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Paper 1, Section I

8D Classical Dynamics
The Lagrangian for a particle of charge q and mass m in an electromagnetic field is

L =
1

2
mṙ2 − q(φ− ṙ ·A) ,

where A(r, t) is the vector potential and φ(r, t) is the scalar potential associated with the
electromagnetic field.

(a) Determine how L changes under the gauge transformation

φ 7→ φ− ∂f

∂t
, A 7→ A + ∇f ,

where f(r, t) is a smooth function. Why does this change in L not affect the Euler-Lagrange
equations?

(b) Show that the Euler-Lagrange equations imply the Lorentz force law.

(c) Now suppose that the electric field vanishes and the magnetic field is constant
and uniform. Show that the component of the particle’s canonical momentum along the
direction of the magnetic field is conserved.

Paper 2, Section I

8D Classical Dynamics
A rigid body rotates with angular velocity ω(t) around its centre of mass. Define

what is meant by the fixed space frame and the principal body frame.

Write down an expression for how the body axes change in time. Hence derive
Euler’s equations for the torque-free motion of a rigid body.

Consider an axisymmetric body with principal moments of inertia I1 = I2 6= I3.
Show that Euler’s equations imply the angular momentum L, the angular velocity ω and
the body’s symmetry axis are always coplanar.

Paper 3, Section I

8D Classical Dynamics
Consider a 3-dimensional system with phase space coordinates (q,p).

(a) Define the Poisson bracket {f, g} of two smooth functions on phase space.

(b) Show that f(q,p) is conserved along a particle’s trajectory if and only if
{f(q,p), H} = 0, where H is the Hamiltonian.

(c) Derive a constraint satisfied by a function f(q,p) given that {f(q,p),q ·p} = 0.
Show that any smooth function obeying f(λq, λ−1p) = f(q,p), where λ is a real constant,
satisfies this constraint.

Part II, Paper 1 [TURN OVER]
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Paper 4, Section I

8D Classical Dynamics
What is meant by an adiabatic invariant of a mechanical system?

A particle of mass m and energy E moves between two fixed, parallel walls that
are a distance L apart. The particle travels freely in a direction perpendicular to the
walls except when it collides elastically with a wall at which point its velocity changes
instantaneously. Compute the action I =

∮
p dq and verify that T = dI/dE is the period

of oscillation.

Suppose that the distance between the walls is varied very slowly so that L(t)
depends on time. How does the energy of the particle depend on time? Give a brief
physical explanation for why the particle’s energy changes.

Paper 2, Section II

14D Classical Dynamics
Three identical particles, each of mass m, are constrained to move around a fixed

circle of radius r that lies in a horizontal plane. You may assume that the particles do
not collide. The angles between the locations of the particles are α, β, γ as in the figure,
which shows the view from above.

α

β

γ

(a) Write down a constraint obeyed by α, β, γ. What degree of freedom is not
described by these three angles?

(b) The particles feel the influence of a potential

V (α, β, γ) = V0(e
−2α + e−2β + e−2γ) ,

where V0 is a positive constant. Solving your constraint to find γ = γ(α, β), obtain a
Lagrangian governing the dynamics of the particles’ relative separations as a function of
α, β, α̇ and β̇.

(c) Find an equilibrium configuration of the system and show that it is stable. Find
three linearly independent normal modes, together with their frequencies, that describe
small perturbations about this equilibrium.

(d) The physical system is unchanged by permutations of (α, β, γ). Explain how
this is consistent with your answer to part (c).

Part II, Paper 1

2023
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Paper 4, Section II

15D Classical Dynamics
What does it mean for a phase space coordinate transformation to be canonical?

Consider a coordinate transformation (q, p) 7→ (Q,P ) on the phase space of a system with
one degree of freedom. Show that if this transformation is defined in terms of a generating
function F (q, P ) via

Q =
∂F

∂P

∣∣∣∣
q

and p =
∂F

∂q

∣∣∣∣
P

then it is canonical.

Find the phase space coordinate transformation associated to the generating func-
tion

F (q, P ) =

∫ q

0

√
2P − u2 du .

Obtain Hamilton’s equations for Q and P in the case H(q, p) = 1
2(p2 + q2). Hence find

Q(t) and P (t) and check that these agree with the usual solution for a simple harmonic
oscillator.

A particle of energy E has Hamiltonian H(q, p) = 1
2(p2 + q2) + εq4, where 2q2ε� 1

for all q in the range−
√

2E 6 q 6
√

2E. By choosing an appropriately modified generating
function Fε(q, P ), show that

q(t)

p(t)
= tan(t− t0)− ε I(q0(t), E) (1 + tan2(t− t0)) + εq20(t) tan3(t− t0) +O(ε2),

where q0(t) =
√

2E sin(t− t0) and I(x, y) is defined by

I(x, y) =

∫ x

0

u4

(2y − u2)3/2 du .

Part II, Paper 1 [TURN OVER]
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Paper 1, Section I
8B Classical Dynamics

(a) Show that the canonical transformation (q,p) 7→ (Q,P) associated with a
generating function F2(q,P) of type 2 satisfies

p =
∂F2

∂q
, Q =

∂F2

∂P
.

(b) A physical system with two degrees of freedom is described by the Hamiltonian

H(q,p) = H0(p1, p2) +H1(p1, p2) cos θ ,

where
θ = n1q1 + n2q2

and n1 and n2 are non-zero integers.

Show that a certain linear combination of p1 and p2 is conserved, and that there is a
(linear) canonical transformation (q,p) 7→ (Q,P) such that Q1 = θ and the transformed
Hamiltonian does not depend on Q2.

Explain why the system is integrable.

Paper 2, Section I
8B Classical Dynamics

Show that Hamilton’s equations for a system with n degrees of freedom can be
written in the form

ẋa = Ωab
∂H

∂xb
,

where a, b ∈ {1, 2, . . . , 2n} and Ω is a matrix that you should define.

Using a similar notation, define the Poisson bracket {f, g} of two functions f(x, t)
and g(x, t). Evaluate the Poisson bracket {xa, xb}.

Show that the transformation x 7→ X(x) preserves the form of Hamilton’s equations
if and only if the Jacobian matrix

Jab =
∂Xa

∂xb

satisfies
JΩJT = Ω .

Deduce that such a canonical transformation leaves the phase-space volume invariant.

Part II, Paper 1 [TURN OVER]
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Paper 3, Section I
8B Classical Dynamics

The Lagrangian of the Lagrange top can be written as

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
−Mgl cos θ .

Define the generalized momenta pφ and pψ, and describe how they evolve in time.

Show that the nutation of the top is governed by the equation

1

2
I1θ̇

2 + Veff(θ) = constant ,

where Veff(θ) is an effective potential energy that you should define.

Explain why pφ and pψ must be equal in order for the top to reach the vertical
position θ = 0. In this case, show that θ = 0 is a stable equilibrium provided that the top
spins sufficiently fast.

Paper 4, Section I
8B Classical Dynamics

A particle of mass m1 = 3m is connected to a fixed point by a massless spring of
natural length l and spring constant k. A second particle of mass m2 = 2m is connected
to the first particle by an identical spring. The masses move along a vertical line in a
uniform gravitational field g, such that mass mi is a distance zi(t) below the fixed point
and z2 > z1 > 0.

[You may assume that the potential energy of a spring of length l+x is 1
2kx

2, where
k is the spring constant and l is the natural length.]

Write down the Lagrangian of the system.

Determine the equilibrium values of zi.

Let qi be the departure of zi from its equilibrium value. Show that the Lagrangian
can be written as

L =
1

2
Tij q̇iq̇j −

1

2
Vijqiqj + constant ,

and determine the matrices T and V .

Calculate the angular frequencies and eigenvectors of the normal modes of the
system.

In what sense are the eigenvectors orthogonal?

Part II, Paper 1

2022
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Paper 2, Section II
14B Classical Dynamics

(a) A homogeneous, solid ellipsoid of mass M occupies the region

x2

a2
+
y2

b2
+
z2

c2
< 1 ,

where a, b and c are positive constants. Calculate the inertia tensor of the ellipsoid.

(b) According to Poinsot’s construction, the evolution of the angular velocity vector
ω(t) of a rigid body undergoing free rotational motion corresponds to the movement of
an inertia ellipsoid on an invariable plane. Derive this construction, explaining why the
inertia ellipsoid is tangent to the invariable plane and rolls on it.

(c) Describe qualitatively the general free rotational motion of the body considered
in part (a) in an inertial frame of reference, in the special case a = b < c.

Paper 4, Section II
15B Classical Dynamics

An isolated three-body system consists of particles with masses m1, m2 and m3 and
position vectors r1(t), r2(t) and r3(t). The particles move under the action of their mutual
gravitational attraction. Write down the Lagrangian L of the system.

Let a, b and c be defined by

a = r1 − r2 , b =
m1r1 +m2r2
m1 +m2

− r3 , c =
m1r1 +m2r2 +m3r3

m1 +m2 +m3
.

By expressing r1, r2 and r3 in terms of a, b and c, or otherwise, show that the total
kinetic energy can be written as

1

2
α|ȧ|2 +

1

2
β|ḃ|2 +

1

2
γ|ċ|2 ,

and obtain expressions for α, β and γ.

Show that the total potential energy can be expressed as a function of a and b only.
What does this imply for the evolution of c? Give a physical interpretation of this result.

Show also that the total angular momentum of the system about the origin is

α a× ȧ + β b× ḃ + γ c× ċ .

Part II, Paper 1 [TURN OVER]

2022
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Paper 1, Section I

8D Classical Dynamics
Two equal masses m move along a straight line between two stationary walls. The

mass on the left is connected to the wall on its left by a spring of spring constant k1, and
the mass on the right is connected to the wall on its right by a spring of spring constant
k2. The two masses are connected by a third spring of spring constant k3.

(a) Show that the Lagrangian of the system can be written in the form

L =
1

2
Tij ẋiẋj −

1

2
Vijxixj ,

where xi(t), for i = 1, 2, are the displacements of the two masses from their equilibrium
positions, and Tij and Vij are symmetric 2× 2 matrices that should be determined.

(b) Let
k1 = k(1 + εδ) , k2 = k(1− εδ) , k3 = kε ,

where k > 0, ε > 0 and |εδ| < 1. Using Lagrange’s equations of motion, show that the
angular frequencies ω of the normal modes of the system are given by

ω2 = λ
k

m
,

where
λ = 1 + ε

(
1±

√
1 + δ2

)
.

Paper 2, Section I

8D Classical Dynamics
Show that, in a uniform gravitational field, the net gravitational torque on a system

of particles, about its centre of mass, is zero.

Let S be an inertial frame of reference, and let S′ be the frame of reference with the
same origin and rotating with angular velocity ω(t) with respect to S. You may assume
that the rates of change of a vector v observed in the two frames are related by

(
dv

dt

)

S

=

(
dv

dt

)

S′
+ ω × v .

Derive Euler’s equations for the torque-free motion of a rigid body.

Show that the general torque-free motion of a symmetric top involves precession
of the angular-velocity vector about the symmetry axis of the body. Determine how the
direction and rate of precession depend on the moments of inertia of the body and its
angular velocity.

Part II, 2021 List of Questions

2021
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Paper 3, Section I

8D Classical Dynamics
The Lagrangian of a particle of mass m and charge q in an electromagnetic field

takes the form

L =
1

2
m|ṙ|2 + q (−φ+ ṙ ·A) .

Explain the meaning of φ and A, and how they are related to the electric and magnetic
fields.

Obtain the canonical momentum p and the Hamiltonian H(r,p, t).

Suppose that the electric and magnetic fields have Cartesian components (E, 0, 0)
and (0, 0, B), respectively, where E and B are positive constants. Explain why the
Hamiltonian of the particle can be taken to be

H =
p2x
2m

+
(py − qBx)2

2m
+

p2z
2m
− qEx .

State three independent integrals of motion in this case.

Paper 4, Section I

8D Classical Dynamics
Briefly describe a physical object (a Lagrange top) whose Lagrangian is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
−Mgl cos θ .

Explain the meaning of the symbols in this equation.

Write down three independent integrals of motion for this system, and show that
the nutation of the top is governed by the equation

u̇2 = f(u) ,

where u = cos θ and f(u) is a certain cubic function that you need not determine.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 2, Section II

14D Classical Dynamics
(a) Show that the Hamiltonian

H =
1

2
p2 +

1

2
ω2q2 ,

where ω is a positive constant, describes a simple harmonic oscillator with angular
frequency ω. Show that the energy E and the action I of the oscillator are related by
E = ωI.

(b) Let 0 < ε < 2 be a constant. Verify that the differential equation

ẍ+
x

(εt)2
= 0 subject to x(1) = 0 , ẋ(1) = 1

is solved by

x(t) =

√
t

k
sin(k log t)

when t > 1, where k is a constant you should determine in terms of ε.

(c) Show that the solution in part (b) obeys

1

2
ẋ2 +

1

2

x2

(εt)2
=

1− cos(2k log t) + 2k sin(2k log t) + 4k2

8k2t
.

Hence show that the fractional variation of the action in the limit ε� 1 is O(ε), but that
these variations do not accumulate. Comment on this behaviour in relation to the theory
of adiabatic invariance.

Part II, 2021 List of Questions

2021
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Paper 4, Section II

15D Classical Dynamics
(a) Let (q,p) be a set of canonical phase-space variables for a Hamiltonian system

with n degrees of freedom. Define the Poisson bracket {f, g} of two functions f(q,p) and
g(q,p). Write down the canonical commutation relations that imply that a second set
(Q,P) of phase-space variables is also canonical.

(b) Consider the near-identity transformation

Q = q + δq , P = p + δp ,

where δq(q,p) and δp(q,p) are small. Determine the approximate forms of the canonical
commutation relations, accurate to first order in δq and δp. Show that these are satisfied
when

δq = ε
∂F

∂p
, δp = −ε ∂F

∂q
,

where ε is a small parameter and F (q,p) is some function of the phase-space variables.

(c) In the limit ε → 0 this near-identity transformation is called the infinitesimal
canonical transformation generated by F . Let H(q,p) be an autonomous Hamiltonian.
Show that the change in the Hamiltonian induced by the infinitesimal canonical trans-
formation is

δH = −ε{F,H} .
Explain why F is an integral of motion if and only if the Hamiltonian is invariant under
the infinitesimal canonical transformation generated by F .

(d) The Hamiltonian of the gravitational N -body problem in three-dimensional
space is

H =
1

2

N∑

i=1

|pi|2
2mi

−
N−1∑

i=1

N∑

j=i+1

Gmimj

|ri − rj |
,

where mi, ri and pi are the mass, position and momentum of body i. Determine the form
of F and the infinitesimal canonical transformation that correspond to the translational
symmetry of the system.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 1, Section I

8B Classical Dynamics
A linear molecule is modelled as four equal masses connected by three equal springs.

Using the Cartesian coordinates x1, x2, x3, x4 of the centres of the four masses, and
neglecting any forces other than those due to the springs, write down the Lagrangian
of the system describing longitudinal motions of the molecule.

Rewrite and simplify the Lagrangian in terms of the generalized coordinates

q1 =
x1 + x4

2
, q2 =

x2 + x3
2

, q3 =
x1 − x4

2
, q4 =

x2 − x3
2

.

Deduce Lagrange’s equations for q1, q2, q3, q4. Hence find the normal modes of the system
and their angular frequencies, treating separately the symmetric and antisymmetric modes
of oscillation.

Paper 2, Section I

8B Classical Dynamics
A particle of mass m has position vector r(t) in a frame of reference that rotates

with angular velocity ω(t). The particle moves under the gravitational influence of masses
that are fixed in the rotating frame. Explain why the Lagrangian of the particle is of the
form

L =
1

2
m(ṙ + ω×r)2 − V (r) .

Show that Lagrange’s equations of motion are equivalent to

m (r̈ + 2ω×ṙ + ω̇×r + ω×(ω×r)) = −∇V .

Identify the canonical momentum p conjugate to r. Obtain the Hamiltonian H(r,p)
and Hamilton’s equations for this system.

Part II, 2020 List of Questions

2020
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Paper 3, Section I

8B Classical Dynamics
A particle of mass m experiences a repulsive central force of magnitude k/r2, where

r = |r| is its distance from the origin. Write down the Hamiltonian of the system.

The Laplace–Runge–Lenz vector for this system is defined by

A = p× L +mk r̂ ,

where L = r× p is the angular momentum and r̂ = r/r is the radial unit vector. Show
that

{L, H} = {A, H} = 0 ,

where {·, ·} is the Poisson bracket. What are the integrals of motion of the system? Show
that the polar equation of the orbit can be written as

r =
λ

e cos θ − 1
,

where λ and e are non-negative constants.

Paper 4, Section I

8B Classical Dynamics
Derive expressions for the angular momentum and kinetic energy of a rigid body in

terms of its mass M , the position X(t) of its centre of mass, its inertia tensor I (which
should be defined) about its centre of mass, and its angular velocity ω.

A spherical planet of mass M and radius R has density proportional to
r−1 sin(πr/R). Given that

∫ π
0 x sinx dx = π and

∫ π
0 x

3 sinx dx = π(π2 − 6), evaluate
the inertia tensor of the planet in terms of M and R.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 2, Section II

14B Classical Dynamics
A symmetric top of mass M rotates about a fixed point that is a distance l from

the centre of mass along the axis of symmetry; its principal moments of inertia about the
fixed point are I1 = I2 and I3. The Lagrangian of the top is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
−Mgl cos θ .

(i) Draw a diagram explaining the meaning of the Euler angles θ, φ and ψ.

(ii) Derive expressions for the three integrals of motion E, L3 and Lz.

(iii) Show that the nutational motion is governed by the equation

1

2
I1θ̇

2 + Veff(θ) = E′ ,

and derive expressions for the effective potential Veff(θ) and the modified energy E′ in
terms of E, L3 and Lz.

(iv) Suppose that

Lz = L3

(
1 − ε2

2

)
,

where ε is a small positive number. By expanding Veff to second order in ε and θ, show
that there is a stable equilibrium solution with θ = O(ε), provided that L2

3 > 4MglI1.
Determine the equilibrium value of θ and the precession rate φ̇, to the same level of
approximation.

Part II, 2020 List of Questions

2020
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Paper 4, Section II

15B Classical Dynamics
(a) Explain how the Hamiltonian H(q,p, t) of a system can be obtained from its

Lagrangian L(q, q̇, t). Deduce that the action can be written as

S =

∫
(p · dq−H dt) .

Show that Hamilton’s equations are obtained if the action, computed between fixed
initial and final configurations q(t1) and q(t2), is minimized with respect to independent
variations of q and p.

(b) Let (Q,P) be a new set of coordinates on the same phase space. If the old and
new coordinates are related by a type-2 generating function F2(q,P, t) such that

p =
∂F2

∂q
, Q =

∂F2

∂P
,

deduce that the canonical form of Hamilton’s equations applies in the new coordinates,
but with a new Hamiltonian given by

K = H +
∂F2

∂t
.

(c) For each of the Hamiltonians

(i) H = H(p) , (ii) H =
1

2
(q2 + p2) ,

express the general solution (q(t), p(t)) at time t in terms of the initial values given by
(Q,P ) = (q(0), p(0)) at time t = 0. In each case, show that the transformation from (q, p)
to (Q,P ) is canonical for all values of t, and find the corresponding generating function
F2(q, P, t) explicitly.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 4, Section I

8E Classical Dynamics
(a) The angular momentum of a rigid body about its centre of mass is conserved.

Derive Euler’s equations,

I1ω̇1 = (I2 − I3)ω2ω3 ,

I2ω̇2 = (I3 − I1)ω3ω1 ,

I3ω̇3 = (I1 − I2)ω1ω2 ,

explaining the meaning of the quantities appearing in the equations.

(b) Show that there are two independent conserved quantities that are quadratic
functions of ω = (ω1, ω2, ω3), and give a physical interpretation of them.

(c) Derive a linear approximation to Euler’s equations that applies when |ω1| ≪ |ω3|
and |ω2| ≪ |ω3|. Use this to determine the stability of rotation about each of the three
principal axes of an asymmetric top.

Paper 3, Section I

8E Classical Dynamics
A simple harmonic oscillator of mass m and spring constant k has the equation of

motion
mẍ = −kx .

(a) Describe the orbits of the system in phase space. State how the action I of
the oscillator is related to a geometrical property of the orbits in phase space. Derive
the action–angle variables (θ, I) and give the form of the Hamiltonian of the oscillator in
action–angle variables.

(b) Suppose now that the spring constant k varies in time. Under what conditions
does the theory of adiabatic invariance apply? Assuming that these conditions hold,
identify an adiabatic invariant and determine how the energy and amplitude of the
oscillator vary with k in this approximation.

Part II, 2019 List of Questions

2019
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Paper 2, Section I

8E Classical Dynamics
(a) State Hamilton’s equations for a system with n degrees of freedom and Hamilto-

nian H(q,p, t), where (q,p) = (q1, . . . , qn, p1, . . . , pn) are canonical phase-space variables.

(b) Define the Poisson bracket {f, g} of two functions f(q,p, t) and g(q,p, t).

(c) State the canonical commutation relations of the variables q and p.

(d) Show that the time-evolution of any function f(q,p, t) is given by

df

dt
= {f,H}+ ∂f

∂t
.

(e) Show further that the Poisson bracket of any two conserved quantities is also a
conserved quantity.

[You may assume the Jacobi identity,

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0 . ]

Paper 1, Section I

8E Classical Dynamics
(a) A mechanical system with n degrees of freedom has the Lagrangian L(q, q̇),

where q = (q1, . . . , qn) are the generalized coordinates and q̇ = dq/dt.

Suppose that L is invariant under the continuous symmetry transformation q(t) 7→
Q(s, t), where s is a real parameter and Q(0, t) = q(t). State and prove Noether’s theorem
for this system.

(b) A particle of mass m moves in a conservative force field with potential energy
V (r), where r is the position vector in three-dimensional space.

Let (r, φ, z) be cylindrical polar coordinates. V (r) is said to have helical symmetry
if it is of the form

V (r) = f(r, φ− kz) ,

for some constant k. Show that a particle moving in a potential with helical symmetry
has a conserved quantity that is a linear combination of angular and linear momenta.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section II

14E Classical Dynamics
The Lagrangian of a particle of mass m and charge q moving in an electromagnetic

field described by scalar and vector potentials φ(r, t) and A(r, t) is

L =
1

2
m|ṙ|2 + q(−φ+ ṙ ·A) ,

where r(t) is the position vector of the particle and ṙ = dr/dt.

(a) Show that Lagrange’s equations are equivalent to the equation of motion

mr̈ = q(E+ v×B) ,

where

E = −∇φ− ∂A

∂t
, B = ∇×A

are the electric and magnetic fields.

(b) Show that the related Hamiltonian is

H =
|p− qA|2

2m
+ qφ ,

where p = mṙ+ qA. Obtain Hamilton’s equations for this system.

(c) Verify that the electric and magnetic fields remain unchanged if the scalar and
vector potentials are transformed according to

φ 7→ φ̃ = φ− ∂f

∂t
,

A 7→ Ã = A+∇f ,

where f(r, t) is a scalar field. Show that the transformed Lagrangian L̃ differs from L by
the total time-derivative of a certain quantity. Why does this leave the form of Lagrange’s
equations invariant? Show that the transformed Hamiltonian H̃ and phase-space variables
(r, p̃) are related to H and (r,p) by a canonical transformation.

[Hint: In standard notation, the canonical transformation associated with the type-2
generating function F2(q,P, t) is given by

p =
∂F2

∂q
, Q =

∂F2

∂P
, K = H +

∂F2

∂t
. ]

Part II, 2019 List of Questions

2019
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Paper 4, Section II

15E Classical Dynamics
(a) Explain what is meant by a Lagrange top. You may assume that such a top has

the Lagrangian

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
−Mgl cos θ

in terms of the Euler angles (θ, φ, ψ). State the meaning of the quantities I1, I3, M and l
appearing in this expression.

Explain why the quantity

pψ =
∂L

∂ψ̇

is conserved, and give two other independent integrals of motion.

Show that steady precession, with a constant value of θ ∈ (0, π2 ), is possible if

p2ψ > 4MglI1 cos θ .

(b) A rigid body of mass M is of uniform density and its surface is defined by

x21 + x22 = x23 −
x33
h
,

where h is a positive constant and (x1, x2, x3) are Cartesian coordinates in the body frame.

Calculate the values of I1, I3 and l for this symmetric top, when it rotates about
the sharp point at the origin of this coordinate system.
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Paper 1, Section I

8B Classical Dynamics
Derive Hamilton’s equations from an action principle.

Consider a two-dimensional phase space with the Hamiltonian H = p2 + q−2. Show
that F = pq − ctH is the first integral for some constant c which should be determined.
By considering the surfaces of constant F in the extended phase space, solve Hamilton’s
equations, and sketch the orbits in the phase space.

Paper 2, Section I

8B Classical Dynamics
Let x = xi+ yj+ zk. Consider a Lagrangian

L =
1

2
ẋ2 + yẋ

of a particle constrained to move on a sphere |x| = 1/c of radius 1/c. Use Lagrange
multipliers to show that

ẍ+ ẏi− ẋj+ c2(|ẋ|2 + yẋ− xẏ)x = 0. (∗)

Now, consider the system (∗) with c = 0, and find the particle trajectories.

Paper 3, Section I

8B Classical Dynamics
Three particles of unit mass move along a line in a potential

V =
1

2

(
(x1 − x2)

2 + (x1 − x3)
2 + (x3 − x2)

2 + x21 + x22 + x23

)
,

where xi is the coordinate of the i’th particle, i = 1, 2, 3.

Write the Lagrangian in the form

L =
1

2
Tij ẋiẋj −

1

2
Vijxixj,

and specify the matrices Tij and Vij .

Find the normal frequencies and normal modes for this system.
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Paper 4, Section I

8B Classical Dynamics
State and prove Noether’s theorem in Lagrangian mechanics.

Consider a Lagrangian

L =
1

2

ẋ2 + ẏ2

y2
− V

(
x

y

)

for a particle moving in the upper half-plane {(x, y) ∈ R2, y > 0} in a potential V which
only depends on x/y. Find two independent first integrals.

Paper 2, Section II

14B Classical Dynamics
Define a body frame ea(t), a = 1, 2, 3 of a rotating rigid body, and show that there

exists a vector ω = (ω1, ω2, ω3) such that

ėa = ω × ea.

Let L = I1ω1(t)e1 + I2ω2(t)e2 + I3ω3(t)e3 be the angular momentum of a free rigid
body expressed in the body frame. Derive the Euler equations from the conservation of
angular momentum.

Verify that the kinetic energy E, and the total angular momentum L2 are conserved.
Hence show that

ω̇2
3 = f(ω3),

where f(ω3) is a quartic polynomial which should be explicitly determined in terms of L2

and E.

Paper 4, Section II

15B Classical Dynamics
Given a Lagrangian L(qi, q̇i, t) with degrees of freedom qi, define the Hamiltonian

and show how Hamilton’s equations arise from the Lagrange equations and the Legendre
transform.

Consider the Lagrangian for a symmetric top moving in constant gravity:

L =
1

2
A(θ̇2 + φ̇2 sin2 θ) +

1

2
B(ψ̇ + φ̇ cos θ)2 −Mgl cos θ,

where A, B, M , g and l are constants. Construct the corresponding Hamiltonian, and
find three independent Poisson-commuting first integrals of Hamilton’s equations.
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Paper 1, Section I

8E Classical Dynamics
Consider a Lagrangian system with Lagrangian L(xA, ẋA, t), where A = 1, . . . , 3N ,

and constraints
fα(xA, t) = 0, α = 1, . . . , 3N − n .

Use the method of Lagrange multipliers to show that this is equivalent to a system
with Lagrangian L(qi, q̇i, t) ≡ L(xA(qi, t), ẋA(qi, q̇i, t), t), where i = 1, . . . , n, and qi are
coordinates on the surface of constraints.

Consider a bead of unit mass in R2 constrained to move (with no potential) on a
wire given by an equation y = f(x), where (x, y) are Cartesian coordinates. Show that
the Euler–Lagrange equations take the form

d

dt

∂L
∂ẋ

=
∂L
∂x

for some L = L(x, ẋ) which should be specified. Find one first integral of the Euler–
Lagrange equations, and thus show that

t = F (x),

where F (x) should be given in the form of an integral.

[Hint: You may assume that the Euler–Lagrange equations hold in all coordinate
systems.]

Paper 2, Section I

8E Classical Dynamics
Derive the Lagrange equations from the principle of stationary action

S[q] =

∫ t1

t0

L(qi(t), q̇i(t), t)dt, δS = 0,

where the end points qi(t0) and qi(t1) are fixed.

Let φ and A be a scalar and a vector, respectively, depending on r = (x, y, z).
Consider the Lagrangian

L =
mṙ2

2
− (φ− ṙ ·A),

and show that the resulting Euler–Lagrange equations are invariant under the transfor-
mations

φ→ φ+ α
∂F

∂t
, A → A+∇F,

where F = F (r, t) is an arbitrary function, and α is a constant which should be determined.
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Paper 3, Section I

8E Classical Dynamics
Define an integrable system with 2n-dimensional phase space. Define angle-action

variables.

Consider a two-dimensional phase space with the Hamiltonian

H =
p2

2m
+

1

2
q2k,

where k is a positive integer and the mass m = m(t) changes slowly in time. Use the fact
that the action is an adiabatic invariant to show that the energy varies in time as mc,
where c is a constant which should be found.

Paper 4, Section I

8E Classical Dynamics
Consider the Poisson bracket structure on R3 given by

{x, y} = z, {y, z} = x, {z, x} = y

and show that {f, ρ2} = 0, where ρ2 = x2 + y2 + z2 and f : R3 → R is any polynomial
function on R3.

Let H = (Ax2 + By2 + Cz2)/2, where A,B,C are positive constants. Find the
explicit form of Hamilton’s equations

ṙ = {r,H}, where r = (x, y, z).

Find a condition on A,B,C such that the oscillation described by

x = 1 + α(t), y = β(t), z = γ(t)

is linearly unstable, where α(t), β(t), γ(t) are small.
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Paper 2, Section II

13E Classical Dynamics
Show that an object’s inertia tensor about a point displaced from the centre of mass

by a vector c is given by

(Ic)ab = (I0)ab +M(|c|2δab − cacb),

where M is the total mass of the object, and (I0)ab is the inertia tensor about the centre
of mass.

Find the inertia tensor of a cube of uniform density, with edge of length L, about
one of its vertices.

Paper 4, Section II

14E Classical Dynamics
Explain how geodesics of a Riemannian metric

g = gab(x
c)dxadxb

arise from the kinetic Lagrangian

L =
1

2
gab(x

c)ẋaẋb,

where a, b = 1, . . . , n.

Find geodesics of the metric on the upper half plane

Σ = {(x, y) ∈ R2, y > 0}

with the metric

g =
dx2 + dy2

y2

and sketch the geodesic containing the points (2, 3) and (10, 3).

[Hint: Consider dy/dx.]
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Paper 4, Section I

8E Classical Dynamics
Using conservation of angular momentum L = Laea in the body frame, derive the

Euler equations for a rigid body:

I1 ω̇1 + (I3−I2)ω2 ω3 = 0, I2 ω̇2 + (I1−I3)ω3 ω1 = 0, I3 ω̇3 + (I2−I1)ω1 ω2 = 0.

[You may use the formula ėa = ω ∧ ea without proof.]

Assume that the principal moments of inertia satisfy I1 < I2 < I3. Determine
whether a rotation about the principal 3-axis leads to stable or unstable perturbations.

Paper 1, Section I

8E Classical Dynamics
Consider a one-parameter family of transformations qi(t) 7→ Qi(s, t) such that

Qi(0, t) = qi(t) for all time t, and

∂

∂s
L(Qi, Q̇i, t) = 0 ,

where L is a Lagrangian and a dot denotes differentiation with respect to t. State and
prove Noether’s theorem.

Consider the Lagrangian

L =
1

2
( ẋ2 + ẏ2 + ż2 ) − V (x+y, y+z ) ,

where the potential V is a function of two variables. Find a continuous symmetry of this
Lagrangian and construct the corresponding conserved quantity. Use the Euler–Lagrange
equations to explicitly verify that the function you have constructed is independent of t.
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Paper 2, Section I

8E Classical Dynamics
Consider the Lagrangian

L = A( θ̇2 + φ̇2 sin2 θ ) +B( ψ̇ + φ̇ cos θ )2 − C(cos θ)k ,

where A, B, C are positive constants and k is a positive integer. Find three conserved
quantities and show that u = cos θ satisfies

u̇2 = f(u) ,

where f(u) is a polynomial of degree k+2 which should be determined.

Paper 3, Section I

8E Classical Dynamics
Consider a six-dimensional phase space with coordinates (qi, pi) for i = 1, 2, 3.

Compute the Poisson brackets {Li, Lj}, where Li = ǫijk qj pk.

Consider the Hamiltonian

H =
1

2
|p|2 + V ( |q| )

and show that the resulting Hamiltonian system admits three Poisson-commuting inde-
pendent first integrals.

Paper 2, Section II

13E Classical Dynamics
Define what it means for the transformation R2n → R2n given by

(qi, pi) 7→
(
Qi(qj, pj), Pi(qj , pj)

)
, i, j = 1, . . . , n

to be canonical . Show that a transformation is canonical if and only if

{Qi, Qj} = 0 , {Pi, Pj} = 0 , {Qi, Pj} = δij .

Show that the transformation R2 → R2 given by

Q = q cos ǫ− p sin ǫ , P = q sin ǫ+ p cos ǫ

is canonical for any real constant ǫ. Find the corresponding generating function.
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Paper 4, Section II

14E Classical Dynamics
A particle of unit mass is attached to one end of a light, stiff rod of length ℓ. The

other end of the rod is held at a fixed position, such that the rod is free to swing in
any direction. Write down the Lagrangian for the system giving a clear definition of any
angular variables you introduce. [You should assume the acceleration g is constant.]

Find two independent constants of the motion.

The particle is projected horizontally with speed v from a point where the rod lies
at an angle α to the downward vertical, with 0 < α < π/2. In terms of ℓ, g and α, find
the critical speed vc such that the particle always remains at its initial height.

The particle is now projected horizontally with speed vc but from a point at angle
α + δα to the vertical, where δα/α ≪ 1. Show that the height of the particle oscillates,
and find the period of oscillation in terms of ℓ, g and α.
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Paper 4, Section I

7D Classical Dynamics

A triatomic molecule is modelled by three masses moving in a line while connected
to each other by two identical springs of force constant k as shown in the figure.
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(a) Write down the Lagrangian and derive the equations describing the motion of the
atoms.

(b) Find the normal modes and their frequencies. What motion does the lowest frequency
represent?

Paper 3, Section I

7D Classical Dynamics

(a) Consider a particle of mass m that undergoes periodic motion in a one-dimensional
potential V (q). Write down the Hamiltonian H(p, q) for the system. Explain what is
meant by the angle–action variables (θ, I) of the system and write down the integral
expression for the action variable I.

(b) For V (q) = 1
2mω2q2 and fixed total energy E, describe the shape of the trajectories

in phase-space. By using the expression for the area enclosed by the trajectory, or
otherwise, find the action variable I in terms of ω and E. Hence describe how E
changes with ω if ω varies slowly with time. Justify your answer.
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Paper 2, Section I

7D Classical Dynamics

The Lagrangian for a heavy symmetric top of mass M , pinned at a point that is a
distance l from the centre of mass, is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3(ψ̇ + φ̇ cos θ)2 −Mgl cos θ .

(a) Find all conserved quantities. In particular, show that ω3, the spin of the top, is
constant.

(b) Show that θ obeys the equation of motion

I1θ̈ = −dVeff
dθ

,

where the explicit form of Veff should be determined.

(c) Determine the condition for uniform precession with no nutation, that is θ̇ = 0 and
φ̇ = const. For what values of ω3 does such uniform precession occur?

Part II, 2015 List of Questions
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Paper 1, Section I

7D Classical Dynamics

(a) The action for a one-dimensional dynamical system with a generalized coordinate q
and Lagrangian L is given by

S =

∫ t2

t1

L(q, q̇, t) dt .

State the principle of least action and derive the Euler–Lagrange equation.

(b) A planar spring-pendulum consists of a light rod of length l and a bead of mass m,
which is able to slide along the rod without friction and is attached to the ends of
the rod by two identical springs of force constant k as shown in the figure. The rod
is pivoted at one end and is free to swing in a vertical plane under the influence of
gravity.
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(i) Identify suitable generalized coordinates and write down the Lagrangian of the
system.

(ii) Derive the equations of motion.
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Paper 4, Section II

12C Classical Dynamics

Consider a rigid body with angular velocity ω, angular momentum L and position
vector r, in its body frame.

(a) Use the expression for the kinetic energy of the body,

1

2

∫
d3r ρ(r) ṙ2 ,

to derive an expression for the tensor of inertia of the body, I. Write down the
relationship between L, I and ω.

(b) Euler’s equations of torque-free motion of a rigid body are

I1 ω̇1 = (I2 − I3)ω2ω3 ,

I2 ω̇2 = (I3 − I1)ω3ω1 ,

I3 ω̇3 = (I1 − I2)ω1ω2 .

Working in the frame of the principal axes of inertia, use Euler’s equations to show
that the energy E and the squared angular momentum L2 are conserved.

(c) Consider a cuboid with sides a, b and c, and with mass M distributed uniformly.

(i) Use the expression for the tensor of inertia derived in (a) to calculate the principal
moments of inertia of the body.

(ii) Assume b = 2a and c = 4a, and suppose that the initial conditions are such that

L2 = 2I2E

with the initial angular velocity ω perpendicular to the intermediate principal
axis e2. Derive the first order differential equation for ω2 in terms of E, M and
a and hence determine the long-term behaviour of ω.
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Paper 2, Section II

12C Classical Dynamics

(a) Consider a Lagrangian dynamical system with one degree of freedom. Write down
the expression for the Hamiltonian of the system in terms of the generalized velocity
q̇, momentum p, and the Lagrangian L(q, q̇, t). By considering the differential of the
Hamiltonian, or otherwise, derive Hamilton’s equations.

Show that if q is ignorable (cyclic) with respect to the Lagrangian, i.e. ∂L/∂q = 0,
then it is also ignorable with respect to the Hamiltonian.

(b) A particle of charge q and mass m moves in the presence of electric and magnetic
fields such that the scalar and vector potentials are φ = yE and A = (0, xB, 0), where
(x, y, z) are Cartesian coordinates and E, B are constants. The Lagrangian of the
particle is

L =
1

2
mṙ2 − qφ+ qṙ ·A .

Starting with the Lagrangian, derive an explicit expression for the Hamiltonian and
use Hamilton’s equations to determine the motion of the particle.
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Paper 4, Section I

9A Classical Dynamics

Consider a heavy symmetric top of mass M with principal moments of inertia I1,
I2 and I3, where I1 = I2 6= I3. The top is pinned at point P , which is at a distance l from
the centre of mass, C, as shown in the figure.

P

C

l

Its angular velocity in a body frame (e1, e2, e3) is given by

ω = [φ̇ sin θ sinψ + θ̇ cosψ] e1 + [φ̇ sin θ cosψ − θ̇ sinψ] e2 + [ψ̇ + φ̇ cos θ] e3 ,

where φ, θ and ψ are the Euler angles.

(a) Assuming that {ea}, a = 1, 2, 3, are chosen to be the principal axes, write down the
Lagrangian of the top in terms of ωa and the principal moments of inertia. Hence
find the Lagrangian in terms of the Euler angles.

(b) Find all conserved quantities. Show that ω3, the spin of the top, is constant.

(c) By eliminating φ̇ and ψ̇, derive a second-order differential equation for θ.
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Paper 3, Section I

9A Classical Dynamics

(a) The action for a one-dimensional dynamical system with a generalized coordinate q
and Lagrangian L is given by

S =

∫ t2

t1

L(q, q̇, t) dt .

State the principle of least action. Write the expression for the Hamiltonian in terms
of the generalized velocity q̇, the generalized momentum p and the Lagrangian L.
Use it to derive Hamilton’s equations from the principle of least action.

(b) The motion of a particle of charge q and mass m in an electromagnetic field
with scalar potential φ(r, t) and vector potential A(r, t) is characterized by the
Lagrangian

L =
mṙ2

2
− q(φ− ṙ ·A) .

(i) Write down the Hamiltonian of the particle.

(ii) Consider a particle which moves in three dimensions in a magnetic field with
A = (0, Bx, 0), where B is a constant. There is no electric field. Obtain
Hamilton’s equations for the particle.
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Paper 2, Section I

9A Classical Dynamics

The components of the angular velocity ω of a rigid body and of the position vector
r are given in a body frame.

(a) The kinetic energy of the rigid body is defined as

T =
1

2

∫
d3r ρ(r)ṙ · ṙ ,

Given that the centre of mass is at rest, show that T can be written in the form

T =
1

2
Iabωaωb ,

where the explicit form of the tensor Iab should be determined.

(b) Explain what is meant by the principal moments of inertia.

(c) Consider a rigid body with principal moments of inertia I1 , I2 and I3, which are all
unequal. Derive Euler’s equations of torque-free motion

I1ω̇1 = (I2 − I3)ω2ω3 ,

I2ω̇2 = (I3 − I1)ω3ω1 ,

I3ω̇3 = (I1 − I2)ω1ω2 .

(d) The body rotates about the principal axis with moment of inertia I1. Derive the
condition for stable rotation.
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Paper 1, Section I

9A Classical Dynamics

Consider a one-dimensional dynamical system with generalized coordinate and
momentum (q, p).

(a) Define the Poisson bracket {f, g} of two functions f(q, p, t) and g(q, p, t).

(b) Verify the Leibniz rule
{fg, h} = f{g, h} + g{f, h}.

(c) Explain what is meant by a canonical transformation (q, p) → (Q,P ).

(d) State the condition for a transformation (q, p) → (Q,P ) to be canonical in terms
of the Poisson bracket {Q,P}. Use this to determine whether or not the following
transformations are canonical:

(i) Q =
q2

2
, P =

p

q
,

(ii) Q = tan q , P = p cos q ,

(iii) Q =
√

2q et cos p , P =
√
2q e−t sin p .
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Paper 4, Section II

15A Classical Dynamics

(a) Consider a system with one degree of freedom, which undergoes periodic motion in
the potential V (q). The system’s Hamiltonian is

H(p, q) =
p2

2m
+ V (q) .

(i) Explain what is meant by the angle and action variables, θ and I, of the
system and write down the integral expression for the action variable I. Is I
conserved? Is θ conserved?

(ii) Consider V (q) = λq6, where λ is a positive constant. Find I in terms of λ,
the total energy E, the mass M , and a dimensionless constant factor (which
you need not compute explicitly).

(iii) Hence describe how E changes with λ if λ varies slowly with time. Justify
your answer.

(b) Consider now a particle which moves in a plane subject to a central force-field
F = −kr−2r̂.

(i) Working in plane polar coordinates (r, φ), write down the Hamiltonian of the
system. Hence deduce two conserved quantities. Prove that the system is
integrable and state the number of action variables.

(ii) For a particle which moves on an elliptic orbit find the action variables
associated with radial and tangential motions. Can the relationship between
the frequencies of the two motions be deduced from this result? Justify your
answer.

(iii) Describe how E changes with m and k if one or both of them vary slowly
with time.

[You may use

r2∫

r1

{(
1− r1

r

)(r2
r

− 1
)} 1

2
dr =

π

2
(r1 + r2)− π

√
r1 r2 ,

where 0 < r1 < r2 .]
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Paper 2, Section II

15A Classical Dynamics

A planar pendulum consists of a mass m at the end of a light rod of length l. The
pivot of the pendulum is attached to a bead of mass M , which slides along a horizontal
rod without friction. The bead is connected to the ends of the horizontal rod by two
identical springs of force constant k. The pivot constrains the pendulum to swing in the
vertical plane through the horizontal rod. The horizontal rod is mounted on a bracket, so
the system could rotate about the vertical axis which goes through its centre as shown in
the figure.

l

k k

m

M

(a) Initially, the system is not allowed to rotate about the vertical axis.

(i) Identify suitable generalized coordinates and write down the Lagrangian of the
system.

(ii) Write down expression(s) for any conserved quantities. Justify your answer.

(iii) Derive the equations of motion.

(iv) For M = m/2 and gm/kl = 3, find the frequencies of small oscillations around
the stable equilibrium and the corresponding normal modes. Describe the
respective motions of the system.

(b) Assume now that the system is free to rotate about the vertical axis without friction.
Write down the Lagrangian of the system. Identify and calculate the additional
conserved quantity.
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Paper 4, Section I

9B Classical Dynamics
The Lagrangian for a heavy symmetric top of mass M , pinned at point O which is

a distance l from the centre of mass, is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3(ψ̇ + φ̇ cos θ)2 −Mgl cos θ.

(i) Starting with the fixed space frame (ẽ1, ẽ2, ẽ3) and choosing O at its origin, sketch
the top with embedded body frame axis e3 being the symmetry axis. Clearly identify
the Euler angles (θ, φ, ψ).

(ii) Obtain the momenta pθ, pφ and pψ and the Hamiltonian H(θ, φ, ψ, pθ, pφ, pψ). Derive
Hamilton’s equations. Identify the three conserved quantities.

Paper 3, Section I

9B Classical Dynamics
Two equal masses m are connected to each other and to fixed points by three springs

of force constant 5k, k and 5k as shown in the figure.
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(i) Write down the Lagrangian and derive the equations describing the motion of the
system in the direction parallel to the springs.

(ii) Find the normal modes and their frequencies. Comment on your results.
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Paper 2, Section I

9B Classical Dynamics

(i) Consider a rigid body with principal moments of inertia I1, I2, I3. Derive Euler’s
equations of torque-free motion,

I1ω̇1 = (I2 − I3)ω2ω3,

I2ω̇2 = (I3 − I1)ω3ω1,

I3ω̇3 = (I1 − I2)ω1ω2,

with components of the angular velocity ω = (ω1, ω2, ω3) given in the body frame.

(ii) Use Euler’s equations to show that the energy E and the square of the total angular
momentum L2 of the body are conserved.

(iii) Consider a torque-free motion of a symmetric top with I1 = I2 =
1
2I3. Show that in

the body frame the vector of angular velocity ω precesses about the body-fixed e3
axis with constant angular frequency equal to ω3.

Paper 1, Section I

9B Classical Dynamics
Consider an n-dimensional dynamical system with generalized coordinates and

momenta (qi, pi), i = 1, 2, ..., n.

(a) Define the Poisson bracket {f, g} of two functions f(qi, pi, t) and g(qi, pi, t).

(b) Assuming Hamilton’s equations of motion, prove that if a function G(qi, pi) Poisson
commutes with the Hamiltonian, that is {G,H} = 0, then G is a constant of the
motion.

(c) Assume that qj is an ignorable coordinate, that is the Hamiltonian does not depend
on it explicitly. Using the formalism of Poisson brackets prove that the conjugate
momentum pj is conserved.

Part II, 2013 List of Questions
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Paper 4, Section II

15B Classical Dynamics
The motion of a particle of charge q and mass m in an electromagnetic field with

scalar potential φ(r, t) and vector potential A(r, t) is characterized by the Lagrangian

L =
mṙ2

2
− q(φ− ṙ ·A) .

(i) Write down the Hamiltonian of the particle.

(ii) Write down Hamilton’s equations of motion for the particle.

(iii) Show that Hamilton’s equations are invariant under the gauge transformation

φ → φ− ∂Λ

∂t
, A → A+∇Λ,

for an arbitrary function Λ(r, t).

(iv) The particle moves in the presence of a field such that φ = 0 andA = (−1
2yB, 12xB, 0),

where (x, y, z) are Cartesian coordinates and B is a constant.

(a) Find a gauge transformation such that only one component of A(x, y, z) remains
non-zero.

(b) Determine the motion of the particle.

(v) Now assume that B varies very slowly with time on a time-scale much longer than
(qB/m)−1. Find the quantity which remains approximately constant throughout the
motion.
[You may use the expression for the action variable I = 1

2π

∮
pidqi. ]
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Paper 2, Section II

15B Classical Dynamics

(i) The action for a system with a generalized coordinate q is given by

S =

∫ t2

t1

L(q, q̇, t)dt .

(a) State the Principle of Least Action and derive the Euler–Lagrange equation.

(b) Consider an arbitrary function f(q, t). Show that L′ = L + df/dt leads to the
same equation of motion.

(ii) A wire frame ABC in a shape of an equilateral triangle with side a rotates in a
horizontal plane with constant angular frequency ω about a vertical axis through A.
A bead of mass m is threaded on BC and moves without friction. The bead
is connected to B and C by two identical light springs of force constant k and
equilibrium length a/2.

(a) Introducing the displacement η of the particle from the mid point of BC,
determine the Lagrangian L(η, η̇).

(b) Derive the equation of motion. Identify the integral of the motion.

(c) Describe the motion of the bead. Find the condition for there to be a stable
equilibrium and find the frequency of small oscillations about it when it exists.
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Paper 4, Section I

9A Classical Dynamics
Consider a one-dimensional dynamical system with generalized coordinate and

momentum (q, p).

(a) Define the Poisson bracket {f, g} of two functions f(q, p, t) and g(q, p, t).

(b) Find the Poisson brackets {q, q}, {p, p} and {q, p}.

(c) Assuming Hamilton’s equations of motion prove that

df

dt
= {f,H}+ ∂f

∂t
.

(d) State the condition for a transformation (q, p) → (Q,P ) to be canonical in terms of
the Poisson brackets found in (b). Use this to determine whether or not the following
transformations are canonical:

(i) Q = sin q, P = p−a
cos q ,

(ii) Q = cos q, P = p−a
sin q ,

where a is constant.

Paper 3, Section I

9A Classical Dynamics
The motion of a particle of charge q and mass m in an electromagnetic field with

scalar potential φ(r, t) and vector potential A(r, t) is characterized by the Lagrangian

L =
mṙ2

2
− q(φ− ṙ ·A).

(a) Show that the Euler–Lagrange equation is invariant under the gauge transformation

φ → φ− ∂Λ

∂t
, A → A+∇Λ,

for an arbitrary function Λ(r, t).

(b) Derive the equations of motion in terms of the electric and magnetic fields E(r, t) and
B(r, t).

[Recall that B = ∇×A and E = −∇φ− ∂A
∂t .]
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Paper 2, Section I

9A Classical Dynamics

(a) The action for a system with a generalized coordinate q is given by

S =

∫ t2

t1

L(q, q̇, t)dt .

State the Principle of Least Action and state the Euler–Lagrange equation.

(b) Consider a light rigid circular wire of radius a and centre O. The wire lies in a
vertical plane, which rotates about the vertical axis through O. At time t the plane
containing the wire makes an angle φ(t) with a fixed vertical plane. A bead of mass
m is threaded onto the wire. The bead slides without friction along the wire, and its
location is denoted by A. The angle between the line OA and the downward vertical
is θ(t).

Show that the Lagrangian of this system is

ma2

2
θ̇2 +

ma2

2
φ̇2 sin2 θ +mga cos θ .

Calculate two independent constants of the motion, and explain their physical signif-
icance.

Paper 1, Section I

9A Classical Dynamics
Consider a heavy symmetric top of mass M , pinned at point P , which is a distance

l from the centre of mass.

(a) Working in the body frame (e1, e2, e3) (where e3 is the symmetry axis of the top)
define the Euler angles (ψ, θ, φ) and show that the components of the angular velocity
can be expressed in terms of the Euler angles as

ω = (φ̇ sin θ sinψ + θ̇ cosψ, φ̇ sin θ cosψ − θ̇ sinψ, ψ̇ + φ̇ cos θ) .

(b) Write down the Lagrangian of the top in terms of the Euler angles and the principal
moments of inertia I1, I3.

(c) Find the three constants of motion.

Part II, 2012 List of Questions
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Paper 4, Section II

15A Classical Dynamics
A homogenous thin rod of mass M and length l is constrained to rotate in a

horizontal plane about its centre O. A bead of mass m is set to slide along the rod
without friction. The bead is attracted to O by a force resulting in a potential kx2/2,
where x is the distance from O.

(a) Identify suitable generalized coordinates and write down the Lagrangian of the system.

(b) Identify all conserved quantities.

(c) Derive the equations of motion and show that one of them can be written as

mẍ = −∂Veff(x)

∂x
,

where the form of the effective potential Veff(x) should be found explicitly.

(d) Sketch the effective potential. Find and characterize all points of equilibrium.

(e) Find the frequencies of small oscillations around the stable equilibria.

Part II, 2012 List of Questions [TURN OVER
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Paper 2, Section II

15A Classical Dynamics
Consider a rigid body with principal moments of inertia I1, I2, I3.

(a) Derive Euler’s equations of torque-free motion

I1ω̇1 = (I2 − I3)ω2ω3 ,

I2ω̇2 = (I3 − I1)ω3ω1 ,

I3ω̇3 = (I1 − I2)ω1ω2 ,

with components of the angular velocity ω = (ω1, ω2, ω3) given in the body frame.

(b) Show that rotation about the second principal axis is unstable if (I2−I3)(I1−I2) > 0.

(c) The principal moments of inertia of a uniform cylinder of radius R, height h and mass
M about its centre of mass are

I1 = I2 =
MR2

4
+

Mh2

12
; I3 =

MR2

2
.

The cylinder has two identical cylindrical holes of radius r drilled along its length.
The axes of symmetry of the holes are at a distance a from the axis of symmetry of
the cylinder such that r < R/2 and r < a < R− r. All three axes lie in a single plane.

Compute the principal moments of inertia of the body.
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Paper 1, Section I

9C Classical Dynamics

(i) A particle of mass m and charge q, at position x, moves in an electromagnetic field
with scalar potential φ(x, t) and vector potential A(x, t). Verify that the Lagrangian

L =
1

2
mẋ2 − q(φ− ẋ ·A)

gives the correct equations of motion.

[Note that E = −∇φ− Ȧ and B = ∇×A.]

(ii) Consider the case of a constant uniform magnetic field, with E = 0, given by φ = 0,
A = (0, xB, 0), where (x, y, z) are Cartesian coordinates and B is a constant. Find
the motion of the particle, and describe it carefully.

Paper 2, Section I

9C Classical Dynamics
Three particles, each of mass m, move along a straight line. Their positions on the

line containing the origin, O, are x1, x2 and x3. They are subject to forces derived from
the potential energy function

V =
1

2
mΩ2

[
(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2 + x21 + x22 + x23

]
.

Obtain Lagrange’s equations for the system, and show that the frequency, ω, of a
normal mode satisfies

f3 − 9f2 + 24f − 16 = 0 ,

where f = (ω2/Ω2). Find a complete set of normal modes for the system, and draw a
diagram indicating the nature of the corresponding motions.
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Paper 3, Section I

9C Classical Dynamics
The Lagrangian for a heavy symmetric top is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
−Mgl cos θ .

State Noether’s Theorem. Hence, or otherwise, find two conserved quantities linear
in momenta, and a third conserved quantity quadratic in momenta.

Writing µ = cos θ, deduce that µ obeys an equation of the form

µ̇2 = F (µ) ,

where F (µ) is cubic in µ. [You need not determine the explicit form of F (µ).]

Paper 4, Section I

9C Classical Dynamics

(i) A dynamical system is described by the Hamiltonian H(qi, pi). Define the Poisson
bracket {f, g} of two functions f(qi, pi, t), g(qi, pi, t). Assuming the Hamiltonian
equations of motion, find an expression for df/dt in terms of the Poisson bracket.

(ii) A one-dimensional system has the Hamiltonian

H = p2 +
1

q2
.

Show that u = pq− 2Ht is a constant of the motion. Deduce the form of (q(t), p(t))
along a classical path, in terms of the constants u and H.

Paper 2, Section II

15C Classical Dynamics
Derive Euler’s equations governing the torque-free and force-free motion of a rigid

body with principal moments of inertia I1, I2 and I3, where I1 < I2 < I3. Identify two
constants of the motion. Hence, or otherwise, find the equilibrium configurations such
that the angular-momentum vector, as measured with respect to axes fixed in the body,
remains constant. Discuss the stability of these configurations.

A spacecraft may be regarded as moving in a torque-free and force-free environment.
Nevertheless, flexing of various parts of the frame can cause significant dissipation of
energy. How does the angular-momentum vector ultimately align itself within the body?

Part II, 2011 List of Questions [TURN OVER
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Paper 4, Section II

15C Classical Dynamics
Given a Hamiltonian system with variables (qi, pi), i = 1, . . . , n, state the definition

of a canonical transformation
(qi, pi) → (Qi, Pi) ,

where Q = Q(q,p, t) and P = P(q,p, t). Write down a matrix equation that is equivalent
to the condition that the transformation is canonical.

Consider a harmonic oscillator of unit mass, with Hamiltonian

H =
1

2
(p2 + ω2q2) .

Write down the Hamilton–Jacobi equation for Hamilton’s principal function S(q,E, t),
and deduce the Hamilton–Jacobi equation

1

2

[(
∂W

∂q

)2

+ ω2q2

]
= E (1)

for Hamilton’s characteristic function W (q,E).

Solve (1) to obtain an integral expression for W , and deduce that, at energy E,

S =
√
2E

∫
dq

√(
1− ω2q2

2E

)
− Et . (2)

Let α = E, and define the angular coordinate

β =

(
∂S

∂E

)

q,t

.

You may assume that (2) implies

t+ β =

(
1

ω

)
arcsin

(
ωq√
2E

)
.

Deduce that

p =
∂S

∂q
=

∂W

∂q
=

√
(2E − ω2q2) ,

from which
p =

√
2E cos[ω(t+ β)] .

Hence, or otherwise, show that the transformation from variables (q, p) to (α, β) is
canonical.
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Paper 1, Section I

9D Classical Dynamics
A system with coordinates qi, i = 1, . . . , n, has the Lagrangian L(qi, q̇i). Define the

energy E.

Consider a charged particle, of mass m and charge e, moving with velocity v in the
presence of a magnetic field B = ∇ × A. The usual vector equation of motion can be
derived from the Lagrangian

L =
1

2
m v2 + e v ·A ,

where A is the vector potential.

The particle moves in the presence of a field such that

A = (0, r g(z), 0) , g(z) > 0 ,

referred to cylindrical polar coordinates (r, φ, z). Obtain two constants of the motion, and
write down the Lagrangian equations of motion obtained by variation of r, φ and z.

Show that, if the particle is projected from the point (r0, φ0, z0) with velocity
(0,−2 (e/m) r0 g(z0), 0), it will describe a circular orbit provided that g′(z0) = 0.

Paper 2, Section I

9D Classical Dynamics

Given the form

T =
1

2
Tij q̇i q̇j , V =

1

2
Vij qi qj ,

for the kinetic energy T and potential energy V of a mechanical system, deduce Lagrange’s

equations of motion.

A light elastic string of length 4b, fixed at both ends, has three particles, each of

mass m, attached at distances b, 2b, 3b from one end. Gravity can be neglected. The

particles vibrate with small oscillations transversely to the string, the tension S in the

string providing the restoring force. Take the displacements of the particles, qi, i = 1, 2, 3,

to be the generalized coordinates. Take units such that m = 1, S/b = 1 and show that

V =
1

2

[
q1

2 + (q1 − q2)
2 + (q2 − q3)

2 + q3
2
]
.

Find the normal–mode frequencies for this system.
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Paper 3, Section I

9D Classical Dynamics
Euler’s equations for the angular velocity ω = (ω1, ω2, ω3) of a rigid body, viewed

in the body frame, are

I1
dω1

dt
= (I2 − I3)ω2 ω3

and cyclic permutations, where the principal moments of inertia are assumed to obey
I1 < I2 < I3.

Write down two quadratic first integrals of the motion.

There is a family of solutions ω(t), unique up to time–translations t → (t − t0),
which obey the boundary conditions ω → (0,Ω, 0) as t → −∞ and ω → (0,−Ω, 0) as
t → ∞ , for a given positive constant Ω. Show that, for such a solution, one has

L2 = 2EI2 ,

where L is the angular momentum and E is the kinetic energy.

By eliminating ω1 and ω3 in favour of ω2, or otherwise, show that, in this case, the
second Euler equation reduces to

ds

dτ
= 1− s2 ,

where s = ω2/Ω and τ = Ωt
[
(I1 − I2)(I2 − I3)/I1I3

]1/2
. Find the general solution s(τ).

[You are not expected to calculate ω1(t) or ω3(t).]
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Paper 4, Section I

9D Classical Dynamics

A system with one degree of freedom has Lagrangian L(q, q̇). Define the canonical

momentum p and the energy E. Show that E is constant along any classical path.

Consider a classical path qc(t) with the boundary–value data

qc(0) = qI , qc(T ) = qF , T > 0 .

Define the action Sc(qI , qF , T ) of the path. Show that the total derivative dSc/dT along

the classical path obeys
dSc

dT
= L .

Using Lagrange’s equations, or otherwise, deduce that

∂Sc

∂qF
= pF ,

∂Sc

∂T
= −E ,

where pF is the final momentum.

Paper 2, Section II

15D Classical Dynamics

An axially–symmetric top of mass m is free to rotate about a fixed point O on its

axis. The principal moments of inertia about O are A,A,C, and the centre of gravity G

is at a distance ℓ from O. Define Euler angles θ, φ and ψ which specify the orientation

of the top, where θ is the inclination of OG to the upward vertical. Show that there are

three conserved quantities for the motion, and give their physical meaning.

Initially, the top is spinning with angular velocity n about OG, with G vertically

above O, before being disturbed slightly. Show that, in the subsequent motion, θ will

remain close to zero provided C2n2 > 4mgℓA, but that if C2n2 < 4mgℓA, then θ will

attain a maximum value given by

cos θ ≃ (C2n2/ 2mgℓA) − 1 .
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Paper 4, Section II

15D Classical Dynamics

A system is described by the Hamiltonian H(q, p). Define the Poisson bracket {f, g}
of two functions f(q, p, t), g(q, p, t), and show from Hamilton’s equations that

df

dt
= {f,H}+ ∂f

∂t
.

Consider the Hamiltonian

H =
1

2
(p2 + ω2q2) ,

and define

a = (p− iωq)/(2ω)1/2 , a∗ = (p + iωq)/(2ω)1/2 ,

where i =
√
−1. Evaluate {a, a} and {a, a∗}, and show that {a,H} = −iωa and

{a∗,H} = iωa∗. Show further that, when f(q, p, t) is regarded as a function of the

independent complex variables a, a∗ and of t, one has

df

dt
= iω

(
a∗

∂f

∂a∗
− a

∂f

∂a

)
+

∂f

∂t
.

Deduce that both log a∗ − iωt and log a+ iωt are constant during the motion.
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Paper 1, Section I

9E Classical Dynamics

Lagrange’s equations for a system with generalized coordinates qi(t) are given by

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0,

where L is the Lagrangian. The Hamiltonian is given by

H =
∑

j

pj q̇j − L,

where the momentum conjugate to qj is

pj =
∂L

∂q̇j
.

Derive Hamilton’s equations in the form

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

Explain what is meant by the statement that qk is an ignorable coordinate and give an

associated constant of the motion in this case.

The Hamiltonian for a particle of mass m moving on the surface of a sphere of radius

a under a potential V (θ) is given by

H =
1

2ma2

(
p2θ +

p2φ

sin2 θ

)
+ V (θ),

where the generalized coordinates are the spherical polar angles (θ, φ). Write down two

constants of the motion and show that it is possible for the particle to move with constant

θ provided that

pφ
2 =

(
ma2 sin3 θ

cos θ

)
dV

dθ
.
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Paper 2, Section I

9E Classical Dynamics

A system of three particles of equal mass m moves along the x axis with xi denoting

the x coordinate of particle i. There is an equilibrium configuration for which x1 = 0,

x2 = a and x3 = 2a.

Particles 1 and 2, and particles 2 and 3, are connected by springs with spring

constant µ that provide restoring forces when the respective particle separations deviate

from their equilibrium values. In addition, particle 1 is connected to the origin by a spring

with spring constant 16µ/3. The Lagrangian for the system is

L =
m

2

(
ẋ21 + η̇21 + η̇22

)
− µ

2

(
16

3
x21 + (η1 − x1)

2 + (η2 − η1)
2

)
,

where the generalized coordinates are x1, η1 = x2 − a and η2 = x3 − 2a.

Write down the equations of motion. Show that the generalized coordinates can

oscillate with a period P = 2π/ω, where

ω2 =
µ

3m
,

and find the form of the corresponding normal mode in this case.
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Paper 3, Section I

9E Classical Dynamics

(a) Show that the principal moments of inertia of a uniform circular cylinder of

radius a, length h and mass M about its centre of mass are I1 = I2 = M(a2/4 + h2/12)

and I3 = Ma2/2, with the x3 axis being directed along the length of the cylinder.

(b) Euler’s equations governing the angular velocity (ω1, ω2, ω3) of an arbitrary rigid

body as viewed in the body frame are

I1
dω1

dt
= (I2 − I3)ω2ω3,

I2
dω2

dt
= (I3 − I1)ω3ω1

and

I3
dω3

dt
= (I1 − I2)ω1ω2.

Show that, for the cylinder of part (a), ω3 is constant. Show further that, when ω3 6= 0,

the angular momentum vector precesses about the x3 axis with angular velocity Ω given

by

Ω =

(
3a2 − h2

3a2 + h2

)
ω3.

Paper 4, Section I

9E Classical Dynamics

(a) A Hamiltonian system with n degrees of freedom has the Hamiltonian H(p,q),

where q = (q1, q2, q3, . . . , qn) are the coordinates and p = (p1, p2, p3, . . . , pn) are the

momenta.

A second Hamiltonian system has the Hamiltonian G = G(p,q). Neither H nor G

contains the time explicitly. Show that the condition for H(p,q) to be invariant under

the evolution of the coordinates and momenta generated by the Hamiltonian G(p,q) is

that the Poisson bracket [H,G] vanishes. Deduce that G is a constant of the motion for

evolution under H.

Show that, when G = α
∑n

k=1 pk, where α is constant, the motion it generates is a

translation of each qk by an amount αt, while the corresponding pk remains fixed. What

do you infer is conserved when H is invariant under this transformation?

(b) When n = 3 and H is a function of p21+p22+p23 and q21+q22+q23 only, find [H,Li]

when

Li = ǫijkqjpk.
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Paper 2, Section II

15E Classical Dynamics

A symmetric top of unit mass moves under the action of gravity. The Lagrangian

is given by

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
− gl cos θ ,

where the generalized coordinates are the Euler angles (θ, φ, ψ), the principal

moments of inertia are I1 and I3 and the distance from the centre of gravity of the top to

the origin is l .

Show that ω3 = ψ̇ + φ̇ cos θ and pφ = I1φ̇ sin
2 θ + I3ω3 cos θ are constants of the

motion. Show further that, when pφ = I3ω3 , with ω3 > 0 , the equation of motion for θ is

d2θ

dt2
=

gl sin θ

I1

(
1− I23ω

2
3

4I1gl cos4(θ/2)

)
.

Find the possible equilibrium values of θ in the two cases:

(i) I23 ω
2
3 > 4I1 gl ,

(ii) I23 ω
2
3 < 4I1 gl .

By considering linear perturbations in the neighbourhoods of the equilibria in each case,

find which are unstable and give expressions for the periods of small oscillations about the

stable equilibria.
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Paper 4, Section II

15E Classical Dynamics

The Hamiltonian for a particle of mass m, charge e and position vector q = (x, y, z),

moving in an electromagnetic field, is given by

H(p,q, t) =
1

2m

(
p− eA

c

)2

,

where A(q, t) is the vector potential. Write down Hamilton’s equations and use them to

derive the equations of motion for the charged particle.

Show that, when A = (−yB0(z, t), 0, 0), there are solutions for which px = 0 and

for which the particle motion is such that

d2y

dt2
= −Ω2y,

where Ω = eB0/(mc). Show in addition that the Hamiltonian may be written as

H =
m

2

(
dz

dt

)2

+ E′,

where

E′ =
m

2

((
dy

dt

)2

+Ω2y2

)
.

Assuming that B0 is constant, find the action

I(E′, B0) =
1

2π

∮
m

(
dy

dt

)
dy

associated with the y motion.

It is now supposed that B0 varies on a time-scale much longer than Ω−1 and thus

is slowly varying. Show by applying the theory of adiabatic invariance that the motion in

the z direction takes place under an effective potential and give an expression for it.
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1/I/9A Classical Dynamics

The action for a system with generalized coordinates qi(t) for a time interval [t1, t2]
is given by

S =

∫ t2

t1

L(qi, q̇i, t)dt,

where L is the Lagrangian. The end point values qi(t1) and qi(t2) are fixed.

Derive Lagrange’s equations from the principle of least action by considering the
variation of S for all possible paths.

Define the momentum pi conjugate to qi. Derive a condition for pi to be a constant
of the motion.

A symmetric top moves under the action of a potential V (θ). The Lagrangian is
given by

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2

− V,

where the generalized coordinates are the Euler angles (θ, φ, ψ) and the principal moments
of inertia are I1 and I3.

Show that ω3 = ψ̇+ φ̇ cos θ is a constant of the motion and give expressions for two
others. Show further that it is possible for the top to move with both θ and φ̇ constant
provided these satisfy the condition

I1φ̇
2 sin θ cos θ − I3ω3φ̇ sin θ =

dV

dθ
.
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2/II/15B Classical Dynamics

A particle of mass m, charge e and position vector r = (x1, x2, x3) ≡ q moves in a
magnetic field whose vector potential is A. Its Hamiltonian is given by

H(p,q) =
1

2m

(
p− eA

c

)2

.

Write down Hamilton’s equations and use them to derive the equations of motion for the
charged particle.

Define the Poisson bracket [F,G] for general F (p,q) and G(p,q). Show that for
motion governed by the above Hamiltonian

[mẋi, xj ] = −δij , and [mẋi,mẋj ] =
e

c

(
∂Aj
∂xi
− ∂Ai
∂xj

)
.

Consider the vector potential to be given by A = (0, 0, F (r)), where r =
√
x2

1 + x2
2.

Use Hamilton’s equations to show that p3 is constant and that circular motion at radius
r with angular frequency Ω is possible provided that

Ω2 = −
(
p3 −

eF

c

)
e

m2cr

dF

dr
.
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2/I/9A Classical Dynamics

A system of N particles i = 1, 2, 3, . . . , N , with mass mi, moves around a circle of
radius a. The angle between the radius to particle i and a fixed reference radius is θi. The
interaction potential for the system is

V =
1

2
k

N∑

j=1

(θj+1 − θj)2,

where k is a constant and θN+1 = θ1 + 2π.

The Lagrangian for the system is

L =
1

2
a2

N∑

j=1

mj θ̇
2
j − V.

Write down the equation of motion for particle i and show that the system is in equilibrium
when the particles are equally spaced around the circle.

Show further that the system always has a normal mode of oscillation with zero
frequency. What is the form of the motion associated with this?

Find all the frequencies and modes of oscillation when N = 2, m1 = km/a2 and
m2 = 2km/a2, where m is a constant.
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3/I/9E Classical Dynamics

Writing x = (p1, p2, p3, . . . , pn, q1, q2, q3, . . . , qn), Hamilton’s equations may be
written in the form

ẋ = J
∂H

∂x
,

where the 2n× 2n matrix

J =

(
0 −I
I 0

)
,

and I and 0 denote the n× n unit and zero matrices respectively.

Explain what is meant by the statement that the transformation x→ y,

(p1, p2, p3, . . . , pn, q1, q2, q3, . . . , qn)→ (P1, P2, P3, . . . , Pn, Q1, Q2, Q3, . . . , Qn),

is canonical, and show that the condition for this is that

J = J JJ T ,

where J is the Jacobian matrix with elements

Jij =
∂yi
∂xj

.

Use this condition to show that for a system with n = 1 the transformation given by

P = p+ 2q, Q =
1

2
q − 1

4
p

is canonical.
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4/II/15B Classical Dynamics

(a) A Hamiltonian system with n degrees of freedom has Hamiltonian H = H(p,q),
where the coordinates q = (q1, q2, q3, . . . , qn) and the momenta p = (p1, p2, p3, . . . , pn)
respectively.

Show from Hamilton’s equations that when H does not depend on time explicitly,
for any function F = F (p,q),

dF

dt
= [F,H] ,

where [F,H] denotes the Poisson bracket.

For a system of N interacting vortices

H(p,q) = −κ
4

N∑

i=1

N∑

j=1
j 6=i

ln
[
(pi − pj)2 + (qi − qj)2

]
,

where κ is a constant. Show that the quantity defined by

F =
N∑

j=1

(q2
j + p2

j )

is a constant of the motion.

(b) The action for a Hamiltonian system with one degree of freedom with
H = H(p, q) for which the motion is periodic is

I =
1

2π

∮
p(H, q)dq.

Show without assuming any specific form for H that the period of the motion T is given
by

2π

T
=
dH

dI
.

Suppose now that the system has a parameter that is allowed to vary slowly with
time. Explain briefly what is meant by the statement that the action is an adiabatic
invariant. Suppose that when this parameter is fixed, H = 0 when I = 0. Deduce that, if
T decreases on an orbit with any I when the parameter is slowly varied, then H increases.
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4/I/9B Classical Dynamics

(a) Show that the principal moments of inertia for an infinitesimally thin uniform
rectangular sheet of mass M with sides of length a and b (with b < a) about its centre of
mass are I1 = Mb2/12, I2 = Ma2/12 and I3 = M(a2 + b2)/12.

(b) Euler’s equations governing the angular velocity (ω1, ω2, ω3) of the sheet as
viewed in the body frame are

I1
dω1

dt
= (I2 − I3)ω2ω3,

I2
dω2

dt
= (I3 − I1)ω3ω1,

and

I3
dω3

dt
= (I1 − I2)ω1ω2.

A possible solution of these equations is such that the sheet rotates with ω1 = ω3 = 0,
and ω2 = Ω = constant.

By linearizing, find the equations governing small motions in the neighbourhood
of this solution that have (ω1, ω3) 6= 0. Use these to show that there are solutions
corresponding to instability such that ω1 and ω3 are both proportional to exp(βΩt), with
β =

√
(a2 − b2)/(a2 + b2).
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1/I/9C Classical Dynamics

The action for a system with generalized coordinates, qi(t), for a time interval
[t1, t2] is given by

S =

∫ t2

t1

L(qi, q̇i) dt ,

where L is the Lagrangian, and where the end point values qi(t1) and qi(t2) are fixed
at specified values. Derive Lagrange’s equations from the principle of least action by
considering the variation of S for all possible paths.

What is meant by the statement that a particular coordinate qj is ignorable? Show
that there is an associated constant of the motion, to be specified in terms of L .

A particle of mass m is constrained to move on the surface of a sphere of radius a
under a potential, V (θ), for which the Lagrangian is given by

L =
m

2
a2
(
θ̇2 + φ̇2 sin2 θ

)
− V (θ) .

Identify an ignorable coordinate and find the associated constant of the motion, expressing
it as a function of the generalized coordinates. Evaluate the quantity

H = q̇i
∂L

∂q̇i
− L

in terms of the same generalized coordinates, for this case. Is H also a constant of the
motion? If so, why?
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2/II/15C Classical Dynamics

(a) A Hamiltonian system with n degrees of freedom is described by the phase space
coordinates (q1, q2, ..., qn) and momenta (p1, p2, ..., pn). Show that the phase-space
volume element

dτ = dq1dq2.....dqndp1dp2.....dpn

is conserved under time evolution.

(b) The Hamiltonian, H , for the system in part (a) is independent of time. Show that
if F (q1, ..., qn, p1, ..., pn) is a constant of the motion, then the Poisson bracket [F,H]
vanishes. Evaluate [F,H] when

F =
n∑

k=1

pk

and

H =
n∑

k=1

p2k + V (q1, q2, ..., qn) ,

where the potential V depends on the qk (k = 1, 2, ..., n) only through quantities of
the form qi − qj for i 6= j .

(c) For a system with one degree of freedom, state what is meant by the transformation

(q, p) →
(
Q(q, p), P (q, p)

)

being canonical. Show that the transformation is canonical if and only if the Poisson
bracket [Q,P ] = 1 .
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2/I/9C Classical Dynamics

The Lagrangian for a particle of mass m and charge e moving in a magnetic field
with position vector r = (x, y, z) is given by

L = 1
2mṙ2 + e

ṙ ·A
c

,

where the vector potential A(r), which does not depend on time explicitly, is related to
the magnetic field B through

B = ∇×A .

Write down Lagrange’s equations and use them to show that the equation of motion of
the particle can be written in the form

mr̈ = e
ṙ×B

c
.

Deduce that the kinetic energy, T, is constant.

When the magnetic field is of the form B = (0, 0, dF/dx) for some specified function
F (x), show further that

ẋ2 =
2T

m
−
(
eF (x) + C

)2

m2c2
+ D ,

where C and D are constants.

3/I/9C Classical Dynamics

A particle of mass m1 is constrained to move in the horizontal (x, y) plane, around
a circle of fixed radius r1 whose centre is at the origin of a Cartesian coordinate system
(x, y, z). A second particle of mass m2 is constrained to move around a circle of fixed
radius r2 that also lies in a horizontal plane, but whose centre is at (0, 0, a). It is given
that the Lagrangian L of the system can be written as

L =
m1

2
r21 φ̇

2
1 +

m2

2
r22 φ̇

2
2 + ω2r1r2 cos(φ2 − φ1) ,

using the particles’ cylindrical polar angles φ1 and φ2 as generalized coordinates. Deduce
the equations of motion and use them to show that m1r

2
1 φ̇1 + m2r

2
2 φ̇2 is constant, and

that ψ = φ2 − φ1 obeys an equation of the form

ψ̈ = −k2 sinψ ,

where k is a constant to be determined.

Find two values of ψ corresponding to equilibria, and show that one of the two
equilibria is stable. Find the period of small oscillations about the stable equilibrium.
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4/II/15C Classical Dynamics

The Hamiltonian for an oscillating particle with one degree of freedom is

H =
p2

2m
+ V (q, λ) .

The mass m is a constant, and λ is a function of time t alone. Write down Hamilton’s
equations and use them to show that

dH

dt
=

∂H

∂λ

dλ

dt
.

Now consider a case in which λ is constant and the oscillation is exactly periodic.
Denote the constant value of H in that case by E. Consider the quantity I =
(2π)−1

∮
p dq, where the integral is taken over a single oscillation cycle. For any given

function V (q, λ) show that I can be expressed as a function of E and λ alone, namely

I = I(E, λ) =
(2m)1/2

2π

∮ (
E − V (q, λ)

)1/2
dq ,

where the sign of the integrand alternates between the two halves of the oscillation cycle.
Let τ be the period of oscillation. Show that the function I(E, λ) has partial derivatives

∂ I

∂E
=

τ

2π
and

∂ I

∂λ
= − 1

2π

∮
∂V

∂λ
dt .

You may assume without proof that ∂/∂E and ∂/∂λ may be taken inside the integral.

Now let λ change very slowly with time t , by a negligible amount during an
oscillation cycle. Assuming that, to sufficient approximation,

d〈H〉
dt

=
∂〈H〉
∂λ

dλ

dt

where 〈H〉 is the average value of H over an oscillation cycle, and that

d I

dt
=

∂ I

∂E

d〈H〉
dt

+
∂ I

∂λ

dλ

dt
,

deduce that d I/dt = 0 , carefully explaining your reasoning.

When
V (q, λ) = λq2n

with n a positive integer and λ positive, deduce that

〈H〉 = Cλ1/(n+1)

for slowly-varying λ, where C is a constant.

[Do not try to solve Hamilton’s equations. Rather, consider the form taken by I. ]
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4/I/9C Classical Dynamics

(a) Show that the principal moments of inertia for the oblate spheroid of mass M
defined by

(x21 + x22)

a2
+

x23
a2(1− e2)

6 1

are given by (I1, I2, I3) = 2
5Ma2 (1− 1

2e
2, 1− 1

2e
2, 1). Here a is the semi-major

axis and e is the eccentricity.

[You may assume that a sphere of radius a has principal moments of inertia 2
5Ma2.]

(b) The spheroid in part (a) rotates about an axis that is not a principal axis. Euler’s
equations governing the angular velocity (ω1, ω2, ω3) as viewed in the body frame
are

I1
dω1

dt
= (I2 − I3)ω2ω3 ,

I2
dω2

dt
= (I3 − I1)ω3ω1 ,

and

I3
dω3

dt
= (I1 − I2)ω1ω2 .

Show that ω3 is constant. Show further that the angular momentum vector
precesses around the x3 axis with period

P =
2π(2− e2)

e2ω3
.
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1/I/9C Classical Dynamics

Hamilton’s equations for a system with n degrees of freedom can be written in
vector form as

ẋ = J
∂H

∂x

where x = (q1, . . . , qn, p1, . . . , pn)
T is a 2n-vector and the 2n×2n matrix J takes the form

J =

(
0 1

−1 0

)
,

where 1 is the n×n identity matrix. Derive the condition for a transformation of the form
xi → yi(x) to be canonical. For a system with a single degree of freedom, show that the
following transformation is canonical for all nonzero values of α :

Q = tan−1

(
αq

p

)
, P = 1

2

(
αq2 +

p2

α

)
.

1/II/15C Classical Dynamics

(a) In the Hamiltonian framework, the action is defined as

S =

∫ (
paq̇a −H(qa, pa, t)

)
dt .

Derive Hamilton’s equations from the principle of least action. Briefly explain how
the functional variations in this derivation differ from those in the derivation of
Lagrange’s equations from the principle of least action. Show that H is a constant
of the motion whenever ∂H/∂t = 0.

(b) What is the invariant quantity arising in Liouville’s theorem? Does the theorem
depend on assuming ∂H/∂t = 0? State and prove Liouville’s theorem for a system
with a single degree of freedom.

(c) A particle of mass m bounces elastically along a perpendicular between two parallel
walls a distance b apart. Sketch the path of a single cycle in phase space,
assuming that the velocity changes discontinuously at the wall. Compute the action
I =

∮
p dq as a function of the energy E and the constants m, b. Verify that the

period of oscillation T is given by T = dI/dE. Suppose now that the distance b
changes slowly. What is the relevant adiabatic invariant? How does E change as a
function of b?
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2/I/9C Classical Dynamics

Two point masses, each of mass m, are constrained to lie on a straight line and
are connected to each other by a spring of force constant k. The left-hand mass is also
connected to a wall on the left by a spring of force constant j. The right-hand mass is
similarly connected to a wall on the right, by a spring of force constant `, so that the
potential energy is

V = 1
2k(η1 − η2)

2 + 1
2jη

2
1 + 1

2`η
2
2 ,

where ηi is the distance from equilibrium of the ith mass. Derive the equations of motion.
Find the frequencies of the normal modes.

3/I/9C Classical Dynamics

A pendulum of length ` oscillates in the xy plane, making an angle θ(t) with
the vertical y axis. The pivot is attached to a moving lift that descends with constant
acceleration a , so that the position of the bob is

x = ` sin θ , y = 1
2at

2 + ` cos θ .

Given that the Lagrangian for an unconstrained particle is

L = 1
2m(ẋ2 + ẏ2) +mgy ,

determine the Lagrangian for the pendulum in terms of the generalized coordinate θ.
Derive the equation of motion in terms of θ. What is the motion when a = g?

Find the equilibrium configurations for arbitrary a. Determine which configuration
is stable when

(i) a < g

and when
(ii) a > g .
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3/II/15C Classical Dynamics

A particle of mass m is constrained to move on the surface of a sphere of radius `.
The Lagrangian is given in spherical polar coordinates by

L = 1
2m`

2(θ̇2 + φ̇2 sin2 θ) +mg` cos θ ,

where gravity g is constant. Find the two constants of the motion.

The particle is projected horizontally with velocity v from a point whose depth
below the centre is ` cos θ = D. Find v such that the particle trajectory

(i) just grazes the horizontal equatorial plane θ = π/2;

(ii) remains at depth D for all time t.

4/I/9C Classical Dynamics

Calculate the principal moments of inertia for a uniform cylinder, of mass M ,
radius R and height 2h, about its centre of mass. For what height-to-radius ratio does the
cylinder spin like a sphere?
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1/I/9C Classical Dynamics

A particle of mass m1 is constrained to move on a circle of radius r1, centre
x = y = 0 in a horizontal plane z = 0. A second particle of mass m2 moves on a
circle of radius r2, centre x = y = 0 in a horizontal plane z = c. The two particles are
connected by a spring whose potential energy is

V = 1
2ω

2d2,

where d is the distance between the particles. How many degrees of freedom are there?
Identify suitable generalized coordinates and write down the Lagrangian of the system in
terms of them.

1/II/15C Classical Dynamics

(i) The action for a system with generalized coordinates (qa) is given by

S =

∫ t2

t1

L(qa, q̇b) dt.

Derive Lagrange’s equations from the principle of least action by considering all paths
with fixed endpoints, δqa(t1) = δqa(t2) = 0.

(ii) A pendulum consists of a point mass m at the end of a light rod of length l.
The pivot of the pendulum is attached to a mass M which is free to slide without friction
along a horizontal rail. Choose as generalized coordinates the position x of the pivot and
the angle θ that the pendulum makes with the vertical.

Write down the Lagrangian and derive the equations of motion.

Find the frequency of small oscillations around the stable equilibrium.

Now suppose that a force acts on the pivot causing it to travel with constant
acceleration in the x-direction. Find the equilibrium angle θ of the pendulum.
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2/I/9C Classical Dynamics

A rigid body has principal moments of inertia I1, I2 and I3 and is moving under the
action of no forces with angular velocity components (ω1, ω2, ω3). Its motion is described
by Euler’s equations

I1ω̇1 − (I2 − I3)ω2ω3 = 0

I2ω̇2 − (I3 − I1)ω3ω1 = 0

I3ω̇3 − (I1 − I2)ω1ω2 = 0 .

Are the components of the angular momentum to be evaluated in the body frame or the
space frame?

Now suppose that an asymmetric body is moving with constant angular velocity
(Ω, 0, 0). Show that this motion is stable if and only if I1 is the largest or smallest principal
moment.

3/I/9C Classical Dynamics

Define the Poisson bracket {f, g} between two functions f(qa, pa) and g(qa, pa) on
phase space. If f(qa, pa) has no explicit time dependence, and there is a Hamiltonian H,
show that Hamilton’s equations imply

df

dt
=
{
f,H

}
.

A particle with position vector x and momentum p has angular momentum L = x× p.
Compute {pa, Lb} and {La, Lb}.
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3/II/15C Classical Dynamics

(i) A point mass m with position q and momentum p undergoes one-dimensional
periodic motion. Define the action variable I in terms of q and p. Prove that an orbit of
energy E has period

T = 2π
dI

dE
.

(ii) Such a system has Hamiltonian

H(q, p) =
p2 + q2

µ2 − q2
,

where µ is a positive constant and |q| < µ during the motion. Sketch the orbits in phase
space both for energies E � 1 and E � 1. Show that the action variable I is given in
terms of the energy E by

I =
µ2

2

E√
E + 1

.

Hence show that for E � 1 the period of the orbit is T ≈ 1
2πµ

3/p0, where p0 is the
greatest value of the momentum during the orbit.

4/I/9C Classical Dynamics

Define a canonical transformation for a one-dimensional system with coordinates
(q, p) → (Q,P ). Show that if the transformation is canonical then {Q,P} = 1.

Find the values of constants α and β such that the following transformations are
canonical:

(i) Q = pqβ , P = αq−1 .

(ii) Q = qα cos(βp), P = qα sin(βp).
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