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Paper 1, Section II

35D Applications of Quantum Mechanics
(a) A beam of particles of mass m and energy E, moving in one dimension, scatters

off a potential barrier V (x) which is localised near the origin x = 0 and is reflection
invariant, V (x) = V (−x) for all x. With reference to the asymptotic form of the wave
function as x → ±∞, define the corresponding reflection and transmission coefficients,
denoted r and t respectively, and write down the S-matrix S.

For the case V (x) = V0 δ(x), where δ(x) denotes the Dirac δ-function, determine r
and t as functions of the energy E, and show explicitly that S is a unitary matrix.

(b) A particle of mass m and energy E moves in one dimension subject to a potential
Ṽ (x) obeying Ṽ (x + a) = Ṽ (x) for all x. Define the corresponding Floquet matrix
M. Explain briefly how the Floquet matrix determines the resulting energy spectrum
of continuous bands separated by forbidden regions. [You may state without proof any
results from the course you might need.]

Determine M as a function of E for the case Ṽ (x) = V0
∑+∞

n=−∞ δ(x − na). Find
algebraic equations which determine all the edges of the allowed energy bands. For each
edge express exp (−ika) at the edge in terms of r and t. Here r = r(E) and t = t(E) are
the reflection and transmission coefficients determined in part (a), and E = ~2k2/2m with
k > 0.

Part II, Paper 1 [TURN OVER]
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Paper 2, Section II

36D Applications of Quantum Mechanics
Consider a quantum system with Hamiltonian Ĥ having a discrete spectrum with a

unique groundstate |ψ0〉 of energy E0. For any state |ψ〉, define the Rayleigh-Ritz quotient,
R[ψ], and show that it attains its minimum value when |ψ〉 = |ψ0〉.

A particle of mass m moves in one dimension subject to the potential,

V (x) =
~2

2m

(
x6 − 3x2 + 2

)
.

Show that the system has an energy eigenstate with (unnormalised) wavefunction,

ψ̃(x) := exp(−βxn),

for a value of β, a positive integer value of n and an energy each of which you should
determine.

Estimate the groundstate energy of this system using the variational principle with
a Gaussian trial wavefunction of the form

ψα(x) := exp
(
−α

2
x2
)

with parameter α > 0. Show that the best estimate of the ground-state energy is obtained
for the unique value

α = α∗ =

√(
p+
√
q
)

2
,

where p and q are integers that you should determine. Give the corresponding approximate
ground-state energy, E∗0 , in terms of α∗. You should not attempt to evaluate this function
numerically. [Hint: You may use without proof the following definite integral,

∫ ∞

−∞
x2n exp

(
−αx2

)
dx =

(2n)!

n!(4α)n

√
π

α
.

]

Is your result consistent with the hypothesis that the exact eigenstate ψ̃(x) found
above is the true groundstate? Explain your reasoning carefully.

Part II, Paper 1

2023
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Paper 3, Section II

34D Applications of Quantum Mechanics
Let Λ be a Bravais lattice in three dimensions with primitive vectors a1, a2, a3.

Define the reciprocal lattice Λ∗ and show that it is a Bravais lattice.

An incident particle of mass m and wavevector k scatters off a crystal which consists
of identical atoms located at the vertices of a finite subset S of the lattice Λ,

S = {l = l1a1 + l2a2 + l3a3 : li ∈ Z, −Li/2 6 li 6 +Li/2 for i = 1, 2, 3},

where L1, L2 and L3 are positive even integers. After scattering the particle has wavevector
k′ with |k| = |k′| = k and the scattering angle θ, with 0 6 θ 6 π, is defined by
k · k′ = k2 cos θ. Show that the resulting scattering amplitude is proportional to

∆
(
k− k′

)
:=

∑

l∈S
exp

(
i(k− k′) · l

)
.

For L1, L2, L3 � 1, show that this quantity is strongly peaked for wavevectors k and k′

obeying k− k′ = q for some q ∈ Λ∗.

Consider the case where Λ is a body centered cubic lattice with primitive vectors

a1 =
a

2
(ex + ey + ez) , a2 =

a

2
(ex − ey + ez) , a3 = a ez ,

where a > 0 and ex, ey and ez are, respectively, unit vectors in the x-, y- and z-directions.
For scattering at fixed energy E = ~2k2/2m with ka� 1, find the smallest non-zero value
of the scattering angle θ for which the scattering amplitude has a strong peak (i.e. a peak
such as you found in the previous part of the question).

Part II, Paper 1 [TURN OVER]
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Paper 4, Section II

34D Applications of Quantum Mechanics
(a) A scalar particle of mass m and charge e is moving in three dimensions in a

background electromagnetic field with vector potential A(x, t) and zero scalar potential.
The Hamiltonian is given as

Ĥ =
1

2m
(−i~∇+ eA) · (−i~∇+ eA) .

Specialise to the case of a constant, homogeneous magnetic field B = ∇ ×A = (0, 0, B)
in the z-direction. Suppose further that the x and y coordinates of the particle are
constrained to lie in a rectangular region R of the x-y plane with sides of length Rx

and Ry, and that the particle has vanishing momentum in the z-direction. By solving the
Schrödinger equation in a suitable gauge with periodic boundary conditions in the x- and
y-directions, find the energy levels of the system and give the degeneracy of each level.
[You may use without proof any results about the spectrum of the quantum harmonic
oscillator you may need, and you may assume that Rx and Ry are large compared to other
length scales in the problem.]

(b) An electron is a particle of mass m, charge e and spin 1/2. It is described
by a two-component wave function ~Ψ ∈ C2 with energy eigenstates obeying a matrix
Schrödinger equation

Ĥ ~Ψ = E~Ψ ,

where

Ĥ = Ĥ I2 +
e~
2m

B · σ ,

where Ĥ is the Hamiltonian for the spinless particle given above, I2 is the (2 × 2)-unit
matrix and σ = (σ1, σ2, σ3) is a three-component vector whose entries are the Pauli
matrices σi, for i = 1, 2, 3.

Find the energy levels of a single electron in a constant, homogeneous magnetic field
B = (0, 0, B) under the same conditions as in part (a). Give the degeneracy of each energy
level.

Now consider N non-interacting electrons occupying these energy levels. Find the
ground-state energy Egs of the system as a function of N , identifying any thresholds
which occur. Sketch the graph of Egs against N . [Hint: Recall that electrons are identical
fermionic particles obeying the Pauli exclusion principle.]

Part II, Paper 1

2023
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Paper 1, Section II
35D Applications of Quantum Mechanics

A particle of mass m and energy E = ~2k2/2m, moving in one dimension, is incident
on a localised potential barrier.

(a) Define reflection and transmission coefficients, r and t, for a right-moving particle
incident from x = −∞. Define corresponding coefficients r′ and t′ for a left-moving particle
incident from x = +∞. Prove that the S-matrix

S =

(
t′ r
r′ t

)

is unitary. [You may use without proof the conservation of the probability current.]

(b) Explain what is meant by the parity of a wavefunction. Under what circum-
stances do energy eigenstates of the system described above have definite parity?

(c) Consider the potential barrier

V (x) =

{
V0 for |x| < a/2

0 for |x| > a/2,

where V0 > 0. Find an even parity wavefunction satisfying the Schrödinger equation for a
particle of energy E = ~2k2/2m with E < V0. Hence compute r + t.

Paper 2, Section II
36D Applications of Quantum Mechanics

A particle of mass m moves in one dimension in the periodic potential

V (x) =
∑

n∈Z
Vn exp

(
2πinx

a

)
,

where V−n = (Vn)
∗. Treating the Hamiltonian Ĥ = Ĥ0 + V (x) as a small perturbation

of the free Hamiltonian Ĥ0, show that the energy spectrum consists of continuous bands
separated by gaps of width 2|Vn| that occur for each positive integer n.

What is meant by the dispersion relation of the particle? Determine an explicit
form of the dispersion relation near each band gap.

Work out the locations and widths of the gaps in the energy spectrum for the
potential

V (x) =
8

3
V0 cos4

(
2πx

a

)
.

Sketch the dispersion relation of a particle moving in this potential.

Part II, Paper 1 [TURN OVER]

2022
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Paper 3, Section II
34D Applications of Quantum Mechanics

A two-dimensional Bravais lattice Λ has primitive basis vectors {a1,a2}, where

a1 = x̂ , a2 = −1

2
x̂ +

√
3

2
ŷ ,

and {x̂, ŷ} is the standard Cartesian basis. Express a general primitive basis {a′1,a′2} for
Λ in terms of {a1,a2}.

Find the lattice Λ∗ which is dual to Λ, giving a basis of primitive vectors dual to
{a1,a2}. Sketch the region of the lattice Λ∗ containing the origin, indicating all those
points which are nearest neighbours of the origin. Determine the Wigner-Seitz unit cell of
Λ∗ as polygonal region of the plane, giving the coordinates of all vertices of this polygon.
Determine the area of this unit cell.

A particle of mass m moves in a potential V (x) which is invariant under shifts by
vectors in Λ,

V (x + l) = V (x) ∀ l ∈ Λ .

Define the nth Brillouin zone of this system and briefly describe its physical significance.
Draw a sketch showing the first and second Brillouin zones.

Part II, Paper 1

2022
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Paper 4, Section II
34D Applications of Quantum Mechanics

A particle of mass m and charge e moves in a constant homogeneous magnetic field
B = ∇×A with vector potential

A(x) =
B

2
(−y, x, 0) ,

where x = (x, y, z) are Cartesian coordinates on R3.

(a) Write down the Hamiltonian Ĥ for the particle as a differential operator
in Cartesian coordinates. Find a corresponding expression for Ĥ in cylindrical polar
coordinates (r, θ, z), where x = r cos θ and y = r sin θ.

[You may use without proof the relations

∂2

∂x2
+

∂2

∂y2
=

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
and x

∂

∂y
− y ∂

∂x
=

∂

∂θ
. ]

(b) Consider wavefunctions of the form

ψkz ,n (r, θ, z) = exp(ikzz) exp(inθ)φn(r) .

What is the physical interpretation of the quantum numbers kz ∈ R and n ∈ Z? For
n > 0, show that ψkz ,n is an eigenstate of Ĥ provided that

φn(r) = rα exp

(
−β r

2

2

)
,

where α and β are (possibly n-dependent) constants which you should determine. Find
the corresponding energy eigenvalue E.

(c) By noting that φn(r) is sharply peaked at a particular value of r, work out the
total degeneracy of this energy level when the particle is confined to lie inside a large circle
of radius R. Determine the number of states per unit area.

Part II, Paper 1 [TURN OVER]

2022
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Paper 1, Section II

35B Applications of Quantum Mechanics
(a) Discuss the variational principle that allows one to derive an upper bound on

the energy E0 of the ground state for a particle in one dimension subject to a potential
V (x).

If V (x) = V (−x), how could you adapt the variational principle to derive an upper
bound on the energy E1 of the first excited state?

(b) Consider a particle of mass 2m = ~2 (in certain units) subject to a potential

V (x) = −V0e−x
2

with V0 > 0 .

(i) Using the trial wavefunction

ψ(x) = e−
1
2
x2a ,

with a > 0, derive the upper bound E0 6 E(a), where

E(a) =
1

2
a− V0

√
a√

1 + a
.

(ii) Find the zero of E(a) in a > 0 and show that any extremum must obey

(1 + a)3 =
V 2
0

a
.

(iii) By sketching E(a) or otherwise, deduce that there must always be a minimum
in a > 0. Hence deduce the existence of a bound state.

(iv) Working perturbatively in 0 < V0 � 1, show that

−V0 < E0 6 −
1

2
V 2
0 +O(V 3

0 ) .

[Hint: You may use that

∫ ∞

−∞
e−bx

2
dx =

√
π

b
for b > 0.]

Part II, 2021 List of Questions

2021
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Paper 2, Section II

36B Applications of Quantum Mechanics
(a) The s-wave solution ψ0 for the scattering problem of a particle of mass m and

momentum ~k has the asymptotic form

ψ0(r) ∼
A

r

[
sin(kr) + g(k) cos(kr)

]
.

Define the phase shift δ0 and verify that tan δ0 = g(k).

(b) Define the scattering amplitude f . For a spherically symmetric potential of finite
range, starting from σT =

∫
|f |2dΩ , derive the expression

σT =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl

giving the cross-section σT in terms of the phase shifts δl of the partial waves.

(c) For g(k) = −k/K with K > 0, show that a bound state exists and compute its
energy. Neglecting the contributions from partial waves with l > 0, show that

σT ≈
4π

K2 + k2
.

(d) For g(k) = γ/(K0 − k) with K0 > 0, γ > 0 compute the s-wave contribution to
σT . Working to leading order in γ � K0, show that σT has a local maximum at k = K0.
Interpret this fact in terms of a resonance and compute its energy and decay width.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 3, Section II

34B Applications of Quantum Mechanics
(a) In three dimensions, define a Bravais lattice Λ and its reciprocal lattice Λ∗.

A particle is subject to a potential V (x) with V (x) = V (x + r) for x ∈ R3 and
r ∈ Λ. State and prove Bloch’s theorem and specify how the Brillouin zone is related to
the reciprocal lattice.

(b) A body-centred cubic lattice ΛBCC consists of the union of the points of a cubic
lattice Λ1 and all the points Λ2 at the centre of each cube:

ΛBCC ≡ Λ1 ∪ Λ2 ,

Λ1 ≡
{
r ∈ R3 : r = n1î + n2ĵ + n3k̂ , with n1,2,3 ∈ Z

}
,

Λ2 ≡
{
r ∈ R3 : r = 1

2

(
î + ĵ + k̂

)
+ r′, with r′ ∈ Λ1

}
,

where î, ĵ and k̂ are unit vectors parallel to the Cartesian coordinates in R3. Show that
ΛBCC is a Bravais lattice and determine the primitive vectors a1, a2 and a3.

Find the reciprocal lattice Λ∗BCC . Briefly explain what sort of lattice it is.

[
Hint: The matrix M = 1

2



−1 1 1
1 −1 1
1 1 −1


 has inverse M−1 =




0 1 1
1 0 1
1 1 0


.
]

Part II, 2021 List of Questions

2021
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Paper 4, Section II

34B Applications of Quantum Mechanics
(a) Consider the nearly free electron model in one dimension with mass m and

periodic potential V (x) = λU(x) with 0 < λ� 1 and

U(x) =
∞∑

l=−∞
Ul exp

(
2πi

a
lx

)
.

Ignoring degeneracies, the energy spectrum of Bloch states with wavenumber k is

E(k) = E0(k) + λ〈k|U |k〉+ λ2
∑

k′ 6=k

〈k|U |k′〉〈k′|U |k〉
E0(k)− E0(k′)

+O(λ3) ,

where {|k〉} are normalized eigenstates of the free Hamiltonian with wavenumber k. What
is E0 in this formula?

If we impose periodic boundary conditions on the wavefunctions, ψ(x) = ψ(x+ L)
with L = Na and N a positive integer, what are the allowed values of k and k′? Determine
〈k|U |k′〉 for these allowed values.

(b) State when the above expression for E(k) ceases to be a good approximation and
explain why. Quoting any result you need from degenerate perturbation theory, calculate
to O(λ) the location and width of the band gaps.

(c) Determine the allowed energy bands for each of the potentials

(i) V (x) = 2λ cos

(
2πx

a

)
,

(ii) V (x) = λa
∞∑

n=−∞
δ(x− na) .

(d) Briefly discuss a macroscopic physical consequence of the existence of energy
bands.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 1, Section II

35C Applications of Quantum Mechanics
Consider the quantum mechanical scattering of a particle of massm in one dimension

off a parity-symmetric potential, V (x) = V (−x). State the constraints imposed by parity,
unitarity and their combination on the components of the S-matrix in the parity basis,

S =

(
S++ S+−
S−+ S−−

)
.

For the specific potential

V = ~2
U0

2m
[δD(x+ a) + δD(x− a)] ,

show that

S−− = e−i2ka
[

(2k − iU0)e
ika + iU0e

−ika

(2k + iU0)e−ika − iU0eika

]
.

For U0 < 0, derive the condition for the existence of an odd-parity bound state. For
U0 > 0 and to leading order in U0a � 1, show that an odd-parity resonance exists and
discuss how it evolves in time.

Paper 2, Section II

35C Applications of Quantum Mechanics

a) Consider a particle moving in one dimension subject to a periodic potential,
V (x) = V (x+ a). Define the Brillouin zone. State and prove Bloch’s theorem.

b) Consider now the following periodic potential

V = V0
(

cos(x) − cos(2x)
)
,

with positive constant V0.

i) For very small V0, use the nearly-free electron model to compute explicitly the
lowest-energy band gap to leading order in degenerate perturbation theory.

ii) For very large V0, the electron is localised very close to a minimum of the
potential. Estimate the two lowest energies for such localised eigenstates and
use the tight-binding model to estimate the lowest-energy band gap.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 3, Section II

34C Applications of Quantum Mechanics
(a) For the quantum scattering of a beam of particles in three dimensions off

a spherically symmetric potential V (r) that vanishes at large r, discuss the boundary
conditions satisfied by the wavefunction ψ and define the scattering amplitude f(θ).
Assuming the asymptotic form

ψ =

∞∑

l=0

2l + 1

2ik

[
(−1)l+1 e

−ikr

r
+ (1 + 2ifl)

eikr

r

]
Pl(cos θ) ,

state the constraints on fl imposed by the unitarity of the S-matrix and define the phase
shifts δl.

(b) For V0 > 0, consider the specific potential

V (r) =




∞ , r 6 a ,
−V0 , a < r 6 2a ,
0 , r > 2a .

(i) Show that the s-wave phase shift δ0 obeys

tan(δ0) =
k cos(2ka)− κ cot(κa) sin(2ka)

k sin(2ka) + κ cot(κa) cos(2ka)
,

where κ2 = k2 + 2mV0/~2.

(ii) Compute the scattering length as and find for which values of κ it diverges.
Discuss briefly the physical interpretation of the divergences. [Hint: you may find this
trigonometric identity useful

tan(A+B) =
tanA+ tanB

1− tanA tanB
. ]

Part II, 2020 List of Questions

2020
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Paper 4, Section II

34C Applications of Quantum Mechanics
(a) For a particle of charge q moving in an electromagnetic field with vector potential

A and scalar potential φ, write down the classical Hamiltonian and the equations of
motion.

(b) Consider the vector and scalar potentials

A =
B

2
(−y, x, 0) , φ = 0 .

(i) Solve the equations of motion. Define and compute the cyclotron frequency ωB.

(ii) Write down the quantum Hamiltonian of the system in terms of the angular
momentum operator

Lz = xpy − ypx .

Show that the states

ψ(x, y) = f(x+ iy)e−(x2+y2)qB/4~ , (†)

for any function f , are energy eigenstates and compute their energy. Define Landau levels
and discuss this result in relation to them.

(iii) Show that for f(w) = wM , the wavefunctions in (†) are eigenstates of angular
momentum and compute the corresponding eigenvalue. These wavefunctions peak in a
ring around the origin. Estimate its radius. Using these two facts or otherwise, estimate
the degeneracy of Landau levels.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 4, Section II

33B Applications of Quantum Mechanics
(a) A classical beam of particles scatters off a spherically symmetric potential V (r).

Draw a diagram to illustrate the differential cross-section dσ/dΩ, and use this to derive
an expression for dσ/dΩ in terms of the impact parameter b and the scattering angle θ.

A quantum beam of particles of mass m and momentum p = ~k is incident along the
z-axis and scatters off a spherically symmetric potential V (r). Write down the asymptotic
form of the wavefunction ψ in terms of the scattering amplitude f(θ). By considering
the probability current J = −i(~/2m) (ψ⋆∇ψ − (∇ψ⋆)ψ), derive an expression for the
differential cross-section dσ/dΩ in terms of f(θ).

(b) The solution ψ(r) of the radial Schrödinger equation for a particle of mass m
and wave number k moving in a spherically symmetric potential V (r) has the asymptotic
form

ψ(r) ∼
∞∑

l=0

[
Al(k)

sin
(
kr − lπ

2

)

kr
− Bl(k)

cos
(
kr − lπ

2

)

kr

]
Pl (cos θ) ,

valid for kr ≫ 1, where Al(k) and Bl(k) are constants and Pl denotes the l’th Legendre
polynomial. Define the S-matrix element Sl and the corresponding phase shift δl for
the partial wave of angular momentum l, in terms of Al(k) and Bl(k). Define also the
scattering length as for the potential V .

Outside some core region, r > r0, the Schrödinger equation for some such potential
is solved by the s-wave (i.e. l = 0) wavefunction ψ(r) = ψ(r) with,

ψ(r) =
e−ikr

r
+
k + iλ tanh(λr)

k − iλ

eikr

r

where λ > 0 is a constant. Extract the S-matrix element S0, the phase shift δ0 and the
scattering length as. Deduce that the potential V (r) has a bound state of zero angular
momentum and compute its energy. Give the form of the (un-normalised) bound state
wavefunction in the region r > r0.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 3, Section II

34B Applications of Quantum Mechanics
A Hamiltonian H is invariant under the discrete translational symmetry of a Bravais

lattice Λ. This means that there exists a unitary translation operator Tr such that
[H,Tr] = 0 for all r ∈ Λ. State and prove Bloch’s theorem for H.

Consider the two-dimensional Bravais lattice Λ defined by the basis vectors

a1 =
a

2
(
√
3, 1) , a2 =

a

2
(
√
3,−1) .

Find basis vectors b1 and b2 for the reciprocal lattice. Sketch the Brillouin zone. Explain
why the Brillouin zone has only two physically distinct corners. Show that the positions
of these corners may be taken to be K = 1

3(2b1 + b2) and K′ = 1
3(b1 + 2b2).

The dynamics of a single electron moving on the lattice Λ is described by a tight-
binding model with Hamiltonian

H =
∑

r∈Λ

[
E0|r〉〈r| − λ

(
|r〉〈r+ a1|+ |r〉〈r+ a2|+ |r+ a1〉〈r|+ |r+ a2〉〈r|

)]
,

where E0 and λ are real parameters. What is the energy spectrum as a function of the
wave vector k in the Brillouin zone? How does the energy vary along the boundary of the
Brillouin zone between K and K′? What is the width of the band?

In a real material, each site of the lattice Λ contains an atom with a certain valency.
Explain how the conducting properties of the material depend on the valency.

Suppose now that there is a second band, with minimum E = E0 + ∆. For what
values of ∆ and the valency is the material an insulator?

Paper 2, Section II

34B Applications of Quantum Mechanics
Give an account of the variational principle for establishing an upper bound on the

ground state energy of a Hamiltonian H.

A particle of mass m moves in one dimension and experiences the potential
V = A|x|n with n an integer. Use a variational argument to prove the virial theorem,

2〈T 〉0 = n〈V 〉0

where 〈·〉0 denotes the expectation value in the true ground state. Deduce that there is
no normalisable ground state for n 6 −3.

For the case n = 1, use the ansatz ψ(x) ∝ e−α
2x2 to find an estimate for the energy

of the ground state.

Part II, 2019 List of Questions

2019
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Paper 1, Section II

34B Applications of Quantum Mechanics
A particle of mass m and charge q moving in a uniform magnetic field B = ∇×A =

(0, 0, B) and electric field E = −∇φ is described by the Hamiltonian

H =
1

2m
|p− qA|2 + qφ ,

where p is the canonical momentum.

[ In the following you may use without proof any results concerning the spectrum
of the harmonic oscillator as long as they are stated clearly.]

(a) Let E = 0. Choose a gauge which preserves translational symmetry in the y-
direction. Determine the spectrum of the system, restricted to states with pz = 0. The
system is further restricted to lie in a rectangle of area A = LxLy, with sides of length Lx
and Ly parallel to the x- and y-axes respectively. Assuming periodic boundary conditions
in the y-direction, estimate the degeneracy of each Landau level.

(b) Consider the introduction of an additional electric field E = (E , 0, 0). Choosing
a suitable gauge (with the same choice of vector potential A as in part (a)), write down
the resulting Hamiltonian. Find the energy spectrum for a particle on R3 again restricted
to states with pz = 0.

Define the group velocity of the electron and show that its y-component is given by
vy = −E/B.

When the system is further restricted to a rectangle of area A as above, show that
the previous degeneracy of the Landau levels is lifted and determine the resulting energy
gap ∆E between the ground-state and the first excited state.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 1, Section II

34A Applications of Quantum Mechanics
A particle of mass m moves in one dimension in a periodic potential V (x) satisfying

V (x + a) = V (x). Define the Floquet matrix F . Show that detF = 1 and explain why
TrF is real. Show that allowed bands occur for energies such that (TrF )2 < 4. Consider
the potential

V (x) = −~2λ
m

+∞∑

n=−∞
δ(x − na).

For states of negative energy, construct the Floquet matrix with respect to the basis of
states e±µx. Derive an inequality for the values of µ in an allowed energy band.

For states of positive energy, construct the Floquet matrix with respect to the basis
of states e±ikx. Derive an inequality for the values of k in an allowed energy band.

Show that the state with zero energy lies in a forbidden region for λa > 2.

Part II, 2018 List of Questions

2018
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Paper 4, Section II

34A Applications of Quantum Mechanics
Define a Bravais lattice Λ in three dimensions. Define the reciprocal lattice Λ⋆.

Define the Brillouin zone.

An FCC lattice has a basis of primitive vectors given by

a1 =
a

2
(e2 + e3) , a2 =

a

2
(e1 + e3) , a3 =

a

2
(e1 + e2),

where ei is an orthonormal basis of R3. Find a basis of reciprocal lattice vectors. What is
the volume of the Brillouin zone?

The asymptotic wavefunction for a particle, of wavevector k, scattering off a
potential V (r) is

ψ(r) ∼ eik·r + fV(k;k
′)
eikr

r
,

where k′ = kr̂ and fV(k;k
′) is the scattering amplitude. Give a formula for the Born

approximation to the scattering amplitude.

Scattering of a particle off a single atom is modelled by a potential V (r) = V0δ(r−d)
with δ-function support on a spherical shell, r = |r| = d centred at the origin. Calculate
the Born approximation to the scattering amplitude, denoting the resulting expression as
f̃V(k;k

′).

Scattering of a particle off a crystal consisting of atoms located at the vertices of a
lattice Λ is modelled by a potential

VΛ =
∑

R∈Λ
V (r−R),

where V (r) = V0δ(r − d) as above. Calculate the Born approximation to the scattering
amplitude giving your answer in terms of your approximate expression f̃V for scattering off
a single atom. Show that the resulting amplitude vanishes unless the momentum transfer
q = k− k′ lies in the reciprocal lattice Λ⋆.

For the particular FCC lattice considered above, show that, when k = |k| > 2π/a,
scattering occurs for two values of the scattering angle, θ1 and θ2, related by

sin
(
θ1
2

)

sin
(
θ2
2

) =
2√
3
.
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A beam of particles of mass m and momentum p = ~k is incident along the z-axis.

The beam scatters off a spherically symmetric potential V (r). Write down the asymptotic
form of the wavefunction in terms of the scattering amplitude f(θ).

The incoming plane wave and the scattering amplitude can be expanded in partial
waves as,

eikr cos θ ∼ 1

2ikr

∞∑

l=0

(2l + 1)
(
eikr − (−1)le−ikr

)
Pl(cos θ)

f(θ) =
∞∑

l=0

2l + 1

k
fl Pl(cos θ)

where Pl are Legendre polynomials. Define the S-matrix. Assuming that the S-matrix is
unitary, explain why we can write

fl = eiδl sin δl

for some real phase shifts δl. Obtain an expression for the total cross-section σT in terms
of the phase shifts δl.

[Hint: You may use the orthogonality of Legendre polynomials:

∫ +1

−1
dw Pl(w)Pl′(w) =

2

2l + 1
δll′ . ]

Consider the repulsive, spherical potential

V (r) =

{
+V0 r < a
0 r > a

where V0 = ~2γ2/2m. By considering the s-wave solution to the Schrödinger equation,
show that

tan(ka+ δ0)

ka
=

tanh(
√
γ2 − k2a)√

γ2 − k2a
.

For low momenta, ka ≪ 1, compute the s-wave contribution to the total cross-section.
Comment on the physical interpretation of your result in the limit γa→ ∞.
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35A Applications of Quantum Mechanics
Consider a one-dimensional chain of 2N ≫ 1 atoms, each of mass m. Impose

periodic boundary conditions. The forces between neighbouring atoms are modelled
as springs, with alternating spring constants λ and αλ. In equilibrium, the separation
between the atoms is a.

Denote the position of the nth atom as xn(t). Let un(t) = xn(t) − na be the
displacement from equilibrium. Write down the equations of motion of the system.

Show that the longitudinal modes of vibration are labelled by a wavenumber k
that is restricted to lie in a Brillouin zone. Find the frequency spectrum. What is the
frequency gap at the edge of the Brillouin zone? Show that the gap vanishes when α = 1.
Determine approximations for the frequencies near the centre of the Brillouin zone. Plot
the frequency spectrum. What is the speed of sound in this system?
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33C Applications of Quantum Mechanics
A one-dimensional lattice has N sites with lattice spacing a. In the tight-binding

approximation, the Hamiltonian describing a single electron is given by

H = E0

∑

n

|n〉〈n| − J
∑

n

(
|n〉〈n + 1|+ |n+ 1〉〈n|

)
,

where |n〉 is the normalised state of the electron localised on the nth lattice site. Using
periodic boundary conditions |N +1〉 ≡ |1〉, solve for the spectrum of this Hamiltonian to
derive the dispersion relation

E(k) = E0 − 2J cos(ka) .

Define the Brillouin zone. Determine the number of states in the Brillouin zone.

Calculate the velocity v and effective mass m⋆ of the particle. For which values of
k is the effective mass negative?

In the semi-classical approximation, derive an expression for the time-dependence
of the position of the electron in a constant electric field.

Describe how the concepts of metals and insulators arise in the model above.
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33C Applications of Quantum Mechanics
Give an account of the variational method for establishing an upper bound on the

ground-state energy of a Hamiltonian H with a discrete spectrum H|n〉 = En|n〉, where
En 6 En+1, n = 0, 1, 2 . . ..

A particle of mass m moves in the three-dimensional potential

V (r) = −Ae
−µr

r
,

where A,µ > 0 are constants and r is the distance to the origin. Using the normalised
variational wavefunction

ψ(r) =

√
α3

π
e−αr ,

show that the expected energy is given by

E(α) =
~2α2

2m
− 4Aα3

(µ+ 2α)2
.

Explain why there is necessarily a bound state when µ < Am/~2. What can you say about
the existence of a bound state when µ > Am/~2?

[Hint: The Laplacian in spherical polar coordinates is

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.
]
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33C Applications of Quantum Mechanics
A particle of mass m and charge q moving in a uniform magnetic field B = ∇×A =

(0, 0, B) is described by the Hamiltonian

H =
1

2m
(p− qA)2

where p is the canonical momentum, which obeys [xi, pj ] = i~δij . The mechanical
momentum is defined as π = p− qA. Show that

[πx, πy] = iq~B .

Define

a =
1√
2q~B

(πx + iπy) and a† =
1√

2q~B
(πx − iπy) .

Derive the commutation relation obeyed by a and a†. Write the Hamiltonian in terms of
a and a† and hence solve for the spectrum.

In symmetric gauge, states in the lowest Landau level with kz = 0 have wavefunc-
tions

ψ(x, y) = (x+ iy)M e−qBr2/4~

where r2 = x2 + y2 and M is a positive integer. By considering the profiles of these
wavefunctions, estimate how many lowest Landau level states can fit in a disc of radius R.
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33C Applications of Quantum Mechanics

(a) In one dimension, a particle of mass m is scattered by a potential V (x) where
V (x) → 0 as |x| → ∞. For wavenumber k > 0, the incoming (I) and outgoing (O)
asymptotic plane wave states with positive (+) and negative (−) parity are given
by

I+(x) = e−ik|x| , I−(x) = sign(x) e−ik|x| ,

O+(x) = e+ik|x| , O−(x) = −sign(x) e+ik|x| .

(i) Explain how this basis may be used to define the S-matrix,

SP =

(
S++ S+−
S−+ S−−

)
.

(ii) For what choice of potential would you expect S+− = S−+ = 0? Why?

(b) The potential V (x) is given by

V (x) = V0

[
δ(x− a) + δ(x+ a)

]

with V0 a constant.

(i) Show that

S−−(k) = e−2ika

[
(2k − iU0)e

ika + iU0e
−ika

(2k + iU0)e−ika − iU0eika

]
,

where U0 = 2mV0/~2. Verify that |S−−|2 = 1. Explain the physical meaning
of this result.

(ii) For V0 < 0, by considering the poles or zeros of S−−(k), show that there exists
one bound state of negative parity if aU0 < −1.

(iii) For V0 > 0 and aU0 ≫ 1, show that S−−(k) has a pole at

ka = π + α− iγ ,

where α and γ are real and

α = − π

aU0
+O

(
1

(aU0)2

)
and γ =

(
π

aU0

)2

+O

(
1

(aU0)3

)
.

Explain the physical significance of this result.
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32A Applications of Quantum Mechanics
A particle in one dimension of mass m and energy E = ~2k2/2m (k > 0) is incident

from x = −∞ on a potential V (x) with V (x) → 0 as x → −∞ and V (x) = ∞ for x > 0.
The relevant solution of the time-independent Schrödinger equation has the asymptotic
form

ψ(x) ∼ exp(ikx) + r(k) exp(−ikx) , x→ −∞ .

Explain briefly why a pole in the reflection amplitude r(k) at k = iκ with κ > 0 corresponds
to the existence of a stable bound state in this potential. Indicate why a pole in r(k) just
below the real k-axis, at k = k0− iρ with k0 ≫ ρ > 0, corresponds to a quasi-stable bound
state. Find an approximate expression for the lifetime τ of such a quasi-stable state.

Now suppose that

V (x) =

{
(~2U/2m) δ(x + a) for x < 0

∞ for x > 0

where U > 0 and a > 0 are constants. Compute the reflection amplitude r(k) in this case
and deduce that there are quasi-stable bound states if U is large. Give expressions for the
wavefunctions and energies of these states and compute their lifetimes, working to leading
non-vanishing order in 1/U for each expression.

[ You may assume ψ = 0 for x > 0 and limǫ→0+{ψ′(−a+ǫ)− ψ′(−a−ǫ) } = U ψ(−a) . ]
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32A Applications of Quantum Mechanics
(a) A spinless charged particle moves in an electromagnetic field defined by vector

and scalar potentials A(x, t) and φ(x, t). The wavefunction ψ(x, t) for the particle satisfies
the time-dependent Schrödinger equation with Hamiltonian

Ĥ0 =
1

2m
(−i~∇+ eA) · (−i~∇+ eA) − eφ .

Consider a gauge transformation

A → Ã = A+∇f , φ → φ̃ = φ− ∂f

∂t
, ψ → ψ̃ = exp

(
− ief

~

)
ψ ,

for some function f(x, t). Define covariant derivatives with respect to space and time,
and show that ψ̃ satisfies the Schrödinger equation with potentials Ã and φ̃.

(b) Suppose that in part (a) the magnetic field has the form B = ∇×A = (0, 0, B),
where B is a constant, and that φ = 0. Find a suitable A with Ay = Az = 0 and determine
the energy levels of the Hamiltonian Ĥ0 when the z-component of the momentum of the
particle is zero. Suppose in addition that the particle is constrained to lie in a rectangular
region of area A in the (x, y)-plane. By imposing periodic boundary conditions in the
x-direction, estimate the degeneracy of each energy level. [You may use without proof
results for a quantum harmonic oscillator, provided they are clearly stated.]

(c) An electron is a charged particle of spin 1
2 with a two-component wavefunction

ψ(x, t) governed by the Hamiltonian

Ĥ = Ĥ0 I2 +
e~
2m

B · σ

where I2 is the 2×2 unit matrix and σ = (σ1, σ2, σ3) denotes the Pauli matrices. Find the
energy levels for an electron in the constant magnetic field defined in part (b), assuming
as before that the z-component of the momentum of the particle is zero.

Consider N such electrons confined to the rectangular region defined in part (b).
Ignoring interactions between the electrons, show that the ground state energy of this
system vanishes for N less than some integer Nmax which you should determine. Find the
ground state energy for N = (2p + 1)Nmax, where p is a positive integer.
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Let Λ ⊂ R2 be a Bravais lattice. Define the dual lattice Λ∗ and show that

V (x) =
∑

q∈Λ∗
Vq exp(iq · x)

obeys V (x + l) = V (x) for all l ∈ Λ, where Vq are constants. Suppose V (x) is the
potential for a particle of mass m moving in a two-dimensional crystal that contains a very
large number of lattice sites of Λ and occupies an area A. Adopting periodic boundary
conditions, plane-wave states |k 〉 can be chosen such that

〈x |k 〉 =
1

A1/2
exp (ik · x) and 〈k |k′ 〉 = δkk′ .

The allowed wavevectors k are closely spaced and include all vectors in Λ∗. Find an
expression for the matrix element 〈k |V (x) |k′ 〉 in terms of the coefficients Vq. [You need
not discuss additional details of the boundary conditions.]

Now suppose that V (x) = λU(x), where λ ≪ 1 is a dimensionless constant.
Find the energy E(k) for a particle with wavevector k to order λ2 in non-degenerate
perturbation theory. Show that this expansion in λ breaks down on the Bragg lines in
k-space defined by the condition

k · q =
1

2
|q|2 for q ∈ Λ∗ ,

and explain briefly, without additional calculations, the significance of this for energy levels
in the crystal.

Consider the particular case in which Λ has primitive vectors

a1 = 2π
(
i+

1√
3
j
)
, a2 = 2π

2√
3
j ,

where i and j are orthogonal unit vectors. Determine the polygonal region in k-space
corresponding to the lowest allowed energy band.
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33A Applications of Quantum Mechanics
A particle of mass m moves in three dimensions subject to a potential V (r) localised

near the origin. The wavefunction for a scattering process with incident particle of
wavevector k is denoted ψ(k, r). With reference to the asymptotic form of ψ, define
the scattering amplitude f(k,k′), where k′ is the wavevector of the outgoing particle with
|k′| = |k| = k.

By recasting the Schrödinger equation for ψ(k, r) as an integral equation, show that

f(k,k′) = − m

2π~2

∫
d3r′ exp(−ik′ · r′)V (r′)ψ(k, r′) .

[You may assume that

G(k; r) = − 1

4π|r| exp( ik|r| )

is the Green’s function for ∇2 + k2 which obeys the appropriate boundary conditions for
a scattering solution.]

Now suppose V (r) = λU(r), where λ ≪ 1 is a dimensionless constant. Determine
the first two non-zero terms in the expansion of f(k,k′) in powers of λ, giving each term
explicitly as an integral over one or more position variables r, r′, . . . .

Evaluate the contribution to f(k,k′) of order λ in the case U(r) = δ( |r| − a ),
expressing the answer as a function of a, k and the scattering angle θ (defined so that
k · k′ = k2 cos θ).
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Let Λ be a Bravais lattice with basis vectors a1, a2, a3. Define the reciprocal lattice
Λ∗ and write down basis vectors b1, b2, b3 for Λ∗ in terms of the basis for Λ.

A finite crystal consists of identical atoms at sites of Λ given by

ℓ = n1a1 + n2a2 + n3a3 with 0 6 ni < Ni .

A particle of mass m scatters off the crystal; its wavevector is k before scattering and
k′ after scattering, with |k| = |k′|. Show that the scattering amplitude in the Born
approximation has the form

− m

2π~2
∆(q) Ũ (q) , q = k′ − k ,

where U(x) is the potential due to a single atom at the origin and ∆(q) depends on
the crystal structure. [You may assume that in the Born approximation the amplitude
for scattering off a potential V (x) is −(m/2π~2) Ṽ (q) where tilde denotes the Fourier
transform.]

Derive an expression for |∆(q) | that is valid when e−iq·ai 6= 1. Show also that when
q is a reciprocal lattice vector |∆(q) | is equal to the total number of atoms in the crystal.
Comment briefly on the significance of these results.

Now suppose that Λ is a face-centred-cubic lattice:

a1 =
a

2
(ŷ + ẑ) , a2 =

a

2
(ẑ+ x̂) , a3 =

a

2
(x̂+ ŷ)

where a is a constant. Show that for a particle incident with |k| > 2π/a, enhanced
scattering is possible for at least two values of the scattering angle, θ1 and θ2, related by

sin(θ1/2)

sin(θ2/2)
=

√
3

2
.
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32A Applications of Quantum Mechanics

A beam of particles of mass m and energy ~2k2/2m is incident on a target at
the origin described by a spherically symmetric potential V (r). Assuming the potential
decays rapidly as r → ∞, write down the asymptotic form of the wavefunction, defining
the scattering amplitude f(θ).

Consider a free particle with energy ~2k2/2m. State, without proof, the general
axisymmetric solution of the Schrödinger equation for r > 0 in terms of spherical Bessel
and Neumann functions jℓ and nℓ, and Legendre polynomials Pℓ (ℓ = 0, 1, 2, . . .). Hence
define the partial wave phase shifts δℓ for scattering from a potential V (r) and derive the
partial wave expansion for f(θ) in terms of phase shifts.

Now suppose

V (r) =

{
~2γ2/2m r < a

0 r > a

with γ > k. Show that the S-wave phase shift δ0 obeys

tanh (κa)

κa
=

tan (ka+ δ0)

ka

where κ2 = γ2 − k2. Deduce that for an S-wave solution

f → tanh γa− γa

γ
as k → 0 .

[ You may assume : exp (ikr cos θ) =
∞∑

ℓ=0

(2ℓ+ 1) iℓ jℓ(kr)Pℓ (cos θ)

and jℓ(ρ) ∼
1

ρ
sin (ρ− ℓπ/2) , nℓ(ρ) ∼ −1

ρ
cos (ρ− ℓπ/2) as ρ → ∞ . ]
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Define the Rayleigh–Ritz quotient R[ψ] for a normalisable state |ψ〉 of a quantum
system with Hamiltonian H. Given that the spectrum of H is discrete and that there is
a unique ground state of energy E0, show that R[ψ] > E0 and that equality holds if and
only if |ψ〉 is the ground state.

A simple harmonic oscillator (SHO) is a particle of massm moving in one dimension
subject to the potential

V (x) =
1

2
mω2x2 .

Estimate the ground state energy E0 of the SHO by using the ground state wavefunction
for a particle in an infinite potential well of width a, centred on the origin (the potential is
U(x) = 0 for |x| < a/2 and U(x) = ∞ for |x| > a/2). Take a as the variational parameter.

Perform a similar estimate for the energy E1 of the first excited state of the SHO
by using the first excited state of the infinite potential well as a trial wavefunction.

Is the estimate for E1 necessarily an upper bound? Justify your answer.

[
You may use :

∫ π/2

−π/2
y2 cos2 y dy =

π

4

(π2
6
−1

)
and

∫ π

−π
y2 sin2 y dy = π

(π2
3
−1

2

)
.
]
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A particle of mass m and energy E = −~2κ2/2m < 0 moves in one dimension
subject to a periodic potential

V (x) = −~2λ
m

∞∑

ℓ=−∞
δ (x− ℓa) with λ > 0 .

Determine the corresponding Floquet matrix M. [You may assume without proof that
for the Schrödinger equation with potential α δ(x) the wavefunction ψ(x) is continuous at
x = 0 and satisfies ψ′(0+)− ψ′(0−) = (2mα/~2)ψ(0).]

Explain briefly, with reference to Bloch’s theorem, how restrictions on the energy
of a Bloch state can be derived from M. Deduce that for the potential V (x) above, κ is
confined to a range whose boundary values are determined by

tanh
(κa

2

)
=
κ

λ
and coth

(κa
2

)
=
κ

λ
.

Sketch the left-hand and right-hand sides of each of these equations as functions of
y = κa/2. Hence show that there is exactly one allowed band of negative energies with
either (i) E− 6 E < 0 or (ii) E− 6 E 6 E+ < 0 and determine the values of λa for which
each of these cases arise. [You should not attempt to evaluate the constants E±.]

Comment briefly on the limit a→ ∞ with λ fixed.
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Let Λ be a Bravais lattice in three dimensions. Define the reciprocal lattice Λ∗.

State and prove Bloch’s theorem for a particle moving in a potential V (x) obeying

V (x+ ℓ) = V (x) ∀ ℓ ∈ Λ, x ∈ R3 .

Explain what is meant by a Brillouin zone for this potential and how it is related to the
reciprocal lattice.

A simple cubic lattice Λ1 is given by the set of points

Λ1 =
{
ℓ ∈ R3 : ℓ = n1î+ n2ĵ+ n3k̂ , n1, n2, n3 ∈ Z

}
,

where î, ĵ and k̂ are unit vectors parallel to the Cartesian coordinate axes in R3. A body-
centred cubic (BCC) lattice ΛBCC is obtained by adding to Λ1 the points at the centre of
each cube, i.e. all points of the form

ℓ+
1

2

(
î+ ĵ+ k̂

)
, ℓ ∈ Λ1 .

Show that ΛBCC is Bravais with primitive vectors

a1 =
1

2

(
ĵ+ k̂− î

)
,

a2 =
1

2

(
k̂+ î− ĵ

)
,

a3 =
1

2

(
î+ ĵ− k̂

)
.

Find the reciprocal lattice Λ∗
BCC . Hence find a consistent choice for the first Brillouin

zone of a potential V (x) obeying

V (x+ ℓ) = V (x) ∀ ℓ ∈ ΛBCC , x ∈ R3 .

[Hint: The matrix M =
1

2




−1 1 1
1 −1 1
1 1 −1


 has inverse M−1 =




0 1 1
1 0 1
1 1 0


 . ]
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In the nearly-free electron model a particle of mass m moves in one dimension in a

periodic potential of the form V (x) = λU(x), where λ ≪ 1 is a dimensionless coupling
and U(x) has a Fourier series

U(x) =

+∞∑

l=−∞
Ul exp

(
2πi

a
lx

)
,

with coefficients obeying U−l = U∗
l for all l.

Ignoring any degeneracies in the spectrum, the exact energy E(k) of a Bloch state
with wavenumber k can be expanded in powers of λ as

E(k) = E0(k) + λ〈k|U |k〉 + λ2
∑

k′ 6=k

〈k|U |k′〉〈k′|U |k〉
E0(k)− E0(k′)

+ O(λ3) , (1)

where |k〉 is a normalised eigenstate of the free Hamiltonian Ĥ0 = p̂2/2m with momentum
p = ~k and energy E0(k) = ~2k2/2m.

Working on a finite interval of length L = Na, where N is a positive integer, we
impose periodic boundary conditions on the wavefunction:

ψ(x+Na) = ψ(x) .

What are the allowed values of the wavenumbers k and k′ which appear in (1)? For these
values evaluate the matrix element 〈k|U |k′〉.

For what values of k and k′ does (1) cease to be a good approximation? Explain
your answer. Quoting any results you need from degenerate perturbation theory, calculate
to O(λ) the location and width of the gaps between allowed energy bands for the periodic
potential V (x), in terms of the Fourier coefficients Ul.

Hence work out the allowed energy bands for the following potentials:

(i) V (x) = 2λ cos

(
2πx

a

)
,

(ii) V (x) = λa

+∞∑

n=−∞
δ (x− na) .
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(a) A classical particle of mass m scatters on a central potential V (r) with energy

E, impact parameter b, and scattering angle θ. Define the corresponding differential
cross-section.

For particle trajectories in the Coulomb potential,

VC(r) =
e2

4πǫ0r
,

the impact parameter is given by

b =
e2

8πǫ0E
cot

(
θ

2

)
.

Find the differential cross-section as a function of E and θ.

(b) A quantum particle of mass m and energy E = ~2k2/2m scatters in a localised
potential V (r). With reference to the asymptotic form of the wavefunction at large
|r|, define the scattering amplitude f(k,k′) as a function of the incident and outgoing
wavevectors k and k′ (where |k| = |k′| = k). Define the differential cross-section for this
process and express it in terms of f(k,k′).

Now consider a potential of the form V (r) = λU(r), where λ≪ 1 is a dimensionless
coupling and U does not depend on λ. You may assume that the Schrödinger equation for
the wavefunction ψ(k; r) of a scattering state with incident wavevector k may be written
as the integral equation

ψ(k; r) = exp (ik · r) +
2mλ

~2

∫
d3r′ G(+)

0

(
k; r− r′

)
U(r′)ψ(k; r′) ,

where

G(+)
0 (k; r) = − 1

4π

exp (ik|r|)
|r| .

Show that the corresponding scattering amplitude is given by

f(k,k′) = − mλ

2π~2

∫
d3r′ exp

(
−ik′ · r′) U(r′)ψ(k; r′) .

By expanding the wavefunction in powers of λ and keeping only the leading term, calculate
the leading-order contribution to the differential cross-section, and evaluate it for the case
of the Yukawa potential

V (r) = λ
exp(−µr)

r
.

By taking a suitable limit, obtain the differential cross-section for quantum scattering in
the Coulomb potential VC(r) defined in Part (a) above, correct to leading order in an
expansion in powers of the constant α̃ = e2/4πǫ0. Express your answer as a function of
the particle energy E and scattering angle θ, and compare it to the corresponding classical
cross-section calculated in Part (a).

Part II, 2014 List of Questions [TURN OVER

2014



10

Paper 1, Section II

34A Applications of Quantum Mechanics
A particle of mass m scatters on a localised potential well V (x) in one dimension.

With reference to the asymptotic behaviour of the wavefunction as x → ±∞, define the
reflection and transmission amplitudes, r and t, for a right-moving incident particle of
wave number k. Define also the corresponding amplitudes, r′ and t′, for a left-moving
incident particle of wave number k. Derive expressions for r′ and t′ in terms of r and t.

(a) Define the S-matrix, giving its elements in terms of r and t. Using the relation

|r|2 + |t|2 = 1

(which you need not derive), show that the S-matrix is unitary. How does the S-matrix
simplify if the potential well satisfies V (−x) = V (x)?

(b) Consider the potential well

V (x) = −3~2

m

1

cosh2(x)
.

The corresponding Schrödinger equation has an exact solution

ψk(x) = exp (ikx)
[
3 tanh2(x)− 3ik tanh(x)− (1 + k2)

]
,

with energy E = ~2k2/2m, for every real value of k. [You do not need to verify this.] Find
the S-matrix for scattering on this potential. What special feature does the scattering
have in this case?

(c) Explain the connection between singularities of the S-matrix and bound states of
the potential well. By analytic continuation of the solution ψk(x) to appropriate complex
values of k, find the wavefunctions and energies of the bound states of the well. [You do
not need to normalise the wavefunctions.]
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Paper 4, Section II

33D Applications of Quantum Mechanics
Define the Floquet matrix for a particle moving in a periodic potential in one

dimension and explain how it determines the allowed energy bands of the system.

A potential barrier in one dimension has the form

V (x) =

{
V0(x) , |x| < a/4 ,

0 , |x| > a/4 ,

where V0(x) is a smooth, positive function of x. The reflection and transmission amplitudes
for a particle of wavenumber k > 0, incident from the left, are r(k) and t(k) respectively.
For a particle of wavenumber −k, incident from the right, the corresponding amplitudes
are r′(k) and t′(k) = t(k). In the following, for brevity, we will suppress the k-dependence
of these quantities.

Consider the periodic potential Ṽ , defined by Ṽ (x) = V (x) for |x| < a/2 and
by Ṽ (x + a) = Ṽ (x) elsewhere. Write down two linearly independent solutions of the
corresponding Schrödinger equation in the region −3a/4 < x < −a/4. Using the scattering
data given above, extend these solutions to the region a/4 < x < 3a/4. Hence find the
Floquet matrix of the system in terms of the amplitudes r, r′ and t defined above.

Show that the edges of the allowed energy bands for this potential lie at
E = ~2k2/2m, where

ka = i log
(
t±

√
rr′

)
.
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Paper 3, Section II

34D Applications of Quantum Mechanics
Write down the classical Hamiltonian for a particle of mass m, electric charge −e

and momentum p moving in the background of an electromagnetic field with vector and
scalar potentials A(x, t) and φ(x, t).

Consider the case of a constant uniform magnetic field, B = (0, 0, B) and E = 0.
Working in the gauge with A = (−By, 0, 0) and φ = 0, show that Hamilton’s equations,

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
,

admit solutions corresponding to circular motion in the x-y plane with angular frequency
ωB = eB/m.

Show that, in the same gauge, the coordinates (x0, y0, 0) of the centre of the circle
are related to the instantaneous position x = (x, y, z) and momentum p = (px, py, pz) of
the particle by

x0 = x− py
eB

, y0 =
px
eB

. (1)

Write down the quantum Hamiltonian Ĥ for the system. In the case of a uniform
constant magnetic field discussed above, find the allowed energy levels. Working in
the gauge specified above, write down quantum operators corresponding to the classical
quantities x0 and y0 defined in (1) above and show that they are conserved.

[In this question you may use without derivation any facts relating to the energy
spectrum of the quantum harmonic oscillator provided they are stated clearly.]

Part II, 2013 List of Questions

2013



9

Paper 2, Section II

34D Applications of Quantum Mechanics
(i) A particle of momentum ~k and energy E = ~2k2/2m scatters off a spherically-

symmetric target in three dimensions. Define the corresponding scattering amplitude f as
a function of the scattering angle θ. Expand the scattering amplitude in partial waves of
definite angular momentum l, and determine the coefficients of this expansion in terms
of the phase shifts δl(k) appearing in the following asymptotic form of the wavefunction,
valid at large distance from the target,

ψ(r) ∼
∞∑

l=0

2l + 1

2ik

[
e2iδl

eikr

r
− (−1)l

e−ikr

r

]
Pl(cos θ) .

Here, r = |r| is the distance from the target and Pl are the Legendre polynomials.

[You may use without derivation the following approximate relation between plane and
spherical waves (valid asymptotically for large r):

exp(ikz) ∼
∞∑

l=0

(2l + 1) il
sin

(
kr − 1

2 lπ
)

kr
Pl(cos θ) . ]

(ii) Suppose that the potential energy takes the form V (r) = λU(r) where λ ≪ 1
is a dimensionless coupling. By expanding the wavefunction in a power series in λ, derive
the Born Approximation to the scattering amplitude in the form

f(θ) = −2mλ

~2

∫ ∞

0
U(r)

sin qr

q
rdr ,

up to corrections of order λ2, where q = 2k sin(θ/2). [You may quote any results you need
for the Green’s function for the differential operator ∇2 + k2 provided they are stated
clearly.]

(iii) Derive the corresponding order λ contribution to the phase shift δl(k) of angular
momentum l.

[You may use the orthogonality relations

∫ +1

−1
Pl(w)Pm(w) dw =

2

(2l + 1)
δlm

and the integral formula

∫ 1

0
Pl

(
1− 2x2

)
sin(ax) dx =

a

2

[
jl

(a
2

)]2
,

where jl(z) is a spherical Bessel function.]
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Paper 1, Section II

34D Applications of Quantum Mechanics
Consider a quantum system with Hamiltonian Ĥ and energy levels

E0 < E1 < E2 < . . . .

For any state |ψ〉 define the Rayleigh–Ritz quotient R[ψ] and show the following:

(i) the ground state energy E0 is the minimum value of R[ψ];

(ii) all energy eigenstates are stationary points of R[ψ] with respect to variations of |ψ〉.
Under what conditions can the value of R[ψα] for a trial wavefunction ψα (depending

on some parameter α) be used as an estimate of the energy E1 of the first excited state?
Explain your answer.

For a suitably chosen trial wavefunction which is the product of a polynomial and a
Gaussian, use the Rayleigh–Ritz quotient to estimate E1 for a particle of mass m moving
in a potential V (x) = g|x|, where g is a constant.

[You may use the integral formulae,

∫ ∞

0
x2n exp

(
−px2

)
dx =

(2n − 1)!!

2(2p)n

√
π

p∫ ∞

0
x2n+1 exp

(
−px2

)
dx =

n!

2pn+1

where n is a non-negative integer and p is a constant. ]
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Paper 4, Section II

33E Applications of Quantum Mechanics
Consider a one-dimensional crystal lattice of lattice spacing a with the n-th atom

having position rn = na+xn and momentum pn, for n = 0, 1, . . . , N−1. The atoms interact
with their nearest neighbours with a harmonic force and the classical Hamiltonian is

H =
∑

n

p2n
2m

+
1

2
λ(xn − xn−1)

2 ,

where we impose periodic boundary conditions: xN = x0. Show that the normal mode
frequencies for the classical harmonic vibrations of the system are given by

ωl = 2

√
λ

m

∣∣∣∣ sin
(
kla

2

)∣∣∣∣ ,

where kl = 2πl/Na, with l integer and (for N even, which you may assume) −N/2 < l 6
N/2. What is the velocity of sound in this crystal?

Show how the system may be quantized to give the quantum operator

xn(t) = X0(t) +
∑

l 6=0

√
~

2Nmωl

[
ale

−i(ωlt−klna) + a†l e
i(ωlt−klna)

]
,

where a†l and al are creation and annihilation operators, respectively, whose commutation
relations should be stated. Briefly describe the spectrum of energy eigenstates for this
system, stating the definition of the ground state |0〉 and giving the expression for the
energy eigenvalue of any eigenstate.

The Debye–Waller factor e−W (Q) associated with Bragg scattering from this crystal
is defined by the matrix element

e−W (Q) = 〈0|eiQx0(0)|0〉 .

In the case where 〈0|X0|0〉 = 0, calculate W (Q).
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Paper 3, Section II

34E Applications of Quantum Mechanics
A simple model of a crystal consists of a 1D linear array of sites at positions x = na,

for all integer n and separation a, each occupied by a similar atom. The potential due to
the atom at the origin is U(x), which is symmetric: U(−x) = U(x). The Hamiltonian,
H0, for the atom at the n-th site in isolation has electron eigenfunction ψn(x) with energy
E0. Write down H0 and state the relationship between ψn(x) and ψ0(x).

The Hamiltonian H for an electron moving in the crystal is H = H0 + V (x). Give
an expression for V (x).

In the tight-binding approximation for this model the ψn are assumed to be
orthonormal, (ψn, ψm) = δnm, and the only non-zero matrix elements of H0 and V are

(ψn,H0ψn) = E0, (ψn, V ψn) = α, (ψn, V ψn±1) = −A ,

where A > 0. By considering the trial wavefunction Ψ(x, t) =
∑

n cn(t)ψn(x), show that
the time-dependent Schrödinger equation governing the amplitudes cn(t) is

i~ċn = (E0 + α)cn −A(cn+1 + cn−1) .

By examining a solution of the form

cn = ei(kna−Et/~) ,

show that E, the energy of the electron in the crystal, lies in a band given by

E = E0 + α− 2A cos ka .

Using the fact that ψ0(x) is a parity eigenstate show that

(ψn, xψn) = na .

The electron in this model is now subject to an electric field E in the direction of
increasing x, so that V (x) is replaced by V (x)−eEx, where−e is the charge on the electron.
Assuming that (ψn, xψm) = 0, n 6= m, write down the new form of the time-dependent
Schrödinger equation for the probability amplitudes cn. Verify that it has solutions of the
form

cn = exp

[
− i

~

∫ t

0
ǫ(t′)dt′ + i

(
k +

eEt
~

)
na

]
,

where

ǫ(t) = E0 + α− 2A cos

[(
k +

eEt
~

)
a

]
.

Use this result to show that the dynamical behaviour of an electron near the bottom of
an energy band is the same as that for a free particle in the presence of an electric field
with an effective mass m∗ = ~2/(2Aa2).
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Paper 2, Section II

34E Applications of Quantum Mechanics
A solution of the S-wave Schrödinger equation at large distances for a particle of

mass m with momentum ~k and energy E = ~2k2/2m, has the form

ψ0(r) ∼ A

r
[sin kr + g(k) cos kr] .

Define the phase shift δ0 and verify that tan δ0(k) = g(k).

Write down a formula for the cross-section σ, for a particle of momentum ~k
scattering on a radially symmetric potential of finite range, as a function of the phase
shifts δl for the partial waves with quantum number l.

(i) Suppose that g(k) = −k/K for K > 0. Show that there is a bound state of energy
EB = −~2K2/2m. Neglecting the contribution from partial waves with l > 0 show that
the cross section is

σ =
4π

K2 + k2
.

(ii) Suppose now that g(k) = γ/(K0 − k) with K0 > 0, γ > 0 and γ ≪ K0. Neglecting the
contribution from partial waves with l > 0, derive an expression for the cross section σ,
and show that it has a local maximum when E ≈ ~2K2

0/2m. Discuss the interpretation of
this phenomenon in terms of resonant behaviour and derive an expression for the decay
width of the resonant state.
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Paper 1, Section II

34E Applications of Quantum Mechanics
Give an account of the variational principle for establishing an upper bound on the

ground-state energy E0 of a particle moving in a potential V (x) in one dimension.

A particle of unit mass moves in the potential

V (x) =

{
∞ x 6 0
λx x > 0

,

with λ a positive constant. Explain why it is important that any trial wavefunction used
to derive an upper bound on E0 should be chosen to vanish for x 6 0.

Use the trial wavefunction

ψ(x) =

{
0 x 6 0
xe−ax x > 0

,

where a is a positive real parameter, to establish an upper bound E0 6 E(a, λ) for the
energy of the ground state, and hence derive the lowest upper bound on E0 as a function
of λ.

Explain why the variational method cannot be used in this case to derive an upper
bound for the energy of the first excited state.
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Paper 1, Section II

34E Applications of Quantum Mechanics
In one dimension a particle of mass m and momentum ~k, k > 0, is scattered by

a potential V (x) where V (x) → 0 as |x| → ∞. Incoming and outgoing plane waves of
positive (+) and negative (−) parity are given, respectively, by

I+(k, x) = e−ik|x| , I−(k, x) = sgn(x)e−ik|x| ,
O+(k, x) = eik|x| , O−(k, x) = −sgn(x)eik|x| .

The scattering solutions to the time-independent Schrödinger equation with positive
and negative parity incoming waves are ψ+(x) and ψ−(x), respectively. State how the
asymptotic behaviour of ψ+ and ψ− can be expressed in terms of I+, I−, O+, O− and the
S-matrix denoted by

S =

(
S++ S+−
S−+ S−−

)
.

In the case where V (x) = V (−x) explain briefly why you expect S+− = S−+ = 0.

The potential V (x) is given by

V (x) = V0[δ(x− a) + δ(x+ a)] ,

where V0 is a constant. In this case, show that

S−−(k) = e−2ika

[
(2k − iU0)e

ika + iU0e
−ika

(2k + iU0)e−ika − iU0eika

]
,

where U0 = 2mV0/~2. Verify that |S−−|2 = 1 and explain briefly the physical meaning of
this result.

For V0 < 0, by considering the poles or zeros of S−−(k) show that there exists one
bound state of negative parity in this potential if U0a < −1.

For V0 > 0 and U0a≫ 1, show that S−−(k) has a pole at

ka = π + α− iγ

where, to leading order in 1/(U0a),

α = − π

U0a
, γ =

(
π

U0a

)2

.

Explain briefy the physical meaning of this result, and why you expect that γ > 0.
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Paper 2, Section II

34E Applications of Quantum Mechanics
A beam of particles of mass m and momentum p = ~k, incident along the z-axis,

is scattered by a spherically symmetric potential V (r), where V (r) = 0 for large r. State
the boundary conditions on the wavefunction as r → ∞ and hence define the scattering
amplitude f(θ), where θ is the scattering angle.

Given that, for large r,

eikr cos θ =
1

2ikr

∞∑

l=0

(2l + 1)
(
eikr − (−1)le−ikr

)
Pl(cos θ) ,

explain how the partial-wave expansion can be used to define the phase shifts δl(k) (l =
0, 1, 2, . . .). Furthermore, given that dσ/dΩ = |f(θ)|2 , derive expressions for f(θ) and the
total cross-section σ in terms of the δl.

In a particular case V (r) is given by

V (r) =





∞ , r < a ,
−V0 , a < r < 2a ,

0 , r > 2a ,

where V0 > 0. Show that the S-wave phase shift δ0 satisfies

tan(δ0) =
k cos(2ka) − κ cot(κa) sin(2ka)

k sin(2ka) + κ cot(κa) cos(2ka)
,

where κ2 = 2mV0/~2 + k2.

Derive an expression for the scattering length as in terms of κ. Find the values of
κ for which |as| diverges and briefly explain their physical significance.

Paper 3, Section II

34E Applications of Quantum Mechanics
An electron of mass m moves in a D-dimensional periodic potential that satisfies

the periodicity condition
V (r + l) = V (r) ∀ l ∈ Λ ,

where Λ is a D-dimensional Bravais lattice. State Bloch’s theorem for the energy
eigenfunctions of the electron.

For a one-dimensional potential V (x) such that V (x+a) = V (x), give a full account
of how the “nearly free electron model” leads to a band structure for the energy levels.

Explain briefly the idea of a Fermi surface and its rôle in explaining the existence
of conductors and insulators.
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Paper 4, Section II

33E Applications of Quantum Mechanics
A particle of charge −e and mass m moves in a magnetic field B(x, t) and in

an electric potential φ(x, t). The time-dependent Schrödinger equation for the particle’s
wavefunction Ψ(x, t) is

i~
(
∂

∂t
− ie

~
φ

)
Ψ = − ~2

2m

(
∇+

ie

~
A

)2

Ψ ,

where A is the vector potential with B = ∇ ∧ A. Show that this equation is invariant
under the gauge transformations

A(x, t) → A(x, t) +∇f(x, t) ,

φ(x, t) → φ(x, t)− ∂
∂tf(x, t) ,

where f is an arbitrary function, together with a suitable transformation for Ψ which
should be stated.

Assume now that ∂Ψ/∂z = 0, so that the particle motion is only in the x and y
directions. Let B be the constant field B = (0, 0, B) and let φ = 0. In the gauge where
A = (−By, 0, 0) show that the stationary states are given by

Ψk(x, t) = ψk(x)e
−iEt/~ ,

with
ψk(x) = eikxχk(y) . (∗)

Show that χk(y) is the wavefunction for a simple one-dimensional harmonic oscillator
centred at position y0 = ~k/eB. Deduce that the stationary states lie in infinitely
degenerate levels (Landau levels) labelled by the integer n > 0, with energy

En = (2n + 1)
~eB
2m

.

A uniform electric field E is applied in the y-direction so that φ = −Ey. Show that
the stationary states are given by (∗), where χk(y) is a harmonic oscillator wavefunction
centred now at

y0 =
1

eB

(
~k −m

E
B

)
.

Show also that the eigen-energies are given by

En,k = (2n + 1)
~eB
2m

+ eEy0 +
mE2

2B2
.

Why does this mean that the Landau energy levels are no longer degenerate in two
dimensions?
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Paper 1, Section II

34B Applications of Quantum Mechanics
Give an account of the variational principle for establishing an upper bound on the

ground-state energy, E0, of a particle moving in a potential V (x) in one dimension.

Explain how an upper bound on the energy of the first excited state can be found
in the case that V (x) is a symmetric function.

A particle of mass 2m = ~2 moves in the potential

V (x) = −V0 e−x2
, V0 > 0 .

Use the trial wavefunction
ψ(x) = e−

1
2
ax2

,

where a is a positive real parameter, to establish the upper bound E0 6 E(a) for the
energy of the ground state, where

E(a) =
1

2
a− V0

√
a√

1 + a
.

Show that, for a > 0, E(a) has one zero and find its position.

Show that the turning points of E(a) are given by

(1 + a)3 =
V 2
0

a
,

and deduce that there is one turning point in a > 0 for all V0 > 0.

Sketch E(a) for a > 0 and hence deduce that V (x) has at least one bound state for
all V0 > 0.

For 0 < V0 ≪ 1 show that

−V0 < E0 6 ǫ(V0) ,

where ǫ(V0) = − 1
2 V

2
0 + O(V 4

0 ).

[You may use the result that
∫ ∞
−∞ e−bx2

dx =
√

π
b for b > 0.]
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Paper 2, Section II

34B Applications of Quantum Mechanics
A beam of particles of mass m and momentum p = ~k is incident along the z-axis.

Write down the asymptotic form of the wave function which describes scattering under
the influence of a spherically symmetric potential V (r) and which defines the scattering
amplitude f(θ).

Given that, for large r,

eikr cos θ ∼ 1

2ikr

∞∑

l=0

(2l + 1)
(
eikr − (−1)l e−ikr

)
Pl(cos θ) ,

show how to derive the partial-wave expansion of the scattering amplitude in the form

f(θ) =
1

k

∞∑

l=0

(2l + 1) eiδl sin δl Pl(cos θ) .

Obtain an expression for the total cross-section, σ.

Let V (r) have the form

V (r) =

{
−V0 , r < a ,
0 , r > a ,

where V0 =
~2

2m
γ 2.

Show that the l = 0 phase-shift δ0 satisfies

tan(ka+ δ0)

ka
=

tan κa

κa
,

where κ 2 = k 2 + γ 2.

Assume γ to be large compared with k so that κ may be approximated by γ. Show,
using graphical methods or otherwise, that there are values for k for which δ0(k) = nπ
for some integer n, which should not be calculated. Show that the smallest value, k0, of k
for which this condition holds certainly satisfies k0 < 3π/2a.
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Paper 3, Section II

34B Applications of Quantum Mechanics
State Bloch’s theorem for a one dimensional lattice which is invariant under

translations by a.

A simple model of a crystal consists of a one-dimensional linear array of identical
sites with separation a. At the nth site the Hamiltonian, neglecting all other sites, is Hn

and an electron may occupy either of two states, φn(x) and χn(x), where

Hn φn(x) = E0 φn(x) , Hn χn(x) = E1 χn(x) ,

and φn and χn are orthonormal. How are φn(x) and χn(x) related to φ0(x) and χ0(x)?

The full Hamiltonian is H and is invariant under translations by a. Write trial
wavefunctions ψ(x) for the eigenstates of this model appropriate to a tight binding
approximation if the electron has probability amplitudes bn and cn to be in the states
φn and χn respectively.

Assume that the only non-zero matrix elements in this model are, for all n,

(φn,Hn φn) = E0 , (χn,Hn χn) = E1 ,

(φn, V φn±1) = (χn, V χn±1) = (φn, V χn±1) = (χn, V φn±1) = −A ,

where H = Hn + V and A > 0. Show that the time-dependent Schrödinger equation
governing the amplitudes becomes

i~ ḃn = E0 bn −A(bn+1 + bn−1 + cn+1 + cn−1) ,

i~ ċn = E1 cn −A(cn+1 + cn−1 + bn+1 + bn−1) .

By examining solutions of the form

(
bn
cn

)
=

(
B
C

)
e i(kna−Et/~) ,

show that the allowed energies of the electron are two bands given by

E =
1

2
(E0 +E1 − 4A cos ka)± 1

2

√
(E0 − E1)2 + 16A2 cos2 ka .

Define the Brillouin zone for this system and find the energies at the top and bottom
of both bands. Hence, show that the energy gap between the bands is

∆E = −4A+
√
(E1 −E0)2 + 16A2 .

Show that the wavefunctions ψ(x) satisfy Bloch’s theorem.

Describe briefly what are the crucial differences between insulators, conductors and
semiconductors.

Part II, 2010 List of Questions

2010



9

Paper 4, Section II

33B Applications of Quantum Mechanics
The scattering amplitude for electrons of momentum ~k incident on an atom located

at the origin is f(r̂) where r̂ = r/r. Explain why, if the atom is displaced by a position
vector a, the asymptotic form of the scattering wave function becomes

ψk(r) ∼ e ik·r + e ik·a
e ikr

′

r′
f(r̂′) ∼ e ik·r + e i(k−k′)·a e

ikr

r
f(r̂) ,

where r′ = r − a, r′ = |r′|, r̂′ = r′/r′ and k = |k|, k′ = kr̂. For electrons incident on
N atoms in a regular Bravais crystal lattice show that the differential cross-section for
scattering in the direction r̂ is

dσ

dΩ
= N |f(r̂)|2 ∆(k− k′) .

Derive an explicit form for ∆(Q) and show that it is strongly peaked when Q ≈ b for b
a reciprocal lattice vector.

State the Born approximation for f(r̂) when the scattering is due to a potential
V (r). Calculate the Born approximation for the case V (r) = −a δ(r).

Electrons with de Broglie wavelength λ are incident on a target composed of many
randomly oriented small crystals. They are found to be scattered strongly through an angle
of 60◦. What is the likely distance between planes of atoms in the crystal responsible for
the scattering?
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Paper 1, Section II

34D Applications of Quantum Mechanics

Consider the scaled one-dimensional Schrödinger equation with a potential V (x)

such that there is a complete set of real, normalized bound states ψn(x), n = 0, 1, 2, . . .,

with discrete energies E0 < E1 < E2 < . . ., satisfying

−d
2ψn

dx2
+ V (x)ψn = Enψn.

Show that the quantity

〈E〉 =
∫ ∞

−∞

((
dψ

dx

)2

+ V (x)ψ2

)
dx,

where ψ(x) is a real, normalized trial function depending on one or more parameters α,

can be used to estimate E0, and show that 〈E〉 > E0.

Let the potential be V (x) = |x|. Using a suitable one-parameter family of either

Gaussian or piecewise polynomial trial functions, find a good estimate for E0 in this case.

How could you obtain a good estimate for E1? [ You should suggest suitable trial

functions, but DO NOT carry out any further integration.]
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Paper 2, Section II

34D Applications of Quantum Mechanics

A particle scatters quantum mechanically off a spherically symmetric potential V (r).

In the l = 0 sector, and assuming ~2/2m = 1, the radial wavefunction u(r) satisfies

−d2u

dr2
+ V (r)u = k2u,

and u(0) = 0. The asymptotic behaviour of u, for large r, is

u(r) ∼ C
(
S(k)eikr − e−ikr

)
,

where C is a constant. Show that if S(k) is analytically continued to complex k, then

S(k)S(−k) = 1 and S(k)∗S(k∗) = 1.

Deduce that for real k, S(k) = e2iδ0(k) for some real function δ0(k), and that

δ0(k) = −δ0(−k).

For a certain potential,

S(k) =
(k + iλ)(k + 3iλ)

(k − iλ)(k − 3iλ)
,

where λ is a real, positive constant. Evaluate the scattering length a and the total cross

section 4πa2.

Briefly explain the significance of the zeros of S(k).
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Paper 3, Section II

34D Applications of Quantum Mechanics

An electron of charge −e and mass m is subject to a magnetic field of the form

B = (0, 0, B(y)), where B(y) is everywhere greater than some positive constant B0. In a

stationary state of energy E, the electron’s wavefunction Ψ satisfies

− ~2

2m

(
∇+

ie

~
A

)2

Ψ+
e~
2m

B · σΨ = EΨ, (∗)

where A is the vector potential and σ1, σ2 and σ3 are the Pauli matrices.

Assume that the electron is in a spin down state and has no momentum along the

z-axis. Show that with a suitable choice of gauge, and after separating variables, equation

(∗) can be reduced to

−d2χ

dy2
+ (k + a(y))2 χ− b(y)χ = ǫχ, (∗∗)

where χ depends only on y, ǫ is a rescaled energy, and b(y) a rescaled magnetic field

strength. What is the relationship between a(y) and b(y)?

Show that (∗∗) can be factorized in the form M†Mχ = ǫχ where

M =
d

dy
+W (y)

for some function W (y), and deduce that ǫ is non-negative.

Show that zero energy states exist for all k and are therefore infinitely degenerate.

Paper 4, Section II

33D Applications of Quantum Mechanics

What are meant by Bloch states and the Brillouin zone for a quantum mechanical

particle moving in a one-dimensional periodic potential?

Derive an approximate value for the lowest-lying energy gap for the Schrödinger

equation

−d
2ψ

dx2
− V0(cos x+ cos 2x)ψ = Eψ

when V0 is small and positive.

Estimate the width of this gap in the case that V0 is large and positive.
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1/II/33E Applications of Quantum Mechanics

A beam of particles each of mass m and energy ~2k2/(2m) scatters off an axisym-
metric potential V . In the first Born approximation the scattering amplitude is

f(θ) = − m

2π~2

∫
e−i(k−k0)·x′V (x′) d3x′, (∗)

where k0 = (0, 0, k) is the wave vector of the incident particles and k = (k sin θ, 0, k cos θ) is
the wave vector of the outgoing particles at scattering angle θ (and φ = 0). Let q = k−k0

and q = |q|. Show that when the scattering potential V is spherically symmetric the
expression (∗) simplifies to

f(θ) = − 2m

~2q

∫ ∞

0

r′V (r′) sin(qr′) dr′,

and find the relation between q and θ.

Calculate this scattering amplitude for the potential V (r) = V0e
−r where V0 is a

constant, and show that at high energies the particles emerge predominantly in a narrow
cone around the forward beam direction. Estimate the angular width of the cone.

2/II/33E Applications of Quantum Mechanics

Consider a large, essentially two-dimensional, rectangular sample of conductor of
area A, and containing 2N electrons of charge −e. Suppose a magnetic field of strength
B is applied perpendicularly to the sample. Write down the Landau Hamiltonian for one
of the electrons assuming that the electron interacts just with the magnetic field.

[You may ignore the interaction of the electron spin with the magnetic field.]

Find the allowed energy levels of the electron.

Find the total energy of the 2N electrons at absolute zero temperature as a function
of B, assuming that B is in the range

π~N
eA

6 B 6 2π~N
eA

.

Comment on the values of the total energy when B takes the values at the two ends
of this range.
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3/II/33E Applications of Quantum Mechanics

Consider the body-centred cuboidal lattice L with lattice points (n1a, n2a, n3b) and
((n1 + 1

2 )a, (n2 + 1
2 )a, (n3 + 1

2 )b), where a and b are positive and n1, n2 and n3 take all

possible integer values. Find the reciprocal lattice L̃ and describe its geometrical form.
Calculate the volumes of the unit cells of the lattices L and L̃.

Find the reciprocal lattice vector associated with the lattice planes parallel to the
plane containing the points (0, 0, b), (0, a, b), ( 1

2a,
1
2a,

1
2b), (a, 0, 0) and (a, a, 0). Deduce

the allowed Bragg scattering angles of X-rays off these planes, assuming that b = 4
3a and

that the X-rays have wavelength λ = 1
2a.

4/II/33E Applications of Quantum Mechanics

Explain why the allowed energies of electrons in a three-dimensional crystal lie
in energy bands. What quantum numbers can be used to classify the electron energy
eigenstates?

Describe the effect on the energy level structure of adding a small density of
impurity atoms randomly to the crystal.
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1/II/33A Applications of Quantum Mechanics

In a certain spherically symmetric potential, the radial wavefunction for particle
scattering in the l = 0 sector (S-wave), for wavenumber k and r � 0, is

R(r, k) =
A

kr

(
g(−k)e−ikr − g(k)eikr

)

where

g(k) =
k + iκ

k − iα

with κ and α real, positive constants. Scattering in sectors with l 6= 0 can be neglected.
Deduce the formula for the S-matrix in this case and show that it satisfies the expected
symmetry and reality properties. Show that the phase shift is

δ(k) = tan−1 k(κ+ α)

k2 − κα
.

What is the scattering length for this potential?

From the form of the radial wavefunction, deduce the energies of the bound states,
if any, in this system. If you were given only the S-matrix as a function of k, and no other
information, would you reach the same conclusion? Are there any resonances here?

[Hint: Recall that S(k) = e2iδ(k) for real k, where δ(k) is the phase shift.]

2/II/33A Applications of Quantum Mechanics

Describe the variational method for estimating the ground state energy of a
quantum system. Prove that an error of order ε in the wavefunction leads to an error
of order ε2 in the energy.

Explain how the variational method can be generalized to give an estimate of the
energy of the first excited state of a quantum system.

Using the variational method, estimate the energy of the first excited state of the
anharmonic oscillator with Hamiltonian

H = − d2

dx2
+ x2 + x4 .

How might you improve your estimate?

[Hint: If I2n =
∫∞
−∞ x2n e−ax2

dx then

I0 =

√
π

a
, I2 =

√
π

a

1

2a
, I4 =

√
π

a

3

4a2
, I6 =

√
π

a

15

8a3
.

]
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3/II/33A Applications of Quantum Mechanics

Consider the Hamiltonian
H = B(t) · S

for a particle of spin 1
2 fixed in space, in a rotating magnetic field, where

S1 =
~
2

(
0 1
1 0

)
, S2 =

~
2

(
0 −i
i 0

)
, S3 =

~
2

(
1 0
0 −1

)

and
B(t) = B(sinα cosωt, sinα sinωt, cosα)

with B, α and ω constant, and B > 0, ω > 0.

There is an exact solution of the time-dependent Schrödinger equation for this
Hamiltonian,

χ(t) =

(
cos
(
1
2λt
)
− i

B − ω cosα

λ
sin
(
1
2λt
))

e−iωt/2 χ
+
+ i
(ω
λ
sinα sin

(
1
2λt
))
eiωt/2 χ−

where λ ≡ (ω2 − 2ωB cosα+B2)1/2 and

χ
+
=

(
cos α

2

eiωt sin α
2

)
, χ− =

(
e−iωt sin α

2

− cos α
2

)
.

Show that, for ω � B, this exact solution simplifies to a form consistent with the adiabatic
approximation. Find the dynamic phase and the geometric phase in the adiabatic regime.
What is the Berry phase for one complete cycle of B?

The Berry phase can be calculated as an integral of the form

Γ = i

∮
〈ψ|∇Rψ〉 · dR .

Evaluate Γ for the adiabatic evolution described above.
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4/II/33A Applications of Quantum Mechanics

Consider a 1-dimensional chain of 2N atoms of mass m (with N large and with
periodic boundary conditions). The interactions between neighbouring atoms are modelled
by springs with alternating spring constants K and G, with K > G.

K G K G K G

m m m m m

In equilibrium, the separation of the atoms is a, the natural length of the springs.

Find the frequencies of the longitudinal modes of vibration for this system, and show
that they are labelled by a wavenumber q that is restricted to a Brillouin zone. Identify the
acoustic and optical bands of the vibration spectrum, and determine approximations for
the frequencies near the centre of the Brillouin zone. What is the frequency gap between
the acoustic and optical bands at the zone boundary?

Describe briefly the properties of the phonons in this system.
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1/II/33A Applications of Quantum Mechanics

Consider a particle of mass m and momentum ~k moving under the influence of a
spherically symmetric potential V (r) such that V (r) = 0 for r > a. Define the scattering
amplitude f(θ) and the phase shift δ`(k). Here θ is the scattering angle. How is f(θ)
related to the differential cross section?

Obtain the partial-wave expansion

f(θ) =
1

k

∞∑

`=0

(2`+ 1) eiδ` sin δ` P`(cos θ) .

Let R`(r) be a solution of the radial Schrödinger equation, regular at r = 0, for
energy ~2k2/2m and angular momentum `. Let

Q`(k) = a
R′

` (a)

R`(a)
− ka

j′` (ka)
j`(ka)

.

Obtain the relation

tan δ` =
Q`(k)j

2
`(ka)ka

Q`(k)n`(ka)j`(ka)ka− 1
.

Suppose that

tan δ` ≈ γ

k0 − k
,

for some `, with all other δ` small for k ≈ k0. What does this imply for the differential
cross section when k ≈ k0?

[For V = 0, the two independent solutions of the radial Schrödinger equation are j`(kr)
and n`(kr) with

j`(ρ) ∼
1

ρ
sin(ρ− 1

2`π), n`(ρ) ∼ −1

ρ
cos(ρ− 1

2`π) as ρ→ ∞ ,

eiρ cos θ =
∞∑

`=0

(2`+ 1)i` j`(ρ)P`(cos θ) .

Note that the Wronskian ρ2
(
j`(ρ)n

′
` (ρ)− j′` (ρ)n`(ρ)

)
is independent of ρ.]
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2/II/33D Applications of Quantum Mechanics

State and prove Bloch’s theorem for the electron wave functions for a periodic
potential V (r) = V (r+ l) where l =

∑
i ni ai is a lattice vector.

What is the reciprocal lattice? Explain why the Bloch wave-vector k is arbitrary
up to k → k+ g, where g is a reciprocal lattice vector.

Describe in outline why one can expect energy bands En(k) = En(k+ g). Explain
how k may be restricted to a Brillouin zone B and show that the number of states in
volume d3k is

2

(2π)3
d3k .

Assuming that the velocity of an electron in the energy band with Bloch wave-vector k is

v(k) =
1

~
∂

∂k
En(k) ,

show that the contribution to the electric current from a full energy band is zero. Given
that n(k) = 1 for each occupied energy level, show that the contribution to the current
density is then

j = −e 2

(2π)3

∫

B

d3k n(k)v(k) ,

where −e is the electron charge.
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3/II/33A Applications of Quantum Mechanics

Consider a one-dimensional crystal of lattice space b, with atoms having positions
xs and momenta ps, s = 0, 1, 2, . . . , N − 1, such that the classical Hamiltonian is

H =
N−1∑

s=0

(
p2s
2m

+ 1
2mλ

2
(
xs+1 − xs − b

)2
)
,

where we identify xN = x0. Show how this may be quantized to give the energy eigenstates
consisting of a ground state |0〉 together with free phonons with energy ~ω(kr) where
kr = 2πr/Nb for suitable integers r. Obtain the following expression for the quantum
operator xs

xs = s b+

(
~

2mN

) 1
2 ∑

r

1√
ω(kr)

(
are

ikrsb + ar
†e−ikrsb

)
,

where ar, ar
† are annihilation and creation operators, respectively.

An interaction involves the matrix element

M =
N−1∑

s=0

〈0|eiqxs |0〉 .

Calculate this and show that |M |2 has its largest value when q = 2πn/b for integer n.
Disregard the case ω(kr) = 0.

[You may use the relations

N−1∑

s=0

eikrsb =

{
N , r = Nb ;
0 otherwise,

and eA+B = eAeBe−
1
2 [A,B] if [A,B] commutes with A and with B.]

4/II/33D Applications of Quantum Mechanics

For the one-dimensional potential

V (x) = −~2λ
m

∑

n

δ(x− na) ,

solve the Schrödinger equation for negative energy and obtain an equation that determines
possible energy bands. Show that the results agree with the tight-binding model in
appropriate limits.
[
It may be useful to note that V (x) = −~2λ

ma

∑

n

e2πinx/a.

]
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1/II/33B Applications of Quantum Mechanics

A beam of particles is incident on a central potential V (r) (r = |x|) that vanishes
for r > R. Define the differential cross-section dσ/dΩ.

Given that each incoming particle has momentum ~k, explain the relevance of
solutions to the time-independent Schrödinger equation with the asymptotic form

ψ (x) ∼ eik·x + f(x̂)
eikr

r
(∗)

as r → ∞, where k = |k| and x̂ = x/r. Write down a formula that determines dσ/dΩ in
this case.

Write down the time-independent Schrödinger equation for a particle of mass m

and energy E =
~2k2

2m
in a central potential V (r), and show that it allows a solution of

the form

ψ (x) = eik·x − m

2π~2

∫
d3x′

eik|x−x′|

|x− x′| V (r′)ψ (x′) .

Show that this is consistent with (∗) and deduce an expression for f(x̂). Obtain the Born
approximation for f(x̂), and show that f(x̂) = F (kx̂− k), where

F (q) = − m

2π~2

∫
d3x e−iq·x V (r) .

Under what conditions is the Born approximation valid?

Obtain a formula for f(x̂) in terms of the scattering angle θ in the case that

V (r) = K
e−µr

r
,

for constants K and µ. Hence show that f(x̂) is independent of ~ in the limit µ → 0,
when expressed in terms of θ and the energy E.

[You may assume that (∇2 + k2)

(
eikr

r

)
= −4πδ3(x).]
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2/II/33B Applications of Quantum Mechanics

Describe briefly the variational approach to the determination of an approximate
ground state energy E0 of a Hamiltonian H.

Let |ψ1〉 and |ψ2〉 be two states, and consider the trial state

|ψ〉 = a1|ψ1〉+ a2|ψ2〉

for real constants a1 and a2. Given that

〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1 , 〈ψ2|ψ1〉 = 〈ψ1|ψ2〉 = s ,

〈ψ1|H|ψ1〉 = 〈ψ2|H|ψ2〉 = E , 〈ψ2|H|ψ1〉 = 〈ψ1|H|ψ2〉 = ε ,
(∗)

and that ε < sE , obtain an upper bound on E0 in terms of E , ε and s.
The normalized ground-state wavefunction of the Hamiltonian

H1 =
p2

2m
−Kδ(x) , K > 0,

is

ψ1(x) =
√
λ e−λ|x| , λ =

mK

~2
.

Verify that the ground state energy of H1 is

EB ≡ 〈ψ1|H|ψ1〉 = −1

2
Kλ .

Now consider the Hamiltonian

H =
p2

2m
−Kδ(x)−Kδ(x−R) ,

and let E0(R) be its ground-state energy as a function of R. Assuming that

ψ2(x) =
√
λ e−λ|x−R| ,

use (∗) to compute s, E and ε for ψ1 and ψ2 as given. Hence show that

E0(R) 6 EB

[
1 + 2

e−λR
(
1 + e−λR

)

1 + (1 + λR) e−λR

]
.

Why should you expect this inequality to become an approximate equality for sufficiently
large R? Describe briefly how this is relevant to molecular binding.
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3/II/33B Applications of Quantum Mechanics

Let {l} be the set of lattice vectors of some lattice. Define the reciprocal lattice.
What is meant by a Bravais lattice?

Let i, j, k be mutually orthogonal unit vectors. A crystal has identical atoms at
positions given by the vectors

a
[
n1i+ n2j+ n3k

]
, a

[
(n1 +

1
2 )i+ (n2 +

1
2 )j+ n3k

]
,

a
[
(n1 +

1
2 )i+ j+ (n3 +

1
2 )k
]
, a

[
n1i+ (n2 +

1
2 )j+ (n3 +

1
2 )k
]
,

where (n1, n2, n3) are arbitrary integers and a is a constant. Show that these vectors
define a Bravais lattice with basis vectors

a1 = a 1
2 (j+ k) , a2 = a 1

2 (i+ k) , a3 = a 1
2 (i+ j) .

Verify that a basis for the reciprocal lattice is

b1 =
2π

a
(j+ k− i) , b2 =

2π

a
(i+ k− j) , b3 =

2π

a
(i+ j− k) .

In Bragg scattering, an incoming plane wave of wave-vector k is scattered to an
outgoing wave of wave-vector k′. Explain why k′ = k+g for some reciprocal lattice vector
g. Given that θ is the scattering angle, show that

sin
1

2
θ =

|g|
2 |k| .

For the above lattice, explain why you would expect scattering through angles θ1 and θ2
such that

sin 1
2θ1

sin 1
2θ2

=

√
3

2
.
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4/II/33B Applications of Quantum Mechanics

A semiconductor has a valence energy band with energies E 6 0 and density of
states gv(E), and a conduction energy band with energies E > Eg and density of states

gc(E). Assume that gv(E) ∼ Av(−E)
1
2 as E → 0, and that gc(E) ∼ Ac(E − Eg)

1
2

as E → Eg. At zero temperature all states in the valence band are occupied and
the conduction band is empty. Let p be the number of holes in the valence band and
n the number of electrons in the conduction band at temperature T . Under suitable
approximations derive the result

pn = NvNce
−Eg/kT

where
Nv = 1

2

√
πAv(kT )

3
2 , Nc =

1
2

√
πAc(kT )

3
2 .

Briefly describe how a semiconductor may conduct electricity but with a conductivity that
is strongly temperature dependent.

Describe how doping of the semiconductor leads to p 6= n. A pn junction is formed
between an n-type semiconductor, with Nd donor atoms, and a p-type semiconductor,
with Na acceptor atoms. Show that there is a potential difference Vnp = ∆E/|e| across
the junction, where e is the electron charge, and

∆E = Eg − kT ln
NvNc

NdNa
.

Two semiconductors, one p-type and one n-type, are joined to make a closed circuit
with two pn junctions. Explain why a current will flow around the circuit if the junctions
are at different temperatures.

[The Fermi–Dirac distribution function at temperature T and chemical potential µ is
g(E)

e(E−µ)/kT + 1
, where g(E) is the number of states with energy E.

Note that

∫ ∞

0

x
1
2 e−x dx = 1

2

√
π.]
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