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Paper 1, Section II

23F Analysis of Functions
(a) State and prove the Sobolev trace theorem that maps Hs(Rn) into a suitable

Sobolev space over Rn−1.

(b) Show that there is no bounded linear operator T : Lp(Rn) → Lp(Rn−1) satisfying
Tu = u|Rn−1×{0} for all u ∈ C(Rn) ∩ Lp(Rn).

(c) For u ∈ C∞c (R2), prove that

∫

R2

|u|4 dx 6 C

∫

R2

|u|2 dx
∫

R2

|∇u|2 dx,

for a constant C independent of u. [Hint: First show that, for all (x, y) ∈ R2,
|u(x, y)|2 6 2

∫
R |u(x, t)||∇u(x, t)| dt.]

Paper 2, Section II

23F Analysis of Functions
(a) Let U ⊂ Rn be open with finite Lebesgue measure. Let p ∈ (1,∞) and let

Λ ∈ Lp(U)′ be positive. Prove there is ω ∈ Lq(U) where 1/p+ 1/q = 1 such that

Λ(f) =

∫

U
fω dx for all f ∈ Lp(U).

[You may use without proof that ‖g‖Lq(U) = sup{
∫
U |fg| dx : ‖f‖Lp(U) 6 1}.]

(b) (i) Define the Fourier transform of f ∈ L1(Rn).

(ii) Let p, q ∈ (1,∞), and assume ‖f̂‖Lq(Rn) 6 Cp,q‖f‖Lp(Rn) for all f ∈
Lp(Rn) ∩ L1(Rn). Show that q is uniquely determined by p.

(iii) Compute the Fourier transform of f(x) = |x|−1 on R3 up to a multiplicative
constant which you do not need to determine. [You may use the Fourier
transform of a Gaussian without proof.]

Part II, Paper 1 [TURN OVER]
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Paper 3, Section II

22F Analysis of Functions
(a) Let U ⊂ Rn be bounded and open, and let m2 > 0. Given f ∈ L2(U), define

what it means for u to be a weak solution to

−∆u+m2u = f in U

u = 0 on ∂U.

Show that for any f ∈ L2(U) there is a unique weak solution u and let Tf = u. Show
that T : L2(U) → L2(U) defines a compact operator. [You may use any theorems from
the course if you state them carefully.]

(b) Let U ⊂ Rn be bounded and open, and let (uk) ⊂ L2(U) be a sequence such
that uk ⇀ u weakly in L2(U). Assume that supk

∫
{|p|>t}(|ûk(p)|2 + |û(p)|2) dp → 0 as

t→∞. Show that then uk → u in L2(U).

(c) Given f ∈ Hr(Rn), assume that u ∈ L2(Rn) satisfies

∆2022u+ u = f on Rn

in distributional sense. For which n is u a function that solves the equation in the classical
sense? [You may cite any theorems from the course.]

Paper 4, Section II

23F Analysis of Functions
(a) Prove that the embedding H1(Rn) ↪→ L2(Rn) is not compact.

(b) Construct a bounded linear functional on L∞(Rn) that cannot be expressed as
f ∈ L∞(Rn) 7→

∫
f(x)g(x) dx for any g ∈ L1(Rn). [You may use theorems from the course

if you state them carefully.]

(c) Prove that Hn(Rn) embeds continuously into C0,α(Rn), for some α ∈ (0, 1).

(d) Let θ be the Heaviside function, defined by θ(x) = 1x>0, x ∈ R. Find the
Hardy–Littlewood maximal function Mθ.

Part II, Paper 1

2023
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Paper 1, Section II
23G Analysis of Functions

In this question,M is the σ-algebra of Lebesgue measurable sets and λ is Lebesgue
measure on Rn.

State Lebesgue’s differentiation theorem and the Radon–Nikodym theorem. For a
set A ∈M, and a measure µ defined on M, let the µ-density of A at x ∈ Rn be

ρµ,A(x) = lim
r↘0

µ(A ∩Br(x))

µ(Br(x))
,

whenever the limit exists, where Br(x) = {y ∈ Rn : |x− y| < r} is the open ball of radius
r centred at x.

For each t ∈ [0, 1], give an example of a set B ⊂ R2 and point z ∈ R2 for which
ρλ,B(z) exists and is equal to t.

Show that for λ-almost every x ∈ Rn, ρλ,A(x) exists and takes the value 0 or 1.
Show that ρλ,A vanishes λ-almost everywhere if and only if A has Lebesgue measure zero.

Let ν be a measure on M such that ν � λ and λ � ν. Show that ρν,A(x) exists
and takes the value 0 or 1 at λ-almost every x ∈ Rn.

Paper 2, Section II
23G Analysis of Functions

Let X be a real vector space. State what it means for a functional p : X → R to be
sublinear.

Let M ( X be a proper subspace. Suppose that p : X → R is sublinear and the
linear map ` : M → R satisfies `(y) 6 p(y) for all y ∈ M . Fix x ∈ X \ M and let

M̃ = span{M,x}. Show that there exists a linear map ˜̀ : M̃ → R such that ˜̀(z) 6 p(z)

for all z ∈ M̃ and ˜̀(y) = `(y) for all y ∈M .

State the Hahn–Banach theorem.

Let {z1, . . . , zn} be a set of linearly independent elements of a real Banach space Z.
Show that for each j = 1, . . . , n there exists `j ∈ Z ′ with `j(zk) = δjk for all k = 1, . . . , n.
Suppose M ⊂ Z is a finite dimensional subspace. Show that there exists a closed subspace
N such that Z = M ⊕N .

Part II, Paper 1 [TURN OVER]

2022
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Paper 3, Section II
22G Analysis of Functions

State and prove the Riemann–Lebesgue lemma. State Parseval’s identity, including
any assumptions you make on the functions involved.

Suppose that f : Rn → C is given by

f(x) =
|x|a

(1 + |x|2) b+a
2

.

Show that if 2a > −n and b > n then f̂ ∈ Lp(Rn) for all 2 6 p 6 ∞, where f̂ is the
Fourier transform of f .

Paper 4, Section II
23G Analysis of Functions

For s ∈ R, define the Sobolev space Hs(Rn). Show that for any multi-index α, the
map u 7→ Dαu is a bounded linear map from Hs(Rn) to Hs−|α|(Rn).

Given f ∈ Hs(Rn), show that the PDE

−∆u+ u = f

admits a unique solution with u ∈ Hs+2(Rn). Show that the map taking f to u is a linear
isomorphism of Hs(Rn) onto Hs+2(Rn).

Let Ω ⊂ Rn be open and bounded. Consider a sequence of functions (uj)
∞
j=1 with

uj ∈ C∞(Rn), supported in Ω, such that

‖∆uj‖L2(Ω) + ‖uj‖L2(Ω) 6 K ,

for some constant K independent of j. Show that there exists a subsequence (ujk)∞k=1

which converges strongly in H1(Rn).

Part II, Paper 1

2022
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Paper 1, Section II

23H Analysis of Functions
Below,M is the σ-algebra of Lebesgue measurable sets and λ is Lebesgue measure.

(a) State the Lebesgue differentiation theorem for an integrable function f : Rn → C.
Let g : R → C be integrable and define G : R → C by G(x) :=

∫
[a,x] g dλ for some a ∈ R.

Show that G is differentiable λ-almost everywhere.

(b) Suppose h : R→ R is strictly increasing, continuous, and maps sets of λ-measure
zero to sets of λ-measure zero. Show that we can define a measure ν on M by setting
ν(A) := λ

(
h(A)

)
for A ∈ M, and establish that ν � λ. Deduce that h is differentiable

λ-almost everywhere. Does the result continue to hold if h is assumed to be non-decreasing
rather than strictly increasing?

[You may assume without proof that a strictly increasing, continuous, function
w : R→ R is injective, and w−1 : w(R)→ R is continuous.]

Paper 2, Section II

23H Analysis of Functions
Define the Schwartz space, S (Rn), and the space of tempered distributions, S ′(Rn),

stating what it means for a sequence to converge in each space.

For a Ck function f : Rn → C, and non-negative integers N, k, we say f ∈ XN,k if

‖f‖N,k := sup
x∈Rn;|α|6k

∣∣∣
(
1 + |x|2

)N
2 Dαf(x)

∣∣∣ <∞.

You may assume that XN,k equipped with ‖ · ‖N,k is a Banach space in which S (Rn) is
dense.

(a) Show that if u ∈ S ′(Rn) there exist N, k ∈ Z>0 and C > 0 such that

|u[φ]| 6 C‖φ‖N,k for all φ ∈ S (Rn) .

Deduce that there exists a unique ũ ∈ X ′N,k such that ũ[φ] = u[φ] for all φ ∈ S (Rn).

(b) Recall that v ∈ S ′(Rn) is positive if v[φ] > 0 for all φ ∈ S (Rn) satisfying
φ > 0. Show that if v ∈ S ′(Rn) is positive, then there exist M ∈ Z>0 and K > 0 such
that

|v[φ]| 6 K‖φ‖M,0, for all φ ∈ S (Rn).
[
Hint: Note that |φ(x)| 6 ‖φ‖M,0

(
1 + |x|2

)−M
2 .
]

Part II, 2021 List of Questions

2021
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Paper 3, Section II

22H Analysis of Functions
(a) State the Riemann–Lebesgue lemma. Show that the Fourier transform maps

S (Rn) to itself continuously.

(b) For some s > 0, let f ∈ L1(R3) ∩ Hs(R3). Consider the following system of
equations for B : R3 → R3

∇ ·B = f, ∇×B = 0.

Show that there exists a unique B = (B1, B2, B3) solving the equations with Bj ∈
Hs+1(R3) for j = 1, 2, 3. You need not find B explicitly, but should give an expression for
the Fourier transform of Bj . Show that there exists a constant C > 0 such that

‖Bj‖Hs+1 6 C
(
‖f‖L1 + ‖f‖Hs

)
, j = 1, 2, 3.

For what values of s can we conclude that Bj ∈ C1(Rn)?

Paper 4, Section II

23H Analysis of Functions
Fix 1 < p <∞ and let q satisfy p−1 + q−1 = 1.

(a) Let (fj) be a sequence of functions in Lp(Rn). For f ∈ Lp(Rn), what is meant
by (i) fj → f in Lp(Rn) and (ii) fj ⇀ f in Lp(Rn)? Show that if fj ⇀ f , then

‖f‖Lp 6 lim inf
j→∞

‖fj‖Lp .

(b) Suppose that (gj) is a sequence with gj ∈ Lp(Rn), and that there exists K > 0
such that ‖gj‖Lp 6 K for all j. Show that there exists g ∈ Lp(Rn) and a subsequence(
gjk
)∞
k=1

, such that for any sequence (hk) with hk ∈ Lq(Rn) and hk → h ∈ Lq(Rn), we
have

lim
k→∞

∫

Rn

gjkhk dx =

∫

Rn

gh dx.

Give an example to show that the result need not hold if the condition hk → h is replaced
by hk ⇀ h in Lq(Rn).

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 1, Section II

23I Analysis of Functions
Let Rn be equipped with the σ-algebra of Lebesgue measurable sets, and Lebesgue

measure.

(a) Given f ∈ L∞(Rn), g ∈ L1(Rn), define the convolution f ? g, and show that it
is a bounded, continuous function. [You may use without proof continuity of translation
on Lp(Rn) for 1 6 p <∞.]

Suppose A ⊂ Rn is a measurable set with 0 < |A| < ∞ where |A| denotes
the Lebesgue measure of A. By considering the convolution of f(x) = 1A(x) and
g(x) = 1A(−x), or otherwise, show that the set A − A = {x − y : x, y ∈ A} contains an
open neighbourhood of 0. Does this still hold if |A| =∞?

(b) Suppose that f : Rn → Rm is a measurable function satisfying

f(x+ y) = f(x) + f(y), for all x, y ∈ Rn.

Let Br = {y ∈ Rm : |y| < r}. Show that for any ε > 0:

(i) f−1(Bε)− f−1(Bε) ⊂ f−1(B2ε),

(ii) f−1(Bkε) = kf−1(Bε) for all k ∈ N, where for λ > 0 and A ⊂ Rn, λA denotes
the set {λx : x ∈ A}.

Show that f is continuous at 0 and hence deduce that f is continuous everywhere.

Paper 3, Section II

22I Analysis of Functions
Let X be a Banach space.

(a) Define the dual space X ′, giving an expression for ‖Λ‖X′ for Λ ∈ X ′. If
Y = Lp(Rn) for some 1 6 p < ∞, identify Y ′ giving an expression for a general element
of Y ′. [You need not prove your assertion.]

(b) For a sequence (Λi)
∞
i=1 with Λi ∈ X ′, what is meant by: (i) Λi → Λ, (ii) Λi ⇀ Λ

(iii) Λi
∗
⇀ Λ? Show that (i) =⇒ (ii) =⇒ (iii). Find a sequence (fi)

∞
i=1 with fi ∈

L∞(R) = (L1(R))′ such that, for some f, g ∈ L∞(Rn):

fi
∗
⇀ f, f2i

∗
⇀ g, g 6= f2.

(c) For f ∈ C0
c (Rn), let Λ : C0

c (Rn) → C be the map Λf = f(0). Show that
Λ may be extended to a continuous linear map Λ̃ : L∞(Rn) → C, and deduce that
(L∞(Rn))′ 6= L1(Rn). For which 1 6 p 6 ∞ is Lp(Rn) reflexive? [You may use without
proof the Hahn–Banach theorem].

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 4, Section II

23I Analysis of Functions
(a) Define the Sobolev space Hs(Rn) for s ∈ R.

(b) Let k be a non-negative integer and let s > k + n
2 . Show that if u ∈ Hs(Rn)

then there exists u∗ ∈ Ck(Rn) with u = u∗ almost everywhere.

(c) Show that if f ∈ Hs(Rn) for some s ∈ R, there exists a unique u ∈ Hs+4(Rn)
which solves:

∆∆u+ ∆u+ u = f,

in a distributional sense. Prove that there exists a constant C > 0, independent of f , such
that:

‖u‖Hs+4 6 C‖f‖Hs .

For which s will u be a classical solution?

Part II, 2020 List of Questions

2020
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Paper 3, Section II

22H Analysis of Functions
(a) Prove that in a finite-dimensional normed vector space the weak and strong

topologies coincide.

(b) Prove that in a normed vector space X, a weakly convergent sequence is
bounded. [Any form of the Banach–Steinhaus theorem may be used, as long as you
state it clearly.]

(c) Let ℓ1 be the space of real-valued absolutely summable sequences. Suppose (ak)
is a weakly convergent sequence in ℓ1 which does not converge strongly. Show there is a
constant ε > 0 and a sequence (xk) in ℓ1 which satisfies xk ⇀ 0 and ‖xk‖ℓ1 > ε for all
k > 1.

With (xk) as above, show there is some y ∈ ℓ∞ and a subsequence (xkn) of (xk) with
〈xkn , y〉 > ε/3 for all n. Deduce that every weakly convergent sequence in ℓ1 is strongly
convergent.

[Hint: Define y so that yi = sign xkni for bn−1 < i 6 bn, where the sequence of
integers bn should be defined inductively along with xkn.]

(d) Is the conclusion of part (c) still true if we replace ℓ1 by L1([0, 2π])?

Part II, 2019 List of Questions

2019
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Paper 4, Section II

23H Analysis of Functions
(a) Let (H, 〈·, ·〉) be a real Hilbert space and let B : H×H → R be a bilinear map.

If B is continuous prove that there is an M > 0 such that |B(u, v)| 6 M‖u‖‖v‖ for all
u, v ∈ H. [You may use any form of the Banach–Steinhaus theorem as long as you state
it clearly.]

(b) Now suppose that B defined as above is bilinear and continuous, and assume
also that it is coercive: i.e. there is a C > 0 such that B(u, u) > C‖u‖2 for all u ∈ H.
Prove that for any f ∈ H, there exists a unique vf ∈ H such that B(u, vf ) = 〈u, f〉 for all
u ∈ H.

[Hint: show that there is a bounded invertible linear operator L with bounded
inverse so that B(u, v) = 〈u,Lv〉 for all u, v ∈ H. You may use any form of the Riesz
representation theorem as long as you state it clearly.]

(c) Define the Sobolev space H1
0 (Ω), where Ω ⊂ Rd is open and bounded.

(d) Suppose f ∈ L2(Ω) and A ∈ Rd with |A|2 < 2, where | · |2 is the Euclidean norm
on Rd. Consider the Dirichlet problem

−∆v + v +A · ∇v = f in Ω, v = 0 in ∂Ω.

Using the result of part (b), prove there is a unique weak solution v ∈ H1
0 (Ω).

(e) Now assume that Ω is the open unit disk in R2 and g is a smooth function on
S1. Sketch how you would solve the following variant:

−∆v + v +A · ∇v = 0 in Ω, v = g in ∂Ω.

[Hint: Reduce to the result of part (d).]

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 1, Section II

23H Analysis of Functions
(a) Consider the topology T on the natural numbers N ⊂ R induced by the standard

topology on R. Prove it is the discrete topology; i.e. T = P(N) is the power set of N.

(b) Describe the corresponding Borel sets on N and prove that any function
f : N → R or f : N → [0,+∞] is measurable.

(c) Using Lebesgue integration theory, define
∑

n>1 f(n) ∈ [0,+∞] for a function
f : N → [0,+∞] and then

∑
n>1 f(n) ∈ C for f : N → C. State any condition needed for

the sum of the latter series to be defined. What is a simple function in this setting, and
which simple functions have finite sum?

(d) State and prove the Beppo Levi theorem (also known as the monotone conver-
gence theorem).

(e) Consider f : R×N → [0,+∞] such that for any n ∈ N, the function t 7→ f(t, n)
is non-decreasing. Prove that

lim
t→∞

∑

n>1

f(t, n) =
∑

n>1

lim
t→∞

f(t, n).

Show that this need not be the case if we drop the hypothesis that t 7→ f(t, n) is non-
decreasing, even if all the relevant limits exist.

Part II, 2019 List of Questions

2019
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Paper 3, Section II

22F Analysis of Functions
(a) Let (X,A, µ) be a measure space. Define the spaces Lp(X) for p ∈ [1,∞]. Prove

that if µ(X) <∞ then Lq(X) ⊂ Lp(X) for all 1 6 p < q 6 ∞.

(b) Now let X = Rn endowed with Borel sets and Lebesgue measure. Describe the
dual spaces of Lp(X) for p ∈ [1,∞). Define reflexivity and say which Lp(X) are reflexive.
Prove that L1(X) is not the dual space of L∞(X).

(c) Now let X ⊂ Rn be a Borel subset and consider the measure space (X,A, µ)
induced from Borel sets and Lebesgue measure on Rn.

(i) Given any p ∈ [1,∞], prove that any sequence (fn) in Lp(X) converging
in Lp(X) to some f ∈ Lp(X) admits a subsequence converging almost
everywhere to f .

(ii) Prove that if Lq(X) ⊂ Lp(X) for 1 6 p < q 6 ∞ then µ(X) < ∞. [Hint:
You might want to prove first that the inclusion is continuous with the help
of one of the corollaries of Baire’s category theorem.]

Part II, 2018 List of Questions [TURN OVER

2018
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Paper 4, Section II

23F Analysis of Functions
Here and below, Φ : R → R is smooth such that

∫
R e
−Φ(x) dx = 1 and

lim
|x|→+∞

(
|Φ′(x)|2

4
− Φ′′(x)

2

)
= ℓ ∈ (0,+∞).

C1
c (R) denotes the set of continuously differentiable complex-valued functions with com-

pact support on R.

(a) Prove that there are constants R0 > 0, λ1 > 0 and K1 > 0 so that for any
R > R0 and h ∈ C1

c (R):
∫

R

∣∣h′(x)
∣∣2 e−Φ(x) dx > λ1

∫

{|x|>R}
|h(x)|2 e−Φ(x) dx−K1

∫

{|x|6R}
|h(x)|2 e−Φ(x) dx.

[Hint: Denote g := he−Φ/2, expand the square and integrate by parts.]

(b) Prove that, given any R > 0, there is a CR > 0 so that for any h ∈ C1([−R,R])
with

∫ +R
−R h(x)e−Φ(x)dx = 0:

max
x∈[−R,R]

|h(x)| + sup
{x,y∈[−R,R], x 6=y}

|h(x)− h(y)|
|x− y|1/2 6 CR

(∫ +R

−R
|h′(x)|2e−Φ(x) dx

)1/2

.

[Hint: Use the fundamental theorem of calculus to control the second term of the left-hand
side, and then compare h to its weighted mean to control the first term of the left-hand
side.]

(c) Prove that, given any R > 0, there is a λR > 0 so that for any h ∈ C1([−R,R]):

∫ +R

−R

∣∣h′(x)
∣∣2 e−Φ(x) dx > λR

∫ +R

−R

∣∣∣∣∣h(x)−
∫ +R
−R h(y)e−Φ(y) dy
∫ +R
−R e−Φ(y) dy

∣∣∣∣∣

2

e−Φ(x) dx.

[Hint: Show first that one can reduce to the case
∫ +R
−R he−Φ = 0. Then argue by

contradiction with the help of the Arzelà–Ascoli theorem and part (b).]

(d) Deduce that there is a λ0 > 0 so that for any h ∈ C1
c (R):

∫

R

∣∣h′(x)
∣∣2 e−Φ(x) dx > λ0

∫

R

∣∣∣∣h(x)−
(∫

R
h(y)e−Φ(y) dy

)∣∣∣∣
2

e−Φ(x) dx.

[Hint: Show first that one can reduce to the case
∫
R he

−Φ = 0. Then combine the inequality
(a), multiplied by a constant of the form ǫ = ǫ0λR (where ǫ0 > 0 is chosen so that ǫ be suffi-
ciently small), and the inequality (c).]

Part II, 2018 List of Questions

2018
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Paper 1, Section II

23F Analysis of Functions
(a) Consider a measure space (X,A, µ) and a complex-valued measurable function

F on X. Prove that for any ϕ : [0,+∞) → [0,+∞) differentiable and increasing such that
ϕ(0) = 0, then

∫

X
ϕ(|F (x)|) dµ(x) =

∫ +∞

0
ϕ′(s)µ({|F | > s}) dλ(s)

where λ is the Lebesgue measure.

(b) Consider a complex-valued measurable function f ∈ L1(Rn) ∩ L∞(Rn) and its
maximal function Mf(x) = supr>0

1
|B(x,r)|

∫
B(x,r) |f |dλ. Prove that for p ∈ (1,+∞) there

is a constant cp > 0 such that ‖Mf‖Lp(Rn) 6 cp‖f‖Lp(Rn).

[Hint: Split f = f0 + f1 with f0 = fχ{|f |>s/2} and f1 = fχ{|f |6s/2} and prove that
λ({Mf > s}) 6 λ({Mf0 > s/2}). Then use the maximal inequality λ({Mf > s}) 6
C1
s ‖f‖L1(Rn) for some constant C1 > 0.]

(c) Consider p, q ∈ (1,+∞) with p < q and α ∈ (0, n) such that 1/q = 1/p − α/n.

Define Iα|f |(x) :=
∫
Rn

|f(y)|
|x−y|n−α dλ(y) and prove Iα|f |(x) 6 ‖f‖αp/nLp(Rn)Mf(x)1−αp/n.

[Hint: Split the integral into |x − y| > r and |x− y| ∈ [2−k−1r, 2−kr) for all k > 0,
given some suitable r > 0.]

Part II, 2018 List of Questions [TURN OVER

2018



7

Paper 3, Section II

20F Analysis of Functions
Denote by C0(Rn) the space of continuous complex-valued functions on Rn converg-

ing to zero at infinity. Denote by Ff(ξ) =
∫
Rn e

−2iπx·ξf(x) dx the Fourier transform of
f ∈ L1(Rn).

(i) Prove that the image of L1(Rn) under F is included and dense in C0(Rn), and that
F : L1(Rn) → C0(Rn) is injective. [Fourier inversion can be used without proof
when properly stated.]

(ii) Calculate the Fourier transform of χ[a,b], the characteristic function of [a, b] ⊂ R.

(iii) Prove that gn := χ[−n,n] ∗χ[−1,1] belongs to C0(R) and is the Fourier transform of a
function hn ∈ L1(R), which you should determine.

(iv) Using the functions hn, gn and the open mapping theorem, deduce that the Fourier
transform is not surjective from L1(R) to C0(R).

Part II, 2017 List of Questions [TURN OVER

2017
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Paper 4, Section II

22F Analysis of Functions
Consider Rn with the Lebesgue measure. Denote by Ff(ξ) =

∫
Rn e

−2iπx·ξf(x) dx the

Fourier transform of f ∈ L1(Rn) and by f̂ the Fourier–Plancherel transform of f ∈ L2(Rn).

Let χR(ξ) :=

(
1− |ξ|

R

)
χ|ξ|6R for R > 0 and define for s ∈ R+

Hs(Rn) :=
{
f ∈ L2(Rn)

∣∣∣ (1 + | · |2)s/2f̂(·) ∈ L2(Rn)
}
.

(i) Prove thatHs(Rn) is a vector subspace of L2(Rn), and is a Hilbert space for the inner

product 〈f, g〉 :=
∫

Rn

(1 + |ξ|2)sf̂(ξ)ĝ(ξ) dξ, where z denotes the complex conjugate

of z ∈ C.

(ii) Construct a function f ∈ Hs(R), s ∈ (0, 1/2), that is not almost everywhere equal
to a continuous function.

(iii) For f ∈ L1(Rn), prove that FR : x 7→
∫

Rn

Ff(ξ)χR(ξ)e
2iπx·ξ dξ is a well-defined

function and that FR ∈ L1(Rn) converges to f in L1(Rn) as R→ +∞.

[Hint: Prove that FR = KR ∗ f where KR is an approximation of the unit as
R→ +∞.]

(iv) Deduce that if f ∈ L1(Rn) and (1 + | · |2)s/2Ff(·) ∈ L2(Rn) then f ∈ Hs(Rn).

[Hint: Prove that: (1) there is a sequence Rk → +∞ such that KRk
∗ f converges

to f almost everywhere; (2) KR ∗ f is uniformly bounded in L2(Rn) as R→ +∞.]
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Paper 1, Section II

22F Analysis of Functions
Consider a sequence fn : R → R of measurable functions converging pointwise to a

function f : R → R. The Lebesgue measure is denoted by λ.

(a) Consider a Borel set A ⊂ R with finite Lebesgue measure λ(A) < +∞. Define for
k, n > 1 the sets

E(k)
n :=

⋂

m>n

{
x ∈ A

∣∣∣ |fm(x)− f(x)| 6 1

k

}
.

Prove that for any k, n > 1, one has E
(k)
n ⊂ E

(k)
n+1 and E

(k+1)
n ⊂ E

(k)
n . Prove that

for any k > 1, A = ∪n>1E
(k)
n .

(b) Consider a Borel set A ⊂ R with finite Lebesgue measure λ(A) < +∞. Prove that
for any ε > 0, there is a Borel set Aε ⊂ A for which λ(A \ Aε) 6 ε and such
that fn converges to f uniformly on Aε as n → +∞. Is the latter still true when
λ(A) = +∞?

(c) Assume additionally that fn ∈ Lp(R) for some p ∈ (1,+∞], and there exists an
M > 0 for which ‖fn‖Lp(R) 6M for all n > 1. Prove that f ∈ Lp(R).

(d) Let fn and f be as in part (c). Consider a Borel set A ⊂ R with finite Lebesgue
measure λ(A) < +∞. Prove that fn, f are integrable on A and

∫
A fn dλ→

∫
A f dλ

as n → ∞. Deduce that fn converges weakly to f in Lp(R) when p < +∞. Does
the convergence have to be strong?
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