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Paper 1, Section I

4I Automata & Formal Languages
(a) Define what it means for a grammar to be in Chomsky normal form.

(b) Suppose G is a grammar in Chomsky normal form. If w ∈ L(G) has |w| = n,
what is the length of a G-derivation of w? [No justification is required.]

(c) Let Σ = {a, b}, V = {S,A,B,C}. Consider the grammar G = (Σ, V, P, S)
in Chomsky normal form given by P = {S → AC,C → BA,A → AB,B → BA,
A → a,B → b}. Show that the word abbabba is in L(G) by providing a G-parse tree
for it.

A grammar G is said to be in weak Chomsky normal form if all production rules are either
of the form A→ a, A→ BC, or A→ BCD, for variables A,B,C,D and letters a.

(d) Give a grammar G′ in weak Chomsky normal form that is

(i) equivalent to the grammar G from part (c) and

(ii) there is a G′-derivation for the word abbabba of length strictly shorter than
the number given in part (b).

Justify your answer.

Paper 2, Section I

4I Automata & Formal Languages
Let Σ be an alphabet and W := Σ∗ be the set of words over Σ.

(a) Define what it means for A ⊆W to be computably enumerable.

[You do not need to define what it means for a partial function to be computable.]

(b) Prove that for ∅ 6= A ⊆W the following statements are equivalent:

(i) the set A is computably enumerable;

(ii) the set A is the domain of a partial computable function;

(iii) the set A is the range of a partial computable function;

(iv) the set A is the range of a total computable function.

[You may assume that the truncated computation function is computable, and that
the map w 7→ ((w)0, (w)1) is a bijection from W to W2 that can be performed by a register
machine.]

Part II, Paper 1 [TURN OVER]
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Paper 3, Section I

4I Automata & Formal Languages

(a) Let G = (Σ, V, P, S) be a formal grammar and let Ω = Σ ∪ V . Define L(G).

[You do not need to define the binary relation
G−→ on Ω∗.]

(b) Define what it means for two grammars to be equivalent.

(c) Define what it means for two grammars to be isomorphic.

(d) Fix Σ = {a, b, c} and consider the following pairs of grammars with start symbol S
and given by their respective sets of productions P0 and P1; for each pair, determine
whether they are equivalent or non-equivalent. Justify your answers.

(i) P0 = {S → Aa, S → Sb, A→ Ab, A→ a, B → Aa, B → b},
P1 = {S → Sb, C → Da, C → b, D → Db, D → a, S → Da}.

(ii) P0 = {S → AB, A→ Aa, A→ a, B → Bb, B → b, AB → c},
P1 = {S → XabY, X → Xa, X → a, Y → Y b, Y → b, XY → c}.

(iii) P0 = {S → aAa, A→ bAb, A→ b},
P1 = {S → aY a, Y → ZZ, Z → aZa, Z → bZY, Z → Y Z, Y → bY b, Y → b}.

[You may assume that isomorphic grammars are equivalent.]

Paper 4, Section I

4I Automata & Formal Languages

(i) Define what it means for a grammar to be regular.

(ii) Let G = (Σ, V, P, S) be a regular grammar and Ω = Σ∪V . Prove that if α ∈ Ω∗ and

S
G−→ α, then there are w ∈W and A ∈ V such that α = wA or α = w.

(iii) Let G = (Σ, V, P, S) be a regular grammar, A,B ∈ V , and w, v ∈ W. Prove that if

wA
G−→ vB, then there is some word u ∈W such that A

G−→ uB.

If G = (Σ, V, P, S) is a regular grammar and A is a variable, we call A accessible in G if

there is a word w1 ∈ Σ∗ such that S
G−→ w1A; we call A looping in G if there is a word

w2 ∈ Σ∗ such that A
G−→ w2A; we call A terminable in G if there is a word w3 ∈ Σ∗ such

that A
G−→ w3.

(iv) Let G be a regular grammar. Prove that if L(G) is infinite then there is a variable
that is accessible, looping, and terminable in G.

Part II, Paper 1

2023



21

Paper 1, Section II

12I Automata & Formal Languages
Let Σ be an alphabet, W the set of words over Σ, A,B ⊆ W, and C any set of

subsets of W.

(i) Define what A 6m B means.

(ii) Define what it means for a set A to be C-complete.

(iii) Define what it means for A to be in Σ1.

(iv) Define the halting problem K.

(v) Prove that the halting problem K is Σ1-complete.

A set P ⊆W is in Π2 if and only if there is a computable partial function f : W×W 99K W
such that for all w ∈W, we have that w ∈ P if and only if for all v ∈W, f(w, v)↓.

(vi) We define Tot ⊂W to be the set {v ; Wv = W}. Show that Tot is Π2-complete.

[In this entire question, you are allowed to use the fact that truncated computation
functions are computable, provided that you give a precise and correct definition of the
function used. You may use the partial function fw,1 without providing a definition.]

Part II, Paper 1 [TURN OVER]
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Paper 3, Section II

12I Automata & Formal Languages
Let Σ be an alphabet and W the set of words over Σ. Let D = (Σ, Q, δ, q0, F ) be a

deterministic automaton.

(i) Define L(D), the set of words accepted by the automaton D, precisely defining all
auxiliary functions needed for your definition.

(ii) State the pumping lemma for the language L(D). Specify the pumping number
precisely in terms of D.

[No proof is required.]

(iii) Let Σ = {a, b}. Consider the regular language

L := {wak ; w ∈ Σ∗ with |w| 6 10 and k > 0}.

Show that the minimal deterministic automaton for L has at least ten states.

Let A ⊆W. Define an equivalence relation on W by

v ∼A w :⇐⇒ for all u, we have vu ∈ A if and only if wu ∈ A.

(iv) Let A ⊆ W\{ε}. Show that A is a regular language if and only if the relation ∼A

has finitely many equivalence classes.

Part II, Paper 1
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Paper 1, Section I
4I Automata and Formal Languages

What are the nth register machine Pn and the nth recursively enumerable set Wn?

Given subsets A,B ⊆ N, define a many–one reduction A 6m B of A to B.

State Rice’s theorem.

Is there a total algorithm that, on input n in register 1 andm in register 2, terminates
with 0 if Wm = Wn and 1 if Wm 6= Wn? Is there a partial algorithm that, with the same
inputs as above, terminates with 0 if Wm = Wn and never halts if Wm 6= Wn? Justify
your answers.

[You may assume without proof that the halting set K is not recursive.]

Paper 2, Section I
4I Automata and Formal Languages

State and prove the pumping lemma for regular languages.

Are the following languages over the alphabet Σ = {0, 1} regular? Justify your
answers.

(i) {0n1 |n > 0}.

(ii) {0n1n
2 |n > 0}.

(iii) The set of all words in Σ∗ containing the same number of 0s and 1s.

Paper 3, Section I
4I Automata and Formal Languages

Define a context-free grammar (CFG) and a context-free language (CFL).

State the pumping lemma for CFLs.

Which of the following languages over the alphabet {a, b, c} are CFLs? Justify your
answers.

(i) {anb2ncn |n > 0}.

(ii) {anb2icn |n, i > 0}.

Part II, Paper 1
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Paper 4, Section I
4I Automata and Formal Languages

Define what it means for a context-free grammar (CFG) to be in Chomsky normal
form.

What are an ε–production and a unit production?

Let G1 be the CFG

S → ε | aTa | bTa
T → Ta |Tb | c

and let G2 be the CFG

S → XZ |Y Z
T → TX |TY | c
X → a, Y → b, Z → TX.

What is the relationship between the language of G1 and the language of G2? Justify your
answer carefully.

Paper 1, Section II
12I Automata and Formal Languages

Give the definition of a primitive recursive function f : Nk → N.

Show directly from the definition that, when k = 2, the functions

P (m,n) = m+ n and T (m,n) = mn

are both primitive recursive.

Show further that for k > 2 the function

Tk(n1, . . . , nk) = n1 · · ·nk

is primitive recursive, as is Ea : N → N given by Ea(n) = an, where a > 1 is a fixed
integer.

Suppose F : Nk → Nk, where F = (f0, . . . , fk−1) with each coordinate function
fi primitive recursive. Describe how F can be encoded as a primitive recursive function
F : N→ N.

Let the Fibonacci function B : N → N be defined by B(0) = 0, B(1) = 1 and
B(n+ 2) = B(n+ 1) +B(n) for n > 0. Is B primitive recursive? Justify your answer.

If f : N → N is a primitive recursive function, must there exist some R > 0 such
that f(n) 6 Rn for all n > 1? Justify your answer.

[You may use without proof that for fixed j > 2 the maxpower function Mj is
primitive recursive, where Mj(n) is the exponent of the highest power of j that divides
n. If you use any other results from the course, you should prove them.]

Part II, Paper 1 [TURN OVER]
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Paper 3, Section II
12I Automata and Formal Languages

Let D = (Q,Σ, δ, q0, F ) be a deterministic finite-state automaton (DFA).

What does it mean to say that q ∈ Q is an accessible state? What does it mean to
say that p, q ∈ Q are equivalent states?

Explain the construction of the minimal DFA D/∼ and show that the languages of
D and of D/∼ are the same. Show also that no two distinct states of D/∼ are equivalent.

Now let Σ be the single-letter alphabet {1}. Suppose that D is a DFA with no
inaccessible states and exactly one accept state. Justifying your answer, describe the
corresponding minimal DFA D/∼ in the form of a transition diagram or otherwise.
[Remember that you need only consider accessible states.]

Part II, Paper 1

2022
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Paper 1, Section I

4F Automata and Formal Languages
Let fn,k be the partial function on k variables that is computed by the nth machine

(or the empty function if n does not encode a machine).

Define the halting set K.

Given A,B ⊆ N, what is a many–one reduction A 6m B of A to B?

State the s−m− n theorem and use it to show that a subset X of N is recursively
enumerable if and only if X 6m K.

Give an example of a set S ⊆ N with K 6m S but K 6= S.

[You may assume that K is recursively enumerable and that 0 /∈ K.]

Paper 2, Section I

4F Automata and Formal Languages
Assuming the definition of a deterministic finite-state automaton (DFA) D =

(Q,Σ, δ, q0, F ), what is the extended transition function δ̂ for D? Also assuming the
definition of a nondeterministic finite-state automaton (NFA) N , what is δ̂ in this case?

Define the languages accepted by D and N , respectively, in terms of δ̂.

Given an NFA N as above, describe the subset construction and show that the
resulting DFA N accepts the same language as N . If N has one accept state then how
many does N have?

Paper 3, Section I

4F Automata and Formal Languages
Define a regular expression R and explain how this gives rise to a language L(R).

Define a deterministic finite-state automaton D and the language L(D) that it
accepts.

State the relationship between languages obtained from regular expressions and
languages accepted by deterministic finite-state automata.

Let L and M be regular languages. Is L ∪M always regular? What about L ∩M?

Now suppose that L1, L2, . . . are regular languages. Is the countable union
⋃
Li

always regular? What about the countable intersection
⋂
Li?

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 4, Section I

4F Automata and Formal Languages
State the pumping lemma for regular languages.

Which of the following languages over the alphabet {0, 1} are regular?

(i) {0i1i01 | i > 0}.

(ii) {ww |w ∈ {0, 1}∗} where w is the reverse of the word w.

(iii) {w ∈ {0, 1}∗ |w does not contain the subwords 01 or 10}.

Paper 1, Section II

12F Automata and Formal Languages
For k > 1 give the definition of a partial recursive function f : Nk → N in terms of

basic functions, composition, recursion and minimisation.

Show that the following partial functions from N to N are partial recursive:

(i) s(n) =

{
1 n = 0
0 n > 1 ,

(ii) r(n) =

{
1 n odd
0 n even ,

(iii) p(n) =

{
undefined if n is odd
0 if n is even .

Which of these can be defined without using minimisation?

What is the class of functions f : Nk → N that can be defined using only basic
functions and composition? [Hint: See which functions you can obtain and then show that
these form a class that is closed with respect to the above.]

Show directly that every function in this class is computable.

Part II, 2021 List of Questions

2021
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Paper 3, Section II

12F Automata and Formal Languages
Suppose that G is a context-free grammar without ε-productions. Given a derivation

of some word w in the language L of G, describe a parse tree for this derivation.

State and prove the pumping lemma for L. How would your proof differ if you did
not assume that G was in Chomsky normal form, but merely that G has no ε- or unit
productions?

For the alphabet Σ = {a, b} of terminal symbols, state whether the following
languages over Σ are context free, giving reasons for your answer.

(i) {aibiai | i > 0},

(ii) {aibj | i > j > 0},

(iii)
{
wabw |w ∈ {a, b}∗

}
.

Part II, 2021 List of Questions [TURN OVER]
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Paper 1, Section I

4F Automata and Formal Languages
Define an alphabet Σ, a word over Σ and a language over Σ.

What is a regular expression R and how does this give rise to a language L(R)?

Given any alphabet Σ, show that there exist languages L over Σ which are not equal
to L(R) for any regular expression R. [You are not required to exhibit a specific L.]

Paper 2, Section I

4F Automata and Formal Languages
Assuming the definition of a partial recursive function from N to N, what is a

recursive subset of N? What is a recursively enumerable subset of N?

Show that a subset E ⊆ N is recursive if and only if E and N \ E are recursively
enumerable.

Are the following subsets of N recursive?

(i) K := {n |n codes a program and fn,1(n) halts at some stage}.

(ii) K100 := {n |n codes a program and fn,1(n) halts within 100 steps}.

Paper 3, Section I

4F Automata and Formal Languages
Define a context-free grammar G, a sentence of G and the language L(G) generated

by G.

For the alphabet Σ = {a, b}, which of the following languages over Σ are context-
free?

(i) {a2mb2m |m > 0},
(ii) {am2

bm
2 |m > 0}.

[You may assume standard results without proof if clearly stated.]

Part II, 2020 List of Questions
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Paper 4, Section I

4F Automata and Formal Languages
Define what it means for a context-free grammar (CFG) to be in Chomsky normal

form (CNF).

Describe without proof each stage in the process of converting a CFG G =
(N,Σ, P, S) into an equivalent CFG G which is in CNF. For each of these stages, when
are the nonterminals N left unchanged? What about the terminals Σ and the generated
language L(G)?

Give an example of a CFG G whose generated language L(G) is infinite and equal
to L(G).

Paper 1, Section II

12F Automata and Formal Languages
(a) Define a register machine, a sequence of instructions for a register machine and

a partial computable function. How do we encode a register machine?

(b) What is a partial recursive function? Show that a partial computable function
is partial recursive. [You may assume that for a given machine with a given number of
inputs, the function outputting its state in terms of the inputs and the time t is recursive.]

(c) (i) Let g : N → N be the partial function defined as follows: if n codes a register
machine and the ensuing partial function fn,1 is defined at n, set g(n) = fn,1(n) + 1.
Otherwise set g(n) = 0. Is g a partial computable function?

(ii) Let h : N → N be the partial function defined as follows: if n codes a register
machine and the ensuing partial function fn,1 is defined at n, set h(n) = fn,1(n) + 1.
Otherwise, set h(n) = 0 if n is odd and let h(n) be undefined if n is even. Is h a partial
computable function?

Paper 3, Section II

12F Automata and Formal Languages
Give the definition of a deterministic finite state automaton and of a regular

language.

State and prove the pumping lemma for regular languages.

Let S = {2n |n = 0, 1, 2, . . . } be the subset of N consisting of the powers of 2.
If we write the elements of S in base 2 (with no preceding zeros), is S a regular language
over {0, 1}?

Now suppose we write the elements of S in base 10 (again with no preceding zeros).
Show that S is not a regular language over {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. [Hint: Give a proof
by contradiction; use the above lemma to obtain a sequence a1, a2, . . . of powers of 2, then
consider ai+1 − 10dai for i = 1, 2, 3, . . . and a suitable fixed d.]

Part II, 2020 List of Questions [TURN OVER]
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Paper 1, Section I

4H Automata and Formal Languages
(a) State the pumping lemma for context-free languages (CFLs).

(b) Which of the following are CFLs? Justify your answers.

(i) {wwR | w ∈ {a, b}∗}, where wR is the reverse of the word w.

(ii) {0p1p | p is a prime}.

(iii) {ambnckdl | 3m = 4l and 2n = 5k}.

(c) Let L and M be CFLs. Show that the concatenation LM is also a CFL.

Paper 4, Section I

4H Automata and Formal Languages
(a) Which of the following are regular languages? Justify your answers.

(i) {wn | w ∈ {a, b}∗, n > 2}.

(ii) {w ∈ {a, b, c}∗ | w contains an odd number of b’s and an even number of c’s}.

(iii) {w ∈ {0, 1}∗ | w contains no more than 7 consecutive 0’s}.

(b) Consider the language L over alphabet {a, b} defined via

L := {wabn | w ∈ {a, b}∗, n ∈ K} ∪ {b}∗.

Show that L satisfies the pumping lemma for regular languages but is not a regular
language itself.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 3, Section I

4H Automata and Formal Languages
(a) Define what it means for a context-free grammar (CFG) to be in Chomsky

normal form (CNF). Can a CFG in CNF ever define a language containing ǫ? If GChom

denotes the result of converting an arbitrary CFG G into one in CNF, state the relationship
between L(G) and L(GChom).

(b) Let G be a CFG in CNF. Give an algorithm that, on input of any word v on
the terminals of G, decides if v ∈ L(G) or not. Explain why your algorithm works.

(c) Convert the following CFG G into a grammar in CNF:

S → Sbb | aS | T

T → cc

Does L(G) = L(GChom) in this case? Justify your answer.

Paper 2, Section I

4H Automata and Formal Languages
(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that E ⊆ N0

is recursive if and only if both E and N0 \E are r.e. sets.

(b) Let E = {fn,k(m1, . . . ,mk) | (m1, . . . ,mk) ∈ Nk0} for some fixed k > 1 and some
fixed register machine code n. Show that E = {m ∈ N0 | fj,1(m) ↓} for some fixed register
machine code j. Hence show that E is an r.e. set.

(c) Show that the function f : N0 → N0 defined below is primitive recursive.

f(n) =

{
n− 1 if n > 0
0 if n = 0.

[Any use of Church’s thesis in your answers should be explicitly stated. In this question
N0 denotes the set of non-negative integers.]

Part II, 2019 List of Questions
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Paper 1, Section II

12H Automata and Formal Languages
Let D = (Q,Σ, δ, q0, F ) be a deterministic finite-state automaton (DFA). Define

what it means for two states of D to be equivalent. Define the minimal DFA D/ ∼ for D.

Let D be a DFA with no inaccessible states, and suppose that A is another DFA on
the same alphabet as D and for which L(D) = L(A). Show that A has at least as many
states as D/ ∼. [You may use results from the course as long as you state them clearly.]

Construct a minimal DFA (that is, one with the smallest possible number of states)
over the alphabet {0, 1} which accepts precisely the set of binary numbers which are
multiples of 7. You may have leading zeros in your inputs (e.g.: 00101). Prove that your
DFA is minimal by finding a distinguishing word for each pair of states.

Paper 3, Section II

12H Automata and Formal Languages
(a) State the s-m-n theorem and the recursion theorem.

(b) State and prove Rice’s theorem.

(c) Show that if g : N2
0 → N0 is partial recursive, then there is some e ∈ N0 such

that
fe,1(y) = g(e, y) ∀y ∈ N0.

(d) Show there exists some m ∈ N0 such that Wm has exactly m2 elements.

(e) Given n ∈ N0, is it possible to compute whether or not the number of elements
of Wn is a (finite) perfect square? Justify your answer.

[In this question N0 denotes the set of non-negative integers. Any use of Church’s thesis
in your answers should be explicitly stated.]

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 4, Section I

4G Automata and Formal Languages
(a) State the s-m-n theorem, the recursion theorem, and Rice’s theorem.

(b) Show that if g : N2 → N is partial recursive, then there is some e ∈ N such that

fe,1(y) = g(e, y) ∀y ∈ N.

(c) By considering the partial function g : N2 → N given by

g(x, y) =

{
0 if y < x
↑ otherwise,

show there exists some m ∈ N such that Wm has exactly m elements.

(d) Given n ∈ N, is it possible to compute whether or notWn has exactly 9 elements?
Justify your answer.

[Note that we define N = {0, 1, . . .}. Any use of Church’s thesis in your answers
should be explicitly stated.]

Paper 3, Section I

4G Automata and Formal Languages
(a) Define what it means for a context-free grammar (CFG) to be in Chomsky

normal form (CNF).

(b) Give an algorithm for converting a CFG G into a corresponding CFG GChom in
CNF satisfying L(GChom) = L(G)−{ǫ}. [You need only outline the steps, without proof.]

(c) Convert the following CFG G:

S → ASc | B , A→ a , B → b ,

into a grammar in CNF.

Part II, 2018 List of Questions [TURN OVER
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Paper 2, Section I

4G Automata and Formal Languages
(a) Let E = (QE ,Σ, δE , q0, FE) be a nondeterministic finite-state automaton with

ǫ-transitions (ǫ-NFA). Define the deterministic finite-state automaton (DFA)
D = (QD,Σ, δD, qD, FD) obtained from E via the subset construction with
ǫ-transitions.

(b) Let E and D be as above. By inducting on lengths of words, prove that

δ̂E(q0, w) = δ̂D(qD, w) for all w ∈ Σ∗.

(c) Deduce that L(D) = L(E).

Paper 1, Section I

4G Automata and Formal Languages
(a) State the pumping lemma for context-free languages (CFLs).

(b) Which of the following are CFLs? Justify your answers.

(i) {ww | w ∈ {a, b, c}∗}

(ii) {ambnckdl | 3m = 4n and 2k = 5l}

(iii) {a3n | n > 0}

(c) Let L be a CFL. Show that L∗ is also a CFL.

Paper 3, Section II

12G Automata and Formal Languages
(a) State and prove the pumping lemma for regular languages.

(b) Let D be a minimal deterministic finite-state automaton whose language L(D)
is finite. Let ΓD be the transition diagram of D, and suppose there exists a non-empty
closed path γ in ΓD starting and ending at state p.

(i) Show that there is no path in ΓD from p to any accept state of D.

(ii) Show that there is no path in ΓD from p to any other state of D.

Part II, 2018 List of Questions

2018
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Paper 1, Section II

12G Automata and Formal Languages
(a) Define the halting set K. Prove that K is recursively enumerable, but not

recursive.

(b) Given A,B ⊆ N, define a many-one reduction of A to B. Show that if B is
recursively enumerable and A 6m B, then A is also recursively enumerable.

(c) Show that each of the functions f(n) = 2n and g(n) = 2n + 1 are both partial
recursive and total, by building them up as partial recursive functions.

(d) Let X,Y ⊆ N. We define the set X ⊕ Y via

X ⊕ Y := {2x | x ∈ X} ∪ {2y + 1 | y ∈ Y }.

(i) Show that both X 6m X ⊕ Y and Y 6m X ⊕ Y .

(ii) Using the above, or otherwise, give an explicit example of a subset C of N
for which neither C nor N \ C are recursively enumerable.

(iii) For every Z ⊆ N, show that if X 6m Z and Y 6m Z then X ⊕ Y 6m Z.

[Note that we define N = {0, 1, . . .}. Any use of Church’s thesis in your answers
should be explicitly stated.]

Part II, 2018 List of Questions [TURN OVER
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Paper 1, Section I

4H Automata and Formal Languages

(a) Prove that every regular language is also a context-free language (CFL).

(b) Show that, for any fixed n > 0, the set of regular expressions over the alphabet
{a1, . . . , an} is a CFL, but not a regular language.

Paper 2, Section I

4H Automata and Formal Languages

(a) Give explicit examples, with justification, of a language over some finite alphabet
Σ which is:

(i) context-free, but not regular;

(ii) recursive, but not context-free.

(b) Give explicit examples, with justification, of a subset of N which is:

(i) recursively enumerable, but not recursive;

(ii) neither recursively enumerable, nor having recursively enumerable comple-
ment in N.

Paper 3, Section I

4H Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in Chomsky normal
form (CNF). Give an example, with justification, of a context-free language (CFL)
which is not defined by any CFG in CNF.

(b) Show that the intersection of two CFLs need not be a CFL.

(c) Let L be a CFL over an alphabet Σ. Show that Σ∗ \ L need not be a CFL.

Part II, 2017 List of Questions

2017



19

Paper 4, Section I

4H Automata and Formal Languages

(a) Describe the process for converting a deterministic finite-state automaton D into
a regular expression R defining the same language, L(D) = L(R). [You need only
outline the steps, without proof, but you should clearly define all terminology you
introduce.]

(b) Consider the language L over the alphabet {0, 1} defined via

L := {w01n | w ∈ {0, 1}∗, n ∈ K} ∪ {1}∗.

Show that L satisfies the pumping lemma for regular languages but is not a regular
language itself.

Paper 1, Section II

11H Automata and Formal Languages

(a) Give an encoding to integers of all deterministic finite-state automata (DFAs). [Here
the alphabet of each such DFA is always taken from the set {0, 1, . . .}, and the states
for each such DFA are always taken from the set {q0, q1, . . .}.]

(b) Show that the set of codes for which the corresponding DFA Dn accepts a finite
language is recursive. Moreover, if the language L(Dn) is finite, show that we can
compute its size | L(Dn)| from n.
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Paper 3, Section II

11H Automata and formal languages

(a) Given A,B ⊆ N, define a many-one reduction of A to B. Show that if B is
recursively enumerable (r.e.) and A 6m B then A is also recursively enumerable.

(b) State the s-m-n theorem, and use it to prove that a set X ⊆ N is r.e. if and only if
X 6m K.

(c) Consider the sets of integers P,Q ⊆ N defined via

P := {n ∈ N | n codes a program and Wn is finite}
Q := {n ∈ N | n codes a program and Wn is recursive}.

Show that P 6m Q.
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Paper 4, Section I

4F Automata and Formal Languages
(a) Construct a register machine to compute the function f(m,n) := m+ n. State

the relationship between partial recursive functions and partial computable functions.
Show that the function g(m,n) := mn is partial recursive.

(b) State Rice’s theorem. Show that the set A := {n ∈ N | |Wn| > 7} is recursively
enumerable but not recursive.

Paper 3, Section I

4F Automata and Formal Languages
(a) Define what it means for a context-free grammar (CFG) to be in Chomsky

normal form (CNF). Can a CFG in CNF ever define a language containing ǫ? If GChom

denotes the result of converting an arbitrary CFG G into one in CNF, state the relationship
between L(G) and L(GChom).

(b) Let G be a CFG in CNF, and let w ∈ L(G) be a word of length |w| = n > 0.
Show that every derivation of w in G requires precisely 2n − 1 steps. Using this, give an
algorithm that, on input of any word v on the terminals of G, decides if v ∈ L(G) or not.

(c) Convert the following CFG G into a grammar in CNF:

S → aSb | SS | ǫ .

Does L(G) = L(GChom) in this case? Justify your answer.

Paper 2, Section I

4F Automata and Formal Languages
(a) Which of the following are regular languages? Justify your answers.

(i) {w ∈ {a, b}∗ | w is a nonempty string of alternating a’s and b’s}.

(ii) {wabw | w ∈ {a, b}∗}.

(b) Write down a nondeterministic finite-state automaton with ǫ-transitions which
accepts the language given by the regular expression (a+b)∗(bb+a)b. Describe in words
what this language is.

(c) Is the following language regular? Justify your answer.

{w ∈ {a, b}∗ | w does not end in ab or bbb}.
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Paper 1, Section I

4F Automata and Formal Languages
State the pumping lemma for context-free languages (CFLs). Which of the following

are CFLs? Justify your answers.

(i) {a2nb3n | n > 3}.

(ii) {a2nb3nc5n | n > 0}.

(iii) {ap | p is a prime}.

Let L,M be CFLs. Show that L ∪M is also a CFL.

Paper 3, Section II

11F Automata and Formal Languages
(a) Let D = (Q,Σ, δ, q0, F ) be a deterministic finite-state automaton. Define the

extended transition function δ̂ : Q × Σ∗ → Q, and the language accepted by D, denoted
L(D). Let u, v ∈ Σ∗, and p ∈ Q. Prove that δ̂(p, uv) = δ̂(δ̂(p, u), v).

(b) Let σ1, σ2, . . . , σk ∈ Σ where k > |Q|, and let p ∈ Q.

(i) Show that there exist 0 6 i < j 6 k such that δ̂(p, σ1 · · · σi) = δ̂(p, σ1 · · · σj),
where we interpret σ1 · · · σi as ǫ if i = 0.

(ii) Show that δ̂(p, σ1 · · · σiσj+1 · · · σk) = δ̂(p, σ1 · · · σk).

(iii) Show that δ̂(p, σ1 · · · σi(σi+1 · · · σj)tσj+1 · · · σk) = δ̂(p, σ1 · · · σk) for all t > 1.

(c) Prove the following version of the pumping lemma. Suppose w ∈ L(D), with
|w| > |Q|. Then w can be broken up into three words w = xyz such that y 6= ǫ, |xy| 6 |Q|,
and for all t > 0, the word xytz is also in L(D).

(d) Hence show that

(i) if L(D) contains a word of length at least |Q|, then it contains infinitely
many words;

(ii) if L(D) 6= ∅, then it contains a word of length less than |Q|;

(iii) if L(D) contains all words in Σ∗ of length less than |Q|, then L(D) = Σ∗.

Part II, 2016 List of Questions [TURN OVER

2016



18

Paper 1, Section II

11F Automata and Formal Languages
(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that E ⊆ N

is recursive if and only if both E and N \ E are r.e.

(b) Define the halting set K. Prove that K is r.e. but not recursive.

(c) Let E1, E2, . . . , En be r.e. sets. Prove that
⋃n

i=1Ei and
⋂n

i=1Ei are r.e. Show
by an example that the union of infinitely many r.e. sets need not be r.e.

(d) Let E be a recursive set and f : N → N a (total) recursive function. Prove that
the set {f(n) | n ∈ E} is r.e. Is it necessarily recursive? Justify your answer.

[Any use of Church’s thesis in your answer should be explicitly stated.]
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