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Paper 2, Section II

32E Asymptotic Methods
(a) Let φn(x) > 0, for n = 0, 1, 2, . . . , be a sequence of real functions defined on

{x ∈ R : 0 < |x− x0| < a} which is an asymptotic sequence as x→ x0.

(i) Let ψ0(x) = φ0(x) and

ψn(x) =
φn−1(x)φn(x)

φn−1(x) + φn(x)
, n = 1, 2, 3, . . .

Show that (ψn(x))∞n=0 is an asymptotic sequence as x→ x0 .

Is it true that φn(x) ∼ ψn(x) as x → x0 for every n = 0, 1, 2, . . . ? You
should either give a proof or a counterexample.

(ii) Let χ0(x) = φ0(x) and

χn(x) =
√
φn−1(x)φn(x) , n = 1, 2, 3, . . .

Show that (χn(x))∞n=0 is an asymptotic sequence as x→ x0 .

Is it true that φn(x) ∼ χn(x) as x → x0 for every n = 0, 1, 2, . . . ? You
should either give a proof or a counterexample.

(b) Let (φn(x))∞n=0 and (ψn(x))∞n=0 be two sequences of real functions defined on
{x ∈ R : 0 < |x− x0| < a} which are asymptotic sequences as x→ x0. Suppose that

φn(x) ∼ ψn(x) as x→ x0 ,

for n = 0, 1, 2, . . . , and that for some sequence of real numbers (an)∞n=0 we have

f(x) ∼
∞∑

n=0

anφn(x) as x→ x0 .

Does there necessarily exist a sequence of real numbers (bn)∞n=0 such that

f(x) ∼
∞∑

n=0

bnψn(x) as x→ x0 ?

You should either give a proof or a counterexample.

Part II, Paper 1

2023
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Paper 3, Section II

30E Asymptotic Methods
A stationary Schrödinger equation in one dimension has the form

ε2
d2ψ

dx2
= −(E − V (x))ψ , for x ∈ R , (∗)

where ε > 0 is assumed to be very small and the potential V (x) is given by

V (x) =

{
1
4 |x| for |x| 6 4√
|x| − 1 for |x| > 4

.

The connection formula for the approximate energies E of bound states ψ in (∗) is

1

ε

∫ b

a
(E − V (x))1/2 dx = (n+

1

2
)π . (∗∗)

(a) State the appropriate values of a, b and n.

(b) For E > 0 define

f(E) =

∫ b

a
(E − V (x))1/2 dx,

with a, b as in (a). Find and sketch f , and deduce that for each n and ε, (∗∗) has a unique
solution E = En.

(c) Show that for n fixed and ε sufficiently small, En can be determined explicitly
and give an expression for it.

(d) Show that as n→∞ with ε fixed, En satisfies

En ∼ cnα ,

and determine the values of c and α .

Paper 4, Section II

31E Asymptotic Methods
Justifying your steps carefully, use the method of steepest descent to find the first

term in the asymptotic approximation of the function:

I(x) =

∫

C

1

z2 + 16
ex cosh z dz , as x→ ∞ ,

where x ∈ R and the integral is over the contour

C = {z ∈ C : z = p+ iq , q = 2 arctan p , p ∈ R},

taken in the direction of increasing p.

Part II, Paper 1 [TURN OVER]

2023
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Paper 2, Section II
32E Asymptotic Methods

(a) Let n = 1, 2, . . . . Which of the following sequences are asymptotic and why?

(i) φn(x) = ln(cos(xn)) as x→ 0 .

(ii) ψn(x) = n1/x as x→∞ .

(iii) χn(x) = sin(xn) as x→∞ .

(b) Let φn(x) and ψn(x), for n = 0, 1, 2, . . . , be two sequences of real positive
functions defined on {x ∈ R : 0 < |x − x0| < 1} which are asymptotic sequences as
x→ x0.

For n = 0, 1, 2, . . . , show that the sequence

χn(x) =
n∑

k=0

φk(x)ψn−k(x) ,

is an asymptotic sequence as x→ x0 .

Paper 3, Section II
30E Asymptotic Methods

(a) Derive the leading order term of the asymptotic expansion, as x → ∞, for the
integral

I(x) =

∫ 2

0
ln t ex(t

3−2t2+t) dt .

Justify your steps.

(b) The derivative of the Gamma function has the following integral representation

Γ′(z) =

∫ ∞

0

ln t

t
ez ln t−t dt for Re z > 0.

In what follows we assume z ∈ R and z > 0.

(i) Justify briefly why the integral converges. Explain why Laplace’s method
cannot be used directly to find the leading order behaviour of Γ′(z) as
z →∞.

(ii) Now perform the change of variables t = zs, then apply Laplace’s method
to show that

Γ′(z) ∼
√
a

z
ez ln z−z ln z as z →∞ ,

for a real number a, which you should determine.

Part II, Paper 1

2022
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Paper 4, Section II
31E Asymptotic Methods

Consider the differential equation

x2y′′ + xy′ − 1

x2
y = 0 . (∗)

(i) What type of regular or singular point does equation (∗) have at x = 0?

(ii) For x > 0, find a transformation that maps equation (∗) to an equation of
the form

u′′ + q(x)u = 0 (†)
and compute q(x) .

(iii) Determine the leading asymptotic behaviour of the solution u of equation
(†), as x → 0+ , using the Liouville-Green method and justifying your
assumptions at each stage.

(iv) Conclude from the above an asymptotic expansion of two linearly inde-
pendent solutions of equation (∗), as x→ 0+ .

Part II, Paper 1 [TURN OVER]

2022
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Paper 2, Section II

32A Asymptotic Methods
(a) Let x(t) and φn(t), for n = 0, 1, 2, . . . , be real-valued functions on R.

(i) Define what it means for the sequence
{
φn(t)

}∞
n=0

to be an asymptotic
sequence as t→∞ .

(ii) Define what it means for x(t) to have the asymptotic expansion

x(t) ∼
∞∑

n=0

anφn(t) as t→∞ .

(b) Use the method of stationary phase to calculate the leading-order asymptotic
approximation as x→∞ of

I(x) =

∫ 1

0
sin
(
x(2t4 − t2)

)
dt .

[You may assume that

∫ ∞

−∞
eiu

2
du =

√
π eiπ/4.]

(c) Use Laplace’s method to calculate the leading-order asymptotic approximation
as x→∞ of

J(x) =

∫ 1

0
sinh

(
x(2t4 − t2)

)
dt .

[In parts (b) and (c) you should include brief qualitative reasons for the origin of
the leading-order contributions, but you do not need to give a formal justification.]

Paper 3, Section II

30A Asymptotic Methods
(a) Carefully state Watson’s lemma.

(b) Use the method of steepest descent and Watson’s lemma to obtain an infinite
asymptotic expansion of the function

I(x) =

∫ ∞

−∞

e−x(z
2−2iz)

1− iz dz as x→∞ .

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 4, Section II

31A Asymptotic Methods
(a) Classify the nature of the point at ∞ for the ordinary differential equation

y′′ +
2

x
y′ +

(
1

x
− 1

x2

)
y = 0 . (∗)

(b) Find a transformation from (∗) to an equation of the form

u′′ + q(x)u = 0 , (†)

and determine q(x) .

(c) Given u(x) satisfies (†), use the Liouville–Green method to find the first three
terms in an asymptotic approximation as x → ∞ for u(x), verifying the consistency of
any approximations made.

(d) Hence obtain corresponding asymptotic approximations as x → ∞ of two
linearly independent solutions y(x) of (∗).

Part II, 2021 List of Questions

2021
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Paper 2, Section II

31D Asymptotic Methods
(a) Let δ > 0 and x0 ∈ R. Let {φn(x)}∞n=0 be a sequence of (real) functions that

are nonzero for all x with 0 < |x− x0| < δ, and let {an}∞n=0 be a sequence of nonzero real
numbers. For every N = 0, 1, 2, . . . , the function f(x) satisfies

f(x)−
N∑

n=0

anφn(x) = o(φN (x)) , as x→ x0.

(i) Show that φn+1(x) = o(φn(x)), for all n = 0, 1, 2, . . . ; i.e., {φn(x)}∞n=0 is an
asymptotic sequence.

(ii) Show that for any N = 0, 1, 2, . . . , the functions φ0(x), φ1(x), . . . , φN (x) are
linearly independent on their domain of definition.

(b) Let

I(ε) =

∫ ∞

0
(1 + εt)−2e−(1+ε)t dt , for ε > 0 .

(i) Find an asymptotic expansion (not necessarily a power series) of I(ε), as ε→ 0+.

(ii) Find the first four terms of the expansion of I(ε) into an asymptotic power series
of ε, that is, with error o(ε3) as ε→ 0+.

Paper 3, Section II

30D Asymptotic Methods
(a) Find the leading order term of the asymptotic expansion, as x → ∞, of the

integral

I(x) =

∫ 3π

0
e(t+x cos t) dt .

(b) Find the first two leading nonzero terms of the asymptotic expansion, as x→∞,
of the integral

J(x) =

∫ π

0
(1− cos t)e−x ln(1+t) dt .

Part II, 2020 List of Questions

2020
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Paper 4, Section II

31A Asymptotic Methods
Consider the differential equation

y′′ − y′ − 2(x+ 1)

x2
y = 0 . (†)

(i) Classify what type of regularity/singularity equation (†) has at x =∞.

(ii) Find a transformation that maps equation (†) to an equation of the form

u′′ + q(x)u = 0 . (∗)

(iii) Find the leading-order term of the asymptotic expansions of the solutions of
equation (∗), as x→∞, using the Liouville–Green method.

(iv) Derive the leading-order term of the asymptotic expansion of the solutions y of
(†). Check that one of them is an exact solution for (†).

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 4, Section II

30A Asymptotic Methods
Consider, for small ǫ, the equation

ǫ2
d2ψ

dx2
− q(x)ψ = 0. (∗)

Assume that (∗) has bounded solutions with two turning points a, b where b > a, q′(b) > 0
and q′(a) < 0.

(a) Use the WKB approximation to derive the relationship

1

ǫ

∫ b

a
|q(ξ)|1/2dξ =

(
n+

1

2

)
π with n = 0, 1, 2, · · · . (∗∗)

[You may quote without proof any standard results or formulae from WKB theory.]

(b) In suitable units, the radial Schrödinger equation for a spherically symmetric
potential given by V (r) = −V0/r, for constant V0, can be recast in the standard form (∗)
as:

~2

2m

d2ψ

dx2
+ e2x

[
λ− V (ex)− ~2

2m

(
l +

1

2

)2

e−2x

]
ψ = 0,

where r = ex and ǫ = ~/
√
2m is a small parameter.

Use result (∗∗) to show that the energies of the bound states (i.e λ = −|λ| < 0) are
approximated by the expression:

E = −|λ| = − m

2~2
V 2
0

(n+ l + 1)2
.

[You may use the result

∫ b

a

1

r

√
(r − a)(b− r) dr = (π/2)

[√
b−√

a
]2
. ]

Part II, 2019 List of Questions [TURN OVER

2019



18

Paper 3, Section II

30A Asymptotic Methods
(a) State Watson’s lemma for the case when all the functions and variables involved

are real, and use it to calculate the asymptotic approximation as x → ∞ for the integral
I, where

I =

∫ ∞

0
e−xt sin(t2) dt.

(b) The Bessel function Jν(z) of the first kind of order ν has integral representation

Jν(z) =
1

Γ(ν + 1
2)
√
π

(z
2

)ν ∫ 1

−1
eizt(1− t2)ν−1/2 dt ,

where Γ is the Gamma function, Re(ν) > 1/2 and z is in general a complex variable. The
complex version of Watson’s lemma is obtained by replacing x with the complex variable
z, and is valid for |z| → ∞ and |arg(z)| 6 π/2−δ < π/2, for some δ such that 0 < δ < π/2.
Use this version to derive an asymptotic expansion for Jν(z) as |z| → ∞ . For what values
of arg(z) is this approximation valid?

[Hint: You may find the substitution t = 2τ − 1 useful. ]

Paper 2, Section II

30A Asymptotic Methods
(a) Define formally what it means for a real valued function f(x) to have an

asymptotic expansion about x0, given by

f(x) ∼
∞∑

n=0

fn(x− x0)
n as x→ x0 .

Use this definition to prove the following properties.

(i) If both f(x) and g(x) have asymptotic expansions about x0, then
h(x) = f(x) + g(x) also has an asymptotic expansion about x0.

(ii) If f(x) has an asymptotic expansion about x0 and is integrable, then

∫ x

x0

f(ξ) dξ ∼
∞∑

n=0

fn
n+ 1

(x− x0)
n+1 as x→ x0 .

(b) Obtain, with justification, the first three terms in the asymptotic expansion as
x→ ∞ of the complementary error function, erfc(x), defined as

erfc(x) :=
1√
2π

∫ ∞

x
e−t

2
dt.

Part II, 2019 List of Questions

2019
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Paper 2, Section II

31B Asymptotic Methods
Given that

∫ +∞
−∞ e−u

2
du =

√
π obtain the value of limR→+∞

∫ +R
−R e−itu

2
du for real

positive t. Also obtain the value of limR→+∞
∫ R
0 e−itu

3
du, for real positive t, in terms of

Γ(43) =
∫ +∞
0 e−u

3
du.

For α > 0, x > 0, let

Qα(x) =
1

π

∫ π

0
cos
(
x sin θ − αθ

)
dθ .

Find the leading terms in the asymptotic expansions as x→ +∞ of (i) Qα(x) with α fixed,
and (ii) ofQx(x).

Paper 3, Section II

31B Asymptotic Methods
(a) Find the curves of steepest descent emanating from t = 0 for the integral

Jx(x) =
1

2πi

∫

C
ex(sinh t−t) dt ,

for x > 0 and determine the angles at which they meet at t = 0, and their asymptotes at
infinity.

(b) An integral representation for the Bessel function Kν(x) for real x > 0 is

Kν(x) =
1

2

∫ +∞

−∞
eνh(t) dt , h(t) = t −

(
x

ν

)
cosh t .

Show that, as ν → +∞ , with x fixed,

Kν(x) ∼
(
π

2ν

) 1
2
(
2ν

ex

)ν

.

Part II, 2018 List of Questions [TURN OVER

2018
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Paper 4, Section II

31B Asymptotic Methods
Show that

I0(x) =
1

π

∫ π

0
ex cos θ dθ

is a solution to the equation
xy′′ + y′ − xy = 0 ,

and obtain the first two terms in the asymptotic expansion of I0(x) as x→ +∞.

For x > 0, define a new dependent variable w(x) = x
1
2 y(x), and show that if y

solves the preceding equation then

w′′ +
(

1

4x2
− 1

)
w = 0 .

Obtain the Liouville–Green approximate solutions to this equation for large positive x,
and compare with your asymptotic expansion for I0(x) at the leading order.

Part II, 2018 List of Questions

2018
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Paper 2, Section II

29E Asymptotic Methods
Consider the function

fν(x) ≡
1

2π

∫

C
exp
[
−ix sin z + iνz

]
dz,

where the contour C is the boundary of the half-strip {z : −π < Re z < π and Im z > 0 },
taken anti-clockwise.

Use integration by parts and the method of stationary phase to:

(i) Obtain the leading term for fν(x) coming from the vertical lines z = ±π + iy (0 <
y < +∞) for large x > 0.

(ii) Show that the leading term in the asymptotic expansion of the function fν(x) for
large positive x is √

2

πx
cos
(
x− 1

2
νπ − π

4

)
,

and obtain an estimate for the remainder as O(x−a) for some a to be determined.

Paper 3, Section II

29E Asymptotic Methods
Consider the integral representation for the modified Bessel function

I0(x) =
1

2πi

∮

C
t−1 exp

[
ix

2

(
t− 1

t

)]
dt,

where C is a simple closed contour containing the origin, taken anti-clockwise.

Use the method of steepest descent to determine the full asymptotic expansion of
I0(x) for large real positive x .

Part II, 2017 List of Questions

2017
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Paper 4, Section II

30E Asymptotic Methods
Consider solutions to the equation

d2y

dx2
=

(
1

4
+
µ2 − 1

4

x2

)
y (⋆)

of the form
y(x) = exp

[
S0(x) + S1(x) + S2(x) + . . .

]
,

with the assumption that, for large positive x, the function Sj(x) is small compared to
Sj−1(x) for all j = 1, 2 . . .

Obtain equations for the Sj(x), j = 0, 1, 2 . . . , which are formally equivalent to (⋆).
Solve explicitly for S0 and S1. Show that it is consistent to assume that Sj(x) = cjx

−(j−1)

for some constants cj . Give a recursion relation for the cj .

Deduce that there exist two linearly independent solutions to (⋆) with asymptotic
expansions as x→ +∞ of the form

y±(x) ∼ e±x/2
(
1 +

∞∑

j=1

A±
j x

−j
)
.

Determine a recursion relation for the A±
j . ComputeA±

1 andA±
2 .

Part II, 2017 List of Questions [TURN OVER

2017
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Paper 3, Section II

28C Asymptotic Methods
Consider the integral

I(x) =

∫ 1

0

1√
t(1− t)

exp[ixf(t) ] dt

for real x > 0 , where f(t) = t2 + t. Find and sketch, in the complex t-plane, the paths of
steepest descent through the endpoints t = 0 and t = 1 and through any saddle point(s).
Obtain the leading order term in the asymptotic expansion of I(x) for large positive x.
What is the order of the next term in the expansion? Justify your answer.

Paper 2, Section II

29C Asymptotic Methods
What is meant by the asymptotic relation

f(z) ∼ g(z) as z → z0 , Arg (z − z0) ∈ (θ0, θ1) ?

Show that

sinh(z−1) ∼ 1

2
exp(z−1) as z → 0 , Arg z ∈ (−π/2, π/2) ,

and find the corresponding result in the sector Arg z ∈ (π/2, 3π/2).

What is meant by the asymptotic expansion

f(z) ∼
∞∑

j=0

cj(z − z0)
j as z → z0 , Arg (z − z0) ∈ (θ0, θ1) ?

Show that the coefficients {cj}∞j=0 are determined uniquely by f . Show that if f is analytic
at z0, then its Taylor series is an asymptotic expansion for f as z → z0 (for any Arg (z−z0)).

Show that

u(x, t) =

∫ ∞

−∞
exp(−ik2t+ ikx) f(k) dk

defines a solution of the equation i ∂tu + ∂2xu = 0 for any smooth and rapidly decreasing
function f . Use the method of stationary phase to calculate the leading-order behaviour
of u(λt, t) as t→ +∞, for fixed λ.

Part II, 2016 List of Questions

2016
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Paper 4, Section II

29C Asymptotic Methods
Consider the equation

ǫ2
d2y

dx2
= Q(x)y , (1)

where ǫ > 0 is a small parameter and Q(x) is smooth. Search for solutions of the form

y(x) = exp

[
1

ǫ

(
S0(x) + ǫS1(x) + ǫ2S2(x) + · · ·

)]
,

and, by equating powers of ǫ, obtain a collection of equations for the {Sj(x)}∞j=0 which is
formally equivalent to (1). By solving explicitly for S0 and S1 derive the Liouville–Green
approximate solutions yLG(x) to (1).

For the case Q(x) = −V (x), where V (x) > V0 and V0 is a positive constant, consider
the eigenvalue problem

d2y

dx2
+ E V (x)y = 0 , y(0) = y(π) = 0 . (2)

Show that any eigenvalue E is necessarily positive. Solve the eigenvalue problem exactly
when V (x) = V0.

Obtain Liouville–Green approximate eigenfunctions yLGn (x) for (2) with E ≫ 1, and
give the corresponding Liouville–Green approximation to the eigenvalues ELG

n . Compare
your results to the exact eigenvalues and eigenfunctions in the case V (x) = V0, and
comment on this.

Part II, 2016 List of Questions [TURN OVER

2016
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Paper 4, Section II

27C Asymptotic Methods

Consider the ordinary differential equation

d2u

dz2
+ f(z)

du

dz
+ g(z)u = 0 ,

where

f(z) ∼
∞∑

m=0

fm
zm

, g(z) ∼
∞∑

m=0

gm
zm

, z → ∞ ,

and fm, gm are constants. Look for solutions in the asymptotic form

u(z) = eλzzµ
[
1 +

a

z
+

b

z2
+O

(
1

z3

)]
, z → ∞ ,

and determine λ in terms of (f0, g0), as well as µ in terms of (λ, f0, f1, g1).

Deduce that the Bessel equation

d2u

dz2
+

1

z

du

dz
+

(
1− ν2

z2

)
u = 0 ,

where ν is a complex constant, has two solutions of the form

u(1)(z) =
eiz

z1/2

[
1 +

a(1)

z
+O

(
1

z2

)]
, z → ∞ ,

u(2)(z) =
e−iz

z1/2

[
1 +

a(2)

z
+O

(
1

z2

)]
, z → ∞ ,

and determine a(1) and a(2) in terms of ν.

Can the above asymptotic expansions be valid for all arg(z), or are they valid only
in certain domains of the complex z-plane? Justify your answer briefly.

Part II, 2015 List of Questions [TURN OVER

2015
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Paper 3, Section II

27C Asymptotic Methods

Show that ∫ 1

0
eikt

3
dt = I1 − I2 , k > 0 ,

where I1 is an integral from 0 to ∞ along the line arg(z) = π
6 and I2 is an integral from 1

to ∞ along a steepest-descent contour C which you should determine.

By employing in the integrals I1 and I2 the changes of variables u = −iz3 and
u = −i(z3 − 1), respectively, compute the first two terms of the large k asymptotic
expansion of the integral above.

Paper 1, Section II

27C Asymptotic Methods

(a) State the integral expression for the gamma function Γ(z), for Re(z) > 0, and
express the integral ∫ ∞

0
tγ−1 eit dt , 0 < γ < 1 ,

in terms of Γ(γ). Explain why the constraints on γ are necessary.

(b) Show that

∫ ∞

0

e−kt2

(t2 + t)
1
4

dt ∼
∞∑

m=0

am
kα+βm

, k → ∞ ,

for some constants am, α and β. Determine the constants α and β, and express am in
terms of the gamma function.

State without proof the basic result needed for the rigorous justification of the above
asymptotic formula.

[You may use the identity:

(1 + z)α =

∞∑

m=0

cmzm, cm =
Γ(α+ 1)

m! Γ(α + 1−m)
, |z| < 1 . ]

Part II, 2015 List of Questions

2015
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Paper 4, Section II

31C Asymptotic Methods
Derive the leading-order Liouville–Green (or WKBJ) solution for ǫ ≪ 1 to the

ordinary differential equation

ǫ2
d2f

dy2
+Φ(y)f = 0 ,

where Φ(y) > 0.

The function f(y; ǫ) satisfies the ordinary differential equation

ǫ2
d2f

dy2
+

(
1 +

1

y
− 2ǫ2

y2

)
f = 0 , (1)

subject to the boundary condition f ′′(0) = 2. Show that the Liouville–Green solution of
(1) for ǫ ≪ 1 takes the asymptotic forms

f ∼ α1y
1
4 exp(2i

√
y/ǫ) + α2y

1
4 exp(−2i

√
y/ǫ) for ǫ2 ≪ y ≪ 1

and f ∼ B cos
[
θ2 + (y + log

√
y)/ǫ

]
for y ≫ 1 ,

where α1, α2, B and θ2 are constants.
[
Hint : You may assume that

∫ y

0

√
1 + u−1 du =

√
y(1 + y) + sinh−1√y .

]

Explain, showing the relevant change of variables, why the leading-order asymptotic
behaviour for 0 6 y ≪ 1 can be obtained from the reduced equation

d2f

dx2
+

(
1

x
− 2

x2

)
f = 0 . (2)

The unique solution to (2) with f ′′(0) = 2 is f = x1/2J3(2x
1/2), where the Bessel function

J3(z) is known to have the asymptotic form

J3(z) ∼
(

2

πz

)1/2

cos

(
z − 7π

4

)
as z → ∞ .

Hence find the values of α1 and α2.
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Paper 3, Section II

31C Asymptotic Methods
(a) Find the Stokes ray for the function f(z) as z → 0 with 0 < arg z < π, where

f(z) = sinh(z−1).

(b) Describe how the leading-order asymptotic behaviour as x → ∞ of

I(x) =

∫ b

a
f(t)eixg(t)dt

may be found by the method of stationary phase, where f and g are real functions and
the integral is taken along the real line. You should consider the cases for which:

(i) g′(t) is non-zero in [a, b) and has a simple zero at t = b.

(ii) g′(t) is non-zero apart from having one simple zero at t = t0, where a < t0 < b.

(iii) g′(t) has more than one simple zero in (a, b) with g′(a) 6= 0 and g′(b) 6= 0.

Use the method of stationary phase to find the leading-order asymptotic form as
x → ∞ of

J(x) =

∫ 1

0
cos

(
x(t4 − t2)

)
dt.

[You may assume that

∫ ∞

−∞
eiu

2
du =

√
πeiπ/4.]
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Paper 1, Section II

31C Asymptotic Methods
(a) Consider the integral

I(k) =

∫ ∞

0
f(t)e−kt dt, k > 0.

Suppose that f(t) possesses an asymptotic expansion for t → 0+ of the form

f(t) ∼ tα
∞∑

n=0

ant
βn, α > −1, β > 0,

where an are constants. Derive an asymptotic expansion for I(k) as k → ∞ in the form

I(k) ∼
∞∑

n=0

An

kγ+βn
,

giving expressions for An and γ in terms of α, β, n and the gamma function. Hence
establish the asymptotic approximation as k → ∞

I1(k) =

∫ 1

0
ektt−a(1− t2)−bdt ∼ 2−bΓ(1− b)ekkb−1

(
1 +

(a+ b/2)(1 − b)

k

)
,

where a < 1, b < 1.

(b) Using Laplace’s method, or otherwise, find the leading-order asymptotic approx-
imation as k → ∞ for

I2(k) =

∫ ∞

0
e−(2k2/t+t2/k) dt .

[You may assume that Γ(z) =

∫ ∞

0
tz−1e−t dt for Re z > 0 ,

and that

∫ ∞

−∞
e−qt2dt =

√
π/q for q > 0 . ]
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Paper 4, Section II

31B Asymptotic Methods
Show that the equation

d2y

dx2
+

2

x

dy

dx
+

(
1

x2
− 1

)
y = 0

has an irregular singular point at infinity. Using the Liouville–Green method, show that
one solution has the asymptotic expansion

y(x) ∼ 1

x
ex

(
1 +

1

2x
+ . . .

)

as x → ∞.

Paper 3, Section II

31B Asymptotic Methods
Let

I(x) =

∫ π

0
f(t)eixψ(t)dt ,

where f(t) and ψ(t) are smooth, and ψ′(t) 6= 0 for t > 0; also f(0) 6= 0, ψ(0) = a,
ψ′(0) = ψ′′(0) = 0 and ψ′′′(0) = 6b > 0. Show that, as x→ +∞,

I(x) ∼ f(0)ei(xa+π/6)
(

1

27bx

)1/3

Γ (1/3) .

Consider the Bessel function

Jn(x) =
1

π

∫ π

0
cos(nt− x sin t) dt .

Show that, as n→ +∞,

Jn(n) ∼
Γ (1/3)

π

1

(48)1/6
1

n1/3
.
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Paper 1, Section II

31B Asymptotic Methods
Suppose α > 0. Define what it means to say that

F (x) ∼ 1

αx

∞∑

n=0

n!

(−1

αx

)n

is an asymptotic expansion of F (x) as x → ∞. Show that F (x) has no other asymptotic
expansion in inverse powers of x as x → ∞.

To estimate the value of F (x) for large x, one may use an optimal truncation of
the asymptotic expansion. Explain what is meant by this, and show that the error is an
exponentially small quantity in x.

Derive an integral respresentation for a function F (x) with the above asymptotic
expansion.
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Paper 4, Section II

31B Asymptotic Methods
The stationary Schrödinger equation in one dimension has the form

ǫ2
d2ψ

dx2
= −(E − V (x))ψ,

where ǫ can be assumed to be small. Using the Liouville–Green method, show that two
approximate solutions in a region where V (x) < E are

ψ(x) ∼ 1

(E − V (x))1/4
exp

{
± i

ǫ

∫ x

c
(E − V (x′))1/2dx′

}
,

where c is suitably chosen.

Without deriving connection formulae in detail, describe how one obtains the
condition

1

ǫ

∫ b

a
(E − V (x′))1/2 dx′ =

(
n+

1

2

)
π (∗)

for the approximate energies E of bound states in a smooth potential well. State the
appropriate values of a, b and n.

Estimate the range of n for which (∗) gives a good approximation to the true bound
state energies in the cases

(i) V (x) = |x|,

(ii) V (x) = x2 + λx6 with λ small and positive,

(iii) V (x) = x2 − λx6 with λ small and positive.

Paper 3, Section II

31B Asymptotic Methods
Find the two leading terms in the asymptotic expansion of the Laplace integral

I(x) =

∫ 1

0
f(t)ext

4
dt

as x → ∞, where f(t) is smooth and positive on [0, 1].
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Paper 1, Section II

31B Asymptotic Methods
What precisely is meant by the statement that

f(x) ∼
∞∑

n=0

dn x
n (∗)

as x → 0?

Consider the Stieltjes integral

I(x) =

∫ ∞

1

ρ(t)

1 + xt
dt ,

where ρ(t) is bounded and decays rapidly as t → ∞, and x > 0. Find an asymptotic series
for I(x) of the form (∗), as x → 0, and prove that it has the asymptotic property.

In the case that ρ(t) = e−t, show that the coefficients dn satisfy the recurrence
relation

dn = (−1)n
1

e
− n dn−1 (n > 1)

and that d0 =
1

e
. Hence find the first three terms in the asymptotic series.
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Paper 1, Section II

31A Asymptotic Methods
A function f(n), defined for positive integer n, has an asymptotic expansion for

large n of the following form:

f(n) ∼
∞∑

k=0

ak
1

n2k
, n → ∞ . (∗)

What precisely does this mean?

Show that the integral

I(n) =

∫ 2π

0

cosnt

1 + t2
dt

has an asymptotic expansion of the form (∗). [The Riemann–Lebesgue lemma may be
used without proof.] Evaluate the coefficients a0, a1 and a2.

Paper 3, Section II

31A Asymptotic Methods
Let

I0 =

∫

C0

exφ(z)dz ,

where φ(z) is a complex analytic function and C0 is a steepest descent contour from a
simple saddle point of φ(z) at z0. Establish the following leading asymptotic approxima-
tion, for large real x:

I0 ∼ i

√
π

2φ′′(z0)x
exφ(z0) .

Let n be a positive integer, and let

I =

∫

C
e−t2−2n ln t dt ,

where C is a contour in the upper half t-plane connecting t = −∞ to t = ∞, and ln t is
real on the positive t-axis with a branch cut along the negative t-axis. Using the method
of steepest descent, find the leading asymptotic approximation to I for large n.
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Paper 4, Section II

31A Asymptotic Methods
Determine the range of the integer n for which the equation

d2y

dz2
= zny

has an essential singularity at z = ∞.

Use the Liouville–Green method to find the leading asymptotic approximation to
two independent solutions of

d2y

dz2
= z3y ,

for large |z|. Find the Stokes lines for these approximate solutions. For what range of
arg z is the approximate solution which decays exponentially along the positive z-axis an
asymptotic approximation to an exact solution with this exponential decay?
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Paper 1, Section II

31C Asymptotic Methods
For λ > 0 let

I(λ) =

∫ b

0
f(x) e−λx dx , with 0 < b < ∞ .

Assume that the function f(x) is continuous on 0 < x 6 b, and that

f(x) ∼ xα
∞∑

n=0

an x
nβ,

as x → 0+ , where α > −1 and β > 0.

(a) Explain briefly why in this case straightforward partial integrations in general
cannot be applied for determining the asymptotic behaviour of I(λ) as λ → ∞.

(b) Derive with proof an asymptotic expansion for I(λ) as λ → ∞.

(c) For the function

B(s, t) =

∫ 1

0
us−1 (1− u)t−1 du , s, t > 0 ,

obtain, using the substitution u = e−x, the first two terms in an asymptotic expansion as
s → ∞. What happens as t → ∞?

[Hint: The following formula may be useful

Γ(y) =

∫ ∞

0
xy−1 e−x dt , for x > 0 . ]

Paper 3, Section II

31C Asymptotic Methods
Consider the ordinary differential equation

y′′ = (|x| −E) y ,

subject to the boundary conditions y(±∞) = 0. Write down the general form of the
Liouville-Green solutions for this problem for E > 0 and show that asymptotically the
eigenvalues En, n ∈ N and En < En+1, behave as En = O(n2/3) for large n.
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Paper 4, Section II

31C Asymptotic Methods
(a) Consider for λ > 0 the Laplace type integral

I(λ) =

∫ b

a
f(t) e−λφ(t) dt ,

for some finite a, b ∈ R and smooth, real-valued functions f(t), φ(t). Assume that the
function φ(t) has a single minimum at t = c with a < c < b. Give an account of Laplace’s
method for finding the leading order asymptotic behaviour of I(λ) as λ → ∞ and briefly
discuss the difference if instead c = a or c = b, i.e. when the minimum is attained at the
boundary.

(b) Determine the leading order asymptotic behaviour of

I(λ) =

∫ 1

−2
cos t e−λt2 dt , (∗)

as λ → ∞.

(c) Determine also the leading order asymptotic behaviour when cos t is replaced
by sin t in (∗).
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Paper 1, Section II

31A Asymptotic Methods
Consider the integral

I(λ) =

∫ A

0
e−λt f(t)dt , A > 0,

in the limit λ → ∞, given that f(t) has the asymptotic expansion

f(t) ∼
∞∑

n=0

ant
nβ

as t → 0+ , where β > 0. State Watson’s lemma.

Now consider the integral

J(λ) =

∫ b

a
eλφ(t) F (t)dt ,

where λ ≫ 1 and the real function φ(t) has a unique maximum in the interval [a, b] at c,
with a < c < b, such that

φ′(c) = 0 , φ′′(c) < 0.

By making a monotonic change of variable from t to a suitable variable ζ (Laplace’s
method), or otherwise, deduce the existence of an asymptotic expansion for J(λ) as
λ → ∞. Derive the leading term

J(λ) ∼ eλφ(c) F (c)

(
2π

λ|φ′′(c)|

)1
2

.

The gamma function is defined for x > 0 by

Γ(x+ 1) =

∫ ∞

0
exp (x log t− t) dt .

By means of the substitution t = xs, or otherwise, deduce Stirling’s formula

Γ(x+ 1) ∼ x(x+
1
2
) e−x

√
2π

(
1 +

1

12x
+ · · ·

)

as x → ∞.
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Paper 3, Section II

31A Asymptotic Methods
Consider the contour-integral representation

J0(x) = Re
1

iπ

∫

C
eix cosh t dt

of the Bessel function J0 for real x, where C is any contour from −∞− iπ
2 to +∞+ iπ

2 .

Writing t = u + iv, give in terms of the real quantities u, v the equation of the
steepest-descent contour from −∞− iπ

2 to +∞+ iπ
2 which passes through t = 0.

Deduce the leading term in the asymptotic expansion of J0(x), valid as x → ∞

J0(x) ∼
√

2

πx
cos

(
x− π

4

)
.

Paper 4, Section II

31A Asymptotic Methods
The differential equation

f ′′ = Q(x)f (∗)
has a singular point at x = ∞. Assuming that Q(x) > 0, write down the Liouville–Green
lowest approximations f±(x) for x → ∞, with f−(x) → 0.

The Airy function Ai(x) satisfies (∗) with

Q(x) = x,

and Ai(x) → 0 as x → ∞. Writing

Ai(x) = w(x)f−(x),

show that w(x) obeys

x2w′′ −
(
2x5/2 +

1

2
x

)
w′ +

5

16
w = 0 .

Derive the expansion

w ∼ c

(
1− 5

48
x−3/2

)
as x → ∞,

where c is a constant.
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1/II/30A Asymptotic Methods

Obtain an expression for the nth term of an asymptotic expansion, valid as λ→∞,
for the integral

I(λ) =

∫ 1

0

t2αe−λ(t2+t3) dt (α > −1/2).

Estimate the value of n for the term of least magnitude.

Obtain the first two terms of an asymptotic expansion, valid as λ → ∞, for the
integral

J(λ) =

∫ 1

0

t2αe−λ(t2−t3) dt (−1/2 < α < 0) .

[Hint:

Γ(z) =

∫ ∞

0

tz−1e−t dt . ]

[Stirling’s formula may be quoted.]

3/II/30A Asymptotic Methods

Describe how the leading-order approximation may be found by the method of
stationary phase of

I(λ) =

∫ b

a

f(t) exp
(
iλ g(t)

)
dt,

for λ � 1 , where λ , f and g are real. You should consider the cases for which:

(a) g′(t) has one simple zero at t = t0 , where a < t0 < b ;

(b) g′(t) has more than one simple zero in the region a < t < b ; and

(c) g′(t) has only a simple zero at t = b .

What is the order of magnitude of I(λ) if g′(t) is non zero for a 6 t 6 b ?

Use the method of stationary phase to find the leading-order approximation for
λ� 1 to

J(λ) =

∫ 1

0

sin
(
λ
(
t3 − t

))
dt.

[Hint: ∫ ∞

−∞
exp

(
iu2
)
du =

√
πeiπ/4 . ]
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4/II/31A Asymptotic Methods

The Bessel equation of order n is

z2y′′ + zy′ +
(
z2 − n2

)
y = 0 . (1)

Here, n is taken to be an integer, with n > 0 . The transformation w(z) = z
1
2 y(z)

converts (1) to the form
w′′ + q(z)w = 0 , (2)

where

q(z) = 1−
(
n2 − 1

4

)

z2
.

Find two linearly independent solutions of the form

w = e sz
∞∑

k=0

ckz
ρ−k , (3)

where ck are constants, with c0 6= 0 , and s and ρ are to be determined. Find recurrence
relationships for the ck.

Find the first two terms of two linearly independent Liouville–Green solutions of
(2) for w(z) valid in a neighbourhood of z = ∞. Relate these solutions to those of the
form (3).
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1/II/30B Asymptotic Methods

State Watson’s lemma, describing the asymptotic behaviour of the integral

I(λ) =

∫ A

0

e−λtf(t)dt, A > 0,

as λ→ ∞, given that f(t) has the asymptotic expansion

f(t) ∼ tα
∞∑

n=0

an t
nβ

as t→ 0+, where β > 0 and α > −1.

Give an account of Laplace’s method for finding asymptotic expansions of integrals
of the form

J(z) =

∫ ∞

−∞
e−zp(t) q(t) dt

for large real z, where p(t) is real for real t.

Deduce the following asymptotic expansion of the contour integral

∫ ∞+iπ

−∞−iπ

exp (z cosh t) dt = 21/2iez Γ
(
1
2

) [
z−1/2 + 1

8 z
−3/2 +O

(
z−5/2

)]

as z → ∞.

3/II/30B Asymptotic Methods

Explain the method of stationary phase for determining the behaviour of the
integral

I(x) =

∫ b

a

du eixf(u)

for large x. Here, the function f(u) is real and differentiable, and a, b and x are all real.

Apply this method to show that the first term in the asymptotic behaviour of the
function

Γ(m+ 1) =

∫ ∞

0

du um e−u ,

where m = i n with n > 0 and real, is

Γ(i n+ 1) ∼
√
2π e−i n exp

[(
i n+ 1

2

)( iπ
2

+ log n

)]

as n→ ∞.
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4/II/31B Asymptotic Methods

Consider the time-independent Schrödinger equation

d2ψ

dx2
+ λ2q(x)ψ(x) = 0,

where λ� 1 denotes ~−1 and q(x) denotes 2m[E − V (x)]. Suppose that

q(x) > 0 for a < x < b,

and q(x) < 0 for −∞ < x < a and b < x <∞

and consider a bound state ψ(x). Write down the possible Liouville–Green approximate
solutions for ψ(x) in each region, given that ψ → 0 as |x| → ∞.

Assume that q(x) may be approximated by q′(a)(x−a) near x = a, where q′(a) > 0,
and by q′(b)(x− b) near x = b, where q′(b) < 0. The Airy function Ai(z) satisfies

d2(Ai)

dz2
− z(Ai) = 0

and has the asymptotic expansions

Ai(z) ∼ 1
2π

−1/2z−1/4 exp

(
−2

3
z3/2

)
as z → +∞ ,

and

Ai(z) ∼ π−1/2|z|−1/4 cos

[(
2

3
|z|3/2

)
− π

4

]
as z → −∞ .

Deduce that the energies E of bound states are given approximately by the WKB
condition:

λ

∫ b

a

q1/2(x) dx =
(
n+ 1

2

)
π (n = 0, 1, 2, . . .).
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1/II/30B Asymptotic Methods

Two real functions p(t), q(t) of a real variable t are given on an interval [0, b], where
b > 0. Suppose that q(t) attains its minimum precisely at t = 0, with q′(0) = 0, and that
q′′(0) > 0. For a real argument x, define

I(x) =

∫ b

0

p(t)e−xq(t) dt.

Explain how to obtain the leading asymptotic behaviour of I(x) as x → +∞ (Laplace’s
method).

The modified Bessel function Iν(x) is defined for x > 0 by:

Iν(x) =
1

π

∫ π

0

ex cos θ cos(νθ) dθ − sin(νπ)

π

∫ ∞

0

e−x(cosh t)−νt dt.

Show that

Iν(x) ∼
ex√
2πx

as x→ ∞ with ν fixed.

3/II/30B Asymptotic Methods

The Airy function Ai(z) is defined by

Ai(z) =
1

2πi

∫

C

exp

(
−1

3
t3 + zt

)
dt ,

where the contour C begins at infinity along the ray arg(t) = 4π/3 and ends at infinity
along the ray arg(t) = 2π/3. Restricting attention to the case where z is real and positive,
use the method of steepest descent to obtain the leading term in the asymptotic expansion
for Ai(z) as z → ∞:

Ai(z) ∼ exp
(
− 2

3z
3/2
)

2π1/2z1/4
.

[Hint: put t = z1/2τ .]
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4/II/31B Asymptotic Methods

(a) Outline the Liouville–Green approximation to solutions w(z) of the ordinary
differential equation

d2w

dz2
= f(z)w

in a neighbourhood of infinity, in the case that, near infinity, f(z) has the convergent
series expansion

f(z) =
∞∑

s=0

fs
zs

,

with f0 6= 0.

In the case

f(z) = 1 +
1

z
+

2

z2
,

explain why you expect a basis of two asymptotic solutions w1(z), w2(z), with

w1(z) ∼ z
1
2 ez

(
1 +

a1
z

+
a2
z2

+ · · ·
)
,

w2(z) ∼ z−
1
2 e−z

(
1 +

b1
z

+
b2
z2

+ · · ·
)
,

as z → +∞, and show that a1 = − 9
8 .

(b) Determine, at leading order in the large positive real parameter λ, an approximation
to the solution u(x) of the eigenvalue problem:

u′′(x) + λ2g(x)u(x) = 0; u(0) = u(1) = 0;

where g(x) is greater than a positive constant for x ∈ [0, 1].
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1/II/30A Asymptotic Methods

Explain what is meant by an asymptotic power series about x = a for a real function
f(x) of a real variable. Show that a convergent power series is also asymptotic.

Show further that an asymptotic power series is unique (assuming that it exists).

Let the function f(t) be defined for t > 0 by

f(t) =
1

π1/2

∫ ∞

0

e−x

x1/2(1 + 2xt)
dx .

By suitably expanding the denominator of the integrand, or otherwise, show that,
as t→ 0+,

f(t) ∼
∞∑

k=0

(−1)k1.3 . . . (2k − 1)tk

and that the error, when the series is stopped after n terms, does not exceed the absolute
value of the (n+ 1)th term of the series.

3/II/30A Asymptotic Methods

Explain, without proof, how to obtain an asymptotic expansion, as x→ ∞, of

I(x) =

∫ ∞

0

e−xtf(t)dt ,

if it is known that f(t) possesses an asymptotic power series as t→ 0.

Indicate the modification required to obtain an asymptotic expansion, under
suitable conditions, of ∫ ∞

−∞
e−xt2f(t) dt .

Find an asymptotic expansion as z → ∞ of the function defined by

I(z) =

∫ ∞

−∞

e−t2

(z − t)
dt (Im(z) < 0)

and its analytic continuation to Im(z) > 0. Where are the Stokes lines, that is, the critical
lines separating the Stokes regions?
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4/II/31A Asymptotic Methods

Consider the differential equation

d2w

dx2
= q(x)w ,

where q(x) > 0 in an interval (a,∞). Given a solution w(x) and a further smooth function
ξ(x), define

W (x) = [ξ′(x)]1/2w(x) .

Show that, when ξ is regarded as the independent variable, the functionW (ξ) obeys
the differential equation

d2W

dξ2
=

{
ẋ2q(x) + ẋ1/2

d2

dξ2
[ẋ−1/2]

}
W, (∗)

where ẋ denotes dx/dξ.

Taking the choice

ξ(x) =

∫
q1/2(x)dx ,

show that equation (∗) becomes

d2W

dξ2
= (1 + φ)W ,

where

φ = − 1

q3/4
d2

dx2

( 1

q1/4

)
.

In the case that φ is negligible, deduce the Liouville–Green approximate solutions

w± = q−1/4 exp
(
±
∫
q1/2dx

)
.

Consider the Whittaker equation

d2w

dx2
=

[
1

4
+
s(s− 1)

x2

]
w ,

where s is a real constant. Show that the Liouville–Green approximation suggests the
existence of solutions wA,B(x) with asymptotic behaviour of the form

wA ∼ exp(x/2)

(
1 +

∞∑

n=1

anx
−n

)
, wB ∼ exp(−x/2)

(
1 +

∞∑

n=1

bnx
−n

)

as x→ ∞.

Given that these asymptotic series may be differentiated term-by-term, show that

an =
(−1)n

n!
(s− n)(s− n+ 1) . . . (s+ n− 1) .
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