If KX denotes the Gaussian curvature of X, and KY denotes the Gaussian
curvature of Y , show that KY ◦ ψ = KX .

Now suppose ψ : X → Y is a smooth map such that ψ ◦γ is a geodesic for all γ a geodesic.
Is ψ necessarily an isometry? Give a proof or counterexample.

Similarly, suppose ψ : X → Y is a smooth map such that KY ◦ ψ = KX . Is ψ necessarily
an isometry? Give a proof or counterexample.
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1/II/24H Differential Geometry

Let n > 1 be an integer, and let M(n) denote the set of n×n real-valued matrices.
We make M(n) into an n2-dimensional smooth manifold via the obvious identification

M(n) = Rn2

.

(a) Let GL(n) denote the subset

GL(n) = {A ∈M(n) : A−1 exists}.

Show that GL(n) is a submanifold of M(n). What is dimGL(n)?

(b) Now let SL(n) ⊂ GL(n) denote the subset

SL(n) = {A ∈ GL(n) : detA = 1}.

Show that for A ∈ GL(n),

(ddet)AB = tr(A−1B) detA.

Show that SL(n) is a submanifold of GL(n). What is the dimension of SL(n)?

(c) Now consider the set X = M(n) \ GL(n). For what values of n > 1 is X a
submanifold of M(n)?

2/II/24H Differential Geometry

(a) For a regular curve in R3, define curvature and torsion and state the Frenet
formulas.

(b) State and prove the isoperimetric inequality for domains Ω ⊂ R2 with compact
closure and C1 boundary ∂Ω.

[You may assume Wirtinger’s inequality.]

(c) Let γ : I → R2 be a closed plane regular curve such that γ is contained in a disc
of radius r. Show that there exists s ∈ I such that |k(s)| > r−1, where k(s) denotes the
signed curvature. Show by explicit example that the assumption of closedness is necessary.
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3/II/23H Differential Geometry

Let S ⊂ R3 be a surface.

(a) Define the Gauss Map, principal curvatures ki, Gaussian curvature K and mean
curvature H. State the Theorema Egregium.

(b) Define what is meant for S to be minimal. Prove that if S is minimal, then
K 6 0. Give an example of a minimal surface whose Gaussian curvature is not identically
0, justifying your answer.

(c) Does there exist a compact minimal surface S ⊂ R3? Justify your answer.

4/II/24H Differential Geometry

Let S ⊂ R3 be a surface.

(a) In the case where S is compact, define the Euler characteristic χ and genus g
of S.

(b) Define the notion of geodesic curvature kg for regular curves γ : I → S. When
is kg = 0? State the Global Gauss–Bonnet Theorem (including boundary term).

(c) Let S = S2 (the standard 2-sphere), and suppose γ ⊂ S2 is a simple closed
regular curve such that S2\γ is the union of two distinct connected components with equal
areas. Can γ have everywhere strictly positive or everywhere strictly negative geodesic
curvature?

(d) Prove or disprove the following statement: if S is connected with Gaussian
curvature K = 1 identically, then S is a subset of a sphere of radius 1.
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1/II/24H Differential Geometry

Let f : X → Y be a smooth map between manifolds without boundary. Recall
that f is a submersion if dfx : TxX → Tf(x)Y is surjective for all x ∈ X. The canonical

submersion is the standard projection of Rk onto Rl for k > l, given by

(x1, . . . , xk) 7→ (x1, . . . , xl).

(i) Let f be a submersion, x ∈ X and y = f(x). Show that there exist local coordinates
around x and y such that f , in these coordinates, is the canonical submersion.
[You may assume the inverse function theorem.]

(ii) Show that submersions map open sets to open sets.

(iii) If X is compact and Y connected, show that every submersion is surjective. Are
there submersions of compact manifolds into Euclidean spaces Rk with k > 1?

2/II/24H Differential Geometry

(i) What is a minimal surface? Explain why minimal surfaces always have non-positive
Gaussian curvature.

(ii) A smooth map f : S1 → S2 between two surfaces in 3-space is said to be conformal
if

〈dfp(v1), dfp(v2)〉 = λ(p)〈v1, v2〉
for all p ∈ S1 and all v1, v2 ∈ TpS1, where λ(p) 6= 0 is a number which depends
only on p.

Let S be a surface without umbilical points. Prove that S is a minimal surface if
and only if the Gauss map N : S → S2 is conformal.

(iii) Show that isothermal coordinates exist around a non-planar point in a minimal
surface.

3/II/23H Differential Geometry

(i) Let f : X → Y be a smooth map between manifolds without boundary. Define
critical point, critical value and regular value. State Sard’s theorem.

(ii) Explain how to define the degree modulo 2 of a smooth map f , indicating clearly
the hypotheses on X and Y . Show that a smooth map with non-zero degree modulo
2 must be surjective.

(iii) Let S be the torus of revolution obtained by rotating the circle (y− 2)2+ z2 = 1 in
the yz-plane around the z-axis. Describe the critical points and the critical values
of the Gauss map N of S. Find the degree modulo 2 of N . Justify your answer by
means of a sketch or otherwise.
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4/II/24H Differential Geometry

(i) What is a geodesic? Show that geodesics are critical points of the energy functional.

(ii) Let S be a surface which admits a parametrization φ(u, v) defined on an open subset
W of R2 such that E = G = U + V and F = 0, where U = U(u) is a function of u
alone and V = V (v) is a function of v alone. Let γ : I → φ(W ) be a geodesic and
write γ(t) = φ(u(t), v(t)). Show that

[
U(u(t)) + V (v(t))

][
V (v(t))u̇2 − U(u(t))v̇2

]

is independent of t.
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1/II/24H Differential Geometry

(a) State and prove the inverse function theorem for a smooth map f : X → Y between
manifolds without boundary.

[You may assume the inverse function theorem for functions in Euclidean space.]

(b) Let p be a real polynomial in k variables such that for some integer m > 1,

p(tx1, . . . , txk) = tmp(x1, . . . , xk)

for all real t > 0 and all y = (x1, . . . , xk) ∈ Rk. Prove that the set Xa of points y
where p(y) = a is a (k−1)-dimensional submanifold of Rk, provided it is not empty
and a 6= 0.
[You may use the pre-image theorem provided that it is clearly stated.]

(c) Show that the manifolds Xa with a > 0 are all diffeomorphic. Is Xa with a > 0
necessarily diffeomorphic to Xb with b < 0?

2/II/24H Differential Geometry

Let S ⊂ R3 be a surface.

(a) Define the exponential map expp at a point p ∈ S. Assuming that expp is smooth,
show that expp is a diffeomorphism in a neighbourhood of the origin in TpS.

(b) Given a parametrization around p ∈ S, define the Christoffel symbols and show
that they only depend on the coefficients of the first fundamental form.

(c) Consider a system of normal co-ordinates centred at p, that is, Cartesian co-
ordinates (x, y) in TpS and parametrization given by (x, y) 7→ expp(xe1 + ye2),
where {e1, e2} is an orthonormal basis of TpS. Show that all of the Christoffel
symbols are zero at p.

3/II/23H Differential Geometry

Let S ⊂ R3 be a connected oriented surface.

(a) Define the Gauss map N : S → S2 of S. Given p ∈ S, show that the derivative of
N ,

dNp : TpS → TN(p)S
2 = TpS

is self-adjoint.

(b) Show that if N is a diffeomorphism, then the Gaussian curvature is positive
everywhere. Is the converse true?
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4/II/24H Differential Geometry

(a) Let S ⊂ R3 be an oriented surface and let λ be a real number. Given a point p ∈ S
and a vector v ∈ TpS with unit norm, show that there exist ε > 0 and a unique curve
γ : (−ε, ε) → S parametrized by arc-length and with constant geodesic curvature
λ such that γ(0) = p and γ̇(0) = v.

[You may use the theorem on existence and uniqueness of solutions of ordinary
differential equations.]

(b) Let S be an oriented surface with positive Gaussian curvature and diffeomorphic
to S2. Show that two simple closed geodesics in S must intersect. Is it true that
two smooth simple closed curves in S with constant geodesic curvature λ 6= 0 must
intersect?
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1/II/24H Differential Geometry

Let f : X → Y be a smooth map between manifolds without boundary.

(i) Define what is meant by a critical point, critical value and regular value of f .

(ii) Show that if y is a regular value of f and dimX >dimY , then the set f−1(y)
is a submanifold of X with dimf−1(y) =dimX−dimY .

[You may assume the inverse function theorem.]

(iii) Let SL(n,R) be the group of all n×n real matrices with determinant 1. Prove
that SL(n,R) is a submanifold of the set of all n×n real matrices. Find the tangent space
to SL(n,R) at the identity matrix.

2/II/24H Differential Geometry

State the isoperimetric inequality in the plane.

Let S ⊂ R3 be a surface. Let p ∈ S and let Sr(p) be a geodesic circle of centre
p and radius r (r small). Let L be the length of Sr(p) and A be the area of the region
bounded by Sr(p). Prove that

4πA− L2 = π2r4K(p) + ε(r),

where K(p) is the Gaussian curvature of S at p and

lim
r→0

ε(r)

r4
= 0.

When K(p) > 0 and r is small, compare this briefly with the isoperimetric inequality in
the plane.

3/II/23H Differential Geometry

(i) Define geodesic curvature and state the Gauss–Bonnet theorem.

(ii) Let α : I → R3 be a closed regular curve parametrized by arc-length, and
assume that α has non-zero curvature everywhere. Let n : I → S2 ⊂ R3 be the curve
given by the normal vector n(s) to α(s). Let s̄ be the arc-length of the curve n on S2.
Show that the geodesic curvature kg of n is given by

kg = − d

ds
tan−1(τ/k)

ds

ds̄
,

where k and τ are the curvature and torsion of α.

(iii) Suppose now that n(s) is a simple curve (i.e. it has no self-intersections). Show
that n(I) divides S2 into two regions of equal area.
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4/II/24H Differential Geometry

(i) Define what is meant by an isothermal parametrization. Let φ : U → R3 be an
isothermal parametrization. Prove that

φuu + φvv = 2λ2 H,

where H is the mean curvature vector and λ2 = 〈φu, φu〉.
Define what it means for φ to be minimal, and deduce that φ is minimal if and only

if ∆φ = 0.

[You may assume that the mean curvature H can be written as

H =
eG− 2fF + gE

2(EG− F 2)
. ]

(ii) Write φ(u, v) = (x(u, v), y(u, v), z(u, v)). Consider the complex valued functions

ϕ1 = xu − ixv, ϕ2 = yu − iyv, ϕ3 = zu − izv.

Show that φ is isothermal if and only if ϕ2
1 + ϕ2

2 + ϕ2
3 ≡ 0.

Suppose now that φ is isothermal. Prove that φ is minimal if and only if ϕ1, ϕ2

and ϕ3 are holomorphic functions.

(iii) Consider the immersion φ : R2 → R3 given by

φ(u, v) = (u− u3/3 + uv2, −v + v3/3− u2v, u2 − v2).

Find ϕ1, ϕ2 and ϕ3. Show that φ is an isothermal parametrization of a minimal surface.
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