Part II

Automata and Formal Languages

Paper 1, Section I

4I Automata & Formal Languages

(a) Define what it means for a grammar to be in Chomsky normal form.

(b) Suppose G is a grammar in Chomsky normal form. If $w \in \mathcal{L}(G)$ has |w| = n, what is the length of a G-derivation of w? [No justification is required.]

(c) Let $\Sigma = \{a, b\}, V = \{S, A, B, C\}$. Consider the grammar $G = (\Sigma, V, P, S)$ in Chomsky normal form given by $P = \{S \rightarrow AC, C \rightarrow BA, A \rightarrow AB, B \rightarrow BA, A \rightarrow a, B \rightarrow b\}$. Show that the word *abbabba* is in $\mathcal{L}(G)$ by providing a *G*-parse tree for it.

A grammar G is said to be in weak Chomsky normal form if all production rules are either of the form $A \to a$, $A \to BC$, or $A \to BCD$, for variables A, B, C, D and letters a.

- (d) Give a grammar G' in weak Chomsky normal form that is
 - (i) equivalent to the grammar G from part (c) and
 - (ii) there is a G'-derivation for the word abbabba of length strictly shorter than the number given in part (b).

Justify your answer.

Paper 2, Section I

4I Automata & Formal Languages

Let Σ be an alphabet and $\mathbb{W} := \Sigma^*$ be the set of words over Σ .

(a) Define what it means for $A \subseteq \mathbb{W}$ to be *computably enumerable*.

[You do not need to define what it means for a partial function to be computable.]

- (b) Prove that for $\emptyset \neq A \subseteq \mathbb{W}$ the following statements are equivalent:
 - (i) the set A is computably enumerable;
 - (ii) the set A is the domain of a partial computable function;
 - (iii) the set A is the range of a partial computable function;
 - (iv) the set A is the range of a total computable function.

[You may assume that the truncated computation function is computable, and that the map $w \mapsto ((w)_0, (w)_1)$ is a bijection from \mathbb{W} to \mathbb{W}^2 that can be performed by a register machine.]

Paper 3, Section I

4I Automata & Formal Languages

- (a) Let $G = (\Sigma, V, P, S)$ be a formal grammar and let $\Omega = \Sigma \cup V$. Define $\mathcal{L}(G)$. [You do not need to define the binary relation \xrightarrow{G} on Ω^* .]
- (b) Define what it means for two grammars to be equivalent.
- (c) Define what it means for two grammars to be *isomorphic*.
- (d) Fix $\Sigma = \{a, b, c\}$ and consider the following pairs of grammars with start symbol S and given by their respective sets of productions P_0 and P_1 ; for each pair, determine whether they are equivalent or non-equivalent. Justify your answers.
 - (i) $P_0 = \{S \to Aa, S \to Sb, A \to Ab, A \to a, B \to Aa, B \to b\}, P_1 = \{S \to Sb, C \to Da, C \to b, D \to Db, D \to a, S \to Da\}.$
 - (ii) $P_0 = \{S \to AB, A \to Aa, A \to a, B \to Bb, B \to b, AB \to c\}, P_1 = \{S \to XabY, X \to Xa, X \to a, Y \to Yb, Y \to b, XY \to c\}.$
 - (iii) $\begin{array}{l} P_0 = \{S \rightarrow aAa, \ A \rightarrow bAb, \ A \rightarrow b\}, \\ P_1 = \{S \rightarrow aYa, \ Y \rightarrow ZZ, \ Z \rightarrow aZa, \ Z \rightarrow bZY, \ Z \rightarrow YZ, \ Y \rightarrow bYb, \ Y \rightarrow b\}. \end{array}$

[You may assume that isomorphic grammars are equivalent.]

Paper 4, Section I 4I Automata & Formal Languages

- (i) Define what it means for a grammar to be *regular*.
- (ii) Let $G = (\Sigma, V, P, S)$ be a regular grammar and $\Omega = \Sigma \cup V$. Prove that if $\alpha \in \Omega^*$ and $S \xrightarrow{G} \alpha$, then there are $w \in W$ and $A \in V$ such that $\alpha = wA$ or $\alpha = w$.
- (iii) Let $G = (\Sigma, V, P, S)$ be a regular grammar, $A, B \in V$, and $w, v \in W$. Prove that if $wA \xrightarrow{G} vB$, then there is some word $u \in W$ such that $A \xrightarrow{G} uB$.

If $G = (\Sigma, V, P, S)$ is a regular grammar and A is a variable, we call A accessible in G if there is a word $w_1 \in \Sigma^*$ such that $S \xrightarrow{G} w_1 A$; we call A looping in G if there is a word $w_2 \in \Sigma^*$ such that $A \xrightarrow{G} w_2 A$; we call A terminable in G if there is a word $w_3 \in \Sigma^*$ such that $A \xrightarrow{G} w_3$.

(iv) Let G be a regular grammar. Prove that if $\mathcal{L}(G)$ is infinite then there is a variable that is accessible, looping, and terminable in G.

Paper 1, Section II

12I Automata & Formal Languages

Let Σ be an alphabet, \mathbb{W} the set of words over Σ , $A, B \subseteq \mathbb{W}$, and \mathcal{C} any set of subsets of \mathbb{W} .

- (i) Define what $A \leq_{\mathrm{m}} B$ means.
- (ii) Define what it means for a set A to be C-complete.
- (iii) Define what it means for A to be in Σ_1 .
- (iv) Define the halting problem **K**.
- (v) Prove that the halting problem **K** is Σ_1 -complete.

A set $P \subseteq \mathbb{W}$ is in Π_2 if and only if there is a computable partial function $f : \mathbb{W} \times \mathbb{W} \dashrightarrow \mathbb{W}$ such that for all $w \in \mathbb{W}$, we have that $w \in P$ if and only if for all $v \in \mathbb{W}$, $f(w, v) \downarrow$.

(vi) We define $\mathbf{Tot} \subset \mathbb{W}$ to be the set $\{v; W_v = \mathbb{W}\}$. Show that \mathbf{Tot} is Π_2 -complete.

[In this entire question, you are allowed to use the fact that truncated computation functions are computable, provided that you give a precise and correct definition of the function used. You may use the partial function $f_{w,1}$ without providing a definition.]

Paper 3, Section II

12I Automata & Formal Languages

Let Σ be an alphabet and \mathbb{W} the set of words over Σ . Let $D = (\Sigma, Q, \delta, q_0, F)$ be a deterministic automaton.

- (i) Define $\mathcal{L}(D)$, the set of words accepted by the automaton D, precisely defining all auxiliary functions needed for your definition.
- (ii) State the *pumping lemma* for the language $\mathcal{L}(D)$. Specify the pumping number precisely in terms of D.

[No proof is required.]

(iii) Let $\Sigma = \{a, b\}$. Consider the regular language

 $L := \{ wa^k ; w \in \Sigma^* \text{ with } |w| \leq 10 \text{ and } k > 0 \}.$

Show that the minimal deterministic automaton for L has at least ten states.

Let $A \subseteq \mathbb{W}$. Define an equivalence relation on \mathbb{W} by

 $v \sim_A w : \iff$ for all u, we have $vu \in A$ if and only if $wu \in A$.

(iv) Let $A \subseteq \mathbb{W} \setminus \{\varepsilon\}$. Show that A is a regular language if and only if the relation \sim_A has finitely many equivalence classes.

Paper 1, Section I

4I Automata and Formal Languages

What are the nth register machine P_n and the nth recursively enumerable set W_n ?

Given subsets $A, B \subseteq \mathbb{N}$, define a many-one reduction $A \leq_m B$ of A to B.

State Rice's theorem.

Is there a total algorithm that, on input n in register 1 and m in register 2, terminates with 0 if $W_m = W_n$ and 1 if $W_m \neq W_n$? Is there a partial algorithm that, with the same inputs as above, terminates with 0 if $W_m = W_n$ and never halts if $W_m \neq W_n$? Justify your answers.

[You may assume without proof that the halting set \mathbb{K} is not recursive.]

Paper 2, Section I

4I Automata and Formal Languages

State and prove the *pumping lemma for regular languages*.

Are the following languages over the alphabet $\Sigma=\{0,1\}$ regular? Justify your answers.

- (i) $\{0^n 1 \mid n \ge 0\}.$
- (ii) $\{0^n 1^{n^2} \mid n \ge 0\}.$
- (iii) The set of all words in Σ^* containing the same number of 0s and 1s.

Paper 3, Section I

4I Automata and Formal Languages

Define a context-free grammar (CFG) and a context-free language (CFL).

State the pumping lemma for CFLs.

Which of the following languages over the alphabet $\{a, b, c\}$ are CFLs? Justify your answers.

- (i) $\{a^n b^{2n} c^n \mid n \ge 0\}.$
- (ii) $\{a^n b^{2i} c^n \mid n, i \ge 0\}.$

Paper 4, Section I

4I Automata and Formal Languages

Define what it means for a context-free grammar (CFG) to be in *Chomsky normal* form.

What are an ϵ -production and a unit production?

Let G_1 be the CFG

$$\begin{array}{rcl} S & \rightarrow & \epsilon \,|\, aTa \,|\, bTa \\ T & \rightarrow & Ta \,|\, Tb \,|\, c \end{array}$$

and let G_2 be the CFG

$$\begin{array}{rcl} S & \rightarrow & XZ \,|\, YZ \\ T & \rightarrow & TX \,|\, TY \,|\, c \\ X & \rightarrow & a, \, Y \rightarrow b, \, Z \rightarrow TX \end{array}$$

What is the relationship between the language of G_1 and the language of G_2 ? Justify your answer carefully.

Paper 1, Section II

12I Automata and Formal Languages

Give the definition of a primitive recursive function $f : \mathbb{N}^k \to \mathbb{N}$.

Show directly from the definition that, when k = 2, the functions

$$P(m,n) = m + n$$
 and $T(m,n) = mn$

are both primitive recursive.

Show further that for $k \ge 2$ the function

$$T_k(n_1,\ldots,n_k)=n_1\cdots n_k$$

is primitive recursive, as is $E_a : \mathbb{N} \to \mathbb{N}$ given by $E_a(n) = a^n$, where $a \ge 1$ is a fixed integer.

Suppose $F : \mathbb{N}^k \to \mathbb{N}^k$, where $F = (f_0, \ldots, f_{k-1})$ with each coordinate function f_i primitive recursive. Describe how F can be encoded as a primitive recursive function $\overline{F} : \mathbb{N} \to \mathbb{N}$.

Let the Fibonacci function $B : \mathbb{N} \to \mathbb{N}$ be defined by B(0) = 0, B(1) = 1 and B(n+2) = B(n+1) + B(n) for $n \ge 0$. Is B primitive recursive? Justify your answer.

If $f : \mathbb{N} \to \mathbb{N}$ is a primitive recursive function, must there exist some R > 0 such that $f(n) \leq \mathbb{R}^n$ for all $n \geq 1$? Justify your answer.

[You may use without proof that for fixed $j \ge 2$ the maxpower function M_j is primitive recursive, where $M_j(n)$ is the exponent of the highest power of j that divides n. If you use any other results from the course, you should prove them.]

Part II, Paper 1

[TURN OVER]

12I Automata and Formal Languages

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite-state automaton (DFA).

What does it mean to say that $q \in Q$ is an *accessible* state? What does it mean to say that $p, q \in Q$ are *equivalent* states?

Explain the construction of the minimal DFA D/\sim and show that the languages of D and of D/\sim are the same. Show also that no two distinct states of D/\sim are equivalent.

Now let Σ be the single-letter alphabet {1}. Suppose that D is a DFA with no inaccessible states and exactly one accept state. Justifying your answer, describe the corresponding minimal DFA D/\sim in the form of a transition diagram or otherwise. [Remember that you need only consider accessible states.]

Paper 1, Section I

4F Automata and Formal Languages

Let $f_{n,k}$ be the partial function on k variables that is computed by the nth machine (or the empty function if n does not encode a machine).

Define the halting set \mathbb{K} .

Given $A, B \subseteq \mathbb{N}$, what is a many-one reduction $A \leq_m B$ of A to B?

State the s - m - n theorem and use it to show that a subset X of N is recursively enumerable if and only if $X \leq_m \mathbb{K}$.

Give an example of a set $S \subseteq \mathbb{N}$ with $\mathbb{K} \leq_m S$ but $\mathbb{K} \neq S$.

[You may assume that \mathbb{K} is recursively enumerable and that $0 \notin \mathbb{K}$.]

Paper 2, Section I

4F Automata and Formal Languages

Assuming the definition of a deterministic finite-state automaton (DFA) $D = (Q, \Sigma, \delta, q_0, F)$, what is the *extended transition function* $\hat{\delta}$ for D? Also assuming the definition of a nondeterministic finite-state automaton (NFA) N, what is $\hat{\delta}$ in this case?

Define the *languages* accepted by D and N, respectively, in terms of $\hat{\delta}$.

Given an NFA N as above, describe the subset construction and show that the resulting DFA \overline{N} accepts the same language as N. If N has one accept state then how many does \overline{N} have?

Paper 3, Section I

4F Automata and Formal Languages

Define a regular expression R and explain how this gives rise to a language $\mathcal{L}(R)$.

Define a *deterministic finite-state automaton* D and the language $\mathcal{L}(D)$ that it accepts.

State the relationship between languages obtained from regular expressions and languages accepted by deterministic finite-state automata.

Let L and M be regular languages. Is $L \cup M$ always regular? What about $L \cap M$?

Now suppose that L_1, L_2, \ldots are regular languages. Is the countable union $\bigcup L_i$ always regular? What about the countable intersection $\bigcap L_i$?

Paper 4, Section I

4F Automata and Formal Languages

State the pumping lemma for regular languages.

Which of the following languages over the alphabet $\{0, 1\}$ are regular?

- (i) $\{0^i 1^i 01 \mid i \ge 0\}.$
- (ii) $\{w\overline{w} \mid w \in \{0,1\}^*\}$ where \overline{w} is the reverse of the word w.
- (iii) $\{w \in \{0,1\}^* \mid w \text{ does not contain the subwords } 01 \text{ or } 10\}.$

Paper 1, Section II

12F Automata and Formal Languages

For $k \ge 1$ give the definition of a *partial recursive* function $f : \mathbb{N}^k \to \mathbb{N}$ in terms of basic functions, composition, recursion and minimisation.

Show that the following partial functions from $\mathbb N$ to $\mathbb N$ are partial recursive:

(i)
$$s(n) = \begin{cases} 1 & n = 0 \\ 0 & n \ge 1 \end{cases}$$

(ii) $r(n) = \begin{cases} 1 & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$
(iii) $p(n) = \begin{cases} \text{undefined if } n \text{ is odd} \\ 0 \text{ if } n \text{ is even} \end{cases}$

Which of these can be defined without using minimisation?

What is the class of functions $f : \mathbb{N}^k \to \mathbb{N}$ that can be defined using only basic functions and composition? [*Hint: See which functions you can obtain and then show that these form a class that is closed with respect to the above.*]

Show directly that every function in this class is computable.

12F Automata and Formal Languages

Suppose that G is a context-free grammar without ϵ -productions. Given a derivation of some word w in the language L of G, describe a *parse tree* for this derivation.

State and prove the pumping lemma for L. How would your proof differ if you did not assume that G was in Chomsky normal form, but merely that G has no ϵ - or unit productions?

For the alphabet $\Sigma = \{a, b\}$ of terminal symbols, state whether the following languages over Σ are context free, giving reasons for your answer.

- (i) $\{a^i b^i a^i \mid i \ge 0\},\$
- (ii) $\{a^i b^j \mid i \ge j \ge 0\},\$
- (iii) $\{wabw | w \in \{a, b\}^* \}.$

4F Automata and Formal Languages

Define an alphabet Σ , a word over Σ and a language over Σ .

What is a regular expression R and how does this give rise to a language $\mathcal{L}(R)$?

Given any alphabet Σ , show that there exist languages L over Σ which are not equal to $\mathcal{L}(R)$ for any regular expression R. [You are not required to exhibit a specific L.]

Paper 2, Section I

4F Automata and Formal Languages

Assuming the definition of a partial recursive function from \mathbb{N} to \mathbb{N} , what is a *recursive subset* of \mathbb{N} ? What is a *recursively enumerable* subset of \mathbb{N} ?

Show that a subset $E\subseteq\mathbb{N}$ is recursive if and only if E and $\mathbb{N}\setminus E$ are recursively enumerable.

Are the following subsets of $\mathbb N$ recursive?

(i) $\mathbb{K} := \{n \mid n \text{ codes a program and } f_{n,1}(n) \text{ halts at some stage} \}.$

(ii) $\mathbb{K}_{100} := \{n \mid n \text{ codes a program and } f_{n,1}(n) \text{ halts within 100 steps} \}.$

Paper 3, Section I

4F Automata and Formal Languages

Define a context-free grammar G, a sentence of G and the language $\mathcal{L}(G)$ generated by G.

For the alphabet $\Sigma=\{a,b\},$ which of the following languages over Σ are context-free?

(i)
$$\{a^{2m}b^{2m} \mid m \ge 0\},\$$

(ii) $\{a^{m^2}b^{m^2} \mid m \ge 0\}.$

[You may assume standard results without proof if clearly stated.]

Paper 4, Section I

4F Automata and Formal Languages

Define what it means for a context-free grammar (CFG) to be in *Chomsky normal* form (CNF).

Describe without proof each stage in the process of converting a CFG $G = (N, \Sigma, P, S)$ into an equivalent CFG \overline{G} which is in CNF. For each of these stages, when are the nonterminals N left unchanged? What about the terminals Σ and the generated language $\mathcal{L}(G)$?

Give an example of a CFG G whose generated language $\mathcal{L}(G)$ is infinite and equal to $\mathcal{L}(\overline{G})$.

Paper 1, Section II

12F Automata and Formal Languages

(a) Define a *register machine*, a *sequence of instructions* for a register machine and a *partial computable* function. How do we encode a register machine?

(b) What is a *partial recursive* function? Show that a partial computable function is partial recursive. [You may assume that for a given machine with a given number of inputs, the function outputting its state in terms of the inputs and the time t is recursive.]

(c) (i) Let $g : \mathbb{N} \to \mathbb{N}$ be the partial function defined as follows: if n codes a register machine and the ensuing partial function $f_{n,1}$ is defined at n, set $g(n) = f_{n,1}(n) + 1$. Otherwise set g(n) = 0. Is g a partial computable function?

(ii) Let $h : \mathbb{N} \to \mathbb{N}$ be the partial function defined as follows: if n codes a register machine and the ensuing partial function $f_{n,1}$ is defined at n, set $h(n) = f_{n,1}(n) + 1$. Otherwise, set h(n) = 0 if n is odd and let h(n) be undefined if n is even. Is h a partial computable function?

Paper 3, Section II

12F Automata and Formal Languages

Give the definition of a *deterministic finite state automaton* and of a *regular language*.

State and prove the pumping lemma for regular languages.

Let $S = \{2^n | n = 0, 1, 2, ...\}$ be the subset of \mathbb{N} consisting of the powers of 2. If we write the elements of S in base 2 (with no preceding zeros), is S a regular language over $\{0, 1\}$?

Now suppose we write the elements of S in base 10 (again with no preceding zeros). Show that S is not a regular language over $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. [*Hint: Give a proof by contradiction; use the above lemma to obtain a sequence* a_1, a_2, \ldots of powers of 2, then consider $a_{i+1} - 10^d a_i$ for $i = 1, 2, 3, \ldots$ and a suitable fixed d.] UNIVERSITY OF CAMBRIDGE

Paper 1, Section I

4H Automata and Formal Languages

- (a) State the *pumping lemma* for context-free languages (CFLs).
- (b) Which of the following are CFLs? Justify your answers.
 - (i) $\{ww^R \mid w \in \{a, b\}^*\}$, where w^R is the reverse of the word w.
 - (ii) $\{0^p 1^p \mid p \text{ is a prime}\}.$
 - (iii) $\{a^m b^n c^k d^l \mid 3m = 4l \text{ and } 2n = 5k\}.$
- (c) Let L and M be CFLs. Show that the concatenation LM is also a CFL.

Paper 4, Section I

4H Automata and Formal Languages

- (a) Which of the following are regular languages? Justify your answers.
 - (i) $\{w^n \mid w \in \{a, b\}^*, n \ge 2\}.$
 - (ii) $\{w \in \{a, b, c\}^* \mid w \text{ contains an odd number of } b$'s and an even number of c's $\}$.
 - (iii) $\{w \in \{0,1\}^* \mid w \text{ contains no more than 7 consecutive 0's}\}.$

(b) Consider the language L over alphabet $\{a, b\}$ defined via

 $L := \{ wab^n \mid w \in \{a, b\}^*, \ n \in \mathbb{K} \} \cup \{b\}^*.$

Show that L satisfies the pumping lemma for regular languages but is not a regular language itself.

[TURN OVER

CAMBRIDGE

Paper 3, Section I

4H Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in *Chomsky* normal form (CNF). Can a CFG in CNF ever define a language containing ϵ ? If G_{Chom} denotes the result of converting an arbitrary CFG G into one in CNF, state the relationship between $\mathcal{L}(G)$ and $\mathcal{L}(G_{\text{Chom}})$.

(b) Let G be a CFG in CNF. Give an algorithm that, on input of any word v on the terminals of G, decides if $v \in \mathcal{L}(G)$ or not. Explain why your algorithm works.

(c) Convert the following CFG G into a grammar in CNF:

$$S \rightarrow Sbb \mid aS \mid T$$

$$T \to cc$$

Does $\mathcal{L}(G) = \mathcal{L}(G_{\text{Chom}})$ in this case? Justify your answer.

Paper 2, Section I

4H Automata and Formal Languages

(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that $E \subseteq \mathbb{N}_0$ is recursive if and only if both E and $\mathbb{N}_0 \setminus E$ are r.e. sets.

(b) Let $E = \{f_{n,k}(m_1, \ldots, m_k) \mid (m_1, \ldots, m_k) \in \mathbb{N}_0^k\}$ for some fixed $k \ge 1$ and some fixed register machine code n. Show that $E = \{m \in \mathbb{N}_0 \mid f_{j,1}(m) \downarrow\}$ for some fixed register machine code j. Hence show that E is an r.e. set.

(c) Show that the function $f : \mathbb{N}_0 \to \mathbb{N}_0$ defined below is primitive recursive.

$$f(n) = \begin{cases} n-1 & \text{if } n > 0\\ 0 & \text{if } n = 0. \end{cases}$$

[Any use of Church's thesis in your answers should be explicitly stated. In this question \mathbb{N}_0 denotes the set of non-negative integers.]

Paper 1, Section II

12H Automata and Formal Languages

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite-state automaton (DFA). Define what it means for two states of D to be *equivalent*. Define the *minimal* DFA D/\sim for D.

Let D be a DFA with no inaccessible states, and suppose that A is another DFA on the same alphabet as D and for which $\mathcal{L}(D) = \mathcal{L}(A)$. Show that A has at least as many states as D/\sim . [You may use results from the course as long as you state them clearly.]

Construct a minimal DFA (that is, one with the smallest possible number of states) over the alphabet $\{0,1\}$ which accepts precisely the set of binary numbers which are multiples of 7. You may have leading zeros in your inputs (e.g.: 00101). Prove that your DFA is minimal by finding a distinguishing word for each pair of states.

Paper 3, Section II

12H Automata and Formal Languages

(a) State the *s*-*m*-*n* theorem and the recursion theorem.

(b) State and prove *Rice's theorem*.

(c) Show that if $g: \mathbb{N}_0^2 \to \mathbb{N}_0$ is partial recursive, then there is some $e \in \mathbb{N}_0$ such that

$$f_{e,1}(y) = g(e,y) \quad \forall y \in \mathbb{N}_0.$$

(d) Show there exists some $m \in \mathbb{N}_0$ such that W_m has exactly m^2 elements.

(e) Given $n \in \mathbb{N}_0$, is it possible to compute whether or not the number of elements of W_n is a (finite) perfect square? Justify your answer.

[In this question \mathbb{N}_0 denotes the set of non-negative integers. Any use of Church's thesis in your answers should be explicitly stated.]

CAMBRIDGE

Paper 4, Section I

4G Automata and Formal Languages

- (a) State the *s-m-n* theorem, the recursion theorem, and Rice's theorem.
- (b) Show that if $g:\mathbb{N}^2\to\mathbb{N}$ is partial recursive, then there is some $e\in\mathbb{N}$ such that

$$f_{e,1}(y) = g(e,y) \quad \forall y \in \mathbb{N}.$$

(c) By considering the partial function $g: \mathbb{N}^2 \to \mathbb{N}$ given by

$$g(x, y) = \begin{cases} 0 & \text{if } y < x \\ \uparrow & \text{otherwise}, \end{cases}$$

show there exists some $m \in \mathbb{N}$ such that W_m has exactly m elements.

(d) Given $n \in \mathbb{N}$, is it possible to compute whether or not W_n has exactly 9 elements? Justify your answer.

[Note that we define $\mathbb{N} = \{0, 1, ...\}$. Any use of Church's thesis in your answers should be explicitly stated.]

Paper 3, Section I

4G Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in *Chomsky* normal form (CNF).

(b) Give an algorithm for converting a CFG G into a corresponding CFG G_{Chom} in CNF satisfying $\mathcal{L}(G_{\text{Chom}}) = \mathcal{L}(G) - \{\epsilon\}$. [You need only outline the steps, without proof.]

(c) Convert the following CFG G:

$$S \to ASc \mid B$$
 , $A \to a$, $B \to b$,

into a grammar in CNF.

Paper 2, Section I

4G Automata and Formal Languages

(a) Let $E = (Q_E, \Sigma, \delta_E, q_0, F_E)$ be a nondeterministic finite-state automaton with ϵ -transitions (ϵ -NFA). Define the deterministic finite-state automaton (DFA) $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ obtained from E via the subset construction with ϵ -transitions.

(b) Let E and D be as above. By inducting on lengths of words, prove that

 $\hat{\delta}_E(q_0, w) = \hat{\delta}_D(q_D, w)$ for all $w \in \Sigma^*$.

(c) Deduce that $\mathcal{L}(D) = \mathcal{L}(E)$.

Paper 1, Section I

4G Automata and Formal Languages

- (a) State the pumping lemma for context-free languages (CFLs).
- (b) Which of the following are CFLs? Justify your answers.
 - (i) $\{ww \mid w \in \{a, b, c\}^*\}$
 - (ii) $\{a^m b^n c^k d^l \mid 3m = 4n \text{ and } 2k = 5l\}$
 - (iii) $\{a^{3^n} \mid n \ge 0\}$
- (c) Let L be a CFL. Show that L^* is also a CFL.

Paper 3, Section II

12G Automata and Formal Languages

(a) State and prove the pumping lemma for regular languages.

(b) Let D be a minimal deterministic finite-state automaton whose language $\mathcal{L}(D)$ is finite. Let Γ_D be the transition diagram of D, and suppose there exists a non-empty closed path γ in Γ_D starting and ending at state p.

(i) Show that there is no path in Γ_D from p to any accept state of D.

(ii) Show that there is no path in Γ_D from p to any other state of D.

Paper 1, Section II

12G Automata and Formal Languages

(a) Define the *halting set* \mathbb{K} . Prove that \mathbb{K} is recursively enumerable, but not recursive.

(b) Given $A, B \subseteq \mathbb{N}$, define a many-one reduction of A to B. Show that if B is recursively enumerable and $A \leq_m B$, then A is also recursively enumerable.

(c) Show that each of the functions f(n) = 2n and g(n) = 2n + 1 are both *partial recursive* and *total*, by building them up as partial recursive functions.

(d) Let $X, Y \subseteq \mathbb{N}$. We define the set $X \oplus Y$ via

$$X \oplus Y := \{2x \mid x \in X\} \cup \{2y + 1 \mid y \in Y\}.$$

- (i) Show that both $X \leq_m X \oplus Y$ and $Y \leq_m X \oplus Y$.
- (ii) Using the above, or otherwise, give an explicit example of a subset C of \mathbb{N} for which neither C nor $\mathbb{N} \setminus C$ are recursively enumerable.
- (iii) For every $Z \subseteq \mathbb{N}$, show that if $X \leq_m Z$ and $Y \leq_m Z$ then $X \oplus Y \leq_m Z$.

[Note that we define $\mathbb{N} = \{0, 1, ...\}$. Any use of Church's thesis in your answers should be explicitly stated.]

UNIVERSITY OF CAMBRIDGE

Paper 1, Section I 4H Automata and Formal Languages

- (a) Prove that every regular language is also a context-free language (CFL).
- (b) Show that, for any fixed n > 0, the set of regular expressions over the alphabet $\{a_1, \ldots, a_n\}$ is a CFL, but not a regular language.

Paper 2, Section I

4H Automata and Formal Languages

- (a) Give explicit examples, with justification, of a language over some finite alphabet Σ which is:
 - (i) context-free, but not regular;
 - (ii) recursive, but not context-free.
- (b) Give explicit examples, with justification, of a subset of \mathbb{N} which is:
 - (i) recursively enumerable, but not recursive;
 - (ii) neither recursively enumerable, nor having recursively enumerable complement in \mathbb{N} .

Paper 3, Section I 4H Automata and Formal Languages

- (a) Define what it means for a context-free grammar (CFG) to be in *Chomsky normal* form (CNF). Give an example, with justification, of a context-free language (CFL) which is not defined by any CFG in CNF.
- (b) Show that the intersection of two CFLs need not be a CFL.
- (c) Let L be a CFL over an alphabet Σ . Show that $\Sigma^* \setminus L$ need not be a CFL.

Paper 4, Section I 4H Automata and Formal Languages

- (a) Describe the process for converting a deterministic finite-state automaton D into a regular expression R defining the same language, $\mathcal{L}(D) = \mathcal{L}(R)$. [You need only outline the steps, without proof, but you should clearly define all terminology you introduce.]
- (b) Consider the language L over the alphabet $\{0,1\}$ defined via

 $L := \{w01^n \mid w \in \{0,1\}^*, n \in \mathbb{K}\} \cup \{1\}^*.$

Show that L satisfies the pumping lemma for regular languages but is not a regular language itself.

Paper 1, Section II 11H Automata and Formal Languages

- (a) Give an *encoding* to integers of all deterministic finite-state automata (DFAs). [Here the alphabet of each such DFA is always taken from the set $\{0, 1, \ldots\}$, and the states for each such DFA are always taken from the set $\{q_0, q_1, \ldots\}$.]
- (b) Show that the set of codes for which the corresponding DFA D_n accepts a *finite* language is recursive. Moreover, if the language $\mathcal{L}(D_n)$ is finite, show that we can compute its size $|\mathcal{L}(D_n)|$ from n.

Paper 3, Section II 11H Automata and formal languages

- (a) Given $A, B \subseteq \mathbb{N}$, define a many-one reduction of A to B. Show that if B is recursively enumerable (r.e.) and $A \leq_m B$ then A is also recursively enumerable.
- (b) State the *s-m-n* theorem, and use it to prove that a set $X \subseteq \mathbb{N}$ is r.e. if and only if $X \leq_m \mathbb{K}$.
- (c) Consider the sets of integers $P,Q\subseteq\mathbb{N}$ defined via

 $P := \{ n \in \mathbb{N} \mid n \text{ codes a program and } W_n \text{ is finite} \}$ $Q := \{ n \in \mathbb{N} \mid n \text{ codes a program and } W_n \text{ is recursive} \}.$

Show that $P \leq_m Q$.

Paper 4, Section I

4F Automata and Formal Languages

(a) Construct a register machine to compute the function f(m,n) := m + n. State the relationship between partial recursive functions and partial computable functions. Show that the function g(m,n) := mn is partial recursive.

(b) State Rice's theorem. Show that the set $A := \{n \in \mathbb{N} \mid |W_n| > 7\}$ is recursively enumerable but not recursive.

Paper 3, Section I

4F Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in *Chomsky* normal form (CNF). Can a CFG in CNF ever define a language containing ϵ ? If G_{Chom} denotes the result of converting an arbitrary CFG G into one in CNF, state the relationship between $\mathcal{L}(G)$ and $\mathcal{L}(G_{\text{Chom}})$.

(b) Let G be a CFG in CNF, and let $w \in \mathcal{L}(G)$ be a word of length |w| = n > 0. Show that every derivation of w in G requires precisely 2n - 1 steps. Using this, give an algorithm that, on input of any word v on the terminals of G, decides if $v \in \mathcal{L}(G)$ or not.

(c) Convert the following CFG G into a grammar in CNF:

$$S \rightarrow aSb \mid SS \mid \epsilon$$
.

Does $\mathcal{L}(G) = \mathcal{L}(G_{\text{Chom}})$ in this case? Justify your answer.

Paper 2, Section I

4F Automata and Formal Languages

(a) Which of the following are regular languages? Justify your answers.

- (i) $\{w \in \{a, b\}^* \mid w \text{ is a nonempty string of alternating } a$'s and b's $\}$.
- (ii) $\{wabw \mid w \in \{a, b\}^*\}.$

(b) Write down a nondeterministic finite-state automaton with ϵ -transitions which accepts the language given by the regular expression $(\mathbf{a} + \mathbf{b})^*(\mathbf{b}\mathbf{b} + \mathbf{a})\mathbf{b}$. Describe in words what this language is.

(c) Is the following language regular? Justify your answer.

 $\{w \in \{a, b\}^* \mid w \text{ does not end in } ab \text{ or } bbb\}.$

CAMBRIDGE

Paper 1, Section I

4F Automata and Formal Languages

State the *pumping lemma* for context-free languages (CFLs). Which of the following are CFLs? Justify your answers.

- (i) $\{a^{2n}b^{3n} \mid n \ge 3\}.$
- (ii) $\{a^{2n}b^{3n}c^{5n} \mid n \ge 0\}.$
- (iii) $\{a^p \mid p \text{ is a prime}\}.$

Let L, M be CFLs. Show that $L \cup M$ is also a CFL.

Paper 3, Section II

11F Automata and Formal Languages

(a) Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite-state automaton. Define the extended transition function $\hat{\delta} : Q \times \Sigma^* \to Q$, and the language accepted by D, denoted $\mathcal{L}(D)$. Let $u, v \in \Sigma^*$, and $p \in Q$. Prove that $\hat{\delta}(p, uv) = \hat{\delta}(\hat{\delta}(p, u), v)$.

- (b) Let $\sigma_1, \sigma_2, \ldots, \sigma_k \in \Sigma$ where $k \ge |Q|$, and let $p \in Q$.
 - (i) Show that there exist $0 \leq i < j \leq k$ such that $\hat{\delta}(p, \sigma_1 \cdots \sigma_i) = \hat{\delta}(p, \sigma_1 \cdots \sigma_j)$, where we interpret $\sigma_1 \cdots \sigma_i$ as ϵ if i = 0.
 - (ii) Show that $\hat{\delta}(p, \sigma_1 \cdots \sigma_i \sigma_{j+1} \cdots \sigma_k) = \hat{\delta}(p, \sigma_1 \cdots \sigma_k).$
 - (iii) Show that $\hat{\delta}(p, \sigma_1 \cdots \sigma_i (\sigma_{i+1} \cdots \sigma_j)^t \sigma_{j+1} \cdots \sigma_k) = \hat{\delta}(p, \sigma_1 \cdots \sigma_k)$ for all $t \ge 1$.

(c) Prove the following version of the pumping lemma. Suppose $w \in \mathcal{L}(D)$, with $|w| \ge |Q|$. Then w can be broken up into three words w = xyz such that $y \ne \epsilon$, $|xy| \le |Q|$, and for all $t \ge 0$, the word xy^tz is also in $\mathcal{L}(D)$.

- (d) Hence show that
 - (i) if $\mathcal{L}(D)$ contains a word of length at least |Q|, then it contains infinitely many words;
 - (ii) if $\mathcal{L}(D) \neq \emptyset$, then it contains a word of length less than |Q|;
 - (iii) if $\mathcal{L}(D)$ contains all words in Σ^* of length less than |Q|, then $\mathcal{L}(D) = \Sigma^*$.

Paper 1, Section II

11F Automata and Formal Languages

(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that $E \subseteq \mathbb{N}$ is recursive if and only if both E and $\mathbb{N} \setminus E$ are r.e.

(b) Define the halting set \mathbb{K} . Prove that \mathbb{K} is r.e. but not recursive.

(c) Let E_1, E_2, \ldots, E_n be r.e. sets. Prove that $\bigcup_{i=1}^n E_i$ and $\bigcap_{i=1}^n E_i$ are r.e. Show by an example that the union of infinitely many r.e. sets need not be r.e.

(d) Let E be a recursive set and $f : \mathbb{N} \to \mathbb{N}$ a (total) recursive function. Prove that the set $\{f(n) \mid n \in E\}$ is r.e. Is it necessarily recursive? Justify your answer.

[Any use of Church's thesis in your answer should be explicitly stated.]