Part II

Analysis of Functions

Year
2023
2022
2021
2020
2019
2018
2017

Paper 1, Section II

23F Analysis of Functions

(a) State and prove the Sobolev trace theorem that maps $H^{s}\left(\mathbb{R}^{n}\right)$ into a suitable Sobolev space over \mathbb{R}^{n-1}.
(b) Show that there is no bounded linear operator $T: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n-1}\right)$ satisfying $T u=\left.u\right|_{\mathbb{R}^{n-1} \times\{0\}}$ for all $u \in C\left(\mathbb{R}^{n}\right) \cap L^{p}\left(\mathbb{R}^{n}\right)$.
(c) For $u \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$, prove that

$$
\int_{\mathbb{R}^{2}}|u|^{4} d x \leqslant C \int_{\mathbb{R}^{2}}|u|^{2} d x \int_{\mathbb{R}^{2}}|\nabla u|^{2} d x,
$$

for a constant C independent of u. [Hint: First show that, for all $(x, y) \in \mathbb{R}^{2}$, $\left.|u(x, y)|^{2} \leqslant 2 \int_{\mathbb{R}}|u(x, t)||\nabla u(x, t)| d t.\right]$

Paper 2, Section II

23F Analysis of Functions

(a) Let $U \subset \mathbb{R}^{n}$ be open with finite Lebesgue measure. Let $p \in(1, \infty)$ and let $\Lambda \in L^{p}(U)^{\prime}$ be positive. Prove there is $\omega \in L^{q}(U)$ where $1 / p+1 / q=1$ such that

$$
\Lambda(f)=\int_{U} f \omega d x \quad \text { for all } f \in L^{p}(U) .
$$

[You may use without proof that $\|g\|_{L^{q}(U)}=\sup \left\{\int_{U}|f g| d x:\|f\|_{L^{p}(U)} \leqslant 1\right\}$.]
(b) (i) Define the Fourier transform of $f \in L^{1}\left(\mathbb{R}^{n}\right)$.
(ii) Let $p, q \in(1, \infty)$, and assume $\|\hat{f}\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leqslant C_{p, q}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ for all $f \in$ $L^{p}\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n}\right)$. Show that q is uniquely determined by p.
(iii) Compute the Fourier transform of $f(x)=|x|^{-1}$ on \mathbb{R}^{3} up to a multiplicative constant which you do not need to determine. [You may use the Fourier transform of a Gaussian without proof.]

Paper 3, Section II

22F Analysis of Functions

(a) Let $U \subset \mathbb{R}^{n}$ be bounded and open, and let $m^{2}>0$. Given $f \in L^{2}(U)$, define what it means for u to be a weak solution to

$$
\begin{aligned}
-\Delta u+m^{2} u & =f & & \text { in } U \\
u & =0 & & \text { on } \partial U .
\end{aligned}
$$

Show that for any $f \in L^{2}(U)$ there is a unique weak solution u and let $T f=u$. Show that $T: L^{2}(U) \rightarrow L^{2}(U)$ defines a compact operator. [You may use any theorems from the course if you state them carefully.]
(b) Let $U \subset \mathbb{R}^{n}$ be bounded and open, and let $\left(u_{k}\right) \subset L^{2}(U)$ be a sequence such that $u_{k} \rightharpoonup u$ weakly in $L^{2}(U)$. Assume that $\sup _{k} \int_{\{|p| \geqslant t\}}\left(\left|\hat{u}_{k}(p)\right|^{2}+|\hat{u}(p)|^{2}\right) d p \rightarrow 0$ as $t \rightarrow \infty$. Show that then $u_{k} \rightarrow u$ in $L^{2}(U)$.
(c) Given $f \in H^{r}\left(\mathbb{R}^{n}\right)$, assume that $u \in L^{2}\left(\mathbb{R}^{n}\right)$ satisfies

$$
\Delta^{2022} u+u=f \quad \text { on } \mathbb{R}^{n}
$$

in distributional sense. For which n is u a function that solves the equation in the classical sense? [You may cite any theorems from the course.]

Paper 4, Section II

23F Analysis of Functions

(a) Prove that the embedding $H^{1}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{2}\left(\mathbb{R}^{n}\right)$ is not compact.
(b) Construct a bounded linear functional on $L^{\infty}\left(\mathbb{R}^{n}\right)$ that cannot be expressed as $f \in L^{\infty}\left(\mathbb{R}^{n}\right) \mapsto \int f(x) g(x) d x$ for any $g \in L^{1}\left(\mathbb{R}^{n}\right)$. [You may use theorems from the course if you state them carefully.]
(c) Prove that $H^{n}\left(\mathbb{R}^{n}\right)$ embeds continuously into $C^{0, \alpha}\left(\mathbb{R}^{n}\right)$, for some $\alpha \in(0,1)$.
(d) Let θ be the Heaviside function, defined by $\theta(x)=1_{x \geqslant 0}, x \in \mathbb{R}$. Find the Hardy-Littlewood maximal function $M \theta$.

Paper 1, Section II

23G Analysis of Functions

In this question, \mathcal{M} is the σ-algebra of Lebesgue measurable sets and λ is Lebesgue measure on \mathbb{R}^{n}.

State Lebesgue's differentiation theorem and the Radon-Nikodym theorem. For a set $A \in \mathcal{M}$, and a measure μ defined on \mathcal{M}, let the μ-density of A at $x \in \mathbb{R}^{n}$ be

$$
\rho_{\mu, A}(x)=\lim _{r \searrow 0} \frac{\mu\left(A \cap B_{r}(x)\right)}{\mu\left(B_{r}(x)\right)}
$$

whenever the limit exists, where $B_{r}(x)=\left\{y \in \mathbb{R}^{n}:|x-y|<r\right\}$ is the open ball of radius r centred at x.

For each $t \in[0,1]$, give an example of a set $B \subset \mathbb{R}^{2}$ and point $z \in \mathbb{R}^{2}$ for which $\rho_{\lambda, B}(z)$ exists and is equal to t.

Show that for λ-almost every $x \in \mathbb{R}^{n}, \rho_{\lambda, A}(x)$ exists and takes the value 0 or 1 . Show that $\rho_{\lambda, A}$ vanishes λ-almost everywhere if and only if A has Lebesgue measure zero.

Let ν be a measure on \mathcal{M} such that $\nu \ll \lambda$ and $\lambda \ll \nu$. Show that $\rho_{\nu, A}(x)$ exists and takes the value 0 or 1 at λ-almost every $x \in \mathbb{R}^{n}$.

Paper 2, Section II

23G Analysis of Functions

Let X be a real vector space. State what it means for a functional $p: X \rightarrow \mathbb{R}$ to be sublinear.

Let $M \subsetneq X$ be a proper subspace. Suppose that $p: X \rightarrow \mathbb{R}$ is sublinear and the linear map $\ell: M \rightarrow \mathbb{R}$ satisfies $\ell(y) \leqslant p(y)$ for all $y \in M$. Fix $x \in X \backslash M$ and let $\widetilde{M}=\operatorname{span}\{M, x\}$. Show that there exists a linear map $\tilde{\ell}: \widetilde{M} \rightarrow \mathbb{R}$ such that $\tilde{\ell}(z) \leqslant p(z)$ for all $z \in \widetilde{M}$ and $\tilde{\ell}(y)=\ell(y)$ for all $y \in M$.

State the Hahn-Banach theorem.
Let $\left\{z_{1}, \ldots, z_{n}\right\}$ be a set of linearly independent elements of a real Banach space Z. Show that for each $j=1, \ldots, n$ there exists $\ell_{j} \in Z^{\prime}$ with $\ell_{j}\left(z_{k}\right)=\delta_{j k}$ for all $k=1, \ldots, n$. Suppose $M \subset Z$ is a finite dimensional subspace. Show that there exists a closed subspace N such that $Z=M \oplus N$.

Paper 3, Section II

22G Analysis of Functions

State and prove the Riemann-Lebesgue lemma. State Parseval's identity, including any assumptions you make on the functions involved.

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is given by

$$
f(x)=\frac{|x|^{a}}{\left(1+|x|^{2}\right)^{\frac{b+a}{2}}} .
$$

Show that if $2 a>-n$ and $b>n$ then $\hat{f} \in L^{p}\left(\mathbb{R}^{n}\right)$ for all $2 \leqslant p \leqslant \infty$, where \hat{f} is the Fourier transform of f.

Paper 4, Section II

23G Analysis of Functions

For $s \in \mathbb{R}$, define the Sobolev space $H^{s}\left(\mathbb{R}^{n}\right)$. Show that for any multi-index α, the map $u \mapsto D^{\alpha} u$ is a bounded linear map from $H^{s}\left(\mathbb{R}^{n}\right)$ to $H^{s-|\alpha|}\left(\mathbb{R}^{n}\right)$.

Given $f \in H^{s}\left(\mathbb{R}^{n}\right)$, show that the PDE

$$
-\Delta u+u=f
$$

admits a unique solution with $u \in H^{s+2}\left(\mathbb{R}^{n}\right)$. Show that the map taking f to u is a linear isomorphism of $H^{s}\left(\mathbb{R}^{n}\right)$ onto $H^{s+2}\left(\mathbb{R}^{n}\right)$.

Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded. Consider a sequence of functions $\left(u_{j}\right)_{j=1}^{\infty}$ with $u_{j} \in C^{\infty}\left(\mathbb{R}^{n}\right)$, supported in Ω, such that

$$
\left\|\Delta u_{j}\right\|_{L^{2}(\Omega)}+\left\|u_{j}\right\|_{L^{2}(\Omega)} \leqslant K
$$

for some constant K independent of j. Show that there exists a subsequence $\left(u_{j_{k}}\right)_{k=1}^{\infty}$ which converges strongly in $H^{1}\left(\mathbb{R}^{n}\right)$.

Paper 1, Section II

23H Analysis of Functions

Below, \mathcal{M} is the σ-algebra of Lebesgue measurable sets and λ is Lebesgue measure.
(a) State the Lebesgue differentiation theorem for an integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$. Let $g: \mathbb{R} \rightarrow \mathbb{C}$ be integrable and define $G: \mathbb{R} \rightarrow \mathbb{C}$ by $G(x):=\int_{[a, x]} g d \lambda$ for some $a \in \mathbb{R}$. Show that G is differentiable λ-almost everywhere.
(b) Suppose $h: \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing, continuous, and maps sets of λ-measure zero to sets of λ-measure zero. Show that we can define a measure ν on \mathcal{M} by setting $\nu(A):=\lambda(h(A))$ for $A \in \mathcal{M}$, and establish that $\nu \ll \lambda$. Deduce that h is differentiable λ-almost everywhere. Does the result continue to hold if h is assumed to be non-decreasing rather than strictly increasing?
[You may assume without proof that a strictly increasing, continuous, function $w: \mathbb{R} \rightarrow \mathbb{R}$ is injective, and $w^{-1}: w(\mathbb{R}) \rightarrow \mathbb{R}$ is continuous.]

Paper 2, Section II

23H Analysis of Functions

Define the Schwartz space, $\mathscr{S}\left(\mathbb{R}^{n}\right)$, and the space of tempered distributions, $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$, stating what it means for a sequence to converge in each space.

For a C^{k} function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$, and non-negative integers N, k, we say $f \in X_{N, k}$ if

$$
\|f\|_{N, k}:=\sup _{x \in \mathbb{R}^{n} ;|\alpha| \leqslant k}\left|\left(1+|x|^{2}\right)^{\frac{N}{2}} D^{\alpha} f(x)\right|<\infty .
$$

You may assume that $X_{N, k}$ equipped with $\|\cdot\|_{N, k}$ is a Banach space in which $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is dense.
(a) Show that if $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ there exist $N, k \in \mathbb{Z}_{\geqslant 0}$ and $C>0$ such that

$$
|u[\phi]| \leqslant C\|\phi\|_{N, k} \text { for all } \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right) .
$$

Deduce that there exists a unique $\tilde{u} \in X_{N, k}^{\prime}$ such that $\tilde{u}[\phi]=u[\phi]$ for all $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.
(b) Recall that $v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is positive if $v[\phi] \geqslant 0$ for all $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ satisfying $\phi \geqslant 0$. Show that if $v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is positive, then there exist $M \in \mathbb{Z}_{\geqslant 0}$ and $K>0$ such that

$$
|v[\phi]| \leqslant K\|\phi\|_{M, 0}, \quad \text { for all } \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

$\left[\right.$ Hint: Note that $\left.|\phi(x)| \leqslant\|\phi\|_{M, 0}\left(1+|x|^{2}\right)^{-\frac{M}{2}}.\right]$

Paper 3, Section II

22H Analysis of Functions

(a) State the Riemann-Lebesgue lemma. Show that the Fourier transform maps $\mathscr{S}\left(\mathbb{R}^{n}\right)$ to itself continuously.
(b) For some $s \geqslant 0$, let $f \in L^{1}\left(\mathbb{R}^{3}\right) \cap H^{s}\left(\mathbb{R}^{3}\right)$. Consider the following system of equations for $\mathbf{B}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
\boldsymbol{\nabla} \cdot \mathbf{B}=f, \quad \boldsymbol{\nabla} \times \mathbf{B}=\mathbf{0} .
$$

Show that there exists a unique $\mathbf{B}=\left(B_{1}, B_{2}, B_{3}\right)$ solving the equations with $B_{j} \in$ $H^{s+1}\left(\mathbb{R}^{3}\right)$ for $j=1,2,3$. You need not find \mathbf{B} explicitly, but should give an expression for the Fourier transform of B_{j}. Show that there exists a constant $C>0$ such that

$$
\left\|B_{j}\right\|_{H^{s+1}} \leqslant C\left(\|f\|_{L^{1}}+\|f\|_{H^{s}}\right), \quad j=1,2,3 .
$$

For what values of s can we conclude that $B_{j} \in C^{1}\left(\mathbb{R}^{n}\right)$?

Paper 4, Section II

23H Analysis of Functions

Fix $1<p<\infty$ and let q satisfy $p^{-1}+q^{-1}=1$.
(a) Let $\left(f_{j}\right)$ be a sequence of functions in $L^{p}\left(\mathbb{R}^{n}\right)$. For $f \in L^{p}\left(\mathbb{R}^{n}\right)$, what is meant by (i) $f_{j} \rightarrow f$ in $L^{p}\left(\mathbb{R}^{n}\right)$ and (ii) $f_{j} \rightharpoonup f$ in $L^{p}\left(\mathbb{R}^{n}\right)$? Show that if $f_{j} \rightharpoonup f$, then

$$
\|f\|_{L^{p}} \leqslant \liminf _{j \rightarrow \infty}\left\|f_{j}\right\|_{L^{p}} .
$$

(b) Suppose that $\left(g_{j}\right)$ is a sequence with $g_{j} \in L^{p}\left(\mathbb{R}^{n}\right)$, and that there exists $K>0$ such that $\left\|g_{j}\right\|_{L^{p}} \leqslant K$ for all j. Show that there exists $g \in L^{p}\left(\mathbb{R}^{n}\right)$ and a subsequence $\left(g_{j_{k}}\right)_{k=1}^{\infty}$, such that for any sequence $\left(h_{k}\right)$ with $h_{k} \in L^{q}\left(\mathbb{R}^{n}\right)$ and $h_{k} \rightarrow h \in L^{q}\left(\mathbb{R}^{n}\right)$, we have

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} g_{j_{k}} h_{k} d x=\int_{\mathbb{R}^{n}} g h d x .
$$

Give an example to show that the result need not hold if the condition $h_{k} \rightarrow h$ is replaced by $h_{k} \rightharpoonup h$ in $L^{q}\left(\mathbb{R}^{n}\right)$.

Paper 1, Section II

$23 I$ Analysis of Functions

Let \mathbb{R}^{n} be equipped with the σ-algebra of Lebesgue measurable sets, and Lebesgue measure.
(a) Given $f \in L^{\infty}\left(\mathbb{R}^{n}\right), g \in L^{1}\left(\mathbb{R}^{n}\right)$, define the convolution $f \star g$, and show that it is a bounded, continuous function. [You may use without proof continuity of translation on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1 \leqslant p<\infty$.]

Suppose $A \subset \mathbb{R}^{n}$ is a measurable set with $0<|A|<\infty$ where $|A|$ denotes the Lebesgue measure of A. By considering the convolution of $f(x)=\mathbb{1}_{A}(x)$ and $g(x)=\mathbb{1}_{A}(-x)$, or otherwise, show that the set $A-A=\{x-y: x, y \in A\}$ contains an open neighbourhood of 0 . Does this still hold if $|A|=\infty$?
(b) Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a measurable function satisfying

$$
f(x+y)=f(x)+f(y), \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

Let $B_{r}=\left\{y \in \mathbb{R}^{m}:|y|<r\right\}$. Show that for any $\epsilon>0$:
(i) $f^{-1}\left(B_{\epsilon}\right)-f^{-1}\left(B_{\epsilon}\right) \subset f^{-1}\left(B_{2 \epsilon}\right)$,
(ii) $f^{-1}\left(B_{k \epsilon}\right)=k f^{-1}\left(B_{\epsilon}\right)$ for all $k \in \mathbb{N}$, where for $\lambda>0$ and $A \subset \mathbb{R}^{n}, \lambda A$ denotes the set $\{\lambda x: x \in A\}$.

Show that f is continuous at 0 and hence deduce that f is continuous everywhere.

Paper 3, Section II

22 Analysis of Functions

Let X be a Banach space.
(a) Define the dual space X^{\prime}, giving an expression for $\|\Lambda\|_{X^{\prime}}$ for $\Lambda \in X^{\prime}$. If $Y=L^{p}\left(\mathbb{R}^{n}\right)$ for some $1 \leqslant p<\infty$, identify Y^{\prime} giving an expression for a general element of Y^{\prime}. [You need not prove your assertion.]
(b) For a sequence $\left(\Lambda_{i}\right)_{i=1}^{\infty}$ with $\Lambda_{i} \in X^{\prime}$, what is meant by: (i) $\Lambda_{i} \rightarrow \Lambda$, (ii) $\Lambda_{i} \rightharpoonup \Lambda$ (iii) $\Lambda_{i} \stackrel{*}{\rightharpoonup} \Lambda$? Show that (i) \Longrightarrow (ii) \Longrightarrow (iii). Find a sequence $\left(f_{i}\right)_{i=1}^{\infty}$ with $f_{i} \in$ $L^{\infty}(\mathbb{R})=\left(L^{1}(\mathbb{R})\right)^{\prime}$ such that, for some $f, g \in L^{\infty}\left(\mathbb{R}^{n}\right)$:

$$
f_{i} \stackrel{*}{\rightharpoonup} f, \quad f_{i}^{2} \stackrel{*}{\rightharpoonup} g, \quad g \neq f^{2} .
$$

(c) For $f \in C_{c}^{0}\left(\mathbb{R}^{n}\right)$, let $\Lambda: C_{c}^{0}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ be the map $\Lambda f=f(0)$. Show that Λ may be extended to a continuous linear map $\tilde{\Lambda}: L^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$, and deduce that $\left(L^{\infty}\left(\mathbb{R}^{n}\right)\right)^{\prime} \neq L^{1}\left(\mathbb{R}^{n}\right)$. For which $1 \leqslant p \leqslant \infty$ is $L^{p}\left(\mathbb{R}^{n}\right)$ reflexive? [You may use without proof the Hahn-Banach theorem].

Paper 4, Section II

231 Analysis of Functions

(a) Define the Sobolev space $H^{s}\left(\mathbb{R}^{n}\right)$ for $s \in \mathbb{R}$.
(b) Let k be a non-negative integer and let $s>k+\frac{n}{2}$. Show that if $u \in H^{s}\left(\mathbb{R}^{n}\right)$ then there exists $u^{*} \in C^{k}\left(\mathbb{R}^{n}\right)$ with $u=u^{*}$ almost everywhere.
(c) Show that if $f \in H^{s}\left(\mathbb{R}^{n}\right)$ for some $s \in \mathbb{R}$, there exists a unique $u \in H^{s+4}\left(\mathbb{R}^{n}\right)$ which solves:

$$
\Delta \Delta u+\Delta u+u=f
$$

in a distributional sense. Prove that there exists a constant $C>0$, independent of f, such that:

$$
\|u\|_{H^{s+4}} \leqslant C\|f\|_{H^{s}}
$$

For which s will u be a classical solution?

Paper 3, Section II

22H Analysis of Functions

(a) Prove that in a finite-dimensional normed vector space the weak and strong topologies coincide.
(b) Prove that in a normed vector space X, a weakly convergent sequence is bounded. [Any form of the Banach-Steinhaus theorem may be used, as long as you state it clearly.]
(c) Let ℓ^{1} be the space of real-valued absolutely summable sequences. Suppose $\left(a^{k}\right)$ is a weakly convergent sequence in ℓ^{1} which does not converge strongly. Show there is a constant $\varepsilon>0$ and a sequence $\left(x^{k}\right)$ in ℓ^{1} which satisfies $x^{k} \rightharpoonup 0$ and $\left\|x^{k}\right\|_{\ell^{1}} \geqslant \varepsilon$ for all $k \geqslant 1$.

With $\left(x^{k}\right)$ as above, show there is some $y \in \ell^{\infty}$ and a subsequence $\left(x^{k_{n}}\right)$ of $\left(x^{k}\right)$ with $\left\langle x^{k_{n}}, y\right\rangle \geqslant \varepsilon / 3$ for all n. Deduce that every weakly convergent sequence in ℓ^{1} is strongly convergent.
[Hint: Define y so that $y_{i}=\operatorname{sign} x_{i}^{k_{n}}$ for $b_{n-1}<i \leqslant b_{n}$, where the sequence of integers b_{n} should be defined inductively along with $x^{k_{n}}$.]
(d) Is the conclusion of part (c) still true if we replace ℓ^{1} by $L^{1}([0,2 \pi])$?

Paper 4, Section II

23H Analysis of Functions

(a) Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a real Hilbert space and let $B: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ be a bilinear map. If B is continuous prove that there is an $M>0$ such that $|B(u, v)| \leqslant M\|u\|\|v\|$ for all $u, v \in \mathcal{H}$. [You may use any form of the Banach-Steinhaus theorem as long as you state it clearly.]
(b) Now suppose that B defined as above is bilinear and continuous, and assume also that it is coercive: i.e. there is a $C>0$ such that $B(u, u) \geqslant C\|u\|^{2}$ for all $u \in \mathcal{H}$. Prove that for any $f \in \mathcal{H}$, there exists a unique $v_{f} \in \mathcal{H}$ such that $B\left(u, v_{f}\right)=\langle u, f\rangle$ for all $u \in \mathcal{H}$.
[Hint: show that there is a bounded invertible linear operator L with bounded inverse so that $B(u, v)=\langle u, L v\rangle$ for all $u, v \in \mathcal{H}$. You may use any form of the Riesz representation theorem as long as you state it clearly.]
(c) Define the Sobolev space $H_{0}^{1}(\Omega)$, where $\Omega \subset \mathbb{R}^{d}$ is open and bounded.
(d) Suppose $f \in L^{2}(\Omega)$ and $A \in \mathbb{R}^{d}$ with $|A|_{2}<2$, where $|\cdot|_{2}$ is the Euclidean norm on \mathbb{R}^{d}. Consider the Dirichlet problem

$$
-\Delta v+v+A \cdot \nabla v=f \quad \text { in } \Omega, \quad v=0 \quad \text { in } \partial \Omega
$$

Using the result of part (b), prove there is a unique weak solution $v \in H_{0}^{1}(\Omega)$.
(e) Now assume that Ω is the open unit disk in \mathbb{R}^{2} and g is a smooth function on \mathbb{S}^{1}. Sketch how you would solve the following variant:

$$
-\Delta v+v+A \cdot \nabla v=0 \quad \text { in } \Omega, \quad v=g \quad \text { in } \partial \Omega
$$

[Hint: Reduce to the result of part (d).]

Paper 1, Section II

23H Analysis of Functions

(a) Consider the topology \mathcal{T} on the natural numbers $\mathbb{N} \subset \mathbb{R}$ induced by the standard topology on \mathbb{R}. Prove it is the discrete topology; i.e. $\mathcal{T}=\mathcal{P}(\mathbb{N})$ is the power set of \mathbb{N}.
(b) Describe the corresponding Borel sets on \mathbb{N} and prove that any function $f: \mathbb{N} \rightarrow \mathbb{R}$ or $f: \mathbb{N} \rightarrow[0,+\infty]$ is measurable.
(c) Using Lebesgue integration theory, define $\sum_{n \geqslant 1} f(n) \in[0,+\infty]$ for a function $f: \mathbb{N} \rightarrow[0,+\infty]$ and then $\sum_{n \geqslant 1} f(n) \in \mathbb{C}$ for $f: \mathbb{N} \rightarrow \mathbb{C}$. State any condition needed for the sum of the latter series to be defined. What is a simple function in this setting, and which simple functions have finite sum?
(d) State and prove the Beppo Levi theorem (also known as the monotone convergence theorem).
(e) Consider $f: \mathbb{R} \times \mathbb{N} \rightarrow[0,+\infty]$ such that for any $n \in \mathbb{N}$, the function $t \mapsto f(t, n)$ is non-decreasing. Prove that

$$
\lim _{t \rightarrow \infty} \sum_{n \geqslant 1} f(t, n)=\sum_{n \geqslant 1} \lim _{t \rightarrow \infty} f(t, n) .
$$

Show that this need not be the case if we drop the hypothesis that $t \mapsto f(t, n)$ is nondecreasing, even if all the relevant limits exist.

Paper 3, Section II

22F Analysis of Functions

(a) Let (X, \mathcal{A}, μ) be a measure space. Define the spaces $L^{p}(X)$ for $p \in[1, \infty]$. Prove that if $\mu(X)<\infty$ then $L^{q}(X) \subset L^{p}(X)$ for all $1 \leqslant p<q \leqslant \infty$.
(b) Now let $X=\mathbb{R}^{n}$ endowed with Borel sets and Lebesgue measure. Describe the dual spaces of $L^{p}(X)$ for $p \in[1, \infty)$. Define reflexivity and say which $L^{p}(X)$ are reflexive. Prove that $L^{1}(X)$ is not the dual space of $L^{\infty}(X)$.
(c) Now let $X \subset \mathbb{R}^{n}$ be a Borel subset and consider the measure space (X, \mathcal{A}, μ) induced from Borel sets and Lebesgue measure on \mathbb{R}^{n}.
(i) Given any $p \in[1, \infty]$, prove that any sequence $\left(f_{n}\right)$ in $L^{p}(X)$ converging in $L^{p}(X)$ to some $f \in L^{p}(X)$ admits a subsequence converging almost everywhere to f.
(ii) Prove that if $L^{q}(X) \subset L^{p}(X)$ for $1 \leqslant p<q \leqslant \infty$ then $\mu(X)<\infty$. [Hint: You might want to prove first that the inclusion is continuous with the help of one of the corollaries of Baire's category theorem.]

CAMBRIDGE

Paper 4, Section II

23F Analysis of Functions

Here and below, $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is smooth such that $\int_{\mathbb{R}} e^{-\Phi(x)} \mathrm{d} x=1$ and

$$
\lim _{|x| \rightarrow+\infty}\left(\frac{\left|\Phi^{\prime}(x)\right|^{2}}{4}-\frac{\Phi^{\prime \prime}(x)}{2}\right)=\ell \in(0,+\infty)
$$

$C_{c}^{1}(\mathbb{R})$ denotes the set of continuously differentiable complex-valued functions with compact support on \mathbb{R}.
(a) Prove that there are constants $R_{0}>0, \lambda_{1}>0$ and $K_{1}>0$ so that for any $R \geqslant R_{0}$ and $h \in C_{c}^{1}(\mathbb{R}):$

$$
\int_{\mathbb{R}}\left|h^{\prime}(x)\right|^{2} e^{-\Phi(x)} d x \geqslant \lambda_{1} \int_{\{|x| \geqslant R\}}|h(x)|^{2} e^{-\Phi(x)} d x-K_{1} \int_{\{|x| \leqslant R\}}|h(x)|^{2} e^{-\Phi(x)} d x
$$

[Hint: Denote $g:=h e^{-\Phi / 2}$, expand the square and integrate by parts.]
(b) Prove that, given any $R>0$, there is a $C_{R}>0$ so that for any $h \in C^{1}([-R, R])$ with $\int_{-R}^{+R} h(x) e^{-\Phi(x)} d x=0$:

$$
\max _{x \in[-R, R]}|h(x)|+\sup _{\{x, y \in[-R, R], x \neq y\}} \frac{|h(x)-h(y)|}{|x-y|^{1 / 2}} \leqslant C_{R}\left(\int_{-R}^{+R}\left|h^{\prime}(x)\right|^{2} e^{-\Phi(x)} d x\right)^{1 / 2}
$$

[Hint: Use the fundamental theorem of calculus to control the second term of the left-hand side, and then compare h to its weighted mean to control the first term of the left-hand side.]
(c) Prove that, given any $R>0$, there is a $\lambda_{R}>0$ so that for any $h \in C^{1}([-R, R])$:

$$
\int_{-R}^{+R}\left|h^{\prime}(x)\right|^{2} e^{-\Phi(x)} d x \geqslant \lambda_{R} \int_{-R}^{+R}\left|h(x)-\frac{\int_{-R}^{+R} h(y) e^{-\Phi(y)} d y}{\int_{-R}^{+R} e^{-\Phi(y)} d y}\right|^{2} e^{-\Phi(x)} d x
$$

[Hint: Show first that one can reduce to the case $\int_{-R}^{+R} h e^{-\Phi}=0$. Then argue by contradiction with the help of the Arzelà-Ascoli theorem and part (b).]
(d) Deduce that there is a $\lambda_{0}>0$ so that for any $h \in C_{c}^{1}(\mathbb{R})$:

$$
\int_{\mathbb{R}}\left|h^{\prime}(x)\right|^{2} e^{-\Phi(x)} d x \geqslant \lambda_{0} \int_{\mathbb{R}}\left|h(x)-\left(\int_{\mathbb{R}} h(y) e^{-\Phi(y)} d y\right)\right|^{2} e^{-\Phi(x)} d x
$$

[Hint: Show first that one can reduce to the case $\int_{\mathbb{R}} h e^{-\Phi}=0$. Then combine the inequality (a), multiplied by a constant of the form $\epsilon=\epsilon_{0} \lambda_{R}$ (where $\epsilon_{0}>0$ is chosen so that ϵ be sufficiently small), and the inequality (c).]

Paper 1, Section II

23F Analysis of Functions

(a) Consider a measure space (X, \mathcal{A}, μ) and a complex-valued measurable function F on X. Prove that for any $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ differentiable and increasing such that $\varphi(0)=0$, then

$$
\int_{X} \varphi(|F(x)|) \mathrm{d} \mu(x)=\int_{0}^{+\infty} \varphi^{\prime}(s) \mu(\{|F|>s\}) \mathrm{d} \lambda(s)
$$

where λ is the Lebesgue measure.
(b) Consider a complex-valued measurable function $f \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ and its maximal function $M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f| \mathrm{d} \lambda$. Prove that for $p \in(1,+\infty)$ there is a constant $c_{p}>0$ such that $\|M f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant c_{p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$.
[Hint: Split $f=f_{0}+f_{1}$ with $f_{0}=f \chi_{\{|f|>s / 2\}}$ and $f_{1}=f \chi_{\{|f| \leqslant s / 2\}}$ and prove that $\lambda(\{M f>s\}) \leqslant \lambda\left(\left\{M f_{0}>s / 2\right\}\right)$. Then use the maximal inequality $\lambda(\{M f>s\}) \leqslant$ $\frac{C_{1}}{s}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}$ for some constant $C_{1}>0$.]
(c) Consider $p, q \in(1,+\infty)$ with $p<q$ and $\alpha \in(0, n)$ such that $1 / q=1 / p-\alpha / n$. Define $I_{\alpha}|f|(x):=\int_{\mathbb{R}^{n}} \frac{|f(y)|}{|x-y|^{n-\alpha}} \mathrm{d} \lambda(y)$ and prove $I_{\alpha}|f|(x) \leqslant\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{\alpha p / n} M f(x)^{1-\alpha p / n}$.
[Hint: Split the integral into $|x-y| \geqslant r$ and $|x-y| \in\left[2^{-k-1} r, 2^{-k} r\right)$ for all $k \geqslant 0$, given some suitable $r>0$.]

Paper 3, Section II

20F Analysis of Functions

Denote by $C_{0}\left(\mathbb{R}^{n}\right)$ the space of continuous complex-valued functions on \mathbb{R}^{n} converging to zero at infinity. Denote by $\mathcal{F} f(\xi)=\int_{\mathbb{R}^{n}} e^{-2 i \pi x \cdot \xi} f(x) d x$ the Fourier transform of $f \in L^{1}\left(\mathbb{R}^{n}\right)$.
(i) Prove that the image of $L^{1}\left(\mathbb{R}^{n}\right)$ under \mathcal{F} is included and dense in $C_{0}\left(\mathbb{R}^{n}\right)$, and that $\mathcal{F}: L^{1}\left(\mathbb{R}^{n}\right) \rightarrow C_{0}\left(\mathbb{R}^{n}\right)$ is injective. [Fourier inversion can be used without proof when properly stated.]
(ii) Calculate the Fourier transform of $\chi_{[a, b]}$, the characteristic function of $[a, b] \subset \mathbb{R}$.
(iii) Prove that $g_{n}:=\chi_{[-n, n]} * \chi_{[-1,1]}$ belongs to $C_{0}(\mathbb{R})$ and is the Fourier transform of a function $h_{n} \in L^{1}(\mathbb{R})$, which you should determine.
(iv) Using the functions h_{n}, g_{n} and the open mapping theorem, deduce that the Fourier transform is not surjective from $L^{1}(\mathbb{R})$ to $C_{0}(\mathbb{R})$.

Paper 4, Section II

22F Analysis of Functions

Consider \mathbb{R}^{n} with the Lebesgue measure. Denote by $\mathcal{F} f(\xi)=\int_{\mathbb{R}^{n}} e^{-2 i \pi x \cdot \xi} f(x) d x$ the Fourier transform of $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and by \hat{f} the Fourier-Plancherel transform of $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Let $\chi_{R}(\xi):=\left(1-\frac{|\xi|}{R}\right) \chi_{|\xi| \leqslant R}$ for $R>0$ and define for $s \in \mathbb{R}_{+}$

$$
H^{s}\left(\mathbb{R}^{n}\right):=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right) \mid\left(1+|\cdot|^{2}\right)^{s / 2} \hat{f}(\cdot) \in L^{2}\left(\mathbb{R}^{n}\right)\right\} .
$$

(i) Prove that $H^{s}\left(\mathbb{R}^{n}\right)$ is a vector subspace of $L^{2}\left(\mathbb{R}^{n}\right)$, and is a Hilbert space for the inner product $\langle f, g\rangle:=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s} \hat{f}(\xi) \overline{\hat{g}}(\xi) d \xi$, where \bar{z} denotes the complex conjugate of $z \in \mathbb{C}$.
(ii) Construct a function $f \in H^{s}(\mathbb{R}), s \in(0,1 / 2)$, that is not almost everywhere equal to a continuous function.
(iii) For $f \in L^{1}\left(\mathbb{R}^{n}\right)$, prove that $F_{R}: x \mapsto \int_{\mathbb{R}^{n}} \mathcal{F} f(\xi) \chi_{R}(\xi) e^{2 i \pi x \cdot \xi} d \xi$ is a well-defined function and that $F_{R} \in L^{1}\left(\mathbb{R}^{n}\right)$ converges to f in $L^{1}\left(\mathbb{R}^{n}\right)$ as $R \rightarrow+\infty$.
[Hint: Prove that $F_{R}=K_{R} * f$ where K_{R} is an approximation of the unit as $R \rightarrow+\infty$.]
(iv) Deduce that if $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\left(1+|\cdot|^{2}\right)^{s / 2} \mathcal{F} f(\cdot) \in L^{2}\left(\mathbb{R}^{n}\right)$ then $f \in H^{s}\left(\mathbb{R}^{n}\right)$.
[Hint: Prove that: (1) there is a sequence $R_{k} \rightarrow+\infty$ such that $K_{R_{k}} * f$ converges to f almost everywhere; (2) $K_{R} * f$ is uniformly bounded in $L^{2}\left(\mathbb{R}^{n}\right)$ as $R \rightarrow+\infty$.]

Paper 1, Section II

$22 F$ Analysis of Functions

Consider a sequence $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ of measurable functions converging pointwise to a function $f: \mathbb{R} \rightarrow \mathbb{R}$. The Lebesgue measure is denoted by λ.
(a) Consider a Borel set $A \subset \mathbb{R}$ with finite Lebesgue measure $\lambda(A)<+\infty$. Define for $k, n \geqslant 1$ the sets

$$
E_{n}^{(k)}:=\bigcap_{m \geqslant n}\left\{x \in A| | f_{m}(x)-f(x) \left\lvert\, \leqslant \frac{1}{k}\right.\right\} .
$$

Prove that for any $k, n \geqslant 1$, one has $E_{n}^{(k)} \subset E_{n+1}^{(k)}$ and $E_{n}^{(k+1)} \subset E_{n}^{(k)}$. Prove that for any $k \geqslant 1, A=\cup_{n \geqslant 1} E_{n}^{(k)}$.
(b) Consider a Borel set $A \subset \mathbb{R}$ with finite Lebesgue measure $\lambda(A)<+\infty$. Prove that for any $\varepsilon>0$, there is a Borel set $A_{\varepsilon} \subset A$ for which $\lambda\left(A \backslash A_{\varepsilon}\right) \leqslant \varepsilon$ and such that f_{n} converges to f uniformly on A_{ε} as $n \rightarrow+\infty$. Is the latter still true when $\lambda(A)=+\infty$?
(c) Assume additionally that $f_{n} \in L^{p}(\mathbb{R})$ for some $p \in(1,+\infty]$, and there exists an $M \geqslant 0$ for which $\left\|f_{n}\right\|_{L^{p}(\mathbb{R})} \leqslant M$ for all $n \geqslant 1$. Prove that $f \in L^{p}(\mathbb{R})$.
(d) Let f_{n} and f be as in part (c). Consider a Borel set $A \subset \mathbb{R}$ with finite Lebesgue measure $\lambda(A)<+\infty$. Prove that f_{n}, f are integrable on A and $\int_{A} f_{n} d \lambda \rightarrow \int_{A} f d \lambda$ as $n \rightarrow \infty$. Deduce that f_{n} converges weakly to f in $L^{p}(\mathbb{R})$ when $p<+\infty$. Does the convergence have to be strong?

