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Paper 1, Section I

9B Cosmology
(a) A homogeneous and isotropic fluid has an energy density ρ(t) and pressure P (t).

Use the relation dE = −P dV for the energy E to derive the continuity equation in a
universe with scale factor a(t),

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 ,

where the overdot indicates differentiation with respect to time t. [Hint: recall that the
physical volume V (t) = a(t)3V0, where V0 is the co-moving volume.]

(b) Given that the scale factor a(t) satisfies the Raychaudhuri equation

ä

a
= −4πG

3c2
(ρ+ 3P ) ,

where G is Newton’s constant and c is the speed of light, show that the quantity

Q =
8πG

3c2
ρ a2 − ȧ2 ,

is time independent.

(c) The pressure P is related to ρ by the equation of state

P = ω ρ, |ω| < 1 .

Given that a(t0) = 1, find a(t) for an expanding universe with Q = 0, and hence show
that a(t?) = 0 for some t? < t0.

Paper 2, Section I

9B Cosmology
The number density n of photons in thermal equilibrium at temperature T takes

the form

n =
8π

c3

∫ ∞

0

ν2dν

exp(hν/kBT ) − 1
, (?)

where h is Planck’s constant, kB is the Boltzmann constant and c is the speed of light.

Using (?), show that the photon number density n and energy density ρ can be
expressed in the form

n = αT 3 and ρ = ξ T 4 ,

where the constants α and ξ need not be evaluated explicitly.

At time t = tdec and temperature T = Tdec, photons decouple from thermal
equilibrium. By considering how the photon frequency redshifts as a flat universe expands,
show that the form of the equilibrium frequency distribution is preserved if the temperature
for t > tdec is defined by

T =
a(tdec)

a(t)
Tdec .
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Paper 3, Section I

9B Cosmology
The equilibrium number density of fermions of mass m at temperature T and

chemical potential µ is

n =
4πgs
h3

∫ ∞

0

p2dp

exp
[
E(p)−µ
kB T

]
+ 1

,

where gs is the degeneracy factor, E(p) = c
√
p2 +m2c2, c is the speed of light, kB is

the Boltzmann constant, p is the magnitude of the particle momentum and h is Planck’s
constant. For a non-relativistic gas with pc � mc2 and kBT � mc2 − µ, show that the
number density becomes

n = gs

(
2πmkBT

h2

)3/2

exp

[
µ−mc2

kBT

]
. (?)

[You may assume that
∫∞
0 dxx2 e−x

2/α =
√
πα3/2/4 for α > 0.]

Before recombination, equilibrium is maintained between neutral hydrogen, free
electrons, protons and photons through the interaction

p+ e− ↔ H + γ .

Using the non-relativistic number density (?), deduce Saha’s equation relating the
electron and hydrogen number densities,

n2e
nH
≈
(
2πmekBT

h2

)3/2

exp

[
−Ebind

kBT

]
,

where Ebind = (mp + me − mH)c
2 is the hydrogen binding energy. State clearly any

assumptions made.
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Paper 4, Section I

9B Cosmology
What is the flatness problem? By using the Friedmann and continuity equations,

show that a period of accelerated expansion of the scale factor a(t) in the early stages of
the universe can solve the flatness problem if ρ + 3P < 0, where ρ is the energy density
and P is the pressure. [Hint: it may be useful to compute d(ρa2)/dt.]

In the very early universe one can neglect the spatial curvature and the cosmological
constant. Suppose that in addition there is a homogenous scalar field φ with potential

V (φ) = m2φ2 ,

and the Friedmann equation is

3H2 =
1

2
φ̇2 + V (φ) ,

where H = ȧ/a is the Hubble parameter. The field φ obeys the evolution equation

φ̈+ 3Hφ̇+
dV

dφ
= 0 .

During inflation, φ evolves slowly after starting from a large initial value φi at t = 0. State
what is meant by the slow-roll approximation. Show that in this approximation

φ(t) = φi −
2√
3
mt

a(t) = aiexp

[
mφi√

3
t− 1

3
m2t2

]
= aiexp

[
φ2i − φ(t)2

4

]
,

where ai is the initial value of a.
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Paper 1, Section II

15B Cosmology
In a homogeneous and isotropic universe, the scale factor a(t) obeys the Friedmann

equation (
ȧ

a

)2

+
K c2

a2
=

8πG

3c2
ρ ,

where K is a constant curvature parameter and ρ is the energy density which, together
with the pressure P , satisfies the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 . (?)

(a) Use the equations to show that the rate of change of the Hubble parameter
H = ȧ/a satisfies

Ḣ +H2 = −4πG

3c2
(ρ+ 3P ) .

(b) Suppose that an expanding universe is filled with radiation (with energy density
ρr and pressure Pr = ρr/3) as well as a cosmological constant component (with density ρΛ

and pressure PΛ = −ρΛ). Both radiation and cosmological constant components satisfy
the continuity equation (?) separately.

Given that the energy densities of these two components are measured today (t = t0)
to be

ρr0 = β
3c2H2

0

8πG
and ρΛ0 =

3c2H2
0

8πG
with constant β > 0 and a(t0) = 1 ,

show that the curvature parameter must satisfy Kc2 = β H2
0 . Hence, derive the following

relations for the Hubble parameter H and its time derivative:

H2 =
H2

0

a4
(β − β a2 + a4) ,

Ḣ = −βH
2
0

a4
(2 − a2) .

(c) Show qualitatively that universes with a(0) = 0 and β > 4 will recollapse to a
Big Crunch in the future. [Hint: you may find it useful to sketch a4H2 and a4Ḣ versus
a2 for representative values of β.]

(d) For β = 4, find an explicit solution for the scale factor a(t) satisfying a(0) = 0.
Find the limiting behaviours of this solution for large and small t.
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Paper 3, Section II

14B Cosmology
Small density perturbations δk(t) in pressureless matter inside the cosmological

horizon obey the following Fourier evolution equation

δ̈k + 2
ȧ

a
δ̇k −

4πGρ̄c
c2

δk = 0 ,

where the overdot indicates differentiation with respect to time t, a(t) the scale factor of
the universe, G is Newton’s constant, c the speed of light, k is the co-moving wavevector
and ρ̄c is the background density of the pressureless gravitating matter.

(a) Let teq be the time of matter-radiation equality. Show that during the matter-
dominated epoch, δk behaves as

δk(t) = A(k)

(
t

teq

)2/3

+B(k)

(
t

teq

)−1

,

where A(k) and B(k) are functions of k only.

(b) For a given wavenumber k ≡ |k|, show that the time tH at which this mode
crosses inside the horizon, i.e. c tH ≈ 2πa(tH)/k, is given by

tH
t0
≈





(
k0
k

)3
, tH > teq

1√
1 + zeq

(
k0
k

)2

, tH < teq

where t0 is the age of this universe, k0 ≡ 2π/(c t0), and the matter-radiation equality
redshift is given by 1 + zeq = (t0/teq)2/3.

(c) Assume that early in the radiation era there is no significant perturbation growth
in δk and that primordial perturbations from inflation are scale-invariant with a constant
amplitude at the time of horizon crossing given by 〈δk(tH)2〉 ≈ V −1C/k3, where C is
a constant and V is a volume. Use the results in parts (a) and (b) to project these
perturbations forward to t0 � tH , and show that the power spectrum of perturbations
today (at t = t0) is given by

P (k) ≡ V 〈δk(t0)
2〉 =





Ck
k40
, k < keq

Ckeq
k40

(
keq
k

)3
, k > keq

where keq is the wavenumber of modes that entered the horizon at matter-radiation
equality.
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Paper 1, Section I
9A Cosmology

Consider the process where protons and electrons combine to form neutral hydrogen
atoms at temperature T . Let nH be the number density of hydrogen atoms, ne the number
density of electrons, me the mass of the electron and Ebind the binding energy of hydrogen.
Derive Saha’s equation which relates the ratio nH/n

2
e to me, Ebind and T . Clearly describe

the steps required.

[You may use without proof that at temperature T and chemical potential µ, the
number density n of a non-relativistic particle species with mass m� kBT/c

2 is given by

n = g

(
mkBT

2π~2

)3/2

exp

[
−(mc2 − µ)

kB T

]
,

where g is the number of degrees of freedom of this particle species and kB, ~ and c are
the Boltzmann, Planck and speed of light constants, respectively.]

Paper 2, Section I
9A Cosmology

Consider a ball centered on the origin which is initially of uniform energy density
ρ and radius L. The ball expands outwards away from the origin. Additionally, take a
particle of mass m at some position x with r ≡ |x| � L. Assume that the particle only
experiences gravity through Newton’s inverse-square law.

Using the above model of the expanding universe, derive the Friedmann equation
describing the evolution of the scale factor a(t) appearing in the relation x(t) = a(t)x0.

Describe the two main flaws in this derivation of the Friedmann equation.

Paper 3, Section I
9A Cosmology

Combining the Friedmann and continuity equations

H2 =
8πG

3c2

(
ρ− k c2

R2 a2

)
, ρ̇+ 3H (ρ+ P ) = 0 ,

derive the Raychaudhuri equation (also known as the acceleration equation), which
expresses ä/a in terms of the energy density ρ and pressure P .

Assume that the strong energy condition ρ+ 3P > 0 holds. Show that

d

dt

(
H−1

)
> 1.

Deduce that H → +∞ and a→ 0 at a finite time in the past or in the future. What
property of H distinguishes the two cases? In one sentence, describe the implications for
the evolution of this model universe.
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Paper 4, Section I
9A Cosmology

Consider a closed Friedmann-Robertson-Walker universe filled with a fluid endowed
with an energy density ρ > 0 and pressure P > 0. For such a universe the Friedmann
equation reads (

ȧ

a

)2

=
8πG

3c2
ρ− c2

R2 a2
,

where a(t) is the scale factor.

What is the meaning of R? Show that a closed universe cannot expand forever.

[Hint: Use the continuity equation to show that

d

dt
(ρ a3) 6 0 . ]
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Paper 1, Section II
15A Cosmology

The continuity, Euler and Poisson equations governing how a non-relativistic fluid
composed of particles with mass m, number density n, pressure P and velocity v propagate
in an expanding universe take the form

∂ρ

∂t
+ 3Hρ+

1

a
∇ · (ρv) = 0 ,

ρa

(
∂

∂t
+

v

a
·∇
)
u = −c2∇P − ρ∇Φ ,

∇2Φ =
4πG

c2
ρ a2 ,

where ρ = mc2n, u = v + aH x, H = ȧ/a, Φ is the gravitational potential and a(t) is the
scale factor.

Consider small perturbations about a homogeneous and isotropic flow,

n = n̄(t) + ε δn , v = ε δv , P = P̄ (t) + ε δP and Φ = Φ̄(t,x) + ε δΦ ,

with ε� 1.

(a) Show that, to first order in ε, the continuity equation can be written as

δ̇ +
1

a
∇ · δv = 0 , (†)

where δ = δn/n̄ is the density contrast.

(b) Show that, to first order in ε, the Euler equation can be written as

mn̄a ( ˙δv +H δv) = −∇δP −mn̄∇δΦ . (††)

(c) Now assume that δP = c2smδn. Using (†), (††) and the perturbed Poisson
equation, show that the density contrast δ obeys

δ̈ + 2H δ̇ − c2s
(

1

a2
∇2 + k2J

)
δ = 0 (?)

and express kJ as a function of n̄, m and c2s.

(d) Neglecting the bracketed terms in equation (?), solve it to find the form of the
growth of matter perturbations in a radiation-dominated universe.
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Paper 3, Section II
14A Cosmology

(a) What are the cosmological flatness and horizon problems? Explain what forms
of time evolution of the cosmological scale factor a(t) must occur during a period of
inflationary expansion in a Friedmann-Robertson-Walker universe. How can inflation
solve the flatness and horizon problems? [You may assume an equation of state where
the pressure P is proportional to the energy density ρ.]

(b) Consider a universe with a Hubble expansion rate H = ȧ/a containing a single
inflaton field φ with a potential V (φ) > 0. The density and pressure are given by

ρ =
1

2
φ̇2 + V (φ) ,

P =
1

2
φ̇2 − V (φ) .

Show that the continuity equation

ρ̇+ 3H(ρ+ P ) = 0

demands

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (†)

(c) Consider the Friedmann equation

(
ȧ

a

)2

=
8πG

3c2
ρ , (††)

and show that
ä

a
=

8πG

3c2

[
V (φ)− φ̇2

]
.

Under what conditions does an inflationary phase occur?

(d) What is slow roll inflation? Show that in slow roll inflation, the scalar equation
(†) and Friedmann equation (††) reduce to

3Hφ̇ ≈ −dV

dφ
and H2 ≈ 8πG

3c2
V (φ) . (?)

(e) Using the slow roll equations (?), determine a(φ) and φ(t) when V (φ) = 1
4λφ

4,
with λ > 0.
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Paper 1, Section I

9B Cosmology
The continuity, Euler and Poisson equations governing how non-relativistic fluids

with energy density ρ, pressure P and velocity v propagate in an expanding universe take
the form

∂ρ

∂t
+ 3Hρ+

1

a
∇ · (ρv) = 0 ,

ρ a

(
∂

∂t
+

v

a
· ∇
)
u = − 1

c2
∇P − ρ∇Φ ,

∇2Φ =
4πG

c2
ρ a2 ,

where u = v + aH x, H = ȧ/a and a(t) is the scale factor.

(a) Show that, for a homogeneous and isotropic flow with P = P (t), ρ = ρ(t), v = 0
and Φ = Φ(t,x), consistency of the Euler equation with the Poisson equation implies
Raychaudhuri’s equation.

(b) Explain why this derivation of Raychaudhuri’s equation is an improvement over
the derivation of the Friedmann equation using only Newtonian gravity.

(c) Consider small perturbations about a homogeneous and isotropic flow,

ρ = ρ(t) + ε δρ, v = ε δv, P = P (t) + ε δP and Φ = Φ(t,x) + ε δΦ ,

with ε� 1. Show that, to first order in ε, the continuity equation can be written as

∂

∂t

(
δρ

ρ

)
= −1

a
∇ · δv .
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Paper 2, Section I

9B Cosmology
(a) The generalised Boltzmann distribution P (p) is given by

P (p) =
e−β(Ep np−µnp)

Zp
,

where β = (kBT )−1, µ is the chemical potential,

Zp =
∑

np

e−β(Ep np−µnp), Ep =
√
m2c4 + p2c2 and p = |p| .

Find the average particle number 〈N(p)〉 with momentum p, assuming that all particles
have rest mass m and are either

(i) bosons, or

(ii) fermions .

(b) The photon total number density nγ is given by

nγ =
2ζ(3)

π2~3c3
(kB T )3 ,

where ζ(3) ≈ 1.2. Consider now the fractional ionisation of hydrogen

Xe =
ne

ne + nH
.

In our universe ne + nH = np + nH ≈ η nγ , where η ∼ 10−9 is the baryon-to-photon
number density. Find an expression for the ratio

1−Xe

X2
e

in terms of η, (kB T ), the electron mass me, the speed of light c and the ionisation energy
of hydrogen I ≈ 13.6 eV.

One might expect neutral hydrogen to form at a temperature kB T ∼ I, but instead
in our universe it happens at the much lower temperature kB T ≈ 0.3 eV. Briefly explain
why this happens.

[
You may use without proof the Saha equation

nH
n2e

=

(
2π~2

me kB T

)3/2

eβI ,

for chemical equilibrium in the reaction e− + p+ ↔ H + γ .
]
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Paper 3, Section I

9B Cosmology
The expansion of the universe during inflation is governed by the Friedmann

equation (
ȧ

a

)2

=
8πG

3

[
1

2
φ̇2 + V (φ)

]
,

and the equation of motion for the inflaton field φ,

φ̈+ 3
ȧ

a
φ̇+

dV

dφ
= 0 .

Consider the potential
V = V0 e

−λφ

with V0 > 0 and λ > 0.

(a) Show that the inflationary equations have the exact solution

a(t) =

(
t

t0

)γ
and φ = φ0 + α log t,

for arbitrary t0 and appropriate choices of α, γ and φ0. Determine the range of λ for
which the solution exists. For what values of λ does inflation occur?

(b) Using the inflaton equation of motion and

ρ =
1

2
φ̇2 + V ,

together with the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 ,

determine P .

(c) What is the range of the pressure–energy density ratio ω ≡ P/ρ for which
inflation occurs?
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Paper 4, Section I

9B Cosmology
A collection of N particles, with masses mi and positions xi, interact through a

gravitational potential

V =
∑

i<j

Vij = −
∑

i<j

Gmimj

|xi − xj |
.

Assume that the system is gravitationally bound, and that the positions xi and velocities
ẋi are bounded for all time. Further, define the time average of a quantity X by

X = lim
t→∞

1

t

∫ t

0
X(t′) dt′ .

(a) Assuming that the time average of the kinetic energy T and potential energy V
are well defined, show that

T = −1

2
V .

[
You should consider the quantity I =

1

2

N∑

i=1

mi xi · xi , with all xi measured relative to

the centre of mass.
]

(b) Explain how part (a) can be used, together with observations, to provide
evidence in favour of dark matter. [You may assume that time averaging may be replaced
by an average over particles.]
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Paper 1, Section II

15B Cosmology
(a) Consider the following action for the inflaton field φ

S =

∫
d3x dt a(t)3

[
1

2
φ̇2 − c2

2a(t)2
∇φ · ∇φ− V (φ)

]
.

Use the principle of least action to derive the equation of motion for the inflaton φ,

φ̈+ 3Hφ̇− c2

a(t)2
∇2φ+

dV (φ)

dφ
= 0 , (∗)

where H = ȧ/a. [In the derivation you may discard boundary terms.]

(b) Consider a regime where V (φ) is approximately constant so that the universe
undergoes a period of exponential expansion during which a = a0 e

Hinf t. Show that (∗)
can be written in terms of the spatial Fourier transform φ̂k(t) of φ(x, t) as

¨̂
φk + 3Hinf

˙̂
φk +

c2k2

a2
φ̂k = 0 . (∗∗)

(c) Define conformal time τ and determine the range of τ when a = a0 e
Hinf t. Show

that (∗∗) can be written in terms of the conformal time as

d2φ̃k
dτ2

+

(
c2k2 − 2

τ2

)
φ̃k = 0 , where φ̃k = − 1

Hinfτ
φ̂k .

(d) Let |BD〉 denote the state that in the far past was in the ground state of the
standard harmonic oscillator with frequency ω = c k. Assuming that the quantum variance
of φ̂k is given by

Pk ≡ 〈BD|φ̂kφ̂ †
k|BD〉 =

~H2
inf

2c3k3
(
1 + τ2c2k2

)
,

explain in which sense inflation naturally generates a scale-invariant power spectrum. [You
may use that Pk has dimensions of [length]3. ]
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Paper 3, Section II

14B Cosmology
(a) Consider a closed universe endowed with cosmological constant Λ > 0 and filled

with radiation with pressure P and energy density ρ. Using the equation of state P = 1
3ρ

and the continuity equation

ρ̇+
3 ȧ

a
(ρ+ P ) = 0 ,

determine how ρ depends on a. Give the physical interpretation of the scaling of ρ with
a.

(b) For such a universe the Friedmann equation reads

(
ȧ

a

)2

=
8πG

3c2
ρ− c2

R2a2
+

Λ

3
.

What is the physical meaning of R?

(c) Making the substitution a(t) = α ã(t), determine α and Γ > 0 such that the
Friedmann equation takes the form

( ˙̃a

ã

)2

=
Γ

ã4
− 1

ã2
+

Λ

3
.

Using the substitution y(t) = ã(t)2 and the boundary condition y(0) = 0, deduce the
boundary condition for ẏ(0).

Show that

ÿ =
4Λ

3
y − 2 ,

and hence that

ã2(t) =
3

2Λ

[
1 − cosh

(√
4Λ

3
t

)
+ λ sinh

(√
4Λ

3
t

)]
.

Express the constant λ in terms of Λ and Γ.

Sketch the graphs of ã(t) for the cases λ > 1, λ < 1 and λ = 1.
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Paper 1, Section I

9D Cosmology
The Friedmann equation is

H2 =
8πG

3c2

(
ρ− kc2

R2a2

)
.

Briefly explain the meaning of H, ρ, k and R.

Derive the Raychaudhuri equation,

ä

a
= −4πG

3c2
(ρ+ 3P ) ,

where P is the pressure, stating clearly any results that are required.

Assume that the strong energy condition ρ + 3P > 0 holds. Show that there was
necessarily a Big Bang singularity at time tBB such that

t0 − tBB 6 H−1
0 ,

where H0 = H(t0) and t0 is the time today.

Paper 2, Section I

9D Cosmology
During inflation, the expansion of the universe is governed by the Friedmann

equation,

H2 =
8πG

3c2

(
1

2
φ̇2 + V (φ)

)
,

and the equation of motion for the inflaton field φ,

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 .

The slow-roll conditions are φ̇2 � V (φ) and φ̈� Hφ̇. Under these assumptions, solve for
φ(t) and a(t) for the potentials:

(i) V (φ) = 1
2m

2φ2 and

(ii) V (φ) = 1
4λφ

4, (λ > 0).
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Paper 3, Section I

9D Cosmology
At temperature T , with β = 1/(kBT ), the distribution of ultra-relativistic particles

with momentum p is given by

n(p) =
1

eβpc ∓ 1
,

where the minus sign is for bosons and the plus sign for fermions, and with p = |p|.
Show that the total number of fermions, nf , is related to the total number of bosons,

nb, by nf =
3
4nb.

Show that the total energy density of fermions, ρf , is related to the total energy
density of bosons, ρb, by ρf =

7
8ρb.

Paper 4, Section I

9D Cosmology
At temperature T and chemical potential µ, the number density of a non-relativistic

particle species with mass m� kBT/c
2 is given by

n = g

(
mkBT

2π~2

)3/2

e−(mc2−µ)/kBT ,

where g is the number of degrees of freedom of this particle.

At recombination, electrons and protons combine to form hydrogen. Use the result
above to derive the Saha equation

nH ≈ n2e

(
2π~2

mekBT

)3/2

eEbind/kBT ,

where nH is the number density of hydrogen atoms, ne the number density of electrons, me

the mass of the electron and Ebind the binding energy of hydrogen. State any assumptions
that you use in this derivation.
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Paper 1, Section II

15D Cosmology
A fluid with pressure P sits in a volume V . The change in energy due to a change

in volume is given by dE = −PdV . Use this in a cosmological context to derive the
continuity equation,

ρ̇ = −3H(ρ+ P ) ,

with ρ the energy density, H = ȧ/a the Hubble parameter, and a the scale factor.

In a flat universe, the Friedmann equation is given by

H2 =
8πG

3c2
ρ .

Given a universe dominated by a fluid with equation of state P = wρ, where w is a
constant, determine how the scale factor a(t) evolves.

Define conformal time τ . Assume that the early universe consists of two fluids:
radiation with w = 1/3 and a network of cosmic strings with w = −1/3. Show that the
Friedmann equation can be written as

(
da

dτ

)2

= Bρeq(a2 + a2eq) ,

where ρeq is the energy density in radiation, and aeq is the scale factor, both evaluated
at radiation-string equality. Here, B is a constant that you should determine. Find the
solution a(τ).
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Paper 3, Section II

14D Cosmology
In an expanding spacetime, the density contrast δ(x, t) satisfies the linearised

equation

δ̈ + 2Hδ̇ − c2s
(

1

a2
∇2 + k2J

)
δ = 0 , (∗)

where a is the scale factor, H is the Hubble parameter, cs is a constant, and kJ is the
Jeans wavenumber, defined by

c2sk
2
J =

4πG

c2
ρ̄(t) ,

with ρ̄(t) the background, homogeneous energy density.

(i) Solve for δ(x, t) in a static universe, with a = 1 and H = 0 and ρ̄ constant.
Identify two regimes: one in which sound waves propagate, and one in which there is an
instability.

(ii) In a matter-dominated universe with ρ̄ ∼ 1/a3, use the Friedmann equation
H2 = 8πGρ̄/3c2 to find the growing and decaying long-wavelength modes of δ as a function
of a.

(iii) Assuming c2s ≈ c2sk2J ≈ 0 in equation (∗), find the growth of matter perturbations
in a radiation-dominated universe and find the growth of matter perturbations in a
curvature-dominated universe.
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Paper 3, Section I

9B Cosmology
Consider a spherically symmetric distribution of mass with density ρ(r) at distance

r from the centre. Derive the pressure support equation that the pressure P (r) has to
satisfy for the system to be in static equilibrium.

Assume now that the mass density obeys ρ(r) = Ar2P (r), for some positive constant
A. Determine whether or not the system has a stable solution corresponding to a star of
finite radius.

Paper 4, Section I

9B Cosmology
Derive the relation between the neutrino temperature Tν and the photon tempera-

ture Tγ at a time long after electrons and positrons have become non-relativistic.

[In this question you may work in units of the speed of light, so that c = 1. You may
also use without derivation the following formulae. The energy density ǫa and pressure Pa
for a single relativistic species a with a number ga of degenerate states at temperature T
are given by

ǫa =
4πga
h3

∫
p3dp

ep/(kBT ) ∓ 1
, Pa =

4πga
3h3

∫
p3dp

ep/(kBT ) ∓ 1
,

where kB is Boltzmann’s constant, h is Planck’s constant, and the minus or plus depends
on whether the particle is a boson or a fermion respectively. For each species a, the entropy
density sa at temperature Ta is given by,

sa =
ǫa + Pa
kBTa

.

The effective total number g∗ of relativistic species is defined in terms of the numbers of
bosonic and fermionic particles in the theory as,

g∗ =
∑

bosons

gbosons +
7

8

∑

fermions

gfermions ,

with the specific values gγ = ge+ = ge− = 2 for photons, positrons and electrons.]
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Paper 1, Section I

9B Cosmology
[You may work in units of the speed of light, so that c = 1.]

By considering a spherical distribution of matter with total mass M and radius R
and an infinitesimal mass δm located somewhere on its surface, derive the Friedmann
equation describing the evolution of the scale factor a(t) appearing in the relation
R(t) = R0a(t)/a(t0) for a spatially-flat FLRW spacetime.

Consider now a spatially-flat, contracting universe filled by a single component with
energy density ρ, which evolves with time as ρ(t) = ρ0[a(t)/a(t0)]

−4. Solve the Friedmann
equation for a(t) with a(t0) = 1.

Paper 2, Section I

9B Cosmology
[You may work in units of the speed of light, so that c = 1.]

(a) Combining the Friedmann and continuity equations

H2 =
8πG

3
ρ , ρ̇+ 3H(ρ+ P ) = 0 ,

derive the Raychaudhuri equation (also known as the acceleration equation) which expresses
ä/a in terms of the energy density ρ and the pressure P .

(b) Assuming an equation of state P = wρ with constant w, for what w is the
expansion of the universe accelerated or decelerated?

(c) Consider an expanding, spatially-flat FLRW universe with both a cosmological
constant and non-relativistic matter (also known as dust) with energy densities ρcc and
ρdust respectively. At some time corresponding to aeq, the energy densities of these two
components are equal ρcc(aeq) = ρdust(aeq). Is the expansion of the universe accelerated
or decelerated at this time?

(d) For what numerical value of a/aeq does the universe transition from deceleration
to acceleration?
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Paper 3, Section II

14B Cosmology
[You may work in units of the speed of light, so that c = 1.]

Consider the process where protons and electrons combine to form neutral hydrogen
atoms;

p+ + e− ↔ H0 + γ.

Let np, ne and nH denote the number densities for protons, electrons and hydrogen atoms
respectively. The ionization energy of hydrogen is denoted I. State and derive Saha’s
equation for the ratio nenp/nH , clearly describing the steps required.

[You may use without proof the following formula for the equilibrium number density
of a non-relativistic species a with ga degenerate states of mass m at temperature T such
that kBT ≪ m,

na = ga

(
2πmkBT

h2

)3/2

exp ([µ−m] /kBT ) ,

where µ is the chemical potential and kB and h are the Boltzmann and Planck constants
respectively.]

The photon number density nγ is given as

nγ =
16π

h3
ζ(3) (kBT )

3 ,

where ζ(3) ≃ 1.20. Consider now the fractional ionization Xe = ne/(ne + nH). In our
universe ne + nH = np + nH ≃ ηnγ where η is the baryon-to-photon number ratio. Find
an expression for the ratio

(1−Xe)

X2
e

in terms of kBT , η, I and the particle masses. One might expect neutral hydrogen to form
at a temperature given by kBT ∼ I ∼ 13 eV, but instead in our universe it forms at the
much lower temperature kBT ∼ 0.3 eV. Briefly explain why this happens. Estimate the
temperature at which neutral hydrogen would form in a hypothetical universe with η = 1.
Briefly explain your answer.
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Paper 1, Section II

15B Cosmology
[You may work in units of the speed of light, so that c = 1.]

Consider a spatially-flat FLRW universe with a single, canonical, homogeneous
scalar field φ(t) with a potential V (φ). Recall the Friedmann equation and the Ray-
chaudhuri equation (also known as the acceleration equation)

(
ȧ

a

)2

= H2 =
8πG

3

[
1

2
φ̇2 + V

]
,

ä

a
= −8πG

3

(
φ̇2 − V

)
.

(a) Assuming φ̇ 6= 0, derive the equations of motion for φ, i.e.

φ̈+ 3Hφ̇+ ∂φV = 0 .

(b) Assuming the special case V (φ) = λφ4, find φ(t), for some initial value φ(t0) = φ0
in the slow-roll approximation, i.e. assuming that φ̇2 ≪ 2V and φ̈≪ 3Hφ̇.

(c) The number N of efoldings is defined by dN = d ln a. Using the chain rule,
express dN first in terms of dt and then in terms of dφ. Write the resulting relation
between dN and dφ in terms of V and ∂φV only, using the slow-roll approximation.

(d) Compute the number N of efoldings of expansion between some initial value
φi < 0 and a final value φf < 0 (so that φ̇ > 0 throughout).

(e) Discuss qualitatively the horizon and flatness problems in the old hot big bang
model (i.e. without inflation) and how inflation addresses them.
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Paper 2, Section I

9B Cosmology
(a) Consider a homogeneous and isotropic universe with a uniform distribution of

galaxies. For three galaxies at positions rA, rB , rC , show that spatial homogeneity implies
that their non-relativistic velocities v(r) must satisfy

v(rB − rA) = v(rB − rC)− v(rA − rC),

and hence that the velocity field coordinates vi are linearly related to the position
coordinates rj via

vi = Hijrj ,

where the matrix coefficients Hij are independent of the position. Show why isotropy then
implies Hubble’s law

v = H r , with H independent of r .

Explain how the velocity of a galaxy is determined by the scale factor a and express the
Hubble parameter H0 today in terms of a.

(b) Define the cosmological horizon dH(t). For an Einstein–de Sitter universe with
a(t) ∝ t2/3, calculate dH(t0) at t = t0 today in terms of H0. Briefly describe the horizon
problem of the standard cosmology.
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Paper 3, Section I

9B Cosmology
The energy density of a particle species is defined by

ǫ =

∫ ∞

0
E(p)n(p)dp ,

where E(p) = c
√
p2 +m2c2 is the energy, and n(p) the distribution function, of a particle

with momentum p. Here c is the speed of light and m is the rest mass of the particle. If
the particle species is in thermal equilibrium then the distribution function takes the form

n(p) =
4π

h3
g

p2

exp((E(p) − µ)/kT )∓ 1
,

where g is the number of degrees of freedom of the particle, T is the temperature, h and
k are constants and − is for bosons and + is for fermions.

(a) Stating any assumptions you require, show that in the very early universe the
energy density of a given particle species i is

ǫi =
4πgi
(hc)3

(kT )4
∫ ∞

0

y3

ey ∓ 1
dy .

(b) Show that the total energy density in the very early universe is

ǫ =
4π5

15(hc)3
g∗ (kT )4 ,

where g∗ is defined by

g∗ ≡
∑

Bosons

gi +
7

8

∑

Fermions

gi.

[Hint: You may use the fact that
∫∞
0 y3(ey − 1)−1dy = π4/15.]
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Paper 1, Section I

9B Cosmology
For a homogeneous and isotropic universe filled with pressure-free matter (P = 0),

the Friedmann and Raychaudhuri equations are, respectively,

(
ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ and

ä

a
= −4πG

3
ρ ,

with mass density ρ, curvature k, and where ȧ ≡ da/dt. Using conformal time τ with
dτ = dt/a, show that the relative density parameter can be expressed as

Ω(t) ≡ ρ

ρcrit
=

8πGρa2

3H2
,

where H = 1
a
da
dτ and ρcrit is the critical density of a flat k = 0 universe (Einstein–de Sitter).

Use conformal time τ again to show that the Friedmann and Raychaudhuri equations can
be re-expressed as

kc2

H2
= Ω− 1 and 2

dH
dτ

+H2 + kc2 = 0 .

From these derive the evolution equation for the density parameter Ω:

dΩ

dτ
= HΩ (Ω− 1) .

Plot the qualitative behaviour of Ω as a function of time relative to the expanding Einstein–
de Sitter model with Ω = 1 (i.e., include curves initially with Ω > 1 and Ω < 1).
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Paper 4, Section I

9B Cosmology
A constant overdensity is created by taking a spherical region of a flat matter-

dominated universe with radius R and compressing it into a region with radius R < R.
The evolution is governed by the parametric equations

R = AR0(1− cos θ) , t = B(θ − sin θ),

where R0 is a constant and

A =
Ωm,0

2(Ωm,0 − 1)
, B =

Ωm,0

2H0 (Ωm,0 − 1)3/2
,

where H0 is the Hubble constant and Ωm,0 is the fractional overdensity at time t0.

Show that, as t→ 0+,

R(t) = R0 Ω
1/3
m,0 a(t)

(
1− 1

20

(
6t

B

)2/3

+ . . .

)
,

where the scale factor is given by a(t) = (3H0t/2)
2/3.

Show that, at the linear level, the density perturbation δlinear grows as a(t). Show
that, when the spherical overdensity has collapsed to zero radius, the linear perturbation
has value δlinear =

3
20 (12π)

2/3.
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Paper 3, Section II

14B Cosmology
The pressure support equation for stars is

1

r2
d

dr

[
r2

ρ

dP

dr

]
= −4πGρ ,

where ρ is the density, P is the pressure, r is the radial distance, and G is Newton’s
constant.

(a) What two boundary conditions should we impose on the above equation for it
to describe a star?

(b) By assuming a polytropic equation of state,

P (r) = Kρ1+
1
n (r) ,

where K is a constant, derive the Lane–Emden equation

1

ξ2
d

dξ

[
ξ2
dθ

dξ

]
= −θn,

where ρ = ρcθ
n, with ρc the density at the centre of the star, and r = aξ, for some a that

you should determine.

(c) Show that the mass of a polytropic star is

M =
1

2
√
π

(
(n+ 1)K

G

) 3
2

ρ
3−n
2n

c Yn,

where Yn ≡ − ξ21
dθ
dξ

∣∣∣
ξ=ξ1

and ξ1 is the value of ξ at the surface of the star.

(d) Derive the following relation between the mass,M , and radius, R, of a polytropic
star

M = AnK
n

n−1R
3−n
1−n ,

where you should determine the constant An. What type of star does the n = 3 polytrope
represent and what is the significance of the mass being constant for this star?
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Paper 1, Section II

15B Cosmology
A flat (k=0) homogeneous and isotropic universe with scale factor a(t) is filled with

a scalar field φ(t) with potential V (φ). Its evolution satisfies the Friedmann and scalar
field equations,

H2 =
1

3M2
Pl

(
1

2
φ̇2 + c2V (φ)

)
, φ̈+ 3Hφ̇+ c2

dV

dφ
= 0 ,

whereH(t) = ȧ
a is the Hubble parameter,MPl is the reduced Planck mass, and dots denote

derivatives with respect to cosmic time t, e.g. φ̇ ≡ dφ/dt.

(a) Use these equations to derive the Raychaudhuri equation, expressed in the form:

Ḣ = − 1

2M2
Pl

φ̇2 .

(b) Consider the following ansatz for the scalar field evolution,

φ(t) = φ0 ln tanh(λt) , (†)

where λ, φ0 are constants. Find the specific cosmological solution,

H(t) = λ
φ20
M2

Pl

coth(2λt) ,

a(t) = a0[sinh(2λt)]
φ2
0/2M

2
Pl , a0 constant.

(c) Hence, show that the Hubble parameter can be expressed in terms of φ as

H(φ) = λ
φ20
M2

Pl

cosh

(
φ

φ0

)
,

and that the scalar field ansatz solution (†) requires the following form for the potential:

V (φ) =
2λ2φ20
c2

[(
3φ20
2M2

Pl

− 1

)
cosh2

(
φ

φ0

)
+ 1

]
.

(d) Assume that the given parameters in V (φ) are such that 2/3 < φ20/M
2
Pl < 2.

Show that the asymptotic limit for the cosmological solution as t→ 0 exhibits decelerating
power law evolution and that there is an accelerating solution as t→ ∞, that is,

t→ 0 , φ→ −∞ , a(t) ∼ tφ
2
0/2M

2
Pl ,

t→ ∞ , φ→ 0 , a(t) ∼ exp(λφ20 t/M
2
Pl) .

Find the time tacc at which the solution transitions from deceleration to acceleration.
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Paper 1, Section I

9C Cosmology
In a homogeneous and isotropic universe, describe the relative displacement r(t) of

two galaxies in terms of a scale factor a(t). Show how the relative velocity v(t) of these
galaxies is given by the relation v(t) = H(t)r(t), where you should specify H(t) in terms
of a(t).

From special relativity, the Doppler shift of light emitted by a particle moving away
radially with speed v can be approximated by

λ0
λe

=

√
1 + v/c

1− v/c
= 1 +

v

c
+O

(
v2

c2

)
,

where λe is the wavelength of emitted light and λ0 is the observed wavelength. For the
observed light from distant galaxies in a homogeneous and isotropic expanding universe,
show that the redshift defined by 1 + z ≡ λ0/λe is given by

1 + z =
a(t0)

a(te)
,

where te is the time of emission and t0 is the observation time.

Paper 2, Section I

9C Cosmology
In a homogeneous and isotropic universe (Λ = 0), the acceleration equation for the

scale factor a(t) is given by

ä

a
= −4πG

3

(
ρ+ 3P/c2

)
,

where ρ(t) is the mass density and P (t) is the pressure.

If the matter content of the universe obeys the strong energy condition ρ+3P/c2 > 0,
show that the acceleration equation can be rewritten as Ḣ + H2 6 0, with Hubble
parameter H(t) = ȧ/a. Show that

H > 1

H−1
0 + t− t0

,

where H0 = H(t0) is the measured value today at t = t0. Hence, or otherwise, show that

a(t) 6 1 +H0(t− t0) .

Use this inequality to find an upper bound on the age of the universe.
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Paper 3, Section I

9C Cosmology

(a) In the early universe electrons, protons and neutral hydrogen are in thermal
equilibrium and interact via,

e− + p+ ⇌ H + γ .

The non-relativistic number density of particles in thermal equlibrium is

ni = gi

(
2πmikT

h2

) 3
2

exp

(
µi −mic

2

kT

)
,

where, for each species i, gi is the number of degrees of freedom, mi is its mass, and
µi is its chemical potential. [You may assume ge = gp = 2 and gH = 4.]

Stating any assumptions required, use these expressions to derive the Saha equation
which governs the relative abundances of electrons, protons and hydrogen,

nenp
nH

=

(
2πmekT

h2

) 3
2

exp

(
− I

kT

)
,

where I is the binding energy of hydrogen, which should be defined.

(b) Naively, we might expect that the majority of electrons and protons combine to form
neutral hydrogen once the temperature drops below the binding energy, i.e. kT . I.
In fact recombination does not happen until a much lower temperature, when
kT ≈ 0.03I. Briefly explain why this is.

[Hint: It may help to consider the relative abundances of particles in the early
universe.]
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Paper 4, Section I

9C Cosmology

(a) By considering a spherically symmetric star in hydrostatic equilibrium derive the
pressure support equation

dP

dr
= −GM(r)ρ

r2
,

where r is the radial distance from the centre of the star, M(r) is the stellar mass
contained inside that radius, and P (r) and ρ(r) are the pressure and density at
radius r respectively.

(b) Propose, and briefly justify, boundary conditions for this differential equation, both
at the centre of the star r = 0, and at the stellar surface r = R.

Suppose that P = Kρ2 for some K > 0. Show that the density satisfies the linear
differential equation

1

x2
∂

∂x

(
x2
∂ρ

∂x

)
= −ρ

where x = αr, for some constant α, is a rescaled radial coordinate. Find α.
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Paper 3, Section II

13C Cosmology

(a) The scalar moment of inertia for a system of N particles is given by

I =

N∑

i=1

mi ri · ri ,

wheremi is the particle’s mass and ri is a vector giving the particle’s position. Show
that, for non-relativistic particles,

1

2

d2I

dt2
= 2K +

N∑

i=1

Fi · ri

where K is the total kinetic energy of the system and Fi is the total force on particle
i.

Assume that any two particles i and j interact gravitationally with potential energy

Vij = −Gmimj

|ri − rj |
.

Show that

N∑

i=1

Fi · ri = V ,

where V is the total potential energy of the system. Use the above to prove the
virial theorem.

(b) Consider an approximately spherical overdensity of stationary non-interacting mas-
sive particles with initial constant density ρi and initial radius Ri. Assuming the
system evolves until it reaches a stable virial equilibrium, what will the final ρ and
R be in terms of their initial values? Would this virial solution be stable if our
particles were baryonic rather than non-interacting? Explain your answer.
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Paper 1, Section II

14C Cosmology
The evolution of a flat (k=0) homogeneous and isotropic universe with scale factor

a(t), mass density ρ(t) and pressure P (t) obeys the Friedmann and energy conservation
equations

H2(t) =

(
ȧ

a

)2

=
8πG

3
ρ+

Λc2

3
,

ρ̇ = −3
ȧ

a

(
ρ+ P/c2

)
,

where H(t) is the Hubble parameter (observed today t = t0 with value H0 = H(t0)) and
Λ > 0 is the cosmological constant.

Use these two equations to derive the acceleration equation

ä

a
= −4πG

3

(
ρ+ 3P/c2

)
+

Λc2

3
.

For pressure-free matter (ρ = ρM and PM = 0), solve the energy conservation
equation to show that the Friedmann and acceleration equations can be re-expressed as

H = H0

√
ΩM

a3
+ΩΛ ,

ä

a
= −H

2
0

2

[
ΩM

a3
− 2ΩΛ

]
,

where we have taken a(t0) = 1 and we have defined the relative densities today (t = t0) as

ΩM =
8πG

3H2
0

ρM(t0) and ΩΛ =
Λc2

3H2
0

.

Solve the Friedmann equation and show that the scale factor can be expressed as

a(t) =

(
ΩM

ΩΛ

)1/3

sinh2/3
(
3
2

√
ΩΛH0 t

)
.

Find an expression for the time t̄ at which the matter density ρM and the effective density
caused by the cosmological constant Λ are equal. (You need not evaluate this explicitly.)
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Paper 1, Section I

9C Cosmology
The expansion scale factor, a(t), for an isotropic and spatially homogeneous universe

containing material with pressure p and mass density ρ obeys the equations

ρ̇ + 3(ρ+ p)
ȧ

a
= 0 ,

( ȧ
a

)2
=

8πGρ

3
− k

a2
+

Λ

3
,

where the speed of light is set equal to unity, G is Newton’s constant, k is a constant equal
to 0 or ±1, and Λ is the cosmological constant. Explain briefly the interpretation of these
equations.

Show that these equations imply

ä

a
= −4πG(ρ+ 3p)

3
+

Λ

3
.

Hence show that a static solution with constant a = as exists when p = 0 if

Λ = 4πGρ =
k

a2s
.

What must the value of k be, if the density ρ is non-zero?

Paper 2, Section I

9C Cosmology
A spherical cloud of mass M has radius r(t) and initial radius r(0) = R. It contains

material with uniform mass density ρ(t), and zero pressure. Ignoring the cosmological
constant, show that if it is initially at rest at t = 0 and the subsequent gravitational
collapse is governed by Newton’s law r̈ = −GM/r2, then

ṙ2 = 2GM
(1
r
− 1

R

)
.

Suppose r is given parametrically by

r = R cos2 θ ,

where θ = 0 at t = 0. Derive a relation between θ and t and hence show that the cloud
collapses to radius r = 0 at

t =

√
3π

32Gρ0
,

where ρ0 is the initial mass density of the cloud.
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Paper 3, Section I

9C Cosmology
A universe contains baryonic matter with background density ρB(t) and density

inhomogeneity δB(x, t), together with non-baryonic dark matter with background density
ρD(t) and density inhomogeneity δD(x, t). After the epoch of radiation–matter density
equality, teq, the background dynamics are governed by

H =
2

3t
and ρD =

1

6πGt2
,

where H is the Hubble parameter.

The dark-matter density is much greater than the baryonic density (ρD ≫ ρB) and
so the time-evolution of the coupled density perturbations, at any point x, is described by
the equations

δ̈B + 2Hδ̇B = 4πGρD δD ,

δ̈D + 2Hδ̇D = 4πGρD δD .

Show that
δD =

α

t
+ β t2/3 ,

where α and β are independent of time. Neglecting modes in δD and δB that decay with
increasing time, show that the baryonic density inhomogeneity approaches

δB = β t2/3 + γ ,

where γ is independent of time.

Briefly comment on the significance of your calculation for the growth of baryonic
density inhomogeneities in the early universe.
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Paper 4, Section I

9C Cosmology
The external gravitational potential Φ(r) due to a thin spherical shell of radius a

and mass per unit area σ, centred at r = 0, will equal the gravitational potential due to
a point mass M at r = 0, at any distance r > a, provided

MrΦ(r)

2πσa
+K(a)r =

∫ r+a

r−a
RΦ(R) dR , (∗)

where K(a) depends on the radius of the shell. For which values of q does this equation
have solutions of the form Φ(r) = Crq, where C is constant? Evaluate K(a) in each case
and find the relation between the mass of the shell and M .

Hence show that the general gravitational force

F (r) =
A

r2
+Br

has a potential satisfying (∗). What is the cosmological significance of the constant B?
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Paper 3, Section II

13C Cosmology
The early universe is described by equations (with units such that c = 8πG = ~ = 1)

3H2 = ρ , ρ̇+ 3H(ρ+ p) = 0 , (1)

whereH = ȧ/a. The universe contains only a self-interacting scalar field φ with interaction
potential V (φ) so that the density and pressure are given by

ρ =
1

2
φ̇2 + V (φ) ,

p =
1

2
φ̇2 − V (φ) .

Show that
φ̈ + 3Hφ̇ + V ′(φ) = 0 . (2)

Explain the slow-roll approximation and apply it to equations (1) and (2) to show
that it leads to

√
3

∫ √
V

V ′ dφ = − t + const.

If V (φ) = 1
4λφ

4 with λ a positive constant and φ(0) = φ0, show that

φ(t) = φ0 exp

[
−
√

4λ

3
t

]

and that, for small t, the scale factor a(t) expands to leading order in t as

a(t) ∝ exp

[ √
λ

12
φ20 t

]
.

Comment on the relevance of this result for inflationary cosmology.
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Paper 1, Section II

14C Cosmology
The distribution function f(x,p, t) gives the number of particles in the universe with

position in (x,x + δx) and momentum in (p,p+ δp) at time t. It satisfies the boundary
condition that f → 0 as |x| → ∞ and as |p| → ∞. Its evolution obeys the Boltzmann
equation

∂f

∂t
+
∂f

∂p
· dp
dt

+
∂f

∂x
· dx
dt

=

[
df

dt

]

col

,

where the collision term
[
df
dt

]
col

describes any particle production and annihilation that
occurs.

The universe expands isotropically and homogeneously with expansion scale factor
a(t), so the momenta evolve isotropically with magnitude p ∝ a−1. Show that the
Boltzmann equation simplifies to

∂f

∂t
− ȧ

a
p · ∂f

∂p
=

[
df

dt

]

col

. (∗)

The number densities n of particles and n̄ of antiparticles are defined in terms of
their distribution functions f and f̄ , and momenta p and p̄, by

n =

∫ ∞

0
f 4πp2 dp and n̄ =

∫ ∞

0
f̄ 4πp̄2 dp̄ ,

and the collision term may be assumed to be of the form

[
df

dt

]

col

= −〈σv〉
∫ ∞

0
f̄ f 4πp̄2 dp̄+R

where 〈σv〉 determines the annihilation cross-section of particles by antiparticles and R is
the production rate of particles.

By integrating equation (∗) with respect to the momentum p and assuming that
〈σv〉 is a constant, show that

dn

dt
+ 3

ȧ

a
n = −〈σv〉nn̄+Q ,

where Q =
∫∞
0 R 4πp2 dp. Assuming the same production rate R for antiparticles, write

down the corresponding equation satisfied by n̄ and show that

(n − n̄)a3 = constant .
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Paper 4, Section I

8C Cosmology

Calculate the total effective number of relativistic spin states g∗ present in the early
universe when the temperature T is 1010 K if there are three species of low-mass neutrinos
and antineutrinos in addition to photons, electrons and positrons. If the weak interaction
rate is Γ = (T/1010 K)5 s−1 and the expansion rate of the universe is H =

√
8πGρ/3,

where ρ is the total density of the universe, calculate the temperature T∗ at which the

neutrons and protons cease to interact via weak interactions, and show that T∗ ∝ g
1/6
∗ .

State the formula for the equilibrium ratio of neutrons to protons at T∗, and briefly
describe the sequence of events as the temperature falls from T∗ to the temperature at
which the nucleosynthesis of helium and deuterium ends.

What is the effect of an increase or decrease of g∗ on the abundance of helium-4
resulting from nucleosynthesis? Why do changes in g∗ have a very small effect on the final
abundance of deuterium?
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Paper 3, Section I

8C Cosmology

What is the flatness problem? Show by reference to the Friedmann equation how a
period of accelerated expansion of the scale factor a(t) in the early stages of the universe
can solve the flatness problem if ρ + 3P < 0, where ρ is the mass density and P is the
pressure.

In the very early universe, where we can neglect the spatial curvature and the
cosmological constant, there is a homogeneous scalar field φ with a vacuum potential
energy

V (φ) = m2φ2 ,

and the Friedmann energy equation (in units where 8πG = 1) is

3H2 =
1

2
φ̇2 + V (φ) ,

where H is the Hubble parameter. The field φ obeys the evolution equation

φ̈+ 3Hφ̇ +
dV

dφ
= 0 .

During inflation, φ evolves slowly after starting from a large initial value φi at t = 0. State
what is meant by the slow-roll approximation. Show that in this approximation,

φ(t) = φi −
2√
3
mt ,

a(t) = ai exp

[
mφi√

3
t− 1

3
m2t2

]
= ai exp

[
φ2
i − φ2(t)

4

]
,

where ai is the initial value of a.

As φ(t) decreases from its initial value φi, what is its approximate value when the
slow-roll approximation fails?
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Paper 2, Section I

8C Cosmology

The mass density perturbation equation for non-relativistic matter (P ≪ ρc2) with
wave number k in the late universe (t > teq) is

δ̈ + 2
ȧ

a
δ̇ −

(
4πGρ − c2s k

2

a2

)
δ = 0 . (∗)

Suppose that a non-relativistic fluid with the equation of state P ∝ ρ4/3 dominates the
universe when a(t) = t2/3, and the curvature and the cosmological constant can be
neglected. Show that the sound speed can be written in the form c2s(t) ≡ dP/dρ =
c̄2s t

−2/3 where c̄s is a constant.

Find power-law solutions to (∗) of the form δ ∝ tβ and hence show that the general
solution is

δ = Ak t
n+ + Bk t

n−

where

n± = −1

6
±

[(5
6

)2
− c̄2s k

2

]1/2
.

Interpret your solutions in the two regimes k ≪ kJ and k ≫ kJ where kJ =
5

6c̄s
.
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Paper 1, Section I

8C Cosmology

Consider three galaxies O, A and B with position vectors rO, rA and rB in a
homogeneous universe. Assuming they move with non-relativistic velocities vO = 0, vA

and vB , show that spatial homogeneity implies that the velocity field v(r) satisfies

v(rB − rA) = v(rB − rO)− v(rA − rO) ,

and hence that v is linearly related to r by

vi =

3∑

j=1

Hijrj ,

where the components of the matrix Hij are independent of r.

Suppose the matrix Hij has the form

Hij =
D

t



5 −1 −2
1 5 −1
2 1 5


 ,

with D > 0 constant. Describe the kinematics of the cosmological expansion.
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Paper 3, Section II

12C Cosmology

Massive particles and antiparticles each with mass m and respective number
densities n(t) and n̄(t) are present at time t in the radiation era of an expanding universe
with zero curvature and no cosmological constant. Assuming they interact with cross-
section σ at speed v, explain, by identifying the physical significance of each of the terms,
why the evolution of n(t) is described by

dn

dt
= −3

ȧ

a
n− 〈σv〉nn̄+ P (t) ,

where the expansion scale factor of the universe is a(t), and where the meaning of P (t)
should be briefly explained. Show that

(n− n̄)a3 = constant .

Assuming initial particle-antiparticle symmetry, show that

d(na3)

dt
= 〈σv〉 (n2

eq − n2)a3 ,

where neq is the equilibrium number density at temperature T .

Let Y = n/T 3 and x = m/T . Show that

dY

dx
= − λ

x2
(Y 2 − Y 2

eq) ,

where λ = m3 〈σv〉 /Hm and Hm is the Hubble expansion rate when T = m.

When x > xf ≃ 10, the number density n can be assumed to be depleted only by
annihilations. If λ is constant, show that as x → ∞ at late time, Y approaches a constant
value given by

Y =
xf
λ

.

Why do you expect weakly interacting particles to survive in greater numbers than strongly
interacting particles?
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Paper 1, Section II

12C Cosmology

A closed universe contains black-body radiation, has a positive cosmological con-
stant Λ, and is governed by the equation

ȧ2

a2
=

Γ

a4
− 1

a2
+

Λ

3
,

where a(t) is the scale factor and Γ is a positive constant. Using the substitution y = a2

and the boundary condition y(0) = 0, deduce the boundary condition for ẏ(0) and show
that

ÿ =
4Λ

3
y − 2

and hence that

a2(t) =
3

2Λ

[
1− cosh

(√
4Λ

3
t

)
+ λ sinh

(√
4Λ

3
t

)]
.

Express the constant λ in terms of Λ and Γ.

Sketch the graphs of a(t) for the cases λ > 1 and 0 < λ < 1.
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Paper 4, Section I

10E Cosmology
A homogeneous and isotropic universe, with cosmological constant Λ, has expansion

scale factor a(t) and Hubble expansion rate H = ȧ/a. The universe contains matter with
density ρ and pressure P which satisfy the positive-energy condition ρ+ 3P/c2 > 0. The
acceleration equation is

ä

a
= −4πG

3
(ρ+ 3P/c2) +

1

3
Λc2.

If Λ 6 0, show that
d

dt
(H−1) > 1.

Deduce that H → ∞ and a → 0 at a finite time in the past or the future. What property
of H distinguishes the two cases?

Give a simple counterexample with ρ = P = 0 to show that this deduction fails to
hold when Λ > 0.

Paper 3, Section I

10E Cosmology
Consider a finite sphere of zero-pressure material of uniform density ρ(t) which

expands with radius r(t) = a(t)r0, where r0 is an arbitary constant, due to the evolution
of the expansion scale factor a(t). The sphere has constant total mass M and its radius
satisfies

r̈ = −dΦ

dr
,

where

Φ(r) = −GM

r
− 1

6
Λr2c2,

with Λ constant. Show that the scale factor obeys the equation

ȧ2

a2
=

8πGρ

3
− Kc2

a2
+

1

3
Λc2,

where K is a constant. Explain why the sign, but not the magnitude, of K is important.
Find exact solutions of this equation for a(t) when

(i) K = Λ = 0 and ρ(t) 6= 0,

(ii) ρ = K = 0 and Λ > 0,

(iii) ρ = Λ = 0 and K 6= 0.

Which two of the solutions (i)–(iii) are relevant for describing the evolution of the
universe after the radiation-dominated era?
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Paper 2, Section I

10E Cosmology
A self-gravitating fluid with density ρ, pressure P (ρ) and velocity v in a gravitational

potential Φ obeys the equations

∂ρ

∂t
+∇ · (ρv) = 0 ,

∂v

∂t
+ (v · ∇)v +

∇P

ρ
+∇Φ = 0 ,

∇2Φ = 4πGρ .

Assume that there exists a static constant solution of these equations with v = 0, ρ = ρ0
and Φ = Φ0, for which ∇Φ0 can be neglected. This solution is perturbed. Show that, to
first order in the perturbed quantities, the density perturbations satisfy

∂2ρ1
∂t2

= c2s∇2ρ1 + 4πGρ0ρ1 ,

where ρ = ρ0 + ρ1(x, t) and c2s = dP/dρ. Show that there are solutions to this equation of
the form

ρ1(x, t) = A exp[−ik · x+ iωt] ,

where A, ω and k are constants and

ω2 = c2s k · k− 4πGρ0 .

Interpret these solutions physically in the limits of small and large |k|, explaining what
happens to density perturbations on large and small scales, and determine the critical
wavenumber that divides the two distinct behaviours of the perturbation.
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Paper 1, Section I

10E Cosmology
Which particle states are expected to be relativistic and which interacting when the

temperature T of the early universe satisfies

(i) 1010 K < T < 5× 1010 K,

(ii) 5× 109 K < T < 1010 K,

(iii) T < 5× 109 K?

Calculate the total spin weight factor, g∗, of the relativistic particles and the total spin
weight factor, gI , of the interacting particles, in each of the three temperature intervals.

What happens when the temperature falls below 5 × 109 K? Calculate the ratio
of the temperatures of neutrinos and photons. Find the effective value of g∗ after the
universe cools below this temperature. [Note that the equilibrium entropy density is given
by s = (ρc2 + P )/T , where ρ is the density and P is the pressure.]

Paper 3, Section II

15E Cosmology
The luminosity distance to an astronomical light source is given by dL = χ/a(t),

where a(t) is the expansion scale factor and χ is the comoving distance in the universe
defined by dt = a(t)dχ. A zero-curvature Friedmann universe containing pressure-free
matter and a cosmological constant with density parameters Ωm and ΩΛ ≡ 1 − Ωm,
respectively, obeys the Friedmann equation

H2 = H2
0

(
Ωm0

a3
+ΩΛ0

)
,

where H = (da/dt)/a is the Hubble expansion rate of the universe and the subscript 0

denotes present-day values, with a0 ≡ 1.

If z is the redshift, show that

dL(z) =
1 + z

H0

∫ z

0

dz′

[(1− ΩΛ0)(1 + z′)3 +ΩΛ0]
1/2

.

Find dL(z) when ΩΛ0 = 0 and when Ωm0 = 0. Roughly sketch the form of dL(z) for
these two cases. What is the effect of a cosmological constant Λ on the luminosity distance
at a fixed value of z? Briefly describe how the relation between luminosity distance and
redshift has been used to establish the acceleration of the expansion of the universe.
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Paper 1, Section II

15E Cosmology
What are the cosmological flatness and horizon problems? Explain what form of

time evolution of the cosmological expansion scale factor a(t) must occur during a period
of inflationary expansion in a Friedmann universe. How can inflation solve the horizon and
flatness problems? [You may assume an equation of state where pressure P is proportional
to density ρ.]

The universe has Hubble expansion rate H = ȧ/a and contains only a scalar field φ
with self-interaction potential V (φ) > 0. The density and pressure are given by

ρ =
1

2
φ̇2 + V (φ) ,

P =
1

2
φ̇2 − V (φ) ,

in units where c = ~ = 1. Show that the conservation equation

ρ̇+ 3H(ρ+ P ) = 0

requires
φ̈+ 3Hφ̇+ dV/dφ = 0 .

If the Friedmann equation has the form

3H2 = 8πGρ

and the scalar-field potential has the form

V (φ) = V0e
−λφ ,

where V0 and λ are positive constants, show that there is an exact cosmological solution
with

a(t) ∝ t16πG/λ2
,

φ(t) = φ0 +
2

λ
ln(t) ,

where φ0 is a constant. Find the algebraic relation between λ, V0 and φ0. Show that a
solution only exists when 0 < λ2 < 48πG. For what range of values of λ2 does inflation
occur? Comment on what happens when λ → 0.
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Paper 4, Section I

10D Cosmology
List the relativistic species of bosons and fermions from the standard model of

particle physics that are present in the early universe when the temperature falls to
1MeV/kB .

Which of the particles above will be interacting when the temperature is above
1MeV/kB and between 1MeV/kB & T & 0.51MeV/kB , respectively?

Explain what happens to the populations of particles present when the temperature
falls to 0.51MeV/kB .

The entropy density of fermion and boson species with temperature T is s ∝ gsT
3,

where gs is the number of relativistic spin degrees of freedom, that is,

gs =
∑

bosons

gi +
7

8

∑

fermions

gi .

Show that when the temperature of the universe falls below 0.51MeV/kB the ratio
of the neutrino and photon temperatures will be given by

Tν

Tγ
=

(
4

11

)1/3

.
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Paper 3, Section I

10D Cosmology
The number densities of protons of mass mp or neutrons of mass mn in kinetic

equilibrium at temperature T , in the absence of any chemical potentials, are each given
by (with i = n or p)

ni = gi

(
mikBT

2π~2

)3/2

exp
[
−mic

2/kBT
]

,

where kB is Boltzmann’s constant and gi is the spin degeneracy.

Use this to show, to a very good approximation, that the ratio of the number of
neutrons to protons at a temperature T ≃ 1MeV/kB is given by

nn

np
= exp

[
−(mn −mp)c

2/kBT
]
,

where (mn −mp)c
2 = 1.3MeV . Explain any approximations you have used.

The reaction rate for weak interactions between protons and neutrons at energies
5MeV > kBT > 0.8MeV is given by Γ = (kBT/1MeV )5s−1 and the expansion rate of the
universe at these energies is given by H = (kBT/1MeV )2s−1. Give an example of a weak
interaction that can maintain equilibrium abundances of protons and neutrons at these
energies. Show how the final abundance of neutrons relative to protons can be calculated
and use it to estimate the mass fraction of the universe in helium-4 after nucleosynthesis.

What would have happened to the helium abundance if the proton and neutron
masses had been exactly equal?
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Paper 2, Section I

10D Cosmology
The linearised equation for the growth of small inhomogeneous density perturbations

δk with comoving wavevector k in an isotropic and homogeneous universe is

δ̈k + 2
ȧ

a
δ̇k +

(
c2sk

2

a2
− 4πGρ

)
δk = 0 ,

where ρ is the matter density, cs = (dP/dρ)1/2 is the sound speed, P is the pressure, a(t) is
the expansion scale factor of the unperturbed universe, and overdots denote differentiation
with respect to time t.

Define the Jeans wavenumber and explain its physical meaning.

Assume the unperturbed Friedmann universe has zero curvature and cosmological
constant and it contains only zero-pressure matter, so that a(t) = a0t

2/3. Show that the
solution for the growth of density perturbations is given by

δk = A(k)t2/3 +B(k)t−1 .

Comment briefly on the cosmological significance of this result.

Paper 1, Section I

10D Cosmology
The Friedmann equation and the fluid conservation equation for a closed isotropic

and homogeneous cosmology are given by

ȧ2

a2
=

8πGρ

3
− 1

a2
,

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 ,

where the speed of light is set equal to unity, G is the gravitational constant, a(t) is the
expansion scale factor, ρ is the fluid mass density and P is the fluid pressure, and overdots
denote differentiation with respect to the time coordinate t.

If the universe contains only blackbody radiation and a = 0 defines the zero of time
t, show that

a2(t) = t(t∗ − t) ,

where t∗ is a constant. What is the physical significance of the time t∗? What is the value
of the ratio a(t)/t at the time when the scale factor is largest? Sketch the curve of a(t)
and identify its geometric shape.

Briefly comment on whether this cosmological model is a good description of the
observed universe at any time in its history.
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Paper 3, Section II

15D Cosmology
The contents of a spatially homogeneous and isotropic universe are modelled as

a finite mass M of pressureless material whose radius r(t) evolves from some constant
reference radius r0 in proportion to the time-dependent scale factor a(t), with

r(t) = a(t)r0 .

(i) Show that this motion leads to expansion governed by Hubble’s Law. If this
universe is expanding, explain why there will be a shift in the frequency of radiation
between its emission from a distant object and subsequent reception by an observer. Define
the redshift z of the observed object in terms of the values of the scale factor a(t) at the
times of emission and reception.

(ii) The expanding universal mass M is given a small rotational perturbation, with
angular velocity ω, and its angular momentum is subsequently conserved. If deviations
from spherical expansion can be neglected, show that its linear rotational velocity will fall
as V ∝ a−n, where you should determine the value of n. Show that this perturbation
will become increasingly insignificant compared to the expansion velocity as the universe
expands if a ∝ t2/3.

(iii) A distant cloud of intermingled hydrogen (H) atoms and carbon monoxide (CO)
molecules has its redshift determined simultaneously in two ways: by detecting 21 cm
radiation from atomic hydrogen and by detecting radiation from rotational transitions in
CO molecules. The ratio of the 21 cm atomic transition frequency to the CO rotational
transition frequency is proportional to α2, where α is the fine structure constant. It is
suggested that there may be a small difference in the value of the constant α between the
times of emission and reception of the radiation from the cloud.

Show that the difference in the redshift values for the cloud, ∆z = zCO − z21,
determined separately by observations of the H and CO transitions, is related to δα =
αr − αe, the difference in α values at the times of reception and emission, by

∆z = 2

(
δα

αr

)
(1 + zCO) .

(iv) The universe today contains 30% of its total density in the form of pressureless
matter and 70% in the form of a dark energy with constant redshift-independent density.
If these are the only two significant constituents of the universe, show that their densities
were equal when the scale factor of the universe was approximately equal to 75% of its
present value.
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Paper 1, Section II

15D Cosmology
A spherically symmetric star of total mass Ms has pressure P (r) and mass density

ρ(r), where r is the radial distance from its centre. These quantities are related by the
equations of hydrostatic equilibrium and mass conservation:

dP

dr
= −GM(r)ρ

r2
,

dM

dr
= 4πρr2 ,

where M(r) is the mass inside radius r.

By integrating from the centre of the star at r = 0, where P = Pc, to the surface of
the star at r = Rs, where P = Ps, show that

4πR3
sPs = Ω+ 3

∫ Ms

0

P

ρ
dM ,

where Ω is the total gravitational potential energy. Show that

−Ω >
GM2

s

2Rs
.

If the surface pressure is negligible and the star is a perfect gas of particles of mass
m with number density n and P = nkBT at temperature T , and radiation pressure can
be ignored, then show that

3

∫ Ms

0

P

ρ
dM =

3kB
m

T̄ ,

where T̄ is the mean temperature of the star, which you should define.

Hence, show that the mean temperature of the star satisfies the inequality

T̄ >
GMsm

6kBRs
.
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Paper 4, Section I

10E Cosmology
The number density of a species ⋆ of non-relativistic particles of mass m, in

equilibrium at temperature T and chemical potential µ, is

n⋆ = g⋆

(
2πmkT

h2

)3/2

e(µ−mc2)/kT ,

where g⋆ is the spin degeneracy. During primordial nucleosynthesis, deuterium, D, forms
through the nuclear reaction

p+ n ↔ D ,

where p and n are non-relativistic protons and neutrons. Write down the relationship
between the chemical potentials in equilibrium.

Using the fact that gD = 4, and explaining the approximations you make, show that

nD

nnnp
≈

(
h2

πmpkT

)3/2

exp

(
BD

kT

)
,

where BD is the deuterium binding energy, i.e. BD = (mn +mp −mD)c
2.

Let X⋆ = n⋆/nB where nB is the baryon number density of the universe. Using the
fact that nγ ∝ T 3, show that

XD

XnXp
∝ T 3/2η exp

(
BD

kT

)
,

where η is the baryon asymmetry parameter

η =
nB

nγ
.

Briefly explain why primordial deuterium does not form until temperatures well below
kT ∼ BD.
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Paper 3, Section I

10E Cosmology
For an ideal Fermi gas in equilibrium at temperature T and chemical potential µ,

the average occupation number of the kth energy state, with energy Ek, is

n̄k =
1

e(Ek−µ)/kBT + 1
.

Discuss the limit T → 0. What is the Fermi energy ǫF ? How is it related to the Fermi
momentum pF ? Explain why the density of states with momentum between p and p+ dp
is proportional to p2dp and use this fact to deduce that the fermion number density at
zero temperature takes the form

n ∝ p3F .

Consider an ideal Fermi gas that, at zero temperature, is either (i) non-relativistic
or (ii) ultra-relativistic. In each case show that the fermion energy density ǫ takes the
form

ǫ ∝ nγ ,

for some constant γ which you should compute.
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Paper 2, Section I

10E Cosmology
The Friedmann equation for the scale factor a(t) of a homogeneous and isotropic

universe of mass density ρ is

H2 =
8πGρ

3
− kc2

a2
,

(
H =

ȧ

a

)

where ȧ = da/dt and k is a constant. The mass conservation equation for a fluid of mass
density ρ and pressure P is

ρ̇ = −3
(
ρ+ P/c2

)
H .

Conformal time τ is defined by dτ = a−1dt. Show that

H = aH ,

(
H =

a′

a

)
,

where a′ = da/dτ . Hence show that the acceleration equation can be written as

H′ = −4π

3
G (ρ+ 3P/c2) a2 .

Define the density parameter Ωm and show that in a matter-dominated era, in which
P = 0, it satisfies the equation

Ω′
m = HΩm(Ωm − 1) .

Use this result to briefly explain the “flatness problem” of cosmology.

Paper 1, Section I

10E Cosmology
The number density of photons in equilibrium at temperature T is given by

n =
8π

(hc)3

∫ ∞

0

ν2dν

eβhν − 1
,

where β = 1/(kBT ) (kB is Boltzmann’s constant). Show that n ∝ T 3. Show further that
ǫ ∝ T 4, where ǫ is the photon energy density.

Write down the Friedmann equation for the scale factor a(t) of a flat homogeneous
and isotropic universe. State the relation between a and the mass density ρ for a
radiation-dominated universe and hence deduce the time-dependence of a. How does
the temperature T depend on time?
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Paper 3, Section II

15E Cosmology
In a flat expanding universe with scale factor a(t), average mass density ρ̄ and

average pressure P̄ ≪ ρ̄c2, the fractional density perturbations δk(t) at co-moving
wavenumber k satisfy the equation

δ̈k = −2

(
ȧ

a

)
δ̇k + 4πGρ̄δk −

c2sk
2

a2
δk . (∗)

Discuss briefly the meaning of each term on the right hand side of this equation. What is
the Jeans length λJ , and what is its significance? How is it related to the Jeans mass?

How does the equation (∗) simplify at λ ≫ λJ in a flat universe? Use your result to
show that density perturbations can grow. For a growing density perturbation, how does
δ̇/δ compare to the inverse Hubble time?

Explain qualitatively why structure only forms after decoupling, and why cold dark
matter is needed for structure formation.

Paper 1, Section II

15E Cosmology
The Friedmann equation for the scale factor a(t) of a homogeneous and isotropic

universe of mass density ρ is (
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
,

where ȧ = da/dt. Explain how the value of the constant k affects the late-time (t → ∞)
behaviour of a.

Explain briefly why ρ ∝ 1/a3 in a matter-dominated (zero-pressure) universe. By
considering the scale factor a of a closed universe as a function of conformal time τ , defined
by dτ = a−1dt, show that

a(τ) =
Ω0

2(Ω0 − 1)

[
1− cos

(√
kcτ

)]
,

where Ω0 is the present (τ = τ0) density parameter, with a(τ0) = 1. Use this result to
show that

t(τ) =
Ω0

2H0(Ω0 − 1)3/2

[√
kcτ − sin

(√
kcτ

)]
,

whereH0 is the present Hubble parameter. Find the time tBC at which this model universe
ends in a “big crunch”.

Given that
√
kcτ0 ≪ 1, obtain an expression for the present age of the universe in

terms of H0 and Ω0, according to this model. How does it compare with the age of a flat
universe?
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Paper 1, Section I

10E Cosmology
Light of wavelength λe emitted by a distant object is observed by us to have

wavelength λ0. The redshift z of the object is defined by

1 + z =
λ0

λe
.

Assuming that the object is at a fixed comoving distance from us in a homogeneous and
isotropic universe with scale factor a(t), show that

1 + z =
a(t0)

a(te)
,

where te is the time of emission and t0 the time of observation (i.e. today).

[You may assume the non-relativistic Doppler shift formula ∆λ/λ = (v/c) cos θ for the
shift ∆λ in the wavelength of light emitted by a nearby object travelling with velocity v
at angle θ to the line of sight.]

Given that the object radiates energy L per unit time, explain why the rate at
which energy passes through a sphere centred on the object and intersecting the Earth is
L/(1 + z)2.

Paper 2, Section I

10E Cosmology
A spherically symmetric star in hydrostatic equilibrium has density ρ(r) and

pressure P (r), which satisfy the pressure support equation,

dP

dr
= −Gmρ

r2
, (∗)

where m(r) is the mass within a radius r. Show that this implies

d

dr

(
r2

ρ

dP

dr

)
= −4πGr2ρ .

Provide a justification for choosing the boundary conditions dP/dr = 0 at the centre of
the star (r = 0) and P = 0 at its outer radius (r = R).

Use the pressure support equation (∗) to derive the virial theorem for a star,

〈P 〉V = −1

3
Egrav ,

where 〈P 〉 is the average pressure, V is the total volume of the star and Egrav is its total
gravitational potential energy.
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Paper 3, Section I

10E Cosmology
For an ideal gas of fermions of mass m in volume V , and at temperature T and

chemical potential µ, the number density n and kinetic energy E are given by

n =
4πgs
h3

∫ ∞

0
n̄(p) p2 dp , E =

4πgs
h3

V

∫ ∞

0
n̄(p)ǫ(p)p2 dp ,

where gs is the spin-degeneracy factor, h is Planck’s constant, ǫ(p) = c
√

p2 +m2c2 is the
single-particle energy as a function of the momentum p, and

n̄(p) =

[
exp

(
ǫ(p)− µ

kT

)
+ 1

]−1

,

where k is Boltzmann’s constant.

(i) Sketch the function n̄(p) at zero temperature, explaining why n̄(p) = 0 for p > pF
(the Fermi momentum). Find an expression for n at zero temperature as a function
of pF .

Assuming that a typical fermion is ultra-relativistic (pc ≫ mc2) even at zero
temperature, obtain an estimate of the energy density E/V as a function of pF ,
and hence show that

E ∼ hcn4/3V (∗)
in the ultra-relativistic limit at zero temperature.

(ii) A white dwarf star of radius R has total mass M = 4π
3 mpnpR

3, where mp is the
proton mass and np the average proton number density. On the assumption that the
star’s degenerate electrons are ultra-relativistic, so that (∗) applies with n replaced
by the average electron number density ne, deduce the following estimate for the
star’s internal kinetic energy:

Ekin ∼ hc

(
M

mp

)4/3 1

R
.

By comparing this with the total gravitational potential energy, briefly discuss the
consequences for white dwarf stability.
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Paper 4, Section I

10E Cosmology
The equilibrium number density of fermions at temperature T is

n =
4πgs
h3

∫ ∞

0

p2dp

exp[(ǫ(p)− µ)/kT ] + 1
,

where gs is the spin degeneracy and ǫ(p) = c
√

p2 +m2c2. For a non-relativistic gas with
pc ≪ mc2 and kT ≪ mc2−µ, show that the number density becomes

n = gs

(
2πmkT

h2

)3/2

exp[(µ −mc2)/kT ] . (∗)

[You may assume that
∫∞
0 dxx2e−x2/α = (

√
π/4) α3/2 for α > 0.]

Before recombination, equilibrium is maintained between neutral hydrogen, free
electrons, protons and photons through the interaction

p+ e− ↔ H + γ .

Using the non-relativistic number density (∗), deduce Saha’s equation relating the electron
and hydrogen number densities,

n2
e

nH
≈

(
2πmekT

h2

)3/2

exp(−I/kT ) ,

where I = (mp + me − mH)c2 is the ionization energy of hydrogen. State clearly any
assumptions you have made.
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Paper 1, Section II

15E Cosmology
A homogeneous and isotropic universe, with scale factor a, curvature parameter k,

energy density ρ and pressure P , satisfies the Friedmann and energy conservation equations

H2 +
kc2

a2
=

8πG

3
ρ ,

ρ̇+ 3H(ρ+ P/c2) = 0 ,

where H = ȧ/a, and the dot indicates a derivative with respect to cosmological time t.

(i) Derive the acceleration equation

ä

a
= −4πG

3
(ρ+ 3P/c2) .

Given that the strong energy condition ρc2 + 3P > 0 is satisfied, show that (aH)2

is a decreasing function of t in an expanding universe. Show also that the density
parameter Ω = 8πGρ/(3H2) satisfies

Ω− 1 =
kc2

a2H2
.

Hence explain, briefly, the flatness problem of standard big bang cosmology.

(ii) A flat (k = 0) homogeneous and isotropic universe is filled with a radiation fluid
(wR = 1/3) and a dark energy fluid (wΛ = −1), each with an equation of state of the
form Pi = wiρic

2 and density parameters today equal to ΩR0 and ΩΛ0 respectively.
Given that each fluid independently obeys the energy conservation equation, show
that the total energy density (ρR + ρΛ)c

2 equals ρc2, where

ρ(t) =
3H2

0

8πG

ΩR0

a4

(
1 +

1− ΩR0

ΩR0
a4
)

,

with H0 being the value of the Hubble parameter today. Hence solve the Friedmann
equation to get

a(t) = α(sinh βt)1/2 ,

where α and β should be expressed in terms ΩR0 and ΩΛ0. Show that this result
agrees with the expected asymptotic solutions at both early (t → 0) and late
(t → ∞) times.

[Hint:
∫
dx/

√
x2 + 1 = arcsinhx.]
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Paper 3, Section II

15E Cosmology
An expanding universe with scale factor a(t) is filled with (pressure-free) cold

dark matter (CDM) of average mass density ρ̄(t). In the Zel’dovich approximation to
gravitational clumping, the perturbed position r(q, t) of a CDM particle with unperturbed
comoving position q is given by

r(q, t) = a(t)[q+ψ(q, t)] , (1)

where ψ is the comoving displacement.

(i) Explain why the conservation of CDM particles implies that

ρ(r, t) d3r = a3ρ̄(t) d3q ,

where ρ(r, t) is the CDM mass density. Use (1) to verify that
d3q = a−3[1−∇q ·ψ]d3r, and hence deduce that the fractional density perturbation
is, to first order,

δ ≡ ρ− ρ̄

ρ̄
= −∇q · ψ .

Use this result to integrate the Poisson equation ∇2Φ = 4πGρ̄ for the gravitational
potential Φ. Then use the particle equation of motion r̈ = −∇Φ to deduce a
second-order differential equation for ψ, and hence that

δ̈ + 2

(
ȧ

a

)
δ̇ − 4πGρ̄ δ = 0 . (2)

[You may assume that ∇2Φ = 4πGρ̄ implies ∇Φ = (4πG/3)ρ̄ r and that the
pressure-free acceleration equation is ä = −(4πG/3)ρ̄a.]

(ii) A flat matter-dominated universe with background density ρ̄ = (6πGt2)−1 has scale
factor a(t) = (t/t0)

2/3. The universe is filled with a pressure-free homogeneous
(non-clumping) fluid of mass density ρH(t), as well as cold dark matter of mass
density ρC(r, t).

Assuming that the Zel’dovich perturbation equation in this case is as in (2) but
with ρ̄ replaced by ρ̄C , i.e. that

δ̈ + 2

(
ȧ

a

)
δ̇ − 4πGρ̄Cδ = 0 ,

seek power-law solutions δ ∝ tα to find growing and decaying modes with

α =
1

6

(
−1±

√
25− 24ΩH

)
,

where ΩH = ρH/ρ̄.

Given that matter domination starts (t = teq) at a redshift z ≈ 105, and given an
initial perturbation δ(teq) ≈ 10−5, show that ΩH = 2/3 yields a model that is not
compatible with the large-scale structure observed today.
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Paper 1, Section I

10D Cosmology

What is meant by the expression ‘Hubble time’?

For a(t) the scale factor of the universe and assuming a(0) = 0 and a(t0) = 1,

where t0 is the time now, obtain a formula for the size of the particle horizon R0 of the

universe.

Taking

a(t) = (t/t0)
α ,

show that R0 is finite for certain values of α. What might be the physically relevant values

of α? Show that the age of the universe is less than the Hubble time for these values of α.

Paper 2, Section I

10D Cosmology

The number density n = N/V for a photon gas in equilibrium is given by

n =
8π

c3

∫ ∞

0

ν 2

ehν/kT − 1
dν ,

where ν is the photon frequency. By letting x = hν/kT , show that

n = αT 3 ,

where α is a constant which need not be evaluated.

The photon entropy density is given by

s = β T 3 ,

where β is a constant. By considering the entropy, explain why a photon gas cools as the

universe expands.
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Paper 3, Section I

10D Cosmology

Consider a homogenous and isotropic universe with mass density ρ(t), pressure P (t)

and scale factor a(t). As the universe expands its energy changes according to the relation

dE = −PdV . Use this to derive the fluid equation

ρ̇ = −3
ȧ

a

(
ρ +

P

c 2

)
.

Use conservation of energy applied to a test particle at the boundary of a spherical

fluid element to derive the Friedmann equation

(
ȧ

a

)2

=
8π

3
Gρ − k

a2
c2 ,

where k is a constant. State any assumption you have made. Briefly state the significance

of k.

Paper 4, Section I

10D Cosmology

The linearised equation for the growth of density perturbations, δk, in an isotropic

and homogenous universe is

δ̈k + 2
ȧ

a
δ̇k +

(
cs
2 k2

a 2
− 4π Gρ

)
δk = 0 ,

where ρ is the density of matter, cs the sound speed, cs
2 = dP/dρ , and k is the comoving

wavevector and a(t) is the scale factor of the universe.

What is the Jean’s length? Discuss its significance for the growth of perturbations.

Consider a universe filled with pressure-free matter with a(t) = (t/t 0)
2/3. Compute

the resulting equation for the growth of density perturbations. Show that your equation

has growing and decaying modes and comment briefly on the significance of this fact.
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Paper 1, Section II

15D Cosmology

A star has pressure P (r) and mass density ρ(r), where r is the distance from the

centre of the star. These quantities are related by the pressure support equation

P ′ = − Gmρ

r 2
,

where P ′ = dP/dr and m(r) is the mass within radius r. Use this to derive the virial

theorem

Egrav = −3 〈P 〉V ,

where Egrav is the total gravitational potential energy and 〈P 〉 the average pressure.

The total kinetic energy of a spherically symmetric star is related to 〈P 〉 by

Ekin = α 〈P 〉V ,

where α is a constant. Use the virial theorem to determine the condition on α for

gravitational binding. By considering the relation between pressure and ‘internal energy’

U for an ideal gas, determine α for the cases of a) an ideal gas of non-relativistic particles,

b) an ideal gas of ultra-relativistic particles.

Why does your result imply a maximum mass for any star? Briefly explain what is

meant by the Chandrasekhar limit.

A white dwarf is in orbit with a companion star. It slowly accretes matter from the

other star until its mass exceeds the Chandrasekhar limit. Briefly explain its subsequent

evolution.
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Paper 3, Section II

15D Cosmology

The number density for particles in thermal equilibrium, neglecting quantum effects,

is

n = gs
4π

h3

∫
p2 dp exp(−(E(p) − µ)/kT ) ,

where gs is the number of degrees of freedom for the particle with energy E(p) and µ is

its chemical potential. Evaluate n for a non-relativistic particle.

Thermal equilibrium between two species of non-relativistic particles is maintained

by the reaction

a+ α ↔ b+ β ,

where α and β are massless particles. Evaluate the ratio of number densities na/nb given

that their respective masses are ma and mb and chemical potentials are µa and µb.

Explain how a reaction like the one above is relevant to the determination of the

neutron to proton ratio in the early universe. Why does this ratio not fall rapidly to zero

as the universe cools?

Explain briefly the process of primordial nucleosynthesis by which neutrons are

converted into stable helium nuclei. Letting

YHe = ρHe/ρ

be the fraction of the universe’s helium, compute YHe as a function of the ratio r = nn/np

at the time of nucleosynthesis.
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Paper 1, Section I

10D Cosmology

Prior to a time t ∼ 100, 000 years, the Universe was filled with a gas of photons

and non-relativistic free electrons and protons maintained in equilibrium by Thomson

scattering. At around t ∼ 400, 000 years, the protons and electrons began combining to

form neutral hydrogen,

p+ e− ↔ H + γ. (∗)
[You may assume that the equilibrium number density of a non-relativistic species

(kT ≪ mc2) is given by

n = gs

(
2πmkT

h2

)3/2

exp
(
(µ−mc2)/kT

)

while the photon number density is

nγ = 16πζ(3)

(
kT

hc

)3

, (ζ(3) ≈ 1.20 . . .).




Deduce Saha’s equation for the recombination process (∗) stating clearly your

assumptions and the steps made in the calculation,

n2
e

nH
=

(
2πmekT

h2

)3/2

exp(−I/kT ),

where I is the ionization energy of hydrogen.

Consider now the fractional ionization Xe = ne/nB where nB = np + nH = ηnγ is

the baryon number of the Universe and η is the baryon to photon ratio. Find an expression

for the ratio

(1−Xe)/X
2
e

in terms only of kT and constants such as η and I.

Suggest a reason why neutral hydrogen forms at a temperature kT ≈ 0.3eV which

is much lower than the hydrogen ionization temperature kT = I ≈ 13eV.
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Paper 2, Section I

10D Cosmology

(a) The equilibrium distribution for the energy density of a massless neutrino takes

the form

ǫ =
4πc

h3

∫ ∞

0

p3dp

exp(pc/kT ) + 1
.

Show that this can be expressed in the form ǫ = αT 4, where the constant α need not be

evaluated explicitly.

(b) In the early universe, the entropy density s at a temperature T is s =

(8σ/3c)NST
3 where NS is the total effective spin degrees of freedom. Briefly explain

why NS = N∗ +NSD, each term of which consists of two separate components as follows:

the contribution from each massless species in equilibrium (Ti = T ) is

N∗ =
∑

bosons

gi +
7

8

∑

fermions

gi ,

and a similar sum for massless species which have decoupled,

NSD =
∑

bosons

gi

(
Ti

T

)3

+
7

8

∑

fermions

gi

(
Ti

T

)3

,

where in each case gi is the degeneracy and Ti is the temperature of the species i.

The three species of neutrinos and antineutrinos decouple from equilibrium at a

temperature T ≈ 1MeV, after which positrons and electrons annihilate at T ≈ 0.5MeV,

leaving photons in equilibrium with a small excess population of electrons. Using entropy

considerations, explain why the ratio of the neutrino and photon temperatures today is

given by

Tν

Tγ
=

(
4

11

)1/3

.
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Paper 3, Section I

10D Cosmology

(a) Write down an expression for the total gravitational potential energy Egrav of

a spherically symmetric star of outer radius R in terms of its mass density ρ(r) and the

total mass m(r) inside a radius r, satisfying the relation dm/dr = 4πr2ρ(r).

An isotropic mass distribution obeys the pressure-support equation,

dP

dr
= −Gmρ

r2
,

where P (r) is the pressure. Multiply this expression by 4πr3 and integrate with respect

to r to derive the virial theorem relating the kinetic and gravitational energy of the star

Ekin = −1
2Egrav ,

where you may assume for a non-relativistic ideal gas that Ekin = 3
2〈P 〉V , with 〈P 〉 the

average pressure.

(b) Consider a white dwarf supported by electron Fermi degeneracy pressure

P ≈ h2n5/3/me, where me is the electron mass and n is the number density. Assume

a uniform density ρ(r) = mpn(r) ≈ mp〈n〉, so the total mass of the star is given by

M = (4π/3)〈n〉mpR
3 where mp is the proton mass. Show that the total energy of the

white dwarf can be written in the form

Etotal = Ekin + Egrav =
α

R2
− β

R
,

where α, β are positive constants which you should specify. Deduce that the white dwarf

has a stable radius RWD at which the energy is minimized, that is,

RWD ∼ h2M−1/3

Gmem
5/3
p

.
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Paper 4, Section I

10D Cosmology

(a) Consider the motion of three galaxies O, A, B at positions rO, rA, rB in an

isotropic and homogeneous universe. Assuming non-relativistic velocities v(r), show that

spatial homogeneity implies

v(rB − rA) = v(rB − rO)− v(rA − rO) ,

that is, that the velocity field v is linearly related to r by

vi =
∑

j

Hijrj ,

where the matrix coefficients Hij are independent of r. Further show that isotropy implies

Hubble’s law,

v = Hr ,

where the Hubble parameter H is independent of r. Presuming H to be a function of time

t, show that Hubble’s law can be integrated to obtain the solution

r(t) = a(t)x ,

where x is a constant (comoving) position and the scalefactor a(t) satisfies H = ȧ/a.

(b) Define the cosmological horizon dH(t). For models with a(t) = tα where

0 < α < 1, show that the cosmological horizon dH(t) = ct/(1 − α) is finite. Briefly

explain the horizon problem.
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Paper 1, Section II

15D Cosmology

(i) In a homogeneous and isotropic universe, the scalefactor a(t) obeys the Fried-

mann equation (
ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ,

where ρ(t) is the matter density which, together with the pressure P (t), satisfies

ρ̇ = −3
ȧ

a

(
ρ+ P/c2

)
.

Use these two equations to derive the Raychaudhuri equation,

ä

a
= −4πG

3

(
ρ+ 3P/c2

)
.

(ii) Conformal time τ is defined by taking dt/dτ = a, so that ȧ = a′/a ≡ H where

primes denote derivatives with respect to τ . For matter obeying the equation of state

P = wρc2, show that the Friedmann and energy conservation equations imply

H2 + kc2 =
8πG

3
ρ0a

−(1+3w),

where ρ0 = ρ(t0) and we take a(t0) = 1 today. Use the Raychaudhuri equation to derive

the expression

H′ + 1
2(1 + 3w)[H2 + kc2] = 0.

For a kc2 = 1 closed universe, by solving first for H (or otherwise), show that the scale

factor satisfies

a = α(sin βτ)2/(1+3w)

where α, β are constants. [Hint: You may assume that
∫
dx/(1+x2) = − cot−1 x+const.]

For a closed universe dominated by pressure-free matter (P = 0), find the complete

parametric solution

a = 1
2α(1− cos 2βτ), t =

α

4β
(2βτ − sin 2βτ).
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Paper 3, Section II

15D Cosmology

In the Zel’dovich approximation, particle trajectories in a flat expanding universe

are described by r(q, t) = a(t)[q+Ψ(q, t)] , where a(t) is the scale factor of the universe, q

is the unperturbed comoving trajectory and Ψ is the comoving displacement. The particle

equation of motion is

r̈ = −∇Φ − 1

ρ
∇P ,

where ρ is the mass density, P is the pressure (P ≪ ρc2) and Φ is the Newtonian potential

which satisfies the Poisson equation ∇2Φ = 4π Gρ .

(i) Show that the fractional density perturbation and the pressure gradient are given by

δ ≡ ρ− ρ̄

ρ̄
≈ −∇q ·Ψ , ∇P ≈ −ρ̄ c

2
s

a
∇2

qΨ ,

where ∇q has components ∂/∂qi, ρ̄ = ρ̄(t) is the homogeneous background density and

c2s ≡ ∂P/∂ρ is the sound speed. [You may assume that the Jacobian |∂ri/∂qj |−1 =

|a δij + a ∂ψi/∂qj |−1 ≈ a−3(1−∇q ·Ψ) for |Ψ| ≪ |q| .]

Use this result to integrate the Poisson equation once and obtain then the evolution

equation for the comoving displacement:

Ψ̈+ 2
ȧ

a
Ψ̇− 4πGρ̄Ψ− c2s

a2
∇2

qΨ = 0 ,

[You may assume that the integral of ∇2Φ = 4πG ρ̄ is ∇Φ = 4πGρ̄r/3 , that Ψ is

irrotational and that the Raychaudhuri equation is ä/a ≈ −4π Gρ̄/3 for P ≪ ρc2.]

Consider the Fourier expansion δ(x, t) =
∑

k δk exp(ik · x) of the density perturba-

tion using the comoving wavenumber k (k = |k|) and obtain the evolution equation for

the mode δk:

δ̈k + 2
ȧ

a
δ̇k − (4π Gρ̄− c2s k

2/a2) δk = 0 . (∗)

(ii) Consider a flat matter-dominated universe with a(t) = (t/t0)
2/3 (background density

ρ̄ = 1/(6π Gt2)) and with an equation of state P = βρ4/3 to show that (∗) becomes

δ̈k +
4

3t
δ̇k − 1

t2
(23 − v̄2s k

2) δk = 0 ,

where the constant v̄2s ≡ (4β/3)(6π G)−1/3 t
4/3
0 . Seek power law solutions of the form

δk ∝ tα to find the growing and decaying modes

δk = Ak t
n+ +Bk t

n− where n± = −1
6 ±

[
(56 )

2 − v̄2s k
2
]1/2

.

Part II, 2009 List of Questions

2009



32

1/I/10E Cosmology

The number density of particles of mass m at equilibrium in the early universe is
given by the integral

n =
4πgs

h3

∫ ∞

0

p2dp

exp[(E(p)− µ)/kT ]∓ 1
,

{
− bosons ,
+ fermions,

where E(p) = c
√
p2 +m2c2, µ is the chemical potential, and gs is the spin degeneracy.

Assuming that the particles remain in equilibrium when they become non-relativistic
(kT, µ� mc2), show that the number density can be expressed as

n = gs

(
2πmkT

h2

)3/2

e(µ−mc2)/kT .

[Hint: Recall that
∫∞

0
dx e−σ

2x2

=
√
π/(2σ), (σ > 0).]

At around t = 100 seconds, deuterium D forms through the nuclear fusion of
nonrelativistic protons p and neutrons n via the interaction p + n ↔ D. In equilibrium,
what is the relationship between the chemical potentials of the three species? Show that
the ratio of their number densities can be expressed as

nD
nnnp

≈
(
πmpkT

h2

)−3/2

eBD/kT ,

where the deuterium binding energy is BD = (mn +mp −mD) c2 and you may take
gD = 4. Now consider the fractional densities Xa = na/nB , where nB is the baryon
density of the universe, to re-express the ratio above in the form XD/(XnXp) , which
incorporates the baryon-to-photon ratio η of the universe.

[You may assume that the photon density is nγ = (16πζ(3)/(hc)3)(kT )3.]

Why does deuterium form only at temperatures much lower than that given by
kT ≈ BD ?
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2/I/10E Cosmology

A spherically-symmetric star obeys the pressure-support equation

dP

dr
= −Gmρ

r2
,

where P (r) is the pressure at a distance r from the centre, ρ(r) is the density, and m(r)
is the mass within a sphere of radius r. Show that this implies

d

dr

(
r2

ρ

dP

dr

)
= −4πGr2ρ.

Propose and justify appropriate boundary conditions for the pressure P (r) at the centre
of the star (r = 0) and at its outer edge r = R.

Show that the function

F (r) = P (r) +
Gm2

8πr4

is a decreasing function of r. Deduce that the central pressure Pc ≡ P (0) satisfies

Pc >
GM2

8πR4
,

where M ≡ m(R) is the mass of the star.
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1/II/15E Cosmology

(i) A homogeneous and isotropic universe has mass density ρ(t) and scale factor
a(t). Show how the conservation of total energy (kinetic plus gravitational potential) when
applied to a test particle on the edge of a spherical region in this universe can be used to
obtain the Friedmann equation

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
,

where k is a constant. State clearly any assumptions you have made.

(ii) Assume that the universe is flat (k = 0) and filled with two major components:
pressure-free matter (PM = 0) and dark energy with equation of state PΛ = −ρΛc

2

where their mass densities today (t = t0) are given respectively by ρM0 and ρΛ0.
Assuming that each component independently satisfies the fluid conservation equation,
ρ̇ = −3H(ρ+ P/c2), show that the total mass density can be expressed as

ρ(t) =
ρM0

a3
+ ρΛ0,

where we have set a(t0) = 1.

Hence, solve the Friedmann equation and show that the scale factor can be
expressed in the form

a(t) = α(sinhβt)2/3,

where α and β are constants which you should specify in terms of ρM0, ρΛ0 and t0.

[Hint: try the substitution b = a3/2.]

Show that the scale factor a(t) has the expected behaviour for a matter-dominated
universe at early times (t→ 0) and that the universe accelerates at late times (t→∞).
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3/I/10E Cosmology

The energy density ε and pressure P of photons in the early universe is given by

ε =
4σ

c
T 4, P =

1

3
ε,

where σ is the Stefan–Boltzmann constant. By using the first law of thermodynamics
dE = TdS −PdV +µdN , deduce that the entropy differential dS can be expressed in the
form

dS =
16σ

3c
d(T 3V ).

With the third law, show that the entropy density is given by s = (16σ/3c)T 3.

While particle interaction rates Γ remain much greater than the Hubble parameter
H, justify why entropy will be conserved during the expansion of the universe. Hence, in
the early universe (radiation domination) show that the temperature T ∝ a−1 where a(t)
is the scale factor of the universe, and show that the Hubble parameter H ∝ T 2.

4/I/10E Cosmology

The Friedmann and Raychaudhuri equations are respectively

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
and

ä

a
= −4πG

3

(
ρ+

3P

c2

)
,

where ρ is the mass density, P is the pressure, k is the curvature and ȧ ≡ da/dt with t
the cosmic time. Using conformal time τ (defined by dτ = dt/a) and the equation of state
P = wρc2, show that these can be rewritten as

kc2

H2
= Ω− 1 and 2

dH
dτ

= −(3w + 1)
(
H2 + kc2

)
,

where H = a−1da/dτ and the relative density is Ω ≡ ρ/ρcrit = 8πGρa2/(3H2).

Use these relations to derive the following evolution equation for Ω

dΩ

dτ
= (3w + 1)HΩ(Ω− 1).

For both w = 0 and w = −1, plot the qualitative evolution of Ω as a function of τ in an
expanding universe H > 0 (i.e. include curves initially with Ω > 1 and Ω < 1).

Hence, or otherwise, briefly describe the flatness problem of the standard cosmology
and how it can be solved by inflation.
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3/II/15E Cosmology

Small density perturbations δk(t) in pressureless matter inside the cosmological
horizon obey the following Fourier evolution equation

δ̈k + 2
ȧ

a
δ̇k − 4πGρ̄cδk = 0,

where ρ̄c is the average background density of the pressureless gravitating matter and k
is the comoving wavevector.

(i) Seek power law solutions δk ∝ tβ (β constant) during the matter-dominated
epoch (teq < t < t0) to find the approximate solution

δk(t) = A(k)

(
t

teq

)2/3

+B(k)

(
t

teq

)−1

, t� teq

where A, B are functions of k only and teq is the time of equal matter-radiation.

By considering the behaviour of the scalefactor a and the relative density ρ̄c/ρ̄total,
show that early in the radiation era (t� teq) there is effectively no significant perturbation
growth in δk on sub-horizon scales.

(ii) For a given wavenumber k = |k|, show that the time tH at which this mode
crosses inside the horizon, i.e., ctH ≈ 2πa(tH)/k, is given by

tH
t0
≈
{(

k0
k

)3
, tH � teq,

(1 + zeq)−1/2
(
k0
k

)2
, tH � teq,

where k0 ≡ 2π/(ct0), and the equal matter-radiation redshift is given by 1 + zeq =
(t0/teq)2/3.

Assume that primordial perturbations from inflation are scale-invariant with a
constant amplitude as they cross the Hubble radius given by 〈|δk(tH)|2〉 ≈ V −1A/k3,
where A is a constant and V is a large volume. Use the results of (i) to project these
perturbations forward to t0, and show that the power spectrum for perturbations today
will be given approximately by

P (k) ≡ V 〈|δk(t0)|2〉 ≈ A

k4
0

×
{
k, k < keq,

keq

(
keq
k

)3

, k > keq.
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1/I/10A Cosmology

Describe the motion of light rays in an expanding universe with scale factor a(t),
and derive the redshift formula

1 + z =
a(t0)

a(te)
,

where the light is emitted at time te and observed at time t0.

A galaxy at comoving position x is observed to have a redshift z. Given that the
galaxy emits an amount of energy L per unit time, show that the total energy per unit
time crossing a sphere centred on the galaxy and intercepting the earth is L/(1 + z)2.
Hence, show that the energy per unit time per unit area passing the earth is

L

(1 + z)2
1

4π|x|2a2(t0)
.

2/I/10A Cosmology

The number density of photons in thermal equilibrium at temperature T takes the
form

n =
8π

c3

∫
ν2dν

exp(hν/kT )− 1
.

At time t = tdec and temperature T = Tdec, photons decouple from thermal equilibrium.
By considering how the photon frequency redshifts as the universe expands, show that
the form of the equilibrium frequency distribution is preserved, with the temperature for
t > tdec defined by

T ≡ a(tdec)

a(t)
Tdec .

Show that the photon number density n and energy density ε can be expressed in
the form

n = αT 3 , ε = ξT 4 ,

where the constants α and ξ need not be evaluated explicitly.
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1/II/15A Cosmology

In a homogeneous and isotropic universe, the scale factor a(t) obeys the Friedmann
equation (

ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ ,

where ρ is the matter density, which, together with the pressure P , satisfies

ρ̇ = −3
ȧ

a

(
ρ+ P/c2

)
.

Here, k is a constant curvature parameter. Use these equations to show that the rate of
change of the Hubble parameter H = ȧ/a satisfies

Ḣ +H2 = −4πG

3

(
ρ+ 3P/c2

)
.

Suppose that an expanding Friedmann universe is filled with radiation (density
ρR and pressure PR = ρRc

2/3) as well as a “dark energy” component (density ρΛ and
pressure PΛ = −ρΛc2). Given that the energy densities of these two components are
measured today (t = t0) to be

ρR0 = β
3H2

0

8πG
and ρΛ0 =

3H2
0

8πG
with constant β > 0 and a(t0) = 1 ,

show that the curvature parameter must satisfy kc2 = βH2
0 . Hence derive the following

relations for the Hubble parameter and its time derivative:

H2 =
H2

0

a4
(
β − βa2 + a4

)
,

Ḣ = −β H
2
0

a4
(
2− a2

)
.

Show qualitatively that universes with β > 4 will recollapse to a Big Crunch in the future.
[Hint: Sketch a4H2 and a4Ḣ versus a2 for representative values of β.]

For β = 4, find an explicit solution for the scale factor a(t) satisfying a(0) = 0.
Find the limiting behaviours of this solution for large and small t. Comment briefly on
their significance.
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3/I/10A Cosmology

The number density of a non-relativistic species in thermal equilibrium is given by

n = gs

(
2πmkT

h2

)3/2

exp
[
(µ−mc2)/kT

]
.

Suppose that thermal and chemical equilibrium is maintained between protons p (mass
mp, degeneracy gs = 2), neutrons n (mass mn ≈ mp, degeneracy gs = 2) and helium-4
nuclei 4He (mass mHe ≈ 4mp, degeneracy gs = 1) via the interaction

2p + 2n ↔ 4He + γ ,

where you may assume the photons γ have zero chemical potential µγ = 0. Given that
the binding energy of helium-4 obeys BHe/c

2 ≡ 2mp + 2nn −mHe � mHe, show that the
ratio of the number densities can be written as

n2p n
2
n

nHe
= 2

(
2πmpkT

h2

)9/2

exp(−BHe/kT ) . (†)

Explain briefly why the baryon-to-photon ratio η ≡ nB/nγ remains constant during
the expansion of the universe, where nB ≈ np + nn + 4nHe and nγ ≈ (16π/(hc)3)(kT )3.

By considering the fractional densities Xi ≡ ni/nB of the species i, re-express the
ratio (†) in the form

X2
pX

2
n

XHe
= η−3 1

32

(π
2

)3/2(mpc
2

kT

)9/2

exp (−BHe/kT ) .

Given that BHe ≈ 30MeV, verify (very approximately) that this ratio approaches unity
when kT ≈ 0.3MeV. In reality, helium-4 is not formed until after deuterium production
at a considerably lower temperature. Explain briefly the reason for this delay.
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4/I/10A Cosmology

The equation governing density perturbation modes δk(t) in a matter-dominated
universe (with a(t) = (t/t0)

2/3) is

δ̈k + 2
ȧ

a
δ̇k − 3

2

(
ȧ

a

)2

δk = 0 ,

where k is the comoving wavevector. Find the general solution for the perturbation,
showing that there is a growing mode such that

δk(t) ≈
a(t)

a(ti)
δk(ti) (t� ti) .

Show that the physical wavelength corresponding to the comoving wavenumber k = |k|
crosses the Hubble radius cH−1 at a time tk given by

tk
t0

=

(
k0
k

)3

, where k0 =
2π

cH−1
0

.

According to inflationary theory, the amplitude of the variance at horizon-crossing is
constant, that is, 〈|δk(tk)|2〉 = AV −1/k3 where A and V (the volume) are constants.
Given this amplitude and the results obtained above, deduce that the power spectrum
today takes the form

P (k) ≡ V 〈|δk(t0)|2〉 =
A

k40
k .
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3/II/15A Cosmology

A spherically symmetric star with outer radius R has mass density ρ(r) and pressure
P (r), where r is the distance from the centre of the star. Show that hydrostatic equilibrium
implies the pressure support equation,

dP

dr
= −Gmρ

r2
, (†)

where m(r) is the mass inside radius r. State without proof any results you may need.

Write down an integral expression for the total gravitational potential energy Egrav

of the star. Hence use (†) to deduce the virial theorem

Egrav = −3〈P 〉V , (∗)

where 〈P 〉 is the average pressure and V is the volume of the star.

Given that a non-relativistic ideal gas obeys P = 2Ekin/3V and that an ultra-
relativistic gas obeys P = Ekin/3V , where Ekin is the kinetic energy, discuss briefly the
gravitational stability of a star in these two limits.

At zero temperature, the number density of particles obeying the Pauli exclusion
principle is given by

n =
4πgs
h3

∫ pF

0

p2dp =
4πgs
3

(pF
h

)3
,

where pF is the Fermi momentum, gs is the degeneracy and h is Planck’s constant. Deduce
that the non-relativistic internal energy Ekin of these particles is

Ekin =
4πgsV h

2

10mp

(pF
h

)5
,

where mp is the mass of a particle. Hence show that the non-relativistic Fermi degeneracy
pressure satisfies

P ∼ h2

mp
n5/3 .

Use the virial theorem (∗) to estimate that the radius R of a star supported by
Fermi degeneracy pressure is approximately

R ∼ h2M−1/3

Gm
8/3
p

,

where M is the total mass of the star.

[Hint: Assume ρ(r) = mpn(r) ∼ mp〈n〉 and note that M ≈ (4πR3/3)mp〈n〉.]
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1/I/10D Cosmology

(a) Introduce the concept of comoving co-ordinates in a homogeneous and isotropic
universe and explain how the velocity of a galaxy is determined by the scale factor
a. Express the Hubble parameter H0 today in terms of the scale factor.

(b) The Raychaudhuri equation states that the acceleration of the universe is deter-
mined by the mass density ρ and the pressure P as

ä

a
= −4πG

3

(
ρ+ 3P/c2

)
.

Now assume that the matter constituents of the universe satisfy ρ+3P/c2 > 0. In
this case explain clearly why the Hubble time H−1

0 sets an upper limit on the age
of the universe; equivalently, that the scale factor must vanish (a(ti) = 0) at some
time ti < t0 with t0 − ti 6 H−1

0 .

The observed Hubble time is H−1
0 = 1 × 1010 years. Discuss two reasons why the

above upper limit does not seem to apply to our universe.

2/I/10D Cosmology

The total energy of a gas can be expressed in terms of a momentum integral

E =

∫ ∞

0

E(p) n̄(p) dp ,

where p is the particle momentum, E(p) = c
√
p2 +m2c2 is the particle energy and n̄(p) dp

is the average number of particles in the momentum range p→ p+ dp. Consider particles
in a cubic box of side L with p ∝ L−1. Explain why the momentum varies as

dp

dV
= − p

3V
.

Consider the overall change in energy dE due to the volume change dV . Given that the
volume varies slowly, use the thermodynamic result dE = −P dV (at fixed particle number
N and entropy S) to find the pressure

P =
1

3V

∫ ∞

0

p E ′(p) n̄(p) dp .

Use this expression to derive the equation of state for an ultrarelativistic gas.

During the radiation-dominated era, photons remain in equilibrium with energy
density εγ ∝ T 4 and number density nγ ∝ T 3. Briefly explain why the photon temperature
falls inversely with the scale factor, T ∝ a−1. Discuss the implications for photon number
and entropy conservation.
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2/II/15D Cosmology

(a) Consider a homogeneous and isotropic universe filled with relativistic matter of
mass density ρ(t) and scale factor a(t). Consider the energy E(t) ≡ ρ(t)c2V (t) of a
small fluid element in a comoving volume V0 where V (t) = a3(t)V0. Show that for
slow (adiabatic) changes in volume, the density will satisfy the fluid conservation
equation

ρ̇ = −3
ȧ

a

(
ρ+ P/c2

)
,

where P is the pressure.

(b) Suppose that a flat (k = 0) universe is filled with two matter components:

(i) radiation with an equation of state Pr =
1
3ρrc

2.

(ii) a gas of cosmic strings with an equation of state Ps = − 1
3ρsc

2.

Use the fluid conservation equation to show that the total relativistic mass density
behaves as

ρ =
ρr0
a4

+
ρs0
a2

,

where ρr0 and ρs0 are respectively the radiation and string densities today (that is,
at t = t0 when a(t0) = 1). Assuming that both the Hubble parameter today H0

and the ratio β ≡ ρr0/ρs0 are known, show that the Friedmann equation can be
rewritten as (

ȧ

a

)2

=
H2

0

a4

(
a2 + β

1 + β

)
.

Solve this equation to find the following solution for the scale factor

a(t) =
(H0t)

1/2

(1 + β)1/2

[
H0t+ 2β1/2(1 + β)1/2

]1/2
.

Show that the scale factor has the expected asymptotic behaviour at early times
t→ 0.

Hence show that the age of this universe today is

t0 = H−1
0 (1 + β)1/2

[
(1 + β)1/2 − β1/2

]
,

and that the time teq of equal radiation and string densities (ρr = ρs) is

teq = H−1
0

(√
2− 1

)
β1/2(1 + β)1/2 .
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3/I/10D Cosmology

(a) Consider a spherically symmetric star with outer radius R, density ρ(r) and pressure
P (r). By balancing the gravitational force on a shell at radius r against the force
due to the pressure gradient, derive the pressure support equation

dP

dr
= −Gmρ

r2
,

where m(r) =
∫ r

0
ρ(r′) 4πr′2 dr′. Show that this implies

d

dr

(
r2

ρ

dP

dr

)
= −4πGr2ρ .

Suggest appropriate boundary conditions at r = 0 and r = R, together with a brief
justification.

(b) Describe qualitatively the endpoint of stellar evolution for our sun when all its
nuclear fuel is spent. Your discussion should briefly cover electron degeneracy
pressure and the relevance of stability against inverse beta-decay.

[Note that mn−mp ≈ 2.6me, where mn, mp, me are the masses of the neutron,
proton and electron respectively.]
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4/I/10D Cosmology

The number density of fermions of mass m at equilibrium in the early universe with
temperature T , is given by the integral

n =
4π

h3

∫ ∞

0

p2 dp

exp[(E(p)− µ)/kT ] + 1

where E(p) = c
√
p2 +m2c2, and µ is the chemical potential. Assuming that the fermions

remain in equilibrium when they become non-relativistic (kT, µ � mc2), show that the
number density can be expressed as

n =

(
2πmkT

h2

)3/2

exp
[
(µ−mc2)/kT

]
.

[Hint: You may assume
∫∞
0
dx e−σ2x2

=
√
π/(2σ) , (σ > 0).]

Suppose that the fermions decouple at a temperature given by kT = mc2/α where
α � 1. Assume also that µ = 0. By comparing with the photon number density at
nγ = 16πζ(3)(kT/hc)3, where ζ(3) =

∑∞
n=1 n

−3 = 1.202 . . ., show that the ratio of number
densities at decoupling is given by

n

nγ
=

√
2π

8ζ(3)
α3/2 e−α .

Now assume that α ≈ 20, (which implies n/nγ ≈ 5 × 10−8), and that the fermion
mass m = mp/20, where mp is the proton mass. Explain clearly why this new fermion
would be a good candidate for solving the dark matter problem of the standard cosmology.
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4/II/15D Cosmology

The perturbed motion of cold dark matter particles (pressure-free, P = 0) in an
expanding universe can be parametrized by the trajectories

r(q, t) = a(t) [q+ψ(q, t)] ,

where a(t) is the scale factor of the universe, q is the unperturbed comoving trajectory
and ψ is the comoving displacement. The particle equation of motion is r̈ = −∇Φ, where
the Newtonian potential satisfies the Poisson equation ∇2Φ = 4πGρ with mass density
ρ(r, t).

(a) Discuss how matter conservation in a small volume d3r ensures that the perturbed
density ρ(r, t) and the unperturbed background density ρ̄(t) are related by

ρ(r, t)d3r = ρ̄(t)a3(t)d3q .

By changing co-ordinates with the Jacobian

|∂ri/∂qj |−1 = |aδij + a ∂ψi/∂qj |−1 ≈ a−3(1−∇q ·ψ) ,

show that the fractional density perturbation δ(q, t) can be written to leading order
as

δ ≡ ρ− ρ̄

ρ̄
= −∇q ·ψ ,

where ∇q ·ψ =
∑

i ∂ψi/∂qi.

Use this result to integrate the Poisson equation once. Hence, express the particle
equation of motion in terms of the comoving displacement as

ψ̈+ 2
ȧ

a
ψ̇− 4πGρ̄ψ = 0 .

Infer that the density perturbation evolution equation is

δ̈ + 2
ȧ

a
δ̇ − 4πGρ̄δ = 0 . (∗)

[Hint: You may assume that the integral of ∇2Φ = 4πGρ̄ is ∇Φ = −4πGρ̄r/3.
Note also that the Raychaudhuri equation (for P = 0) is ä/a = −4πGρ̄/3.]

(b) Find the general solution of equation (∗) in a flat (k = 0) universe dominated
by cold dark matter (P = 0). Discuss the effect of late-time Λ or dark energy
domination on the growth of density perturbations.
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1/I/10D Cosmology

(a) Around t ≈ 1 s after the big bang (kT ≈ 1MeV), neutrons and protons are kept
in equilibrium by weak interactions such as

n+ νe ↔ p+ e− . (∗)

Show that, in equilibrium, the neutron-to-proton ratio is given by

nn
np

≈ e−Q/kT ,

where Q = (mn − mp)c
2 = 1.29MeV corresponds to the mass difference between the

neutron and the proton. Explain briefly why we can neglect the difference µn − µp in the
chemical potentials.

(b) The ratio of the weak interaction rate ΓW ∝ T 5 which maintains (∗) to the
Hubble expansion rate H ∝ T 2 is given by

ΓW

H
≈
(

kT

0.8MeV

)3

. (†)

Explain why the neutron-to-proton ratio effectively “freezes out” once kT < 0.8MeV,
except for some slow neutron decay. Also explain why almost all neutrons are subsequently
captured in 4He; estimate the value of the relative mass density Y4He = ρ4He/ρB (with
ρB = ρn + ρp) given a final ratio nn/np ≈ 1/8.

(c) Suppose instead that the weak interaction rate were very much weaker than
that described by equation (†). Describe the effect on the relative helium density Y4He.
Briefly discuss the wider implications of this primordial helium-to-hydrogen ratio on stellar
lifetimes and life on earth.
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2/I/10D Cosmology

(a) A spherically symmetric star obeys the pressure-support equation

dP

dr
= −Gmρ

r2
, (∗)

where P (r) is the pressure at a distance r from the centre, ρ(r) is the density, and the
mass m(r) is defined through the relation dm/dr = 4πr2ρ(r). Multiply (∗) by 4πr3 and
integrate over the total volume V of the star to derive the virial theorem

〈P 〉V = − 1
3Egrav ,

where 〈P 〉 is the average pressure and Egrav is the total gravitational potential energy.

(b) Consider a white dwarf supported by electron Fermi degeneracy pressure
P ≈ h2n5/3/me, where me is the electron mass and n is the number density. Assume
a uniform density ρ(r) = mpn(r) ≈ mp〈n〉, so the total mass of the star is given by
M = (4π/3)〈n〉mpR

3 where R is the star radius and mp is the proton mass. Show that
the total energy of the white dwarf can be written in the form

Etotal = Ekin + Egrav =
α

R2
− β

R
,

where α, β are positive constants which you should determine. [You may assume that for
an ideal gas Ekin = 3

2 〈P 〉V .] Use this expression to explain briefly why a white dwarf is
stable.
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2/II/15D Cosmology

(a) Consider a homogeneous and isotropic universe with scale factor a(t) and filled
with mass density ρ(t). Show how the conservation of kinetic energy plus gravitational
potential energy for a test particle on the edge of a spherical region in this universe can
be used to derive the Friedmann equation

(
ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ , (∗)

where k is a constant. State clearly any assumptions you have made.

(b) Now suppose that the universe was filled throughout its history with radiation
with equation of state P = ρc2/3. Using the fluid conservation equation and the definition
of the relative density Ω, show that the density of this radiation can be expressed as

ρ =
3H2

0

8πG

Ω0

a4
,

where H0 is the Hubble parameter today and Ω0 is the relative density today (t = t0)
and a0 ≡ a(t0) = 1 is assumed. Show also that kc2 = H2

0 (Ω0 − 1) and hence rewrite the
Friedmann equation (∗) as

(
ȧ

a

)2

= H2
0Ω0

(
1

a4
− β

a2

)
, (†)

where β ≡ (Ω0 − 1)/Ω0.

(c) Now consider a closed model with k > 0 (or Ω > 1). Rewrite (†) using the new
time variable τ defined by

dt

dτ
= a .

Hence, or otherwise, solve (†) to find the parametric solution

a(τ) =
1√
β
(sinατ) , t(τ) =

1

α
√
β
(1− cosατ) ,

where α ≡ H0

√
(Ω0 − 1). [Recall that

∫
dx/

√
1− x2 = sin−1 x.]

Using the solution for a(τ), find the value of the new time variable τ = τ0 today
and hence deduce that the age of the universe in this model is

t0 = H−1
0

√
Ω0 − 1

Ω0 − 1
.
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3/I/10D Cosmology

(a) Define and discuss the concept of the cosmological horizon and the Hubble radius
for a homogeneous isotropic universe. Illustrate your discussion with the specific examples
of the Einstein–de Sitter universe (a ∝ t2/3 for t > 0) and a de Sitter universe (a ∝ eHt

with H constant, t > −∞).

(b) Explain the horizon problem for a decelerating universe in which a(t) ∝ tα with
α < 1. How can inflation cure the horizon problem?

(c) Consider a Tolman (radiation-filled) universe (a(t) ∝ t1/2) beginning at tr ∼
10−35s and lasting until today at t0 ≈ 1017s. Estimate the horizon size today dH(t0) and
project this lengthscale backwards in time to show that it had a physical size of about 1
metre at t ≈ tr.

Prior to t ≈ tr, assume an inflationary (de Sitter) epoch with constant Hubble
parameter H given by its value at t ≈ tr for the Tolman universe. How much expansion
during inflation is required for the observable universe today to have begun inside one
Hubble radius?

4/I/10D Cosmology

The linearised equation for the growth of a density fluctuation δk in a homogeneous
and isotropic universe is

d2δk
dt2

+ 2
ȧ

a

dδk
dt

−
(
4πGρm − v2sk

2

a2

)
δk = 0 , (∗)

where ρm is the non-relativistic matter density, k is the comoving wavenumber and vs is
the sound speed (v2s ≡ dP/dρ).

(a) Define the Jeans length λJ and discuss its significance for perturbation growth.

(b) Consider an Einstein–de Sitter universe with a(t) = (t/t0)
2/3 filled with

pressure-free matter (P = 0). Show that the perturbation equation (∗) can be re-expressed
as

δ̈k +
4

3t
δ̇k − 2

3t2
δk = 0 .

By seeking power law solutions, find the growing and decaying modes of this equation.

(c) Qualitatively describe the evolution of non-relativistic matter perturbations
(k > aH) in the radiation era, a(t) ∝ t1/2, when ρr � ρm. What feature in the power
spectrum is associated with the matter–radiation transition?
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4/II/15D Cosmology

For an ideal gas of bosons, the average occupation number can be expressed as

n̄k =
gk

e(Ek−µ)/kT − 1
, (∗)

where gk has been included to account for the degeneracy of the energy level Ek. In the
approximation in which a discrete set of energies Ek is replaced with a continuous set with
momentum p, the density of one-particle states with momentum in the range p to p+ dp
is g(p)dp. Explain briefly why

g(p) ∝ p2V ,

where V is the volume of the gas. Using this formula with equation (∗), obtain an
expression for the total energy density ε = E/V of an ultra-relativistic gas of bosons
at zero chemical potential as an integral over p. Hence show that

ε ∝ Tα ,

where α is a number you should find. Why does this formula apply to photons?

Prior to a time t ∼ 100, 000 years, the universe was filled with a gas of photons and
non-relativistic free electrons and protons. Subsequently, at around t ∼ 400, 000 years,
the protons and electrons began combining to form neutral hydrogen,

p+ e− ↔ H + γ .

Deduce Saha’s equation for this recombination process stating clearly the steps required:

n2e
nH

=

(
2πmekT

h2

)3/2

exp(−I/kT ) ,

where I is the ionization energy of hydrogen. [Note that the equilibrium number density of

a non-relativistic species (kT � mc2) is given by n = gs
(
2πmkT

h2

)3/2
exp

[
(µ−mc2)/kT

]
,

while the photon number density is nγ = 16πζ(3)
(
kT
hc

)3
, where ζ(3) ≈ 1.20.... ]

Consider now the fractional ionization Xe = ne/nB, where nB = np + nH = ηnγ is
the baryon number of the universe and η is the baryon-to-photon ratio. Find an expression
for the ratio

(1−Xe)/X
2
e

in terms only of kT and constants such as η and I. One might expect neutral hydrogen
to form at a temperature given by kT ≈ I ≈ 13 eV, but instead in our universe it forms
at the much lower temperature kT ≈ 0.3 eV. Briefly explain why.
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