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Paper 1, Section II

21G Algebraic Topology
State the universal property which characterizes an amalgamated free product of

groups. State the Seifert-van Kampen theorem.

Suppose that {U1, U2} is an open cover of a topological space X, that U1∩U2 is path
connected and that x0 ∈ U1 ∩ U2. If ik : Uk → X is the inclusion, prove that π1(X,x0)
is generated by i1∗(π1(U1, x0)) and i2∗(π1(U2, x0)). [You may use the Lebesgue covering
lemma if you state it clearly.]

Consider the Mobius band M = I2/ ∼, where (0, x) ∼ (1, 1 − x). Identify its
boundary ∂M = (I × {0, 1})/ ∼ with S1. Note that if f : ∂M → X, the space obtained
by attaching a Mobius band to X using f is X ∪f M = (X qM)/ ∼, where now ∼ is the
smallest equivalence relation containing x ∼ f(x) for all x ∈ ∂M . Now let Y be the space
obtained by attaching two Mobius bands to T 2 = S1×S1 using the maps f1, f2 : S

1 → T 2

given by f1(z) = (z, z) and f2(z) = (z2, z3). Give a two-generator one-relator presentation
of π1(Y, y0) for some y0 ∈ Y . Show that this group is non-abelian.

Paper 2, Section II

21G Algebraic Topology
Let p : X̂ → X be a covering map, and suppose that X and X̂ are path connected

and locally path connected topological spaces. If x0, x1 ∈ X, show that p−1(x0) and
p−1(x1) have the same cardinality. [You may use any theorems from the course, as long
as you state them clearly.]

Define what it means for p to be a normal covering map. State an appropriate
lifting theorem and use it to prove that if p : X̂ → X is a universal covering map, then it
is normal.

Let Σg be a surface of genus g and suppose that p : Σ̂g → Σg is a connected covering
map of degree n ∈ N. For which values of g and n must p be normal? Justify your answer.
For those values of g and n for which p need not be normal, give an explicit example of a
non-normal covering map p.

Paper 3, Section II

20G Algebraic Topology
Consider the set X ⊂ S3 given by X = {(x1, x2, x3, x4) ∈ S3 : |x4| 6 1

2} and its
boundary ∂X = {(x1, x2, x3, x4) ∈ S3 : |x4| = 1

2}. Define Y and ∂Y to be the image of
X and ∂X in RP3 = S3/ ∼, where x ∼ −x. Show that Y is homotopy equivalent to RP2.
Compute H∗(RP3). [You may assume RP3 admits a triangulation containing Y and ∂Y
as subcomplexes, and may use H∗(RP2) if you state it precisely.]

Let f : ∂Y → ∂Y be the identity map, and define Z to be the space obtained by
identifying two copies of Y along their boundary: Z = Y ∪f Y . Compute H∗(Z) and
π1(Z, z0), where z0 ∈ Z. The universal covering space of Z is homeomorphic to a familiar
space. What is it?

Part II, Paper 1 [TURN OVER]
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Paper 4, Section II

21G Algebraic Topology
Suppose that (C, d) and (C ′, d′) are chain complexes, and that f, g : C → C ′ are

chain maps. Show that f induces a map f∗ : H∗(C)→ H∗(C ′). Define what it means for
f and g to be chain homotopic. Show that if f and g are chain homotopic, they induce
the same map on homology.

Define a chain complex (M(f), df ) as follows: M(f)i = Ci−1 ⊕ C ′i and the map
(df )i : M(f)i →M(f)i−1 is given by the matrix

(
di−1 0

(−1)ifi−1 d′i

)
.

Verify that (M(f), df ) is a chain complex. Show that there is a long exact sequence

. . .→ Hi(C)
(−1)i+1f∗−−−−−−→ Hi(C

′)→ Hi(M(f))→ Hi−1(C)
(−1)if∗−−−−−→ Hi−1(C ′)→ . . .

If f is chain homotopic to g, show that (M(f), df ) and (M(g), dg) are isomorphic as chain
complexes.

Part II, Paper 1

2023
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Paper 1, Section II
21I Algebraic Topology

Suppose f, g : C∗ → C ′∗ are chain maps. Define what it means for f and g to be
chain homotopic. Show that if f and g are chain homotopic then f∗ = g∗.

Let C∗ = C̃∗(∆n) be the reduced chain complex of the n-dimensional simplex. Show
that idC∗ is chain homotopic to 0C∗ . Hence compute H∗(∆n).

Now let K = ∆6
2 be the 2-skeleton of ∆6. Compute H∗(K). Let f : K → K be the

simplicial map given by f(ei) = eσ(i), where σ is the permutation given in cycle notation
by (0123)(456). Compute the trace of the linear map f∗ : H2(K;Q) → H2(K;Q).

Paper 2, Section II
21I Algebraic Topology

State the snake lemma and derive the exactness of the Mayer–Vietoris sequence
from it.

Suppose that K is a simplicial complex of dimension n > 1, that every (n − 1)-
simplex of K is a face of precisely two n-simplices, and that if σ and σ′ are n-simplices of
K then there is a sequence σ = σ0, σ1, . . . , σk = σ′ of n-simplices in K such that for all
i, σi and σi+1 have an (n − 1)-simplex in common. Show that Hn(K) is either trivial or
isomorphic to Z.

Now suppose that K is as above and that Hn(K) ∼= Z is generated by x ∈ Hn(K).
If K is the union of subcomplexes L1 and L2 such that L1 ∩ L2 has dimension less than
n, describe ∂x, where ∂ is the boundary map in the Mayer–Vietoris sequence associated
to the decomposition K = L1 ∪ L2. Justify your answer. When is ∂x 6= 0?

Finally, suppose that K,L1 and L2 are as in the previous paragraph, that K is
homeomorphic to S3, that L1 is homeomorphic to S1×D2, and that the image of L1 ∩L2

under this homeomorphism is S1 × S1 ⊂ S1 ×D2. Compute H∗(L2).

Paper 3, Section II
20I Algebraic Topology

Suppose f : Sn−1 → X is a continuous map. Show that f extends to a continuous
map F : Dn → X if and only if f is homotopic to a constant map.

Let X be a path-connected and locally path-connected topological space. Define
what it means for a space X̃ to be a universal covering space of X. State a suitable lifting
property and use it to prove that any two universal covering spaces ofX are homeomorphic.

Now suppose that X̃ is a universal covering space of X, and that X̃ is contractible.
Let K be a path-connected simplicial complex with 1-skeleton K1, and let i : K1 → K be
the inclusion. Given a continuous map f : |K1| → X, prove that f extends to a continuous
map F : |K| → X if and only if there is a homomorphism Φ : π1(|K|, v) → π1(X, f(v))
with f∗ = Φ ◦ i∗, where v is any vertex of K. [Hint: Induct on the number of simplices in
K \K1.]

Part II, Paper 1 [TURN OVER]

2022
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Paper 4, Section II
21I Algebraic Topology

Let K be the Klein bottle obtained by identifying the sides of the unit square as
shown in the figure, and let k0 ∈ K be the image of the corners of the square.

Show that K is the union of two Möbius bands with their boundaries identified. Deduce
that π1(K, k0) has a presentation

π1(K, k0) = 〈a, b | a2b−2〉.

Show that there is a degree two covering map p : (T 2, x0)→ (K, k0). Describe generators
α, β for π1(T

2, x0) and express p∗(α) and p∗(β) in terms of a and b.

Let Y = T 2 × [0, 1)/ ∼, where ∼ is the smallest equivalence relation with
(x, 0) ∼ (x′, 0) whenever p(x) = p(x′). What is π1(Y, y0), where y0 is the image of (x0, 0)
in Y ?

Suppose X is a path-connected Hausdorff space, that U ⊂ X is an open subset, and
that U is homeomorphic to Y . Can X be simply connected? Justify your answer.

Part II, Paper 1

2022
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Paper 1, Section II

21F Algebraic Topology
(a) What does it mean for two spaces X and Y to be homotopy equivalent?

(b) What does it mean for a subspace Y ⊆ X to be a retract of a space X? What
does it mean for a space X to be contractible? Show that a retract of a contractible space
is contractible.

(c) Let X be a space and A ⊆ X a subspace. We say the pair (X,A) has the
homotopy extension property if, for any pair of maps f : X×{0} → Y and H ′ : A×I → Y
with

f |A×{0} = H ′|A×{0},
there exists a map H : X × I → Y with

H|X×{0} = f, H|A×I = H ′.

Now suppose that A ⊆ X is contractible. Denote by X/A the quotient of X by the
equivalence relation x ∼ x′ if and only if x = x′ or x, x′ ∈ A. Show that, if (X,A) satisfies
the homotopy extension property, then X and X/A are homotopy equivalent.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 2, Section II

21F Algebraic Topology
(a) State a suitable version of the Seifert–van Kampen theorem and use it to

calculate the fundamental groups of the torus T 2 := S1 × S1 and of the real projective
plane RP2.

(b) Show that there are no covering maps T 2 → RP2 or RP2 → T 2.

(c) Consider the following covering space of S1 ∨ S1:

aa

aa

bb

bb

Here the line segments labelled a and b are mapped to the two different copies of S1

contained in S1 ∨ S1, with orientations as indicated.

Using the Galois correspondence with basepoints, identify a subgroup of

π1(S
1 ∨ S1, x0) = F2

(where x0 is the wedge point) that corresponds to this covering space.

Part II, 2021 List of Questions

2021
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Paper 3, Section II

20F Algebraic Topology
Let X be a space. We define the cone of X to be

CX := (X × I)/ ∼

where (x1, t1) ∼ (x2, t2) if and only if either t1 = t2 = 1 or (x1, t1) = (x2, t2).

(a) Show that if X is triangulable, so is CX. Calculate Hi(CX). [You may use any
results proved in the course.]

(b) Let K be a simplicial complex and L ⊆ K a subcomplex. Let X = |K|, A = |L|,
and let X ′ be the space obtained by identifying |L| ⊆ |K| with |L| × {0} ⊆ C|L|. Show
that there is a long exact sequence

· · · → Hi+1(X
′)→ Hi(A)→ Hi(X)→ Hi(X

′)→ Hi−1(A)→ · · ·

· · · → H1(X
′)→ H0(A)→ Z⊕H0(X)→ H0(X

′)→ 0.

(c) In part (b), suppose that X = S1× S1 and A = S1×{x} ⊆ X for some x ∈ S1.
Calculate Hi(X

′) for all i.

Paper 4, Section II

21F Algebraic Topology
(a) Define the Euler characteristic of a triangulable space X.

(b) Let Σg be an orientable surface of genus g. A map π : Σg → S2 is a double-
branched cover if there is a set Q = {p1, . . . , pn} ⊆ S2 of branch points, such that the
restriction π : Σg \ π−1(Q) → S2 \ Q is a covering map of degree 2, but for each p ∈ Q,
π−1(p) consists of one point. By carefully choosing a triangulation of S2, use the Euler
characteristic to find a formula relating g and n.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 1, Section II

21F Algebraic Topology
Let p : R2 → S1 × S1 =: X be the map given by

p(r1, r2) =
(
e2πir1 , e2πir2

)
,

where S1 is identified with the unit circle in C. [You may take as given that p is a covering
map.]

(a) Using the covering map p, show that π1(X,x0) is isomorphic to Z2 as a group,
where x0 = (1, 1) ∈ X.

(b) Let GL2(Z) denote the group of 2× 2 matrices A with integer entries such that
detA = ±1. If A ∈ GL2(Z), we obtain a linear transformation A : R2 → R2. Show that
this linear transformation induces a homeomorphism fA : X → X with fA(x0) = x0 and
such that fA∗ : π1(X,x0)→ π1(X,x0) agrees with A as a map Z2 → Z2.

(c) Let pi : X̂i → X for i = 1, 2 be connected covering maps of degree 2. Show that
there exist homeomorphisms φ : X̂1 → X̂2 and ψ : X → X so that the diagram

X̂1
φ //

p1

��

X̂2

p2

��
X

ψ
// X

is commutative.

Paper 2, Section II

21F Algebraic Topology
(a) Let f : X → Y be a map of spaces. We define the mapping cylinder Mf of f to

be the space
(([0, 1]×X) t Y )/ ∼

with (0, x) ∼ f(x). Show carefully that the canonical inclusion Y ↪→ Mf is a homotopy
equivalence.

(b) Using the Seifert–van Kampen theorem, show that if X is path-connected and
α : S1 → X is a map, and x0 = α(θ0) for some point θ0 ∈ S1, then

π1(X ∪α D2, x0) ∼= π1(X,x0)/〈〈[α]〉〉.

Use this fact to construct a connected space X with

π1(X) ∼= 〈a, b | a3 = b7〉.

(c) Using a covering space of S1 ∨ S1, give explicit generators of a subgroup of F2

isomorphic to F3. Here Fn denotes the free group on n generators.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 3, Section II

20F Algebraic Topology
Let K be a simplicial complex with four vertices v1, . . . , v4 with simplices 〈v1, v2, v3〉,

〈v1, v4〉 and 〈v2, v4〉 and their faces.

(a) Draw a picture of |K|, labelling the vertices.

(b) Using the definition of homology, calculate Hn(K) for all n.

(c) Let L be the subcomplex of K consisting of the vertices v1, v2, v4 and the 1-
simplices 〈v1, v2〉, 〈v1, v4〉, 〈v2, v4〉. Let i : L→ K be the inclusion. Construct a simplicial
map j : K → L such that the topological realisation |j| of j is a homotopy inverse to |i|.
Construct an explicit chain homotopy h : C•(K) → C•(K) between i• ◦ j• and idC•(K),
and verify that h is a chain homotopy.

Paper 4, Section II

21F Algebraic Topology
In this question, you may assume all spaces involved are triangulable.

(a) (i) State and prove the Mayer–Vietoris theorem. [You may assume the theorem
that states that a short exact sequence of chain complexes gives rise to a long exact
sequence of homology groups.]

(ii) Use Mayer–Vietoris to calculate the homology groups of an oriented surface of
genus g.

(b) Let S be an oriented surface of genus g, and let D1, . . . , Dn be a collection of
mutually disjoint closed subsets of S with each Di homeomorphic to a two-dimensional
disk. Let D◦

i denote the interior of Di, homeomorphic to an open two-dimensional disk,
and let

T := S \ (D◦
1 ∪ · · · ∪D◦

n).

Show that

Hi(T ) =





Z i = 0,

Z2g+n−1 i = 1,

0 otherwise.

(c) Let T be the surface given in (b) when S = S2 and n = 3. Let f : T → S1 × S1

be a map. Does there exist a map g : S1 × S1 → T such that f ◦ g is homotopic to the
identity map? Justify your answer.

Part II, 2020 List of Questions

2020



6

Paper 3, Section II

20F Algebraic Topology
Let K be a simplicial complex, and L a subcomplex. As usual, Ck(K) denotes the

group of k-chains of K, and Ck(L) denotes the group of k-chains of L.

(a) Let
Ck(K,L) = Ck(K)/Ck(L)

for each integer k. Prove that the boundary map of K descends to give C•(K,L) the
structure of a chain complex.

(b) The homology groups of K relative to L, denoted by Hk(K,L), are defined to
be the homology groups of the chain complex C•(K,L). Prove that there is a long exact
sequence that relates the homology groups of K relative to L to the homology groups of
K and the homology groups of L.

(c) Let Dn be the closed n-dimensional disc, and Sn−1 be the (n − 1)-dimensional
sphere. Exhibit simplicial complexes Kn and subcomplexes Ln−1 such that Dn

∼= |Kn| in
such a way that |Ln−1| is identified with Sn−1.

(d) Compute the relative homology groups Hk(Kn, Ln−1), for all integers k > 0 and
n > 2 where Kn and Ln−1 are as in (c).

Paper 4, Section II

21F Algebraic Topology
State the Lefschetz fixed point theorem.

Let n > 2 be an integer, and x0 ∈ S2 a choice of base point. Define a space

X := (S2 × Z/nZ)/ ∼

where Z/nZ is discrete and ∼ is the smallest equivalence relation such that (x0, i) ∼
(−x0, i + 1) for all i ∈ Z/nZ. Let φ : X → X be a homeomorphism without fixed points.
Use the Lefschetz fixed point theorem to prove the following facts.

(i) If φ3 = IdX then n is divisible by 3.

(ii) If φ2 = IdX then n is even.

Part II, 2019 List of Questions

2019
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Paper 2, Section II

21F Algebraic Topology
Let T = S1 × S1, U = S1 ×D2 and V = D2 × S1. Let i : T → U , j : T → V be the

natural inclusion maps. Consider the space S := U ∪T V ; that is,

S := (U ⊔ V )/ ∼

where ∼ is the smallest equivalence relation such that i(x) ∼ j(x) for all x ∈ T .

(a) Prove that S is homeomorphic to the 3-sphere S3.

[Hint: It may help to think of S3 as contained in C2.]

(b) Identify T as a quotient of the square I×I in the usual way. Let K be the circle
in T given by the equation y = 2

3x mod 1. K is illustrated in the figure below.

Compute a presentation for π1(S −K), where S −K is the complement of K in S,
and deduce that π1(S −K) is non-abelian.

Paper 1, Section II

21F Algebraic Topology
In this question, X and Y are path-connected, locally simply connected spaces.

(a) Let f : Y → X be a continuous map, and X̂ a path-connected covering space of
X. State and prove a uniqueness statement for lifts of f to X̂.

(b) Let p : X̂ → X be a covering map. A covering transformation of p is a
homeomorphism φ : X̂ → X̂ such that p ◦ φ = p. For each integer n > 3, give an
example of a space X and an n-sheeted covering map pn : X̂n → X such that the only
covering transformation of pn is the identity map. Justify your answer. [Hint: Take X to
be a wedge of two circles.]

(c) Is there a space X and a 2-sheeted covering map p2 : X̂2 → X for which the
only covering transformation of p2 is the identity? Justify your answer briefly.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 3, Section II

20H Algebraic Topology
(a) State a version of the Seifert–van Kampen theorem for a cell complex X written

as the union of two subcomplexes Y,Z.

(b) Let
Xn = S1 ∨ . . . ∨ S1

︸ ︷︷ ︸
n

∨RP 2

for n > 1, and take any x0 ∈ Xn. Write down a presentation for π1(Xn, x0).

(c) By computing a homology group of a suitable four-sheeted covering space of
Xn, prove that Xn is not homotopy equivalent to a compact, connected surface whenever
n > 1.

Paper 2, Section II

21H Algebraic Topology
(a) Define the first barycentric subdivision K ′ of a simplicial complex K. Hence

define the rth barycentric subdivision K(r). [You do not need to prove thatK ′ is a simplicial
complex.]

(b) Define the mesh µ(K) of a simplicial complex K. State a result that describes
the behaviour of µ(K(r)) as r → ∞.

(c) Define a simplicial approximation to a continuous map of polyhedra

f : |K| → |L|.

Prove that, if g is a simplicial approximation to f , then the realisation |g| : |K| → |L| is
homotopic to f .

(d) State and prove the simplicial approximation theorem. [You may use the
Lebesgue number lemma without proof, as long as you state it clearly.]

(e) Prove that every continuous map of spheres Sn → Sm is homotopic to a constant
map when n < m.

Part II, 2018 List of Questions [TURN OVER
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Paper 1, Section II

21H Algebraic Topology
(a) Let V be the vector space of 3-dimensional upper-triangular matrices with real

entries:

V =








1 x y
0 1 z
0 0 1



∣∣∣∣∣∣
x, y, z ∈ R



 .

Let Γ be the set of elements of V for which x, y, z are integers. Notice that Γ is a subgroup
of GL3(R); let Γ act on V by left-multiplication and let N = Γ\V . Show that the quotient
map V → N is a covering map.

(b) Consider the unit circle S1 ⊆ C, and let T = S1 × S1. Show that the map
f : T → T defined by

f(z, w) = (zw,w)

is a homeomorphism.

(c) Let M = [0, 1] × T/ ∼, where ∼ is the smallest equivalence relation satisfying

(1, x) ∼ (0, f(x))

for all x ∈ T . Prove that N and M are homeomorphic by exhibiting a homeomor-
phism M → N . [You may assume without proof that N is Hausdorff.]

(d) Prove that π1(M) ∼= Γ.

Paper 4, Section II

21H Algebraic Topology
(a) State the Mayer–Vietoris theorem for a union of simplicial complexes

K =M ∪N

with L =M ∩N .

(b) Construct the map ∂∗ : Hk(K) → Hk−1(L) that appears in the statement of the
theorem. [You do not need to prove that the map is well defined, or a homomorphism.]

(c) Let K be a simplicial complex with |K| homeomorphic to the n-dimensional
sphere Sn, for n > 2. Let M ⊆ K be a subcomplex with |M | homeomorphic to
Sn−1 × [−1, 1]. Suppose that K = M ∪ N , such that L = M ∩ N has polyhedron |L|
identified with Sn−1×{−1, 1} ⊆ Sn−1× [−1, 1]. Prove that |N | has two path components.

Part II, 2018 List of Questions
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Paper 3, Section II

18I Algebraic Topology
The n-torus is the product of n circles:

T n = S1 × . . .× S1
︸ ︷︷ ︸

n times

.

For all n > 1 and 0 6 k 6 n, compute Hk(T
n).

[You may assume that relevant spaces are triangulable, but you should state carefully any
version of any theorem that you use.]

Paper 2, Section II

19I Algebraic Topology

(a) (i) Define the push-out of the following diagram of groups.

H

i2
��

i1
// G1

G2

When is a push-out a free product with amalgamation?

(ii) State the Seifert–van Kampen theorem.

(b) Let X = RP 2 ∨ S1 (recalling that RP 2 is the real projective plane), and let x ∈ X.

(i) Compute the fundamental group π1(X,x) of the space X.

(ii) Show that there is a surjective homomorphism φ : π1(X,x) → S3, where S3
is the symmetric group on three elements.

(c) Let X̂ → X be the covering space corresponding to the kernel of φ.

(i) Draw X̂ and justify your answer carefully.

(ii) Does X̂ retract to a graph? Justify your answer briefly.

(iii) Does X̂ deformation retract to a graph? Justify your answer briefly.

Part II, 2017 List of Questions [TURN OVER

2017
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Paper 1, Section II

20I Algebraic Topology
Let X be a topological space and let x0 and x1 be points of X.

(a) Explain how a path u : [0, 1] → X from x0 to x1 defines a map u# : π1(X,x0) →
π1(X,x1).

(b) Prove that u# is an isomorphism of groups.

(c) Let α, β : (S1, 1) → (X,x0) be based loops in X. Suppose that α, β are homotopic
as unbased maps, i.e. the homotopy is not assumed to respect basepoints. Show
that the corresponding elements of π1(X,x0) are conjugate.

(d) Take X to be the 2-torus S1×S1. If α, β are homotopic as unbased loops as in part
(c), then exhibit a based homotopy between them. Interpret this fact algebraically.

(e) Exhibit a pair of elements in the fundamental group of S1∨S1 which are homotopic
as unbased loops but not as based loops. Justify your answer.

Paper 4, Section II

20I Algebraic Topology
Recall that RPn is real projective n-space, the quotient of Sn obtained by identifying
antipodal points. Consider the standard embedding of Sn as the unit sphere in Rn+1.

(a) For n odd, show that there exists a continuous map f : Sn → Sn such that f(x) is
orthogonal to x, for all x ∈ Sn.

(b) Exhibit a triangulation of RPn.

(c) Describe the map Hn(S
n) → Hn(S

n) induced by the antipodal map, justifying your
answer.

(d) Show that, for n even, there is no continuous map f : Sn → Sn such that f(x) is
orthogonal to x for all x ∈ Sn.

Part II, 2017 List of Questions

2017



5

Paper 3, Section II

18G Algebraic Topology
Construct a space X as follows. Let Z1, Z2, Z3 each be homeomorphic to the

standard 2-sphere S2 ⊆ R3. For each i, let xi ∈ Zi be the North pole (1, 0, 0) and let
yi ∈ Zi be the South pole (−1, 0, 0). Then

X = (Z1 ⊔ Z2 ⊔ Z3)/ ∼

where xi+1 ∼ yi for each i (and indices are taken modulo 3).

(a) Describe the universal cover of X.

(b) Compute the fundamental group of X (giving your answer as a well-known
group).

(c) Show that X is not homotopy equivalent to the circle S1.

Paper 2, Section II

19G Algebraic Topology
(a) Let K,L be simplicial complexes, and f : |K| → |L| a continuous map. What

does it mean to say that g : K → L is a simplicial approximation to f?

(b) Define the barycentric subdivision of a simplicial complex K, and state the
Simplicial Approximation Theorem.

(c) Show that if g is a simplicial approximation to f then f ≃ |g|.
(d) Show that the natural inclusion |K(1)| → |K| induces a surjective map on

fundamental groups.

Paper 1, Section II

20G Algebraic Topology
Let T = S1×S1 be the 2-dimensional torus. Let α : S1 → T be the inclusion of the

coordinate circle S1 × {1}, and let X be the result of attaching a 2-cell along α.

(a) Write down a presentation for the fundamental group of X (with respect to
some basepoint), and identify it with a well-known group.

(b) Compute the simplicial homology of any triangulation of X.

(c) Show that X is not homotopy equivalent to any compact surface.
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Paper 4, Section II

20G Algebraic Topology
Let T = S1 × S1 be the 2-dimensional torus, and let X be constructed from T by

removing a small open disc.

(a) Show that X is homotopy equivalent to S1 ∨ S1.

(b) Show that the universal cover of X is homotopy equivalent to a tree.

(c) Exhibit (finite) cell complexes X,Y , such that X and Y are not homotopy
equivalent but their universal covers X̃, Ỹ are.

[State carefully any results from the course that you use.]

Part II, 2016 List of Questions
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Paper 3, Section II

17H Algebraic Topology

Let K and L be simplicial complexes. Explain what is meant by a simplicial
approximation to a continuous map f : |K| → |L|. State the simplicial approximation
theorem, and define the homomorphism induced on homology by a continuous map
between triangulable spaces. [You do not need to show that the homomorphism is well-
defined.]

Let h : S1 → S1 be given by z 7→ zn for a positive integer n, where S1 is considered
as the unit complex numbers. Compute the map induced by h on homology.

Paper 4, Section II

18H Algebraic Topology

State the Mayer–Vietoris theorem for a simplicial complex K which is the union
of two subcomplexes M and N . Explain briefly how the connecting homomorphism
∂n : Hn(K) → Hn−1(M ∩N) is defined.

If K is the union of subcomplexes M1,M2, . . . ,Mn, with n > 2, such that each
intersection

Mi1 ∩Mi2 ∩ · · · ∩Mik , 1 6 k 6 n,

is either empty or has the homology of a point, then show that

Hi(K) = 0 for i > n− 1.

Construct examples for each n > 2 showing that this is sharp.

Paper 2, Section II

18H Algebraic Topology

Define what it means for p : X̃ → X to be a covering map, and what it means to
say that p is a universal cover.

Let p : X̃ → X be a universal cover, A ⊂ X be a locally path connected subspace,
and Ã ⊂ p−1(A) be a path component containing a point ã0 with p(ã0) = a0. Show that
the restriction p|

Ã
: Ã → A is a covering map, and that under the Galois correspondence

it corresponds to the subgroup

Ker
(
π1(A, a0) → π1(X, a0)

)

of π1(A, a0).

Part II, 2015 List of Questions [TURN OVER
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Paper 1, Section II

18H Algebraic Topology

State carefully a version of the Seifert–van Kampen theorem for a cover of a space
by two closed sets.

Let X be the space obtained by gluing together a Möbius band M and a torus
T = S1 × S1 along a homeomorphism of the boundary of M with S1 × {1} ⊂ T . Find
a presentation for the fundamental group of X, and hence show that it is infinite and
non-abelian.

Part II, 2015 List of Questions
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Paper 3, Section II

20F Algebraic Topology
Let K be a simplicial complex in RN , which we may also consider as lying in

RN+1 using the first N coordinates. Write c = (0, 0, . . . , 0, 1) ∈ RN+1. Show that if
〈v0, v1, . . . , vn〉 is a simplex of K then 〈v0, v1, . . . , vn, c〉 is a simplex in RN+1.

Let L 6 K be a subcomplex and let K be the collection

K ∪ {〈v0, v1, . . . , vn, c〉 | 〈v0, v1, . . . , vn〉 ∈ L} ∪ {〈c〉}

of simplices in RN+1. Show that K is a simplicial complex.

If |K| is a Möbius band, and |L| is its boundary, show that

Hi(K) ∼=





Z if i = 0

Z/2 if i = 1

0 if i > 2.

Paper 4, Section II

21F Algebraic Topology
State the Lefschetz fixed point theorem.

Let X be an orientable surface of genus g (which you may suppose has a triangula-
tion), and let f : X → X be a continuous map such that

1. f3 = IdX ,

2. f has no fixed points.

By considering the eigenvalues of the linear map f∗ : H1(X;Q) → H1(X;Q), and their mul-
tiplicities, show that g must be congruent to 1 modulo 3.
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Paper 2, Section II

21F Algebraic Topology

Let A =

(
a b
c d

)
be a matrix with integer entries. Considering S1 as the quotient

space R/Z, show that the function

ϕA : S1 × S1 −→ S1 × S1

([x], [y]) 7−→ ([ax+ by], [cx+ dy])

is well-defined and continuous. If in addition det(A) = ±1, show that ϕA is a homeomor-
phism.

State the Seifert–van Kampen theorem. Let XA be the space obtained by gluing
together two copies of S1×D2 along their boundaries using the homeomorphism ϕA. Show
that the fundamental group of XA is cyclic and determine its order.

Paper 1, Section II

21F Algebraic Topology
Define what it means for a map p : X̃ → X to be a covering space. State the

homotopy lifting lemma.

Let p : (X̃, x̃0) → (X,x0) be a based covering space and let f : (Y, y0) → (X,x0) be
a based map from a path-connected and locally path-connected space. Show that there is
a based lift f̃ : (Y, y0) → (X̃, x̃0) of f if and only if f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)).

Part II, 2014 List of Questions
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Paper 3, Section II

20G Algebraic Topology

(i) State, but do not prove, the Mayer–Vietoris theorem for the homology groups of
polyhedra.

(ii) Calculate the homology groups of the n-sphere, for every n > 0.

(iii) Suppose that a > 1 and b > 0. Calculate the homology groups of the subspace X of

Ra+b defined by

a∑

i=1

x2i −
a+b∑

j=a+1

x2j = 1.

Paper 4, Section II

21G Algebraic Topology

(i) State, but do not prove, the Lefschetz fixed point theorem.

(ii) Show that if n is even, then for every map f : Sn → Sn there is a point x ∈ Sn such
that f(x) = ±x. Is this true if n is odd? [Standard results on the homology groups
for the n-sphere may be assumed without proof, provided they are stated clearly.]

Paper 2, Section II

21G Algebraic Topology

(i) State the Seifert–van Kampen theorem.

(ii) Assuming any standard results about the fundamental group of a circle that you
wish, calculate the fundamental group of the n-sphere, for every n > 2.

(iii) Suppose that n > 3 and that X is a path-connected topological n-manifold. Show
that π1(X,x0) is isomorphic to π1(X − {P}, x0) for any P ∈ X − {x0}.

Part II, 2013 List of Questions [TURN OVER
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Paper 1, Section II

21G Algebraic Topology

(i) Define the notion of the fundamental group π1(X,x0) of a path-connected space X
with base point x0.

(ii) Prove that if a group G acts freely and properly discontinuously on a simply
connected space Z, then π1(G\Z, x0) is isomorphic to G. [You may assume the
homotopy lifting property, provided that you state it clearly.]

(iii) Suppose that p, q are distinct points on the 2-sphere S2 and that X = S2/(p ∼ q).
Exhibit a simply connected space Z with an action of a group G as in (ii) such that
X = G\Z, and calculate π1(X,x0).

Part II, 2013 List of Questions
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Paper 3, Section II

20G Algebraic Topology
State the Mayer–Vietoris Theorem for a simplicial complex K expressed as the

union of two subcomplexes L and M . Explain briefly how the connecting homomorphism
δ∗ : Hn(K) → Hn−1(L∩M), which appears in the theorem, is defined. [You should include
a proof that δ∗ is well-defined, but need not verify that it is a homomorphism.]

Now suppose that |K| ∼= S3, that |L| is a solid torus S1×B2, and that |L∩M | is the
boundary torus of |L|. Show that δ∗ : H3(K) → H2(L ∩M) is an isomorphism, and hence
calculate the homology groups of M . [You may assume that a generator of H3(K) may
be represented by a 3-cycle which is the sum of all the 3-simplices of K, with ‘matching’
orientations.]

Paper 4, Section II

21G Algebraic Topology
State and prove the Lefschetz fixed-point theorem. Hence show that the n-sphere

Sn does not admit a topological group structure for any even n > 0. [The existence and
basic properties of simplicial homology with rational coefficients may be assumed.]

Paper 2, Section II

21G Algebraic Topology
State the Seifert–Van Kampen Theorem. Deduce that if f : S1 → X is a continuous

map, where X is path-connected, and Y = X ∪f B2 is the space obtained by adjoining
a disc to X via f , then Π1(Y ) is isomorphic to the quotient of Π1(X) by the smallest
normal subgroup containing the image of f∗ : Π1(S

1) → Π1(X).

State the classification theorem for connected triangulable 2-manifolds. Use the
result of the previous paragraph to obtain a presentation of Π1(Mg), where Mg denotes
the compact orientable 2-manifold of genus g > 0.

Part II, 2012 List of Questions
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Paper 1, Section II

21G Algebraic Topology
Define the notions of covering projection and of locally path-connected space. Show

that a locally path-connected space is path-connected if it is connected.

Suppose f : Y → X and g : Z → X are continuous maps, the space Y is connected
and locally path-connected and that g is a covering projection. Suppose also that we
are given base-points x0, y0, z0 satisfying f(y0) = x0 = g(z0). Show that there is a
continuous f̃ : Y → Z satisfying f̃(y0) = z0 and gf̃ = f if and only if the image of
f∗ : Π1(Y, y0) → Π1(X,x0) is contained in that of g∗ : Π1(Z, z0) → Π1(X,x0). [You may
assume the path-lifting and homotopy-lifting properties of covering projections.]

Now suppose X is locally path-connected, and both f : Y → X and g : Z → X are
covering projections with connected domains. Show that Y and Z are homeomorphic as
spaces over X if and only if the images of their fundamental groups under f∗ and g∗ are
conjugate subgroups of Π1(X,x0).

Part II, 2012 List of Questions [TURN OVER
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Paper 1, Section II

21H Algebraic Topology
Are the following statements true or false? Justify your answers.

(i) If x and y lie in the same path-component of X, then Π1(X,x) ∼= Π1(X, y).

(ii) If x and y are two points of the Klein bottle K, and u and v are two paths from x
to y, then u and v induce the same isomorphism from Π1(K,x) to Π1(K, y).

(iii) Π1(X × Y, (x, y)) is isomorphic to Π1(X,x)×Π1(Y, y) for any two spaces X and Y .

(iv) If X and Y are connected polyhedra and H1(X) ∼= H1(Y ), then Π1(X) ∼= Π1(Y ).

Paper 2, Section II

21H Algebraic Topology
Explain what is meant by a covering projection. State and prove the path-

lifting property for covering projections, and indicate briefly how it generalizes to a
lifting property for homotopies between paths. [You may assume the Lebesgue Covering
Theorem.]

Let X be a simply connected space, and let G be a subgroup of the group of
all homeomorphisms X → X. Suppose that, for each x ∈ X, there exists an open
neighbourhood U of x such that U ∩g[U ] = ∅ for each g ∈ G other than the identity. Show
that the projection p : X → X/G is a covering projection, and deduce that Π1(X/G) ∼= G.

By regarding S3 as the set of all quaternions of modulus 1, or otherwise, show that
there is a quotient space of S3 whose fundamental group is a non-abelian group of order 8.

Part II, 2011 List of Questions [TURN OVER
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Paper 3, Section II

20H Algebraic Topology
Let K and L be (finite) simplicial complexes. Explain carefully what is meant by

a simplicial approximation to a continuous map f : |K| → |L|. Indicate briefly how the
cartesian product |K| × |L| may be triangulated.

Two simplicial maps g, h : K → L are said to be contiguous if, for each simplex σ
of K, there exists a simplex σ∗ of L such that both g(σ) and h(σ) are faces of σ∗. Show
that:

(i) any two simplicial approximations to a given map f : |K| → |L| are contiguous;

(ii) if g and h are contiguous, then they induce homotopic maps |K| → |L|;

(iii) if f and g are homotopic maps |K| → |L|, then for some subdivision K(n) of K
there exists a sequence (h1, h2, . . . , hm) of simplicial maps K(n) → L such that h1
is a simplicial approximation to f , hm is a simplicial approximation to g and each
pair (hi, hi+1) is contiguous.

Paper 4, Section II

21H Algebraic Topology
State the Mayer–Vietoris theorem, and use it to calculate, for each integer q > 1, the

homology group of the space Xq obtained from the unit disc B2 ⊆ C by identifying pairs
of points (z1, z2) on its boundary whenever zq1 = zq2. [You should construct an explicit
triangulation of Xq.]

Show also how the theorem may be used to calculate the homology groups of the
suspension SK of a connected simplicial complex K in terms of the homology groups of K,
and of the wedge union X∨Y of two connected polyhedra. Hence show that, for any finite
sequence (G1, G2, . . . , Gn) of finitely-generated abelian groups, there exists a polyhedron
X such that H0(X) ∼= Z, Hi(X) ∼= Gi for 1 6 i 6 n and Hi(X) = 0 for i > n. [You may
assume the structure theorem which asserts that any finitely-generated abelian group is
isomorphic to a finite direct sum of (finite or infinite) cyclic groups.]

Part II, 2011 List of Questions
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Paper 1, Section II

21H Algebraic Topology
State the path lifting and homotopy lifting lemmas for covering maps. Suppose that

X is path connected and locally path connected, that p1 : Y1 → X and p2 : Y2 → X are cov-
ering maps, and that Y1 and Y2 are simply connected. Using the lemmas you have stated,
but without assuming the correspondence between covering spaces and subgroups of π1,
prove that Y1 is homeomorphic to Y2.

Paper 2, Section II

21H Algebraic Topology
Let G be the finitely presented group G = 〈a, b | a2 b3 a3 b2 = 1〉. Construct a path

connected space X with π1(X,x) ∼= G. Show that X has a unique connected double cover
π : Y → X , and give a presentation for π1(Y, y).

Paper 3, Section II

20H Algebraic Topology
Suppose X is a finite simplicial complex and that H∗(X) is a free abelian group for

each value of ∗ . Using the Mayer-Vietoris sequence or otherwise, compute H∗(S1 ×X) in
terms of H∗(X). Use your result to compute H∗(T n).

[Note that T n = S1 × . . . × S1 , where there are n factors in the product.]

Paper 4, Section II

21H Algebraic Topology
State the Snake Lemma. Explain how to define the boundary map which appears

in it, and check that it is well-defined. Derive the Mayer-Vietoris sequence from the Snake
Lemma.

Given a chain complex C, let A ⊂ C be the span of all elements in C with grading
greater than or equal to n , and let B ⊂ C be the span of all elements in C with grading
less than n . Give a short exact sequence of chain complexes relating A , B, and C. What
is the boundary map in the corresponding long exact sequence?

Part II, 2010 List of Questions [TURN OVER

2010



5

Paper 1, Section II

21G Algebraic Topology
Let X be the space obtained by identifying two copies of the Möbius strip along their

boundary. Use the Seifert–Van Kampen theorem to find a presentation of the fundamental
group π1(X). Show that π1(X) is an infinite non-abelian group.

Paper 2, Section II

21G Algebraic Topology
Let p : X → Y be a connected covering map. Define the notion of a deck

transformation (also known as covering transformation) for p. What does it mean for
p to be a regular (normal) covering map?

If p−1(y) contains n points for each y ∈ Y , we say p is n-to-1. Show that p is regular
under either of the following hypotheses:

(1) p is 2-to-1,

(2) π1(Y ) is abelian.

Give an example of a 3-to-1 cover of S1∨S1 which is regular, and one which is not regular.

Paper 3, Section II

20G Algebraic Topology
(i) Suppose that (C, d) and (C ′, d′) are chain complexes, and f, g : C → C ′ are chain

maps. Define what it means for f and g to be chain homotopic.

Show that if f and g are chain homotopic, and f∗, g∗ : H∗(C) → H∗(C ′) are the
induced maps, then f∗ = g∗.

(ii) Define the Euler characteristic of a finite chain complex.

Given that one of the sequences below is exact and the others are not, which is the
exact one?

0 → Z11 → Z24 → Z20 → Z13 → Z20 → Z25 → Z11 → 0,

0 → Z11 → Z24 → Z20 → Z13 → Z20 → Z24 → Z11 → 0,

0 → Z11 → Z24 → Z19 → Z13 → Z20 → Z23 → Z11 → 0.

Justify your choice.
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Paper 4, Section II

21G Algebraic Topology
Let X be the subset of R4 given by X = A ∪ B ∪ C ⊂ R4 , where A,B and C are

defined as follows:

A = {(x1, x2, x3, x4) ∈ R4 : x21 + x22 + x23 + x24 = 1},
B = {(x1, x2, x3, x4) ∈ R4 : x1 = x2 = 0, x23 + x24 6 1},
C = {(x1, x2, x3, x4) ∈ R4 : x3 = x4 = 0, x21 + x22 6 1}.

ComputeH∗(X).

Part II, 2009 List of Questions
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1/II/21F Algebraic Topology

(i) State the van Kampen theorem.

(ii) Calculate the fundamental group of the wedge S2 ∨ S1.

(iii) Let X = R3 \A where A is a circle. Calculate the fundamental group of X.

2/II/21F Algebraic Topology

Prove the Borsuk–Ulam theorem in dimension 2: there is no map f :S2 → S1 such
that f(−x) = −f(x) for every x ∈ S2. Deduce that S2 is not homeomorphic to any subset
of R2.

3/II/20F Algebraic Topology

Let X be the quotient space obtained by identifying one pair of antipodal points
on S2. Using the Mayer–Vietoris exact sequence, calculate the homology groups and the
Betti numbers of X.

4/II/21F Algebraic Topology

Let X and Y be topological spaces.

(i) Show that a map f :X → Y is a homotopy equivalence if there exist maps
g, h:Y → X such that fg ' 1Y and hf ' 1X . More generally, show that a map f :X → Y
is a homotopy equivalence if there exist maps g, h:Y → X such that fg and hf are
homotopy equivalences.

(ii) Suppose that X̃ and Ỹ are universal covering spaces of the path-connected,
locally path-connected spaces X and Y . Using path-lifting properties, show that if X ' Y
then X̃ ' Ỹ .

Part II 2008
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1/II/21H Algebraic Topology

(i) Compute the fundamental group of the Klein bottle. Show that this group is not
abelian, for example by defining a suitable homomorphism to the symmetric group
S3.

(ii) Let X be the closed orientable surface of genus 2. How many (connected)
double coverings does X have? Show that the fundamental group of X admits
a homomorphism onto the free group on 2 generators.

2/II/21H Algebraic Topology

State the Mayer–Vietoris sequence for a simplicial complex X which is a union of
two subcomplexes A and B. Define the homomorphisms in the sequence (but do not check
that they are well-defined). Prove exactness of the sequence at the term Hi(A ∩B).

3/II/20H Algebraic Topology

Define what it means for a group G to act on a topological space X. Prove that,
if G acts freely, in a sense that you should specify, then the quotient map X → X/G is a
covering map and there is a surjective group homomorphism from the fundamental group
of X/G to G.

4/II/21H Algebraic Topology

Compute the homology of the space obtained from the torus S1×S1 by identifying
S1 × {p} to a point and S1 × {q} to a point, for two distinct points p and q in S1.

Part II 2007
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1/II/21H Algebraic Topology

Compute the homology groups of the “pinched torus” obtained by identifying a
meridian circle S1 × {p} on the torus S1 × S1 to a point, for some point p ∈ S1.

2/II/21H Algebraic Topology

State the simplicial approximation theorem. Compute the number of 0-simplices
(vertices) in the barycentric subdivision of an n-simplex and also compute the number
of n-simplices. Finally, show that there are at most countably many homotopy classes of
continuous maps from the 2-sphere to itself.

3/II/20H Algebraic Topology

Let X be the union of two circles identified at a point: the “figure eight”. Classify
all the connected double covering spaces of X. If we view these double coverings just as
topological spaces, determine which of them are homeomorphic to each other and which
are not.

4/II/21H Algebraic Topology

Fix a point p in the torus S1 ×S1. Let G be the group of homeomorphisms f from
the torus S1 × S1 to itself such that f(p) = p. Determine a non-trivial homomorphism φ
from G to the group GL(2,Z).
[The group GL(2,Z) consists of 2×2 matrices with integer coefficients that have an inverse
which also has integer coefficients.]

Establish whether each f in the kernel of φ is homotopic to the identity map.

Part II 2006
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1/II/21H Algebraic Topology

(i) Show that if E → T is a covering map for the torus T = S1 × S1, then E is
homeomorphic to one of the following: the plane R2, the cylinder R × S1, or the
torus T .

(ii) Show that any continuous map from a sphere Sn (n > 2) to the torus T is homotopic
to a constant map.

[General theorems from the course may be used without proof, provided that they are clearly
stated.]

2/II/21H Algebraic Topology

State the Van Kampen Theorem. Use this theorem and the fact that π1S
1 = Z to

compute the fundamental groups of the torus T = S1 × S1, the punctured torus T \ {p},
for some point p ∈ T , and the connected sum T # T of two copies of T .

3/II/20H Algebraic Topology

Let X be a space that is triangulable as a simplicial complex with no n-simplices.
Show that any continuous map from X to Sn is homotopic to a constant map.

[General theorems from the course may be used without proof, provided they are clearly
stated.]

4/II/21H Algebraic Topology

Let X be a simplicial complex. Suppose X = B∪C for subcomplexes B and C, and
let A = B ∩ C. Show that the inclusion of A in B induces an isomorphism H∗A → H∗B
if and only if the inclusion of C in X induces an isomorphism H∗C → H∗X.

Part II 2005
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