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Paper 1, Section I
41  Automata & Formal Languages
(a) Define what it means for a grammar to be in Chomsky normal form.

(b) Suppose G is a grammar in Chomsky normal form. If w € £(G) has |w| = n,
what is the length of a G-derivation of w? [No justification is required.]

(c) Let ¥ = {a,b}, V = {S,A,B,C}. Consider the grammar G = (X,V, P, S)
in Chomsky normal form given by P = {S — AC,C — BA,A — AB,B — BA,
A — a,B — b}. Show that the word abbabba is in L£(G) by providing a G-parse tree
for it.

A grammar G is said to be in weak Chomsky normal form if all production rules are either
of the form A — a, A — BC, or A — BCD, for variables A, B,C, D and letters a.

(d) Give a grammar G’ in weak Chomsky normal form that is

(i) equivalent to the grammar G from part (c) and

(ii) there is a G'-derivation for the word abbabba of length strictly shorter than
the number given in part (b).

Justify your answer.

Paper 2, Section 1

41 Automata & Formal Languages
Let ¥ be an alphabet and W := ¥* be the set of words over .

(a) Define what it means for A C W to be computably enumerable.

[You do not need to define what it means for a partial function to be computable.]

(b) Prove that for @ # A C W the following statements are equivalent:

(i) the set A is computably enumerable;

(ii) the set A is the domain of a partial computable function;
(iii) the set A is the range of a partial computable function;
)

(iv) the set A is the range of a total computable function.

[You may assume that the truncated computation function is computable, and that
the map w +— ((w)o, (w)1) is a bijection from W to W? that can be performed by a register
machine.

Part 11, Paper 1 [TURN OVER]
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Paper 3, Section I
41  Automata & Formal Languages

(a) Let G = (X,V,P,S) be a formal grammar and let Q@ = ¥ U V. Define L(G).

[You do not need to define the binary relation S5 on O*.]
(b) Define what it means for two grammars to be equivalent.
(¢) Define what it means for two grammars to be isomorphic.

(d) Fix ¥ = {a,b,c} and consider the following pairs of grammars with start symbol S
and given by their respective sets of productions Py and Pj; for each pair, determine
whether they are equivalent or non-equivalent. Justify your answers.

(i) Py={S — Aa, S — Sb, A — Ab, A — a, B — Aa, B — b},
P ={S— Sb, C— Da, C —-b, D— Db, D—a, S— Da}.

(i) Pp={S —» AB, A— Aa, A—a, B— Bb, B—b, AB — c},
P ={S— Xaby, X - Xa, X -a, Y —>Yb Y =0 XY — c}.

(ii) Py ={S — aAa, A — bAb, A — b},
Pr={S—aYa,Y > ZZ, Z —aZa, Z - bZY, Z -YZ Y = bYb, Y — b}.

[You may assume that isomorphic grammars are equivalent.]

Paper 4, Section I
41  Automata & Formal Languages

(i) Define what it means for a grammar to be regular.

(ii) Let G = (X,V, P, S) be a regular grammar and = X UV. Prove that if & € Q" and
S «, then there are w € W and A € V such that « = wA or a = w.

(iii) Let G = (3, V, P,S) be a regular grammar, A, B € V, and w,v € W. Prove that if
wA vB, then there is some word © € W such that A . uB.

If G =(X,V,P,S) is a regular grammar and A is a variable, we call A accessible in G if
there is a word w; € ¥* such that S <, w1 A; we call A looping in G if there is a word
wo € X* such that A i wo A; we call A terminable in G if there is a word w3 € X* such
that A -< w3.

(iv) Let G be a regular grammar. Prove that if £(G) is infinite then there is a variable
that is accessible, looping, and terminable in G.

Part II, Paper 1
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Paper 1, Section II

121 Automata & Formal Languages
Let ¥ be an alphabet, W the set of words over ¥, A, B C W, and C any set of
subsets of W.

(i) Define what A <,, B means.

(ii) Define what it means for a set A to be C-complete.

)
)
(iii) Define what it means for A to be in 3.
(iv) Define the halting problem K.

)

(v) Prove that the halting problem K is 3;-complete.

A set P C W is in Ils if and only if there is a computable partial function f : WxW --» W
such that for all w € W, we have that w € P if and only if for all v € W, f(w,v){.

(vi) We define Tot C W to be the set {v; W, = W}. Show that Tot is IIo-complete.

[In this entire question, you are allowed to wuse the fact that truncated computation
functions are computable, provided that you give a precise and correct definition of the
function used. You may use the partial function f,,1 without providing a definition.]

Part 11, Paper 1 [TURN OVER]
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Paper 3, Section II
121 Automata & Formal Languages

Let ¥ be an alphabet and W the set of words over 3. Let D = (3, Q, J, qo, F') be a
deterministic automaton.

(i) Define £(D), the set of words accepted by the automaton D, precisely defining all
auxiliary functions needed for your definition.

(ii) State the pumping lemma for the language L£(D). Specify the pumping number
precisely in terms of D.

[No proof is required.]
(iii) Let ¥ = {a,b}. Consider the regular language
L := {wd"; w € ¥* with |w| < 10 and &k > 0}.

Show that the minimal deterministic automaton for L has at least ten states.

Let A C W. Define an equivalence relation on W by

v~ w: <= for all u, we have vu € A if and only if wu € A.

(iv) Let A € W\{e}. Show that A is a regular language if and only if the relation ~4
has finitely many equivalence classes.

Part II, Paper 1
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Paper 1, Section I
41 Automata and Formal Languages

What are the nth register machine P, and the nth recursively enumerable set W, 7
Given subsets A, B C N, define a many-one reduction A <,, B of A to B.
State Rice’s theorem.

Is there a total algorithm that, on input n in register 1 and m in register 2, terminates
with 0 if W,,, = W,, and 1 if W,,, # W,,? Is there a partial algorithm that, with the same
inputs as above, terminates with 0 if W,,, = W,, and never halts if W,,, # W,,7 Justify
your answers.

[You may assume without proof that the halting set K is not recursive.]

Paper 2, Section I
41  Automata and Formal Languages

State and prove the pumping lemma for regular languages.

Are the following languages over the alphabet ¥ = {0,1} regular? Justify your
answers.

(i) {0™1|n >0}
(ii) {0"1"" |n > 0}.

(iii) The set of all words in ¥* containing the same number of Os and 1s.

Paper 3, Section I
4  Automata and Formal Languages

Define a context-free grammar (CFG) and a contezt-free language (CFL).
State the pumping lemma for CFLs.

Which of the following languages over the alphabet {a, b, c} are CFLs? Justify your
answers.

(i) {a"b*c"|n > 0}.

(ii) {a™v*c|n,i > 0}.

Part II, Paper 1
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Paper 4, Section 1
41 Automata and Formal Languages

Define what it means for a context-free grammar (CFG) to be in Chomsky normal
form.

What are an e—production and a unit production?

Let GG; be the CFG

S — elaTa|bTa
T — Tal|Tb|c

and let G5 be the CFG

S — XZ|YZ
T — TX|TY|c
X = a,Y—=>b 7Z->TX.

What is the relationship between the language of G; and the language of G2?7 Justify your
answer carefully.

Paper 1, Section II
12I Automata and Formal Languages

Give the definition of a primitive recursive function f : N¥ — N,

Show directly from the definition that, when k = 2, the functions
P(m,n) =m+mn and T(m,n) = mn

are both primitive recursive.

Show further that for k& > 2 the function

Tk(nl,...,W/k):nl"‘nk

n

is primitive recursive, as is E, : N — N given by Ey(n) = a", where a > 1 is a fixed

integer.

Suppose F : N¥ — N¥ where F = (fo,..., fv_1) with each coordinate function

fi primitive recursive. Describe how F' can be encoded as a primitive recursive function
F:N—N.

Let the Fibonacci function B : N — N be defined by B(0) = 0,B(1) = 1 and
B(n+2)=B(n+ 1)+ B(n) for n > 0. Is B primitive recursive? Justify your answer.

If f: N — N is a primitive recursive function, must there exist some R > 0 such
that f(n) < R™ for all n > 17 Justify your answer.

[You may use without proof that for fized j > 2 the mazpower function M; is
primitive recursive, where Mj(n) is the exponent of the highest power of j that divides
n. If you use any other results from the course, you should prove them.]

Part 11, Paper 1 [TURN OVER]
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Paper 3, Section II
12I Automata and Formal Languages

Let D = (Q, X%, 9, qo, F') be a deterministic finite-state automaton (DFA).

What does it mean to say that g € Q) is an accessible state? What does it mean to
say that p,q € @) are equivalent states?

Explain the construction of the minimal DFA D/~ and show that the languages of
D and of D/~ are the same. Show also that no two distinct states of D/~ are equivalent.

Now let ¥ be the single-letter alphabet {1}. Suppose that D is a DFA with no
inaccessible states and exactly one accept state. Justifying your answer, describe the
corresponding minimal DFA D/~ in the form of a transition diagram or otherwise.
[Remember that you need only consider accessible states.]

Part II, Paper 1
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Paper 1, Section I
4F Automata and Formal Languages

Let f,, 1 be the partial function on k variables that is computed by the nth machine
(or the empty function if n does not encode a machine).

Define the halting set K.
Given A, B C N, what is a many—one reduction A <., B of A to B?

State the s —m — n theorem and use it to show that a subset X of N is recursively
enumerable if and only if X <, K.

Give an example of a set S C N with K <;;, S but K #£ §.

[You may assume that K is recursively enumerable and that 0 ¢ K.]

Paper 2, Section I
4F Automata and Formal Languages

Assuming the definition of a deterministic finite-state automaton (DFA) D =
(Q,%,0,q0, F), what is the extended transition function § for D? Also assuming the
definition of a nondeterministic finite-state automaton (NFA) N, what is § in this case?

Define the languages accepted by D and N, respectively, in terms of 5.

Given an NFA N as above, describe the subset construction and show that the
resulting DFA N accepts the same language as N. If N has one accept state then how
many does N have?

Paper 3, Section 1
4F Automata and Formal Languages
Define a regular expression R and explain how this gives rise to a language L(R).

Define a deterministic finite-state automaton D and the language L£(D) that it
accepts.

State the relationship between languages obtained from regular expressions and
languages accepted by deterministic finite-state automata.

Let L and M be regular languages. Is L U M always regular? What about L N M?

Now suppose that Lj, Lo, ... are regular languages. Is the countable union J L;
always regular? What about the countable intersection (] L;?

Part II, 2021 List of Questions [TURN OVER]
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Paper 4, Section I
4F Automata and Formal Languages
State the pumping lemma for regular languages.

Which of the following languages over the alphabet {0,1} are regular?
(i) {0f1%01|i > 0}.
(i) {ww|w € {0,1}*} where W is the reverse of the word w.

(iii) {w € {0,1}*|w does not contain the subwords 01 or 10}.

Paper 1, Section II
12F Awutomata and Formal Languages

For k > 1 give the definition of a partial recursive function f : N¥ — N in terms of
basic functions, composition, recursion and minimisation.

Show that the following partial functions from N to N are partial recursive:

sm={g 27

{ 1 n odd

0 n even,

undefined if n is odd
01if n is even.

i) ) = {

Which of these can be defined without using minimisation?

What is the class of functions f : N¥ — N that can be defined using only basic
functions and composition? [Hint: See which functions you can obtain and then show that
these form a class that is closed with respect to the above.]

Show directly that every function in this class is computable.

Part 11, 2021 List of Questions
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Paper 3, Section II
12F Automata and Formal Languages

Suppose that G is a context-free grammar without e-productions. Given a derivation
of some word w in the language L of G, describe a parse tree for this derivation.

State and prove the pumping lemma for L. How would your proof differ if you did
not assume that G was in Chomsky normal form, but merely that G has no e- or unit
productions?

For the alphabet ¥ = {a,b} of terminal symbols, state whether the following
languages over Y are context free, giving reasons for your answer.

(i) {a’bia’|i > 0},
(i) {a't’|i>j >0},
(iii) {wabw|w € {a,b}* }.

Part II, 2021 List of Questions [TURN OVER]
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Paper 1, Section I

4F Automata and Formal Languages
Define an alphabet 32, a word over 3 and a language over .

What is a regular expression R and how does this give rise to a language L(R)?

Given any alphabet 3, show that there exist languages L over ¥ which are not equal
to L(R) for any regular expression R. [You are not required to exhibit a specific L.]

Paper 2, Section I
4F Automata and Formal Languages

Assuming the definition of a partial recursive function from N to N, what is a
recursive subset of N7 What is a recursively enumerable subset of N?

Show that a subset E C N is recursive if and only if £ and N\ E are recursively
enumerable.

Are the following subsets of N recursive?

(i) K:={n|n codes a program and f, 1(n) halts at some stage}.

(ii) Kjpo := {n|n codes a program and f, 1(n) halts within 100 steps}.

Paper 3, Section I

4F Automata and Formal Languages
Define a context-free grammar G, a sentence of G and the language L(G) generated
by G.

For the alphabet ¥ = {a, b}, which of the following languages over ¥ are context-
free?

(i) {a®™b*™ | m > 0},
(i) {a™*b™" | m > 0}.

[You may assume standard results without proof if clearly stated.]

Part 11, 2020 List of Questions
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Paper 4, Section 1

4F Automata and Formal Languages
Define what it means for a context-free grammar (CFG) to be in Chomsky normal
form (CNF).

Describe without proof each stage in the process of converting a CFG G =
(N,%, P, S) into an equivalent CFG G which is in CNF. For each of these stages, when
are the nonterminals N left unchanged? What about the terminals > and the generated
language L£(G)?

Give an example of a CFG G whose generated language £(G) is infinite and equal
to L(G).

Paper 1, Section II
12F Automata and Formal Languages

(a) Define a register machine, a sequence of instructions for a register machine and
a partial computable function. How do we encode a register machine?

(b) What is a partial recursive function? Show that a partial computable function
is partial recursive. [You may assume that for a given machine with a given number of
inputs, the function outputting its state in terms of the inputs and the time ¢ is recursive.]

(c) (i) Let g : N — N be the partial function defined as follows: if n codes a register
machine and the ensuing partial function f,; is defined at n, set g(n) = f,1(n) + 1.
Otherwise set g(n) = 0. Is g a partial computable function?

(ii) Let A : N — N be the partial function defined as follows: if n codes a register
machine and the ensuing partial function f,; is defined at n, set h(n) = fu1(n) + 1.
Otherwise, set h(n) = 0 if n is odd and let h(n) be undefined if n is even. Is h a partial
computable function?

Paper 3, Section 11

12F Automata and Formal Languages
Give the definition of a deterministic finite state automaton and of a regular
language.

State and prove the pumping lemma for regular languages.

Let S ={2"|n=0,1,2,...} be the subset of N consisting of the powers of 2.
If we write the elements of S in base 2 (with no preceding zeros), is S a regular language
over {0,1}?

Now suppose we write the elements of S in base 10 (again with no preceding zeros).
Show that S is not a regular language over {0,1,2,3,4,5,6,7,8,9}. [Hint: Give a proof
by contradiction; use the above lemma to obtain a sequence ay,as, ... of powers of 2, then
consider a; 1 — 10%; fori=1,2,3,... and a suitable fized d.]

Part II, 2020 List of Questions [TURN OVER]
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Paper 1, Section 1
4H Automata and Formal Languages
(a) State the pumping lemma for context-free languages (CFLs).

(b) Which of the following are CFLs? Justify your answers.

(i) {ww® | w € {a,b}*}, where w¥ is the reverse of the word w.
(ii) {OP1? | p is a prime}.

(iii) {a™b"c*d' | 3m = 41 and 2n = 5k}.

(¢) Let L and M be CFLs. Show that the concatenation LM is also a CFL.

Paper 4, Section 1
4H Automata and Formal Languages
(a) Which of the following are regular languages? Justify your answers.

(i) {w" | w € {a,b}*, n > 2}.
(ii) {w € {a,b,c}* | w contains an odd number of b’s and an even number of ¢’s}.
(iii) {w €{0,1}* | w contains no more than 7 consecutive 0’s}.
(b) Consider the language L over alphabet {a,b} defined via
L :={wab" | w € {a,b}*, n e K}uU{b}*.

Show that L satisfies the pumping lemma for regular languages but is not a regular
language itself.

Part II, 2019 List of Questions [TURN OVER
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Paper 3, Section 1
4H Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in Chomsky
normal form (CNF). Can a CFG in CNF ever define a language containing €? If Gcpom
denotes the result of converting an arbitrary CFG G into one in CNF, state the relationship
between £(G) and L(Gchom)-

(b) Let G be a CFG in CNF. Give an algorithm that, on input of any word v on
the terminals of G, decides if v € L(G) or not. Explain why your algorithm works.

(¢) Convert the following CFG G into a grammar in CNF:
S — Sbb|aS|T

T — cc

Does L(G) = L(Gchom) in this case? Justify your answer.

Paper 2, Section I
4H Automata and Formal Languages

(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that E C Ny
is recursive if and only if both E and Ny \ E are r.e. sets.

(b) Let E = {fnr(mi,...,myg) | (m1,...,mg) € N5} for some fixed k > 1 and some
fixed register machine code n. Show that £ = {m € Ny | f;1(m) |} for some fixed register
machine code j. Hence show that F is an r.e. set.

(c) Show that the function f : Ng — Ny defined below is primitive recursive.

f(n):{ n—1 ifn>0

0 if n=0.

[Any use of Church’s thesis in your answers should be explicitly stated. In this question
Ny denotes the set of non-negative integers.|

Part II, 2019 List of Questions
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Paper 1, Section II
12H Automata and Formal Languages

Let D = (Q,X%,9,q0,F) be a deterministic finite-state automaton (DFA). Define
what it means for two states of D to be equivalent. Define the minimal DFA D/ ~ for D.

Let D be a DFA with no inaccessible states, and suppose that A is another DFA on
the same alphabet as D and for which £(D) = L(A). Show that A has at least as many
states as D/ ~. [You may use results from the course as long as you state them clearly.]

Construct a minimal DFA (that is, one with the smallest possible number of states)
over the alphabet {0,1} which accepts precisely the set of binary numbers which are
multiples of 7. You may have leading zeros in your inputs (e.g.: 00101). Prove that your
DFA is minimal by finding a distinguishing word for each pair of states.

Paper 3, Section II
12H Automata and Formal Languages
(a) State the s-m-n theorem and the recursion theorem.

(b) State and prove Rice’s theorem.

(¢) Show that if g : Ng — Ny is partial recursive, then there is some e € Ny such
that

fea(y) = g(e,;y) Vy € No.
(d) Show there exists some m € Ny such that W), has exactly m? elements.

(e) Given n € Ny, is it possible to compute whether or not the number of elements
of W, is a (finite) perfect square? Justify your answer.

[In this question Ny denotes the set of non-negative integers. Any use of Church’s thesis
in your answers should be explicitly stated.]

Part II, 2019 List of Questions [TURN OVER
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Paper 4, Section 1

4G Automata and Formal Languages

(a) State the s-m-n theorem, the recursion theorem, and Rice’s theorem.

(b) Show that if g : N> — N is partial recursive, then there is some e € N such that
fea(y) =gle;y) VyeN.

(c) By considering the partial function g : N> — N given by
0 ify<ez
g(@,y) = { 1 otherwise,
show there exists some m € N such that W, has exactly m elements.

(d) Given n € N, is it possible to compute whether or not W,, has exactly 9 elements?
Justify your answer.

[Note that we define N = {0,1,...}. Any use of Church’s thesis in your answers
should be explicitly stated.]

Paper 3, Section 1
4G Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in Chomsky
normal form (CNF).

(b) Give an algorithm for converting a CFG G into a corresponding CFG Gcpom in
CNF satistying £(Gchom) = L£(G) — {€}. [You need only outline the steps, without proof.]
(c) Convert the following CFG G-
S—ASc|B, A—a, B—b ,

into a grammar in CNF.

Part II, 2018 List of Questions [TURN OVER
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Paper 2, Section 1
4G Automata and Formal Languages

(a) Let £ = (Qp,%,0r,q0, Fr) be a nondeterministic finite-state automaton with
e-transitions  (e-NFA). Define the deterministic finite-state automaton (DFA)
D = (Qp,%,0p,qp,Fp) obtained from F via the subset construction with
e-transitions.

(b) Let E and D be as above. By inducting on lengths of words, prove that
65(q0, w) = dp(qp,w) for all w € X*.

(c) Deduce that L(D) = L(E).

Paper 1, Section 1
4G Automata and Formal Languages
(a) State the pumping lemma for context-free languages (CFLs).

(b) Which of the following are CFLs? Justify your answers.

(i) {ww | w € {a,b,c}*}
(ii) {amb"ckd' | 3m = 4n and 2k = 51}
(iii) {a®" | n > 0}

(c) Let L be a CFL. Show that L* is also a CFL.

Paper 3, Section II
12G Automata and Formal Languages
(a) State and prove the pumping lemma for regular languages.

(b) Let D be a minimal deterministic finite-state automaton whose language £(D)
is finite. Let I'p be the transition diagram of D, and suppose there exists a non-empty
closed path « in I'p starting and ending at state p.

(i) Show that there is no path in I'p from p to any accept state of D.

(ii) Show that there is no path in I'p from p to any other state of D.

Part II, 2018 List of Questions
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Paper 1, Section II
12G Automata and Formal Languages

(a) Define the halting set K. Prove that K is recursively enumerable, but not
recursive.

(b) Given A, B C N, define a many-one reduction of A to B. Show that if B is
recursively enumerable and A <,, B, then A is also recursively enumerable.

(c) Show that each of the functions f(n) = 2n and g(n) = 2n + 1 are both partial
recursive and total, by building them up as partial recursive functions.

(d) Let X,Y C N. We define the set X @Y via
XoY ={2z|zeX}U{2y+1|yeY}

(i) Show that both X <,, X @Y andY <,,, X @Y.

(ii) Using the above, or otherwise, give an explicit example of a subset C' of N
for which neither C' nor N\ C' are recursively enumerable.

(iii) For every Z C N, show that if X <,,, Z and Y <, Z then X @Y <,,, Z.

[Note that we define N = {0,1,...}. Any use of Church’s thesis in your answers
should be explicitly stated.]

Part II, 2018 List of Questions [TURN OVER
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Paper 1, Section 1
4H Automata and Formal Languages
(a) Prove that every regular language is also a context-free language (CFL).

(b) Show that, for any fixed n > 0, the set of regular expressions over the alphabet
{a1,...,a,} is a CFL, but not a regular language.

Paper 2, Section I
4H Automata and Formal Languages

(a) Give explicit examples, with justification, of a language over some finite alphabet
> which is:

(i) context-free, but not regular;

(ii) recursive, but not context-free.

(b) Give explicit examples, with justification, of a subset of N which is:

(i) recursively enumerable, but not recursive;

(ii) neither recursively enumerable, nor having recursively enumerable comple-
ment in N.

Paper 3, Section 1
4H Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in Chomsky normal
form (CNF). Give an example, with justification, of a context-free language (CFL)
which is not defined by any CFG in CNF.

(b) Show that the intersection of two CFLs need not be a CFL.

(c) Let L be a CFL over an alphabet 3. Show that ¥* \ L need not be a CFL.

Part II, 2017 List of Questions



2017

BB UNIVERSITY OF
¥¥ CAMBRIDGE 19

Paper 4, Section 1
4H Automata and Formal Languages

(a) Describe the process for converting a deterministic finite-state automaton D into
a regular expression R defining the same language, £(D) = L(R). [You need only
outline the steps, without proof, but you should clearly define all terminology you
introduce.|

(b) Consider the language L over the alphabet {0,1} defined via
L :={w0l" | we {0,1}*,n e K} U{1}".

Show that L satisfies the pumping lemma for regular languages but is not a regular
language itself.

Paper 1, Section II
11H Automata and Formal Languages

(a) Give an encoding to integers of all deterministic finite-state automata (DFAs). [Here
the alphabet of each such DFA is always taken from the set {0,1,...}, and the states
for each such DFA are always taken from the set {qo, q1,...}.]

(b) Show that the set of codes for which the corresponding DFA D,, accepts a finite
language is recursive. Moreover, if the language £(D,,) is finite, show that we can
compute its size | £(D,,)| from n.
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Paper 3, Section II
11H Automata and formal languages

(a) Given A,B C N, define a many-one reduction of A to B. Show that if B is
recursively enumerable (r.e.) and A <,,, B then A is also recursively enumerable.

(b) State the s-m-n theorem, and use it to prove that a set X C N is r.e. if and only if
X <, K.

(c) Consider the sets of integers P,Q C N defined via

P :={n € N | n codes a program and W, is finite}

Q@ :={n € N | n codes a program and W, is recursive}.

Show that P <,, Q.
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Paper 4, Section 1
4F Automata and Formal Languages

(a) Construct a register machine to compute the function f(m,n):=m + n. State
the relationship between partial recursive functions and partial computable functions.
Show that the function g(m,n) := mn is partial recursive.

(b) State Rice’s theorem. Show that the set A :={n € N | |W,,| > 7} is recursively
enumerable but not recursive.

Paper 3, Section I
4F Automata and Formal Languages

(a) Define what it means for a context-free grammar (CFG) to be in Chomsky
normal form (CNF). Can a CFG in CNF ever define a language containing €? If Gchom
denotes the result of converting an arbitrary CFG G into one in CNF, state the relationship
between L£(G) and L(Gchom)-

(b) Let G be a CFG in CNF, and let w € L(G) be a word of length |w| = n > 0.
Show that every derivation of w in G requires precisely 2n — 1 steps. Using this, give an
algorithm that, on input of any word v on the terminals of G, decides if v € L(G) or not.

(c) Convert the following CFG G into a grammar in CNF:
S — aSb|SS |e.

Does L£(G) = L(Gchom) in this case? Justify your answer.

Paper 2, Section 1
4F Automata and Formal Languages
(a) Which of the following are regular languages? Justify your answers.

(i) {w € {a,b}* | wis a nonempty string of alternating a’s and b’s}.
(ii) {wabw | w € {a,b}*}.

(b) Write down a nondeterministic finite-state automaton with e-transitions which
accepts the language given by the regular expression (a+b)*(bb+a)b. Describe in words
what this language is.

(c) Is the following language regular? Justify your answer.

{w € {a,b}* | w does not end in ab or bbb}.
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Paper 1, Section 1
4F Automata and Formal Languages

State the pumping lemma for context-free languages (CFLs). Which of the following
are CFLs? Justify your answers.

(i) {a®b*" | n > 3}.
(ii) {a?"b3"c™™ | n > 0}.
(iii) {a? | p is a prime}.

Let L, M be CFLs. Show that L U M is also a CFL.

Paper 3, Section II
11F Automata and Formal Languages

(a) Let D = (Q,%,6,q0, F) be a deterministic finite-state automaton. Define the
extended transition function 6 : Q x ¥* — @, and the language accepted by D, denoted
L(D). Let u,v € ¥*, and p € Q. Prove that d(p, uv) = d(d(p, u),v).

(b) Let 01,09,...,0r € X where k > |Q], and let p € Q.

(i) Show that there exist 0 < i < j < k such that §(p, o1 - 0;) = 6(p, o1 -+ - aj),
where we interpret oq---0; as € if i = 0.

(ii) Show that &(p, oy --- Oi0jq1 O) = S(p,o1--- o).
(iii) Show that 5(}9, g1 -*" Ui(Ui-i-l v Jj)tdj_H v Uk) = 5(}),01 N ~Uk) for all ¢ 2 1.

(c) Prove the following version of the pumping lemma. Suppose w € L(D), with
|w| > |Q|. Then w can be broken up into three words w = xyz such that y # e, |zy| < |Q),
and for all ¢ > 0, the word zy'z is also in £(D).

(d) Hence show that

(i) if £(D) contains a word of length at least |@|, then it contains infinitely
many words;

(ii) if £(D) # 0, then it contains a word of length less than |Q)|;

(iii) if £(D) contains all words in ¥* of length less than |Q|, then £(D) = ¥*.
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Paper 1, Section II
11F Automata and Formal Languages

(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that £ C N
is recursive if and only if both £ and N\ E are r.e.

(b) Define the halting set K. Prove that K is r.e. but not recursive.

(c) Let Ey, Eo, ..., E, be r.e. sets. Prove that |J;_, E; and (), E; are r.e. Show
by an example that the union of infinitely many r.e. sets need not be r.e.

(d) Let E be a recursive set and f: N — N a (total) recursive function. Prove that
the set {f(n) | n € E} is r.e. Is it necessarily recursive? Justify your answer.

[Any use of Church’s thesis in your answer should be explicitly stated.]
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