Part II

Automata and Formal Languages

Year
2023
2022
2021
2020
2019
2018
2017
2016

Paper 1, Section I

4 I Automata \& Formal Languages

(a) Define what it means for a grammar to be in Chomsky normal form.
(b) Suppose G is a grammar in Chomsky normal form. If $w \in \mathcal{L}(G)$ has $|w|=n$, what is the length of a G-derivation of w ? [No justification is required.]
(c) Let $\Sigma=\{a, b\}, V=\{S, A, B, C\}$. Consider the grammar $G=(\Sigma, V, P, S)$ in Chomsky normal form given by $P=\{S \rightarrow A C, C \rightarrow B A, A \rightarrow A B, B \rightarrow B A$, $A \rightarrow a, B \rightarrow b\}$. Show that the word abbabba is in $\mathcal{L}(G)$ by providing a G-parse tree for it.

A grammar G is said to be in weak Chomsky normal form if all production rules are either of the form $A \rightarrow a, A \rightarrow B C$, or $A \rightarrow B C D$, for variables A, B, C, D and letters a.
(d) Give a grammar G^{\prime} in weak Chomsky normal form that is
(i) equivalent to the grammar G from part (c) and
(ii) there is a G^{\prime}-derivation for the word abbabba of length strictly shorter than the number given in part (b).

Justify your answer.

Paper 2, Section I

4 I Automata \& Formal Languages

Let Σ be an alphabet and $\mathbb{W}:=\Sigma^{*}$ be the set of words over Σ.
(a) Define what it means for $A \subseteq \mathbb{W}$ to be computably enumerable.
[You do not need to define what it means for a partial function to be computable.]
(b) Prove that for $\varnothing \neq A \subseteq \mathbb{W}$ the following statements are equivalent:
(i) the set A is computably enumerable;
(ii) the set A is the domain of a partial computable function;
(iii) the set A is the range of a partial computable function;
(iv) the set A is the range of a total computable function.
[You may assume that the truncated computation function is computable, and that the map $w \mapsto\left((w)_{0},(w)_{1}\right)$ is a bijection from \mathbb{W} to \mathbb{W}^{2} that can be performed by a register machine.]

Paper 3, Section I

41 Automata \& Formal Languages

(a) Let $G=(\Sigma, V, P, S)$ be a formal grammar and let $\Omega=\Sigma \cup V$. Define $\mathcal{L}(G)$. [You do not need to define the binary relation \xrightarrow{G} on Ω^{*}.]
(b) Define what it means for two grammars to be equivalent.
(c) Define what it means for two grammars to be isomorphic.
(d) Fix $\Sigma=\{a, b, c\}$ and consider the following pairs of grammars with start symbol S and given by their respective sets of productions P_{0} and P_{1}; for each pair, determine whether they are equivalent or non-equivalent. Justify your answers.
(i) $P_{0}=\{S \rightarrow A a, S \rightarrow S b, A \rightarrow A b, A \rightarrow a, B \rightarrow A a, B \rightarrow b\}$,

$$
P_{1}=\{S \rightarrow S b, C \rightarrow D a, C \rightarrow b, D \rightarrow D b, D \rightarrow a, S \rightarrow D a\} .
$$

(ii) $P_{0}=\{S \rightarrow A B, A \rightarrow A a, A \rightarrow a, B \rightarrow B b, B \rightarrow b, A B \rightarrow c\}$, $P_{1}=\{S \rightarrow X a b Y, X \rightarrow X a, X \rightarrow a, Y \rightarrow Y b, Y \rightarrow b, X Y \rightarrow c\}$.
(iii) $P_{0}=\{S \rightarrow a A a, A \rightarrow b A b, A \rightarrow b\}$,

$$
P_{1}=\{S \rightarrow a Y a, Y \rightarrow Z Z, Z \rightarrow a Z a, Z \rightarrow b Z Y, Z \rightarrow Y Z, Y \rightarrow b Y b, Y \rightarrow b\} .
$$

[You may assume that isomorphic grammars are equivalent.]

Paper 4, Section I

4I Automata \& Formal Languages

(i) Define what it means for a grammar to be regular.
(ii) Let $G=(\Sigma, V, P, S)$ be a regular grammar and $\Omega=\Sigma \cup V$. Prove that if $\alpha \in \Omega^{*}$ and $S \xrightarrow{G} \alpha$, then there are $w \in \mathbb{W}$ and $A \in V$ such that $\alpha=w A$ or $\alpha=w$.
(iii) Let $G=(\Sigma, V, P, S)$ be a regular grammar, $A, B \in V$, and $w, v \in \mathbb{W}$. Prove that if $w A \xrightarrow{G} v B$, then there is some word $u \in \mathbb{W}$ such that $A \xrightarrow{G} u B$.

If $G=(\Sigma, V, P, S)$ is a regular grammar and A is a variable, we call A accessible in G if there is a word $w_{1} \in \Sigma^{*}$ such that $S \xrightarrow{G} w_{1} A$; we call A looping in G if there is a word $w_{2} \in \Sigma^{*}$ such that $A \xrightarrow{G} w_{2} A$; we call A terminable in G if there is a word $w_{3} \in \Sigma^{*}$ such that $A \xrightarrow{G} w_{3}$.
(iv) Let G be a regular grammar. Prove that if $\mathcal{L}(G)$ is infinite then there is a variable that is accessible, looping, and terminable in G.

Paper 1, Section II

12I Automata \& Formal Languages

Let Σ be an alphabet, \mathbb{W} the set of words over $\Sigma, A, B \subseteq \mathbb{W}$, and \mathcal{C} any set of subsets of \mathbb{W}.
(i) Define what $A \leqslant_{\mathrm{m}} B$ means.
(ii) Define what it means for a set A to be \mathcal{C}-complete.
(iii) Define what it means for A to be in Σ_{1}.
(iv) Define the halting problem \mathbf{K}.
(v) Prove that the halting problem \mathbf{K} is Σ_{1}-complete.

A set $P \subseteq \mathbb{W}$ is in Π_{2} if and only if there is a computable partial function $f: \mathbb{W} \times \mathbb{W} \rightarrow \mathbb{W}$ such that for all $w \in \mathbb{W}$, we have that $w \in P$ if and only if for all $v \in \mathbb{W}, f(w, v) \downarrow$.
(vi) We define $\boldsymbol{T o t} \subset \mathbb{W}$ to be the set $\left\{v ; \mathrm{W}_{v}=\mathbb{W}\right\}$. Show that Tot is Π_{2}-complete.
[In this entire question, you are allowed to use the fact that truncated computation functions are computable, provided that you give a precise and correct definition of the function used. You may use the partial function $f_{w, 1}$ without providing a definition.]

Paper 3, Section II

12 I Automata \& Formal Languages

Let Σ be an alphabet and \mathbb{W} the set of words over Σ. Let $D=\left(\Sigma, Q, \delta, q_{0}, F\right)$ be a deterministic automaton.
(i) Define $\mathcal{L}(D)$, the set of words accepted by the automaton D, precisely defining all auxiliary functions needed for your definition.
(ii) State the pumping lemma for the language $\mathcal{L}(D)$. Specify the pumping number precisely in terms of D.
[No proof is required.]
(iii) Let $\Sigma=\{a, b\}$. Consider the regular language

$$
L:=\left\{w a^{k} ; w \in \Sigma^{*} \text { with }|w| \leqslant 10 \text { and } k>0\right\} .
$$

Show that the minimal deterministic automaton for L has at least ten states.

Let $A \subseteq \mathbb{W}$. Define an equivalence relation on \mathbb{W} by

$$
v \sim_{A} w: \Longleftrightarrow \text { for all } u \text {, we have } v u \in A \text { if and only if } w u \in A
$$

(iv) Let $A \subseteq \mathbb{W} \backslash\{\varepsilon\}$. Show that A is a regular language if and only if the relation \sim_{A} has finitely many equivalence classes.

Paper 1, Section I

4I Automata and Formal Languages

What are the nth register machine P_{n} and the nth recursively enumerable set W_{n} ?
Given subsets $A, B \subseteq \mathbb{N}$, define a many-one reduction $A \leqslant_{m} B$ of A to B.
State Rice's theorem.
Is there a total algorithm that, on input n in register 1 and m in register 2 , terminates with 0 if $W_{m}=W_{n}$ and 1 if $W_{m} \neq W_{n}$? Is there a partial algorithm that, with the same inputs as above, terminates with 0 if $W_{m}=W_{n}$ and never halts if $W_{m} \neq W_{n}$? Justify your answers.
[You may assume without proof that the halting set \mathbb{K} is not recursive.]

Paper 2, Section I

4I Automata and Formal Languages

State and prove the pumping lemma for regular languages.
Are the following languages over the alphabet $\Sigma=\{0,1\}$ regular? Justify your answers.
(i) $\left\{0^{n} 1 \mid n \geqslant 0\right\}$.
(ii) $\left\{0^{n} 1^{n^{2}} \mid n \geqslant 0\right\}$.
(iii) The set of all words in Σ^{*} containing the same number of 0 s and 1 s .

Paper 3, Section I

4I Automata and Formal Languages

Define a context-free grammar (CFG) and a context-free language (CFL).
State the pumping lemma for CFLs.
Which of the following languages over the alphabet $\{a, b, c\}$ are CFLs? Justify your answers.
(i) $\left\{a^{n} b^{2 n} c^{n} \mid n \geqslant 0\right\}$.
(ii) $\left\{a^{n} b^{2 i} c^{n} \mid n, i \geqslant 0\right\}$.

Paper 4, Section I

4 I Automata and Formal Languages

Define what it means for a context-free grammar (CFG) to be in Chomsky normal form.

What are an ϵ-production and a unit production?
Let G_{1} be the CFG

$$
\begin{aligned}
& S \rightarrow \epsilon|a T a| b T a \\
& T \rightarrow T a|T b| c
\end{aligned}
$$

and let G_{2} be the CFG

$$
\begin{aligned}
S & \rightarrow X Z \mid Y Z \\
T & \rightarrow T X|T Y| c \\
X & \rightarrow a, Y \rightarrow b, Z \rightarrow T X
\end{aligned}
$$

What is the relationship between the language of G_{1} and the language of G_{2} ? Justify your answer carefully.

Paper 1, Section II

12I Automata and Formal Languages

Give the definition of a primitive recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$.
Show directly from the definition that, when $k=2$, the functions

$$
P(m, n)=m+n \text { and } T(m, n)=m n
$$

are both primitive recursive.
Show further that for $k \geqslant 2$ the function

$$
T_{k}\left(n_{1}, \ldots, n_{k}\right)=n_{1} \cdots n_{k}
$$

is primitive recursive, as is $E_{a}: \mathbb{N} \rightarrow \mathbb{N}$ given by $E_{a}(n)=a^{n}$, where $a \geqslant 1$ is a fixed integer.

Suppose $F: \mathbb{N}^{k} \rightarrow \mathbb{N}^{k}$, where $F=\left(f_{0}, \ldots, f_{k-1}\right)$ with each coordinate function f_{i} primitive recursive. Describe how F can be encoded as a primitive recursive function $\bar{F}: \mathbb{N} \rightarrow \mathbb{N}$.

Let the Fibonacci function $B: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $B(0)=0, B(1)=1$ and $B(n+2)=B(n+1)+B(n)$ for $n \geqslant 0$. Is B primitive recursive? Justify your answer.

If $f: \mathbb{N} \rightarrow \mathbb{N}$ is a primitive recursive function, must there exist some $R>0$ such that $f(n) \leqslant R^{n}$ for all $n \geqslant 1$? Justify your answer.
[You may use without proof that for fixed $j \geqslant 2$ the maxpower function M_{j} is primitive recursive, where $M_{j}(n)$ is the exponent of the highest power of j that divides n. If you use any other results from the course, you should prove them.]

Paper 3, Section II

12 I Automata and Formal Languages

Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a deterministic finite-state automaton (DFA).
What does it mean to say that $q \in Q$ is an accessible state? What does it mean to say that $p, q \in Q$ are equivalent states?

Explain the construction of the minimal $D F A D / \sim$ and show that the languages of D and of D / \sim are the same. Show also that no two distinct states of D / \sim are equivalent.

Now let Σ be the single-letter alphabet $\{1\}$. Suppose that D is a DFA with no inaccessible states and exactly one accept state. Justifying your answer, describe the corresponding minimal DFA D / \sim in the form of a transition diagram or otherwise. [Remember that you need only consider accessible states.]

Paper 1, Section I

4F Automata and Formal Languages

Let $f_{n, k}$ be the partial function on k variables that is computed by the nth machine (or the empty function if n does not encode a machine).

Define the halting set \mathbb{K}.
Given $A, B \subseteq \mathbb{N}$, what is a many-one reduction $A \leqslant_{m} B$ of A to B ?
State the $s-m-n$ theorem and use it to show that a subset X of \mathbb{N} is recursively enumerable if and only if $X \leqslant_{m} \mathbb{K}$.

Give an example of a set $S \subseteq \mathbb{N}$ with $\mathbb{K} \leqslant_{m} S$ but $\mathbb{K} \neq S$.
[You may assume that \mathbb{K} is recursively enumerable and that $0 \notin \mathbb{K}$.]

Paper 2, Section I

4F Automata and Formal Languages

Assuming the definition of a deterministic finite-state automaton (DFA) $D=$ $\left(Q, \Sigma, \delta, q_{0}, F\right)$, what is the extended transition function $\hat{\delta}$ for D ? Also assuming the definition of a nondeterministic finite-state automaton (NFA) N, what is $\hat{\delta}$ in this case?

Define the languages accepted by D and N, respectively, in terms of $\hat{\delta}$.
Given an NFA N as above, describe the subset construction and show that the resulting DFA \bar{N} accepts the same language as N. If N has one accept state then how many does \bar{N} have?

Paper 3, Section I

4F Automata and Formal Languages

Define a regular expression R and explain how this gives rise to a language $\mathcal{L}(R)$.
Define a deterministic finite-state automaton D and the language $\mathcal{L}(D)$ that it accepts.

State the relationship between languages obtained from regular expressions and languages accepted by deterministic finite-state automata.

Let L and M be regular languages. Is $L \cup M$ always regular? What about $L \cap M$?
Now suppose that L_{1}, L_{2}, \ldots are regular languages. Is the countable union $\bigcup L_{i}$ always regular? What about the countable intersection $\bigcap L_{i}$?

Paper 4, Section I

4F Automata and Formal Languages

State the pumping lemma for regular languages.
Which of the following languages over the alphabet $\{0,1\}$ are regular?
(i) $\left\{0^{i} 1^{i} 01 \mid i \geqslant 0\right\}$.
(ii) $\left\{w \bar{w} \mid w \in\{0,1\}^{*}\right\}$ where \bar{w} is the reverse of the word w.
(iii) $\left\{w \in\{0,1\}^{*} \mid w\right.$ does not contain the subwords 01 or 10$\}$.

Paper 1, Section II

12F Automata and Formal Languages

For $k \geqslant 1$ give the definition of a partial recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ in terms of basic functions, composition, recursion and minimisation.

Show that the following partial functions from \mathbb{N} to \mathbb{N} are partial recursive:
(i) $s(n)= \begin{cases}1 & n=0 \\ 0 & n \geqslant 1,\end{cases}$
(ii) $r(n)= \begin{cases}1 & n \text { odd } \\ 0 & n \text { even },\end{cases}$
(iii) $p(n)=\left\{\begin{array}{l}\text { undefined if } n \text { is odd } \\ 0 \text { if } n \text { is even. }\end{array}\right.$

Which of these can be defined without using minimisation?
What is the class of functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ that can be defined using only basic functions and composition? [Hint: See which functions you can obtain and then show that these form a class that is closed with respect to the above.]

Show directly that every function in this class is computable.

Paper 3, Section II

12F Automata and Formal Languages

Suppose that G is a context-free grammar without ϵ-productions. Given a derivation of some word w in the language L of G, describe a parse tree for this derivation.

State and prove the pumping lemma for L. How would your proof differ if you did not assume that G was in Chomsky normal form, but merely that G has no ϵ - or unit productions?

For the alphabet $\Sigma=\{a, b\}$ of terminal symbols, state whether the following languages over Σ are context free, giving reasons for your answer.
(i) $\left\{a^{i} b^{i} a^{i} \mid i \geqslant 0\right\}$,
(ii) $\left\{a^{i} b^{j} \mid i \geqslant j \geqslant 0\right\}$,
(iii) $\left\{w a b w \mid w \in\{a, b\}^{*}\right\}$.

Paper 1, Section I

4F Automata and Formal Languages
Define an alphabet Σ, a word over Σ and a language over Σ.
What is a regular expression R and how does this give rise to a language $\mathcal{L}(R)$?
Given any alphabet Σ, show that there exist languages L over Σ which are not equal to $\mathcal{L}(R)$ for any regular expression R. [You are not required to exhibit a specific L.]

Paper 2, Section I

4F Automata and Formal Languages

Assuming the definition of a partial recursive function from \mathbb{N} to \mathbb{N}, what is a recursive subset of \mathbb{N} ? What is a recursively enumerable subset of \mathbb{N} ?

Show that a subset $E \subseteq \mathbb{N}$ is recursive if and only if E and $\mathbb{N} \backslash E$ are recursively enumerable.

Are the following subsets of \mathbb{N} recursive?
(i) $\mathbb{K}:=\left\{n \mid n\right.$ codes a program and $f_{n, 1}(n)$ halts at some stage $\}$.
(ii) $\mathbb{K}_{100}:=\left\{n \mid n\right.$ codes a program and $f_{n, 1}(n)$ halts within 100 steps $\}$.

Paper 3, Section I

4F Automata and Formal Languages

Define a context-free grammar G, a sentence of G and the language $\mathcal{L}(G)$ generated by G.

For the alphabet $\Sigma=\{a, b\}$, which of the following languages over Σ are contextfree?
(i) $\left\{a^{2 m} b^{2 m} \mid m \geqslant 0\right\}$,
(ii) $\left\{a^{m^{2}} b^{m^{2}} \mid m \geqslant 0\right\}$.
[You may assume standard results without proof if clearly stated.]

Paper 4, Section I

4F Automata and Formal Languages

Define what it means for a context-free grammar (CFG) to be in Chomsky normal form (CNF).

Describe without proof each stage in the process of converting a CFG $G=$ (N, Σ, P, S) into an equivalent CFG \bar{G} which is in CNF. For each of these stages, when are the nonterminals N left unchanged? What about the terminals Σ and the generated language $\mathcal{L}(G)$?

Give an example of a CFG G whose generated language $\mathcal{L}(G)$ is infinite and equal to $\mathcal{L}(\bar{G})$.

Paper 1, Section II

12F Automata and Formal Languages

(a) Define a register machine, a sequence of instructions for a register machine and a partial computable function. How do we encode a register machine?
(b) What is a partial recursive function? Show that a partial computable function is partial recursive. [You may assume that for a given machine with a given number of inputs, the function outputting its state in terms of the inputs and the time t is recursive.]
(c) (i) Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be the partial function defined as follows: if n codes a register machine and the ensuing partial function $f_{n, 1}$ is defined at n, set $g(n)=f_{n, 1}(n)+1$. Otherwise set $g(n)=0$. Is g a partial computable function?
(ii) Let $h: \mathbb{N} \rightarrow \mathbb{N}$ be the partial function defined as follows: if n codes a register machine and the ensuing partial function $f_{n, 1}$ is defined at n, set $h(n)=f_{n, 1}(n)+1$. Otherwise, set $h(n)=0$ if n is odd and let $h(n)$ be undefined if n is even. Is h a partial computable function?

Paper 3, Section II

12F Automata and Formal Languages

Give the definition of a deterministic finite state automaton and of a regular language.

State and prove the pumping lemma for regular languages.
Let $S=\left\{2^{n} \mid n=0,1,2, \ldots\right\}$ be the subset of \mathbb{N} consisting of the powers of 2 .
If we write the elements of S in base 2 (with no preceding zeros), is S a regular language over $\{0,1\}$?

Now suppose we write the elements of S in base 10 (again with no preceding zeros). Show that S is not a regular language over $\{0,1,2,3,4,5,6,7,8,9\}$. [Hint: Give a proof by contradiction; use the above lemma to obtain a sequence a_{1}, a_{2}, \ldots of powers of 2 , then consider $a_{i+1}-10^{d} a_{i}$ for $i=1,2,3, \ldots$ and a suitable fixed d.]

Paper 1, Section I

4H Automata and Formal Languages

(a) State the pumping lemma for context-free languages (CFLs).
(b) Which of the following are CFLs? Justify your answers.
(i) $\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$, where w^{R} is the reverse of the word w.
(ii) $\left\{0^{p} 1^{p} \mid p\right.$ is a prime $\}$.
(iii) $\left\{a^{m} b^{n} c^{k} d^{l} \mid 3 m=4 l\right.$ and $\left.2 n=5 k\right\}$.
(c) Let L and M be CFLs. Show that the concatenation $L M$ is also a CFL.

Paper 4, Section I

4H Automata and Formal Languages

(a) Which of the following are regular languages? Justify your answers.
(i) $\left\{w^{n} \mid w \in\{a, b\}^{*}, n \geqslant 2\right\}$.
(ii) $\left\{w \in\{a, b, c\}^{*} \mid w\right.$ contains an odd number of b 's and an even number of c 's $\}$.
(iii) $\left\{w \in\{0,1\}^{*} \mid w\right.$ contains no more than 7 consecutive 0 's $\}$.
(b) Consider the language L over alphabet $\{a, b\}$ defined via

$$
L:=\left\{w a b^{n} \mid w \in\{a, b\}^{*}, n \in \mathbb{K}\right\} \cup\{b\}^{*} .
$$

Show that L satisfies the pumping lemma for regular languages but is not a regular language itself.

Paper 3, Section I

4H Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in Chomsky normal form (CNF). Can a CFG in CNF ever define a language containing ϵ ? If $G_{\text {Chom }}$ denotes the result of converting an arbitrary CFG G into one in CNF, state the relationship between $\mathcal{L}(G)$ and $\mathcal{L}\left(G_{\text {Chom }}\right)$.
(b) Let G be a CFG in CNF. Give an algorithm that, on input of any word v on the terminals of G, decides if $v \in \mathcal{L}(G)$ or not. Explain why your algorithm works.
(c) Convert the following CFG G into a grammar in CNF:

$$
\begin{gathered}
S \rightarrow S b b|a S| T \\
T \rightarrow c c
\end{gathered}
$$

Does $\mathcal{L}(G)=\mathcal{L}\left(G_{\text {Chom }}\right)$ in this case? Justify your answer.

Paper 2, Section I

4H Automata and Formal Languages

(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that $E \subseteq \mathbb{N}_{0}$ is recursive if and only if both E and $\mathbb{N}_{0} \backslash E$ are r.e. sets.
(b) Let $E=\left\{f_{n, k}\left(m_{1}, \ldots, m_{k}\right) \mid\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}_{0}^{k}\right\}$ for some fixed $k \geqslant 1$ and some fixed register machine code n. Show that $E=\left\{m \in \mathbb{N}_{0} \mid f_{j, 1}(m) \downarrow\right\}$ for some fixed register machine code j. Hence show that E is an r.e. set.
(c) Show that the function $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ defined below is primitive recursive.

$$
f(n)= \begin{cases}n-1 & \text { if } n>0 \\ 0 & \text { if } n=0 .\end{cases}
$$

[Any use of Church's thesis in your answers should be explicitly stated. In this question \mathbb{N}_{0} denotes the set of non-negative integers.]

Paper 1, Section II

12H Automata and Formal Languages

Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a deterministic finite-state automaton (DFA). Define what it means for two states of D to be equivalent. Define the minimal DFA D / \sim for D.

Let D be a DFA with no inaccessible states, and suppose that A is another DFA on the same alphabet as D and for which $\mathcal{L}(D)=\mathcal{L}(A)$. Show that A has at least as many states as D / \sim. [You may use results from the course as long as you state them clearly.]

Construct a minimal DFA (that is, one with the smallest possible number of states) over the alphabet $\{0,1\}$ which accepts precisely the set of binary numbers which are multiples of 7 . You may have leading zeros in your inputs (e.g.: 00101). Prove that your DFA is minimal by finding a distinguishing word for each pair of states.

Paper 3, Section II

12H Automata and Formal Languages

(a) State the s-m-n theorem and the recursion theorem.
(b) State and prove Rice's theorem.
(c) Show that if $g: \mathbb{N}_{0}^{2} \rightarrow \mathbb{N}_{0}$ is partial recursive, then there is some $e \in \mathbb{N}_{0}$ such that

$$
f_{e, 1}(y)=g(e, y) \quad \forall y \in \mathbb{N}_{0} .
$$

(d) Show there exists some $m \in \mathbb{N}_{0}$ such that W_{m} has exactly m^{2} elements.
(e) Given $n \in \mathbb{N}_{0}$, is it possible to compute whether or not the number of elements of W_{n} is a (finite) perfect square? Justify your answer.
[In this question \mathbb{N}_{0} denotes the set of non-negative integers. Any use of Church's thesis in your answers should be explicitly stated.]

Paper 4, Section I

4G Automata and Formal Languages

(a) State the $s-m-n$ theorem, the recursion theorem, and Rice's theorem.
(b) Show that if $g: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is partial recursive, then there is some $e \in \mathbb{N}$ such that

$$
f_{e, 1}(y)=g(e, y) \quad \forall y \in \mathbb{N} .
$$

(c) By considering the partial function $g: \mathbb{N}^{2} \rightarrow \mathbb{N}$ given by

$$
g(x, y)= \begin{cases}0 & \text { if } y<x \\ \uparrow & \text { otherwise }\end{cases}
$$

show there exists some $m \in \mathbb{N}$ such that W_{m} has exactly m elements.
(d) Given $n \in \mathbb{N}$, is it possible to compute whether or not W_{n} has exactly 9 elements? Justify your answer.
[Note that we define $\mathbb{N}=\{0,1, \ldots\}$. Any use of Church's thesis in your answers should be explicitly stated.]

Paper 3, Section I

4G Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in Chomsky normal form (CNF).
(b) Give an algorithm for converting a CFG G into a corresponding CFG $G_{\text {Chom }}$ in CNF satisfying $\mathcal{L}\left(G_{\text {Chom }}\right)=\mathcal{L}(G)-\{\epsilon\}$. [You need only outline the steps, without proof.]
(c) Convert the following CFG G :

$$
S \rightarrow A S c \mid B, \quad A \rightarrow a, \quad B \rightarrow b
$$

into a grammar in CNF.

Paper 2, Section I

4G Automata and Formal Languages

(a) Let $E=\left(Q_{E}, \Sigma, \delta_{E}, q_{0}, F_{E}\right)$ be a nondeterministic finite-state automaton with ϵ-transitions (ϵ-NFA). Define the deterministic finite-state automaton (DFA) $D=\left(Q_{D}, \Sigma, \delta_{D}, q_{D}, F_{D}\right)$ obtained from E via the subset construction with ϵ-transitions.
(b) Let E and D be as above. By inducting on lengths of words, prove that

$$
\hat{\delta}_{E}\left(q_{0}, w\right)=\hat{\delta}_{D}\left(q_{D}, w\right) \text { for all } w \in \Sigma^{*} .
$$

(c) Deduce that $\mathcal{L}(D)=\mathcal{L}(E)$.

Paper 1, Section I

4G Automata and Formal Languages

(a) State the pumping lemma for context-free languages (CFLs).
(b) Which of the following are CFLs? Justify your answers.
(i) $\left\{w w \mid w \in\{a, b, c\}^{*}\right\}$
(ii) $\left\{a^{m} b^{n} c^{k} d^{l} \mid 3 m=4 n\right.$ and $\left.2 k=5 l\right\}$
(iii) $\left\{a^{3^{n}} \mid n \geqslant 0\right\}$
(c) Let L be a CFL. Show that L^{*} is also a CFL.

Paper 3, Section II

12G Automata and Formal Languages

(a) State and prove the pumping lemma for regular languages.
(b) Let D be a minimal deterministic finite-state automaton whose language $\mathcal{L}(D)$ is finite. Let Γ_{D} be the transition diagram of D, and suppose there exists a non-empty closed path γ in Γ_{D} starting and ending at state p.
(i) Show that there is no path in Γ_{D} from p to any accept state of D.
(ii) Show that there is no path in Γ_{D} from p to any other state of D.

Paper 1, Section II

12G Automata and Formal Languages

(a) Define the halting set \mathbb{K}. Prove that \mathbb{K} is recursively enumerable, but not recursive.
(b) Given $A, B \subseteq \mathbb{N}$, define a many-one reduction of A to B. Show that if B is recursively enumerable and $A \leqslant_{m} B$, then A is also recursively enumerable.
(c) Show that each of the functions $f(n)=2 n$ and $g(n)=2 n+1$ are both partial recursive and total, by building them up as partial recursive functions.
(d) Let $X, Y \subseteq \mathbb{N}$. We define the set $X \oplus Y$ via

$$
X \oplus Y:=\{2 x \mid x \in X\} \cup\{2 y+1 \mid y \in Y\} .
$$

(i) Show that both $X \leqslant_{m} X \oplus Y$ and $Y \leqslant_{m} X \oplus Y$.
(ii) Using the above, or otherwise, give an explicit example of a subset C of \mathbb{N} for which neither C nor $\mathbb{N} \backslash C$ are recursively enumerable.
(iii) For every $Z \subseteq \mathbb{N}$, show that if $X \leqslant_{m} Z$ and $Y \leqslant_{m} Z$ then $X \oplus Y \leqslant_{m} Z$.
[Note that we define $\mathbb{N}=\{0,1, \ldots\}$. Any use of Church's thesis in your answers should be explicitly stated.]

Paper 1, Section I
 4H Automata and Formal Languages

(a) Prove that every regular language is also a context-free language (CFL).
(b) Show that, for any fixed $n>0$, the set of regular expressions over the alphabet $\left\{a_{1}, \ldots, a_{n}\right\}$ is a CFL, but not a regular language.

Paper 2, Section I

4H Automata and Formal Languages

(a) Give explicit examples, with justification, of a language over some finite alphabet Σ which is:
(i) context-free, but not regular;
(ii) recursive, but not context-free.
(b) Give explicit examples, with justification, of a subset of \mathbb{N} which is:
(i) recursively enumerable, but not recursive;
(ii) neither recursively enumerable, nor having recursively enumerable complement in \mathbb{N}.

Paper 3, Section I

4H Automata and Formal Languages
(a) Define what it means for a context-free grammar (CFG) to be in Chomsky normal form (CNF). Give an example, with justification, of a context-free language (CFL) which is not defined by any CFG in CNF.
(b) Show that the intersection of two CFLs need not be a CFL.
(c) Let L be a CFL over an alphabet Σ. Show that $\Sigma^{*} \backslash L$ need not be a CFL.

Paper 4, Section I

4H Automata and Formal Languages

(a) Describe the process for converting a deterministic finite-state automaton D into a regular expression R defining the same language, $\mathcal{L}(D)=\mathcal{L}(R)$. [You need only outline the steps, without proof, but you should clearly define all terminology you introduce.]
(b) Consider the language L over the alphabet $\{0,1\}$ defined via

$$
L:=\left\{w 01^{n} \mid w \in\{0,1\}^{*}, n \in \mathbb{K}\right\} \cup\{1\}^{*} .
$$

Show that L satisfies the pumping lemma for regular languages but is not a regular language itself.

Paper 1, Section II
 11H Automata and Formal Languages

(a) Give an encoding to integers of all deterministic finite-state automata (DFAs). [Here the alphabet of each such DFA is always taken from the set $\{0,1, \ldots\}$, and the states for each such DFA are always taken from the set $\left\{q_{0}, q_{1}, \ldots\right\}$.]
(b) Show that the set of codes for which the corresponding DFA D_{n} accepts a finite language is recursive. Moreover, if the language $\mathcal{L}\left(D_{n}\right)$ is finite, show that we can compute its size $\left|\mathcal{L}\left(D_{n}\right)\right|$ from n.

Paper 3, Section II

11H Automata and formal languages

(a) Given $A, B \subseteq \mathbb{N}$, define a many-one reduction of A to B. Show that if B is recursively enumerable (r.e.) and $A \leqslant_{m} B$ then A is also recursively enumerable.
(b) State the $s-m-n$ theorem, and use it to prove that a set $X \subseteq \mathbb{N}$ is r.e. if and only if $X \leqslant_{m} \mathbb{K}$.
(c) Consider the sets of integers $P, Q \subseteq \mathbb{N}$ defined via

$$
\begin{aligned}
& P:=\left\{n \in \mathbb{N} \mid n \text { codes a program and } W_{n} \text { is finite }\right\} \\
& Q:=\left\{n \in \mathbb{N} \mid n \text { codes a program and } W_{n} \text { is recursive }\right\} .
\end{aligned}
$$

Show that $P \leqslant_{m} Q$.

Paper 4, Section I

4F Automata and Formal Languages

(a) Construct a register machine to compute the function $f(m, n):=m+n$. State the relationship between partial recursive functions and partial computable functions. Show that the function $g(m, n):=m n$ is partial recursive.
(b) State Rice's theorem. Show that the set $A:=\left\{n \in \mathbb{N}| | W_{n} \mid>7\right\}$ is recursively enumerable but not recursive.

Paper 3, Section I

4F Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in Chomsky normal form (CNF). Can a CFG in CNF ever define a language containing ϵ ? If $G_{\text {Chom }}$ denotes the result of converting an arbitrary CFG G into one in CNF, state the relationship between $\mathcal{L}(G)$ and $\mathcal{L}\left(G_{\text {Chom }}\right)$.
(b) Let G be a CFG in CNF, and let $w \in \mathcal{L}(G)$ be a word of length $|w|=n>0$. Show that every derivation of w in G requires precisely $2 n-1$ steps. Using this, give an algorithm that, on input of any word v on the terminals of G, decides if $v \in \mathcal{L}(G)$ or not.
(c) Convert the following CFG G into a grammar in CNF:

$$
S \rightarrow a S b|S S| \epsilon .
$$

Does $\mathcal{L}(G)=\mathcal{L}\left(G_{\text {Chom }}\right)$ in this case? Justify your answer.

Paper 2, Section I

4F Automata and Formal Languages

(a) Which of the following are regular languages? Justify your answers.
(i) $\left\{w \in\{a, b\}^{*} \mid w\right.$ is a nonempty string of alternating a 's and b 's $\}$.
(ii) $\left\{w a b w \mid w \in\{a, b\}^{*}\right\}$.
(b) Write down a nondeterministic finite-state automaton with ϵ-transitions which accepts the language given by the regular expression $(\mathbf{a}+\mathbf{b})^{*}(\mathbf{b b}+\mathbf{a}) \mathbf{b}$. Describe in words what this language is.
(c) Is the following language regular? Justify your answer.

$$
\left\{w \in\{a, b\}^{*} \mid w \text { does not end in } a b \text { or } b b b\right\} .
$$

Paper 1, Section I

4F Automata and Formal Languages

State the pumping lemma for context-free languages (CFLs). Which of the following are CFLs? Justify your answers.
(i) $\left\{a^{2 n} b^{3 n} \mid n \geqslant 3\right\}$.
(ii) $\left\{a^{2 n} b^{3 n} c^{5 n} \mid n \geqslant 0\right\}$.
(iii) $\left\{a^{p} \mid p\right.$ is a prime $\}$.

Let L, M be CFLs. Show that $L \cup M$ is also a CFL.

Paper 3, Section II

11F Automata and Formal Languages

(a) Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a deterministic finite-state automaton. Define the extended transition function $\hat{\delta}: Q \times \Sigma^{*} \rightarrow Q$, and the language accepted by D, denoted $\mathcal{L}(D)$. Let $u, v \in \Sigma^{*}$, and $p \in Q$. Prove that $\hat{\delta}(p, u v)=\hat{\delta}(\hat{\delta}(p, u), v)$.
(b) Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k} \in \Sigma$ where $k \geqslant|Q|$, and let $p \in Q$.
(i) Show that there exist $0 \leqslant i<j \leqslant k$ such that $\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{i}\right)=\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{j}\right)$, where we interpret $\sigma_{1} \cdots \sigma_{i}$ as ϵ if $i=0$.
(ii) Show that $\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{i} \sigma_{j+1} \cdots \sigma_{k}\right)=\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{k}\right)$.
(iii) Show that $\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{i}\left(\sigma_{i+1} \cdots \sigma_{j}\right)^{t} \sigma_{j+1} \cdots \sigma_{k}\right)=\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{k}\right)$ for all $t \geqslant 1$.
(c) Prove the following version of the pumping lemma. Suppose $w \in \mathcal{L}(D)$, with $|w| \geqslant|Q|$. Then w can be broken up into three words $w=x y z$ such that $y \neq \epsilon,|x y| \leqslant|Q|$, and for all $t \geqslant 0$, the word $x y^{t} z$ is also in $\mathcal{L}(D)$.
(d) Hence show that
(i) if $\mathcal{L}(D)$ contains a word of length at least $|Q|$, then it contains infinitely many words;
(ii) if $\mathcal{L}(D) \neq \emptyset$, then it contains a word of length less than $|Q|$;
(iii) if $\mathcal{L}(D)$ contains all words in Σ^{*} of length less than $|Q|$, then $\mathcal{L}(D)=\Sigma^{*}$.

Paper 1, Section II

11F Automata and Formal Languages

(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that $E \subseteq \mathbb{N}$ is recursive if and only if both E and $\mathbb{N} \backslash E$ are r.e.
(b) Define the halting set \mathbb{K}. Prove that \mathbb{K} is r.e. but not recursive.
(c) Let $E_{1}, E_{2}, \ldots, E_{n}$ be r.e. sets. Prove that $\bigcup_{i=1}^{n} E_{i}$ and $\bigcap_{i=1}^{n} E_{i}$ are r.e. Show by an example that the union of infinitely many r.e. sets need not be r.e.
(d) Let E be a recursive set and $f: \mathbb{N} \rightarrow \mathbb{N}$ a (total) recursive function. Prove that the set $\{f(n) \mid n \in E\}$ is r.e. Is it necessarily recursive? Justify your answer.
[Any use of Church's thesis in your answer should be explicitly stated.]

