
Part IB

—
Variational Principles

—

Year

2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010



43

Paper 1, Section I

4C Variational Principles

Briefly explain how to use a Lagrange multiplier to find the extrema of a function
f(x) subject to a constraint g(x) = 0.

Find the maximum volume of a cuboid of side lengths x > 0, y > 0, and z > 0
whose space diagonal has length L.

Paper 3, Section I

4C Variational Principles

Consider a function f : Rn → R, not necessarily differentiable. What does it mean
for f to be convex in a domain D?

If f is once differentiable, state an equivalent condition involving ∇f at two points
x and y in D.

If f is twice differentiable, state an equivalent condition involving the Hessian H.

Compute the largest domain on which the function f(x, y) = x3+y3+Axy is convex
in R2 (A is a constant) and sketch it.
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Paper 2, Section II

13C Variational Principles

(a) For a functional of the form

L[y] =

∫ b

a
F (x, y, y′, y′′) dx,

derive the Euler–Lagrange equation satisfied by the solution y(x) leading to a stationary
value of L. Show that all boundary terms cancel if the solution is assumed to have fixed
values for y and y′ at the end points.

(b) A diving board of length L at a swimming pool takes the shape y(x) that
minimises the energy

E =

∫ L

0

[
1

2
A(y′′)2 + ρgy

]
dx,

where A > 0 is the bending rigidity, ρ > 0 the mass density and g > 0 the acceleration
due to gravity (A, ρ, g are constants).

(i) Derive the ODE satisfied by y(x).

(ii) The board is clamped at the origin (i.e. y(0) = 0, y′(0) = 0) while at
x = L, it is torque free (i.e. y′′(L) = 0) and a vertical force of magnitude F
is applied to it (i.e. −Ay′′′(L) = F ). Solve for y(x) and show that it may
be written as y(x) = y0 + yF , where y0 is the solution when F = 0 and yF
is proportional to F .

(iii) Compute the vertical displacement at the end of the board, ∆ = y(L), and
show that it can be written as ∆ = h0 + h, where h0 is the displacement
when F = 0 and h is proportional to F .

(iv) For the solution in part (ii) compute the corresponding value of the energy
E and show that it can be written as E = E0 +E, with E0 independent of
F and E quadratic in F .

(v) Relate dE
dF to h and interpret your result.

Part IB, Paper 1
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Paper 4, Section II

13C Variational Principles

(a) Consider a functional of the form

L[u, v] =

∫∫

Ω
f(x, y, u, v, ux, uy, vx, vy) dxdy,

where u and v are functions of x and y [we use the notation ab to denote the partial
derivative ∂a/∂b]. Assuming small variations u → u + δu and v → v + δv and using
integration by parts, derive the two Euler–Lagrange equations satisfied by u and v in
Ω associated with an extremum of L (you may ignore all contributions from boundary
terms).

(b) An elastic material deforms in two dimensions with a displacement field
u(x) = [u(x, y), v(x, y)], that minimises the total elastic energy

J =

∫∫

Ω

[
1

2
µ(∇u : ∇uT ) +

1

2
(λ+ µ)(∇ · u)2

]
dxdy

where ∇u is the displacement gradient tensor, defined as

∇u =

(
ux vx
uy vy

)
,

where µ and λ are two material constants and where we use the notation A : B to refer
to the trace of the matrix product AB.

(i) Show that

J =

∫∫

Ω

[(
λ

2
+ µ

)
(u2
x + v2

y) +
µ

2
(u2
y + v2

x) + (λ+ µ)uxvy

]
dxdy.

(ii) Derive the two Euler–Lagrange equations satisfied by u and v and show
that they can be combined into a single equation for u.

(iii) In the one-dimensional limit where v = 0, ∂u/∂y = 0 with boundary
conditions u(0) = 0, u(L) = ∆, show that the solution to the equation
obtained in (ii) is linear in x.

END OF PAPER
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Paper 1, Section I
4D Variational Principles

Write down the Euler-Lagrange equation for the functional

I[y] =

∫ π/2

0

[
y′ 2 − y2 − 2y sin(x)

]
dx .

Solve it subject to the boundary conditions y′(0) = y′(π/2) = 0.

Paper 3, Section I
4D Variational Principles

Explain the method of Lagrange multipliers for finding the stationary values of a
function F (x, y, z) subject to the constraint G(x, y, z) = 0.

Use the method of Lagrange multipliers to find the minimum of x2 +y2 +z2 subject
to the constraint z − xy = 1.

Find the maximum of z − xy subject to the constraint x2 + y2 + z2 = 1.

Part IB, Paper 1 [TURN OVER]
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Paper 2, Section II
13D Variational Principles

(a) A functional I[z] of z(x) is given by

I[z] =

∫ b

a
f(z, z′;x) dx

where z′ = dz/dx. State the Euler-Lagrange equation that governs the extrema of I.

If f does not depend explicitly on x, construct a non-constant quantity that, when
evaluated on the extrema of I, does not depend on x.

Explain how to determine the extrema of I subject to the further functional
constraint that J [z] is constant.

(b) A heavy, uniform rope of fixed length L is suspended between two points
(x1, z1) = (−a, 0) and (x2, z2) = (+a, 0) with L > 2a. In a gravitational potential Φ(z),
the potential energy is given by

V [z] = ρ

∫ a

−a
Φ(z)

√
1 + z′ 2 dx .

where ρ is the mass per unit length.

(i) Show that, in a gravitational potential Φ(z) = gz, the shape adopted by the rope
is

z − z0 = −B cosh
( x
B

)

where z0 and B are two constants. Find implicit expressions for z0 and B in terms of a
and L.

(ii) What is the gravitational potential Φ(z) if, for L = πa, the rope hangs in a
semi-circle?

Part IB, Paper 1
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Paper 4, Section II
13D Variational Principles

(a) Derive the Euler-Lagrange equation for the functional

∫ b

a
f(y, y′, y′′;x) dx ,

where prime denotes differentiation with respect to x, and both y and y′ are specified at
x = a, b.

(b) If f does not depend explicitly on x show that, when evaluated on the extremum,

f −
[
∂f

∂y′
− d

dx

(
∂f

∂y′′

)]
y′ − ∂f

∂y′′
y′′ = constant .

(c) Find y(x) that extremises the integral

∫ π/2

0

(
−1

2
y′′ 2 + y′ 2 − 1

2
y2
)
dx

subject to y(0) = y′(0) = 0 and y(π/2) = π/2 and y′(π/2) = 1.

END OF PAPER
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Paper 1, Section I

4D Variational Principles
Let D be a bounded region of R2, with boundary ∂D. Let u(x, y) be a smooth

function defined on D, subject to the boundary condition that u = 0 on ∂D and the
normalization condition that ∫

D
u2 dx dy = 1 .

Let I[u] be the functional

I[u] =

∫

D
|∇u|2 dx dy .

Show that I[u] has a stationary value, subject to the stated boundary and normal-
ization conditions, when u satisfies a partial differential equation of the form

∇2u+ λu = 0

in D, where λ is a constant.

Determine how λ is related to the stationary value of the functional I[u]. [Hint:
Consider ∇ · (u∇u).]

Paper 3, Section I

4D Variational Principles
Find the function y(x) that gives a stationary value of the functional

I[y] =

∫ 1

0

(
y′ 2 + yy′ + y′ + y2 + yx2

)
dx ,

subject to the boundary conditions y(0) = −1 and y(1) = e− e−1 − 3
2 .

Part IB, 2021 List of Questions
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Paper 2, Section II

13D Variational Principles
A particle of unit mass moves in a smooth one-dimensional potential V (x). Its path

x(t) is such that the action integral

S[x] =

∫ b

a
L(x, ẋ) dt

has a stationary value, where a and b > a are constants, a dot denotes differentiation with
respect to time t,

L(x, ẋ) =
1

2
ẋ2 − V (x)

is the Lagrangian function and the initial and final positions x(a) and x(b) are fixed.

By considering S[x+ εξ] for suitably restricted functions ξ(t), derive the differential
equation governing the motion of the particle and obtain an integral expression for the
second variation δ2S.

If x(t) is a solution of the equation of motion and x(t) + εu(t) + O(ε2) is also a
solution of the equation of motion in the limit ε→ 0, show that u(t) satisfies the equation

ü+ V ′′(x)u = 0 .

If u(t) satisfies this equation and is non-vanishing for a 6 t 6 b, show that

δ2S =
1

2

∫ b

a

(
ξ̇ − u̇ξ

u

)2

dt .

Consider the simple harmonic oscillator, for which

V (x) =
1

2
ω2x2 ,

where 2π/ω is the oscillation period. Show that the solution of the equation of motion is
a local minimum of the action integral, provided that the time difference b− a is less than
half an oscillation period.

Part IB, 2021 List of Questions [TURN OVER]
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Paper 4, Section II

13D Variational Principles
(a) Consider the functional

I[y] =

∫ b

a
L(y, y′;x) dx ,

where 0 < a < b, and y(x) is subject to the requirement that y(a) and y(b) are some fixed
constants. Derive the equation satisfied by y(x) when δI = 0 for all variations δy that
respect the boundary conditions.

(b) Consider the function

L(y, y′;x) =

√
1 + y′ 2

x
.

Verify that, if y(x) describes an arc of a circle, with centre on the y-axis, then δI = 0.

(c) Consider the function

L(y, y′;x) =

√
1 + y′ 2

y
.

Find y(x) such that δI = 0 subject to the requirement that y(a) = a and y(b) =
√

2ab− b2,
with b < 2a. Sketch the curve y(x).

Part IB, 2021 List of Questions
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Paper 2, Section I

3D Variational Principles
Find the stationary points of the function φ = xyz subject to the constraint

x+ a2y2 + z2 = b2, with a, b > 0. What are the maximum and minimum values attained
by φ, subject to this constraint, if we further restrict to x > 0?

Paper 1, Section II

13D Variational Principles
A motion sensor sits at the origin, in the middle of a field. The probability that you

are detected as you sneak from one point to another along a path x(t) : 0 6 t 6 T is

P [x(t)] = λ

∫ T

0

v(t)

r(t)
dt ,

where λ is a positive constant, r(t) is your distance to the sensor, and v(t) is your speed.
(If P [x(t)] > 1 for some path then you are detected with certainty.)

You start at point (x, y) = (A, 0), where A > 0. Your mission is to reach the point
(x, y) = (B cosα,B sinα), where B > 0. What path should you take to minimise the
chance of detection? Should you tiptoe or should you run?

A new and improved sensor detects you with probability

P̃ [x(t)] = λ

∫ T

0

v(t)2

r(t)
dt .

Show that the optimal path now satisfies the equation

(
dr

dt

)2

= Er − h2

for some constants E and h that you should identify.

Part IB, 2020 List of Questions
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Paper 1, Section I

4A Variational Principles
A function φ = xy − yz is defined on the surface x2 + 2y2 + z2 = 1. Find the

location (x, y, z) of every stationary point of this function.

Paper 3, Section I

6A Variational Principles
The function f with domain x > 0 is defined by f(x) = 1

ax
a, where a > 1 . Verify

that f is convex, using an appropriate sufficient condition.

Determine the Legendre transform f∗ of f , specifying clearly its domain of definition,
and find (f∗)∗.

Show that
xr

r
+
ys

s
> xy

where x, y > 0 and r and s are positive real numbers such that 1
r +

1
s = 1.

Part IB, 2019 List of Questions
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Paper 2, Section II

15A Variational Principles
Write down the Euler–Lagrange (EL) equations for a functional

∫ b

a
f(u, w, u′, w′, x ) dx ,

where u(x) and w(x) each take specified values at x = a and x = b. Show that the EL
equations imply that

κ = f − u′
∂f

∂u′
− w′ ∂f

∂w′

is independent of x provided f satisfies a certain condition, to be specified. State conditions
under which there exist additional first integrals of the EL equations.

Consider

f =
(
1− m

u

)
w′ 2 −

(
1− m

u

)−1
u′ 2

where m is a positive constant. Show that solutions of the EL equations satisfy

u′ 2 = λ2 + κ
(
1− m

u

)
,

for some constant λ. Assuming that κ = −λ2, find dw/du and hence determine the most
general solution for w as a function of u subject to the conditions u > m and w → −∞
as u→ ∞. Show that, for any such solution, w → ∞ as u→ m.

[Hint:

d

dz

{
log

(z1/2 − 1

z1/2 + 1

)}
=

1

z1/2 (z − 1)
. ]

Part IB, 2019 List of Questions [TURN OVER

2019
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Paper 4, Section II

16A Variational Principles
Consider the functional

I[y] =

∫ ∞

−∞

(
1
2 y

′ 2 + 1
2 U(y)2

)
dx ,

where y(x) is subject to boundary conditions y(x) → a± as x → ±∞ with U(a±) = 0.
[You may assume the integral converges.]

(a) Find expressions for the first-order and second-order variations δI and δ2I
resulting from a variation δy that respects the boundary conditions.

(b) If a± = a, show that I[y] = 0 if and only if y(x) = a for all x. Explain briefly
how this is consistent with your results for δI and δ2I in part (a).

(c) Now suppose that U(y) = c2 − y2 with a± = ±c (c > 0). By considering an
integral of U(y)y′, show that

I[y] > 4c3

3
,

with equality if and only if y satisfies a first-order differential equation. Deduce that global
minima of I[y] with the specified boundary conditions occur precisely for

y(x) = c tanh{ c(x− x0) } ,

where x0 is a constant. How is the first-order differential equation that appears in this case
related to your general result for δI in part (a)?

Part IB, 2019 List of Questions

2019
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Paper 1, Section I

4B Variational Principles
Find, using a Lagrange multiplier, the four stationary points in R3 of the function

x2 + y2 + z2 subject to the constraint x2 + 2y2 − z2 = 1. By sketching sections of the
constraint surface in each of the coordinate planes, or otherwise, identify the nature of the
constrained stationary points.

How would the location of the stationary points differ if, instead, the function
x2 + 2y2 − z2 were subject to the constraint x2 + y2 + z2 = 1?

Paper 3, Section I

6B Variational Principles
For a particle of unit mass moving freely on a unit sphere, the Lagrangian in polar

coordinates is

L =
1

2
θ̇2 +

1

2
sin2 θ φ̇2 .

Determine the equations of motion. Show that l = sin2 θ φ̇ is a conserved quantity, and
use this result to simplify the equation of motion for θ. Deduce that

h = θ̇2 +
l2

sin2 θ

is a conserved quantity. What is the interpretation of h?

Paper 2, Section II

15B Variational Principles
Derive the Euler-Lagrange equation for the integral

I[y] =

∫ x1

x0

f(y, y′, y′′, x) dx,

when y(x) and y′(x) take given values at the fixed endpoints.

Show that the only function y(x) with y(0) = 1, y′(0) = 2 and y(x) → 0 as x→ ∞
for which the integral

I[y] =

∫ ∞

0

(
y2 + (y′)2 + (y′ + y′′)2

)
dx

is stationary is (3x+ 1)e−x.

Part IB, 2018 List of Questions

2018
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Paper 4, Section II

16B Variational Principles

(a) A two-dimensional oscillator has action

S =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

2
ω2x2 − 1

2
ω2y2

}
dt .

Find the equations of motion as the Euler-Lagrange equations associated with S,
and use them to show that

J = ẋy − ẏx

is conserved. Write down the general solution of the equations of motion in terms of
sinωt and cosωt, and evaluate J in terms of the coefficients that arise in the general
solution.

(b) Another kind of oscillator has action

S̃ =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

4
αx4 − 1

2
βx2y2 − 1

4
αy4

}
dt ,

where α and β are real constants. Find the equations of motion and use these to
show that in general J = ẋy − ẏx is not conserved. Find the special value of the
ratio β/α for which J is conserved. Explain what is special about the action S̃ in
this case, and state the interpretation of J .

Part IB, 2018 List of Questions [TURN OVER

2018



43

Paper 1, Section I

4D Variational Principles
Derive the Euler-Lagrange equation for the function u(x, y) that gives a stationary

value of

I[u] =

∫

D
L

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
dx dy,

where D is a bounded domain in the (x, y)-plane and u is fixed on the boundary ∂D.

Find the equation satisfied by the function u that gives a stationary value of

I =

∫

D

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+ k2u2

]
dx dy,

where k is a constant and u is prescribed on ∂D.

Paper 3, Section I

6D Variational Principles
(a) A Pringle crisp can be defined as the surface

z = xy with x2 + y2 6 1.

Use the method of Lagrange multipliers to find the minimum and maximum values of z
on the boundary of the Pringle crisp and the (x, y) positions where these occur.

(b) A farmer wishes to construct a grain silo in the form of a hollow vertical cylinder
of radius r and height h with a hollow hemispherical cap of radius r on top of the cylinder.
The walls of the cylinder cost £x per unit area to construct and the surface of the cap
costs £2x per unit area to construct. Given that a total volume V is desired for the silo,
what values of r and h should be chosen to minimise the cost?

Part IB, 2017 List of Questions [TURN OVER

2017



44

Paper 2, Section II

15D Variational Principles
A proto-planet of mass m in a uniform galactic dust cloud has kinetic and potential

energies

T =
1

2
mṙ2 +

1

2
mr2φ̇2, V = kmr2

where k is constant. State Hamilton’s principle and use it to determine the equations of
motion for the proto-planet.

Write down two conserved quantities of the motion and state why their existence
illustrates Noether’s theorem.

Determine the Hamiltonian H(p,x) of this system, where p = (pr, pφ), x = (r, φ)
and (pr, pφ) are the conjugate momenta corresponding to (r, φ).

Write down Hamilton’s equations for this system and use them to show that

mr̈ = −V ′
eff(r), where Veff(r) = m

(
h2

2m2r2
+ kr2

)

and h is a constant. With the aid of a diagram, explain why there is a stable circular
orbit.

Part IB, 2017 List of Questions

2017
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Paper 4, Section II

16D Variational Principles
Consider the functional

F [y] =

∫ β

α
f(y, y′, x) dx

of a function y(x) defined for x ∈ [α, β], with y having fixed values at x = α and x = β.

By considering F [y + ǫξ], where ξ(x) is an arbitrary function with ξ(α) = ξ(β) = 0
and ǫ≪ 1, determine that the second variation of F is

δ2F [y, ξ] =

∫ β

α

{
ξ2

[
∂2f

∂y2
− d

dx

(
∂2f

∂y∂y′

)]
+ ξ′2

∂2f

∂y′2

}
dx.

The surface area of an axisymmetric soap film joining two parallel, co-axial, circular
rings of radius a distance 2L apart can be expressed by the functional

F [y] =

∫ L

−L
2πy

√
1 + y′2 dx,

where x is distance in the axial direction and y is radial distance from the axis. Show that
the surface area is stationary when

y = E cosh
x

E
,

where E is a constant that need not be determined, and that the stationary area is a local
minimum if ∫ L/E

−L/E

(
ξ′2 − ξ2

)
sech2z dz > 0

for all functions ξ(z) that vanish at z = ±L/E, where z = x/E.

Part IB, 2017 List of Questions [TURN OVER

2017
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Paper 1, Section I

4C Variational Principles
(a) Consider the function f(x1, x2) = 2x21 + x22 + αx1x2, where α is a real constant.

For what values of α is the function f convex?

(b) In the case α = −3, calculate the extremum of x21 on the set of points where
f(x1, x2) + 1 = 0.

Paper 3, Section I

6C Variational Principles
Two points A and B are located on the curved surface of the circular cylinder

of radius R with axis along the z−axis. We denote their locations by (R,φA, zA) and
(R,φB , zB) using cylindrical polar coordinates and assume φA 6= φB , zA 6= zB . A path
φ(z) is drawn on the cylinder to join A and B. Show that the path of minimum distance
between the points A and B is a helix, and determine its pitch. [For a helix with axis
parallel to the z axis, the pitch is the change in z after one complete helical turn.]

Part IB, 2016 List of Questions

2016
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Paper 2, Section II

15C Variational Principles
A flexible wire filament is described by the curve (x, y(x), z(x)) in cartesian

coordinates for 0 6 x 6 L. The filament is assumed to be almost straight and thus
we assume |y′| ≪ 1 and |z′| ≪ 1 everywhere.

(a) Show that the total length of the filament is approximately L+∆ where

∆ =
1

2

∫ L

0

[
(y′)2 + (z′)2

]
dx.

(b) Under a uniform external axial force, F > 0, the filament adopts the shape
which minimises the total energy, E = EB − F∆, where EB is the bending energy given
by

EB [y, z] =
1

2

∫ L

0

[
A(x)(y′′)2 +B(x)(z′′)2

]
dx,

and where A(x) and B(x) are x-dependent bending rigidities (both known and strictly
positive). The filament satisfies the boundary conditions

y(0) = y′(0) = z(0) = z′(0) = 0, y(L) = y′(L) = z(L) = z′(L) = 0.

Derive the Euler-Lagrange equations for y(x) and z(x).

(c) In the case where A = B = 1 and L = 1, show that below a critical force,
Fc, which should be determined, the only energy-minimising solution for the filament is
straight (y = z = 0), but that a new nonzero solution is admissible at F = Fc.

Part IB, 2016 List of Questions [TURN OVER

2016
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Paper 4, Section II

16C Variational Principles
A fish swims in the ocean along a straight line with speed V (t). The fish starts

its journey from rest (zero velocity at t = 0) and, during a given time T , swims subject
to the constraint that the total distance travelled is L. The energy cost for swimming is
aV 2 + bV̇ 2 per unit time, where a, b > 0 are known and a2 + b2 6= 0.

(a) Derive the Euler-Lagrange condition on V (t) for the journey to have minimum
energetic cost.

(b) In the case a 6= 0, b 6= 0 solve for V (t) assuming that the fish starts at t = 0
with zero acceleration (in addition to zero velocity).

(c) In the case a = 0, the fish can decide between three different boundary conditions
for its journey. In addition to starting with zero velocity, it can:

(1) start at t = 0 with zero acceleration;

(2) end at t = T with zero velocity; or

(3) end at t = T with zero acceleration.

Which of (1), (2) or (3) is the best minimal-energy cost strategy?

Part IB, 2016 List of Questions

2016
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Paper 1, Section I

4A Variational Principles
Consider a frictionless bead on a stationary wire. The bead moves under the action

of gravity acting in the negative y-direction and the wire traces out a path y(x), connecting
points (x, y) = (0, 0) and (1, 0). Using a first integral of the Euler-Lagrange equations,
find the choice of y(x) which gives the shortest travel time, starting from rest. You may
give your solution for y and x separately, in parametric form.

Paper 3, Section I

6A Variational Principles
(a) Define what it means for a function f : Rn → R to be convex.

(b) Define the Legendre transform f∗(p) of a convex function f(x), where x ∈ R.
Show that f∗(p) is a convex function.

(c) Find the Legendre transform f∗(p) of the function f(x) = ex, and the domain
of f∗.

Paper 2, Section II

15A Variational Principles
A right circular cylinder of radius a and length l has volume V and total surface

area A. Use Lagrange multipliers to do the following:

(a) Show that, for a given total surface area, the maximum volume is

V =
1

3

√
A3

Cπ
,

determining the integer C in the process.

(b) For a cylinder inscribed in the unit sphere, show that the value of l/a which
maximises the area of the cylinder is

D +
√
E,

determining the integers D and E as you do so.

(c) Consider the rectangular parallelepiped of largest volume which fits inside a
hemisphere of fixed radius. Find the ratio of the parallelepiped’s volume to the volume of
the hemisphere.

[You need not show that suitable extrema you find are actually maxima.]

Part IB, 2015 List of Questions

20152015
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Paper 4, Section II

16A Variational Principles
Derive the Euler–Lagrange equation for the integral

∫ x1

x0

f(x, u, u′) dx

where u(x0) is allowed to float, ∂f/∂u′|x0 = 0 and u(x1) takes a given value.

Given that y(0) is finite, y(1) = 1 and y′(1) = 1, find the stationary value of

J =

∫ 1

0

(
x4(y′′)2 + 4x2(y′)2

)
dx.
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Paper 1, Section I

4C Variational Principles
Define the Legendre transform f∗(p) of a function f(x) where x ∈ Rn.

Show that for g(x) = λ f(x− x0)− µ,

g∗(p) = λf∗
(p
λ

)
+ pTx0 + µ.

Show that for f(x) = 1
2x

TAx where A is a real, symmetric, invertible matrix with
positive eigenvalues,

f∗(p) = 1
2p

TA−1 p.

Paper 3, Section I

6C Variational Principles
Let f(x, y, z) = xz + yz. Using Lagrange multipliers, find the location(s) and value

of the maximum of f on the intersection of the unit sphere (x2 + y2 + z2 = 1) and the
ellipsoid given by 1

4x
2 + 1

4y
2 + 4z2 = 1.

Paper 2, Section II

15C Variational Principles
Write down the Euler–Lagrange equation for the integral

∫
f(y, y′, x)dx.

An ant is walking on the surface of a sphere, which is parameterised by θ ∈ [0, π] (angle
from top of sphere) and φ ∈ [0, 2π) (azimuthal angle). The sphere is sticky towards the
top and the bottom and so the ant’s speed is proportional to sin θ. Show that the ant’s
fastest route between two points will be of the form

sinh(Aφ+B) = cot θ

for some constants A and B. [A, B need not be determined.]
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Paper 4, Section II

16C Variational Principles
Consider the integral

I =

∫
f(y, y′)dx.

Show that if f satisfies the Euler–Lagrange equation, then

f − y′
∂f

∂y′
= constant.

An axisymmetric soap film y(x) is formed between two circular wires at x = ±l.
The wires both have radius r. Show that the shape that minimises the surface area takes
the form

y(x) = k cosh
x

k
.

Show that there exist two possible k that satisfy the boundary conditions for r/l
sufficiently large.

Show that for these solutions the second variation is given by

δ2I = π

∫ +l

−l

(
kη′2 − 1

k
η2
)
sech2

(x
k

)
dx

where η is an axisymmetric perturbation with η(±l) = 0.
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Paper 1, Section I

4A Variational Principles
(a) Define what it means for a function g : R → R to be convex. Assuming g′′ exists,

state an equivalent condition. Let f(x) = x log x, defined on x > 0. Show that f(x) is
convex.

(b) Find the Legendre transform f∗(p) of f(x) = x log x. State the domain of f∗(p).
Without further calculation, explain why (f∗)∗ = f in this case.

Paper 3, Section I

6A Variational Principles
A cylindrical drinking cup has thin curved sides with density ρ per unit area, and

a disk-shaped base with density kρ per unit area. The cup has capacity to hold a fixed
volume V of liquid. Use the method of Lagrange multipliers to find the minimum mass of
the cup.

Paper 2, Section II

15A Variational Principles
Starting from the Euler–Lagrange equation, show that a condition for

∫
f(y, y′)dx

to be stationary is

f − y′
∂f

∂y′
= constant.

In the half-plane y > 0, light has speed c(y) = y + c0 where c0 > 0. Find the
equation for a light ray between (−a, 0) and (a, 0). Sketch the solution.
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Paper 4, Section II

16A Variational Principles
Derive the Euler–Lagrange equation for the integral

∫ b

a
f(x, y, y′, y′′) dx

where prime denotes differentiation with respect to x, and both y and y′ are specified at
x = a, b.

Find y(x) that extremises the integral

∫ π

0

(
y +

1

2
y2 − 1

2
y′′2

)
dx

subject to y(0) = −1, y′(0) = 0, y(π) = coshπ and y′(π) = sinhπ.

Show that your solution is a global maximum. You may use the result that

∫ π

0
φ2(x)dx 6

∫ π

0
φ′2(x)dx

for any (suitably differentiable) function φ which satisfies φ(0) = 0 and φ(π) = 0.
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Paper 1, Section I

4B Variational Principles
State how to find the stationary points of a C1 function f(x, y) restricted to the

circle x2 + y2 = 1, using the method of Lagrange multipliers. Explain why, in general, the
method of Lagrange multipliers works, in the case where there is just one constraint.

Find the stationary points of x4 + 2y3 restricted to the circle x2 + y2 = 1.

Paper 3, Section I

6B Variational Principles
For a particle of unit mass moving freely on a unit sphere, the Lagrangian in polar

coordinates is

L =
1

2
θ̇2 +

1

2
sin2 θ φ̇2 .

Find the equations of motion. Show that l = sin2 θ φ̇ is a conserved quantity, and use this
result to simplify the equation of motion for θ. Deduce that

h = θ̇2 +
l2

sin2 θ

is a conserved quantity. What is the interpretation of h?
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Paper 2, Section II

15B Variational Principles
(i) A two-dimensional oscillator has action

S =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

2
ω2x2 − 1

2
ω2y2

}
dt .

Find the equations of motion as the Euler-Lagrange equations associated to S, and use
them to show that

J = ẋy − ẏx

is conserved. Write down the general solution of the equations of motion in terms of sinωt
and cosωt, and evaluate J in terms of the coefficients which arise in the general solution.

(ii) Another kind of oscillator has action

S̃ =

∫ t1

t0

{
1

2
ẋ2 +

1

2
ẏ2 − 1

4
αx4 − 1

2
βx2y2 − 1

4
αy4

}
dt ,

where α and β are real constants. Find the equations of motion and use these to show
that in general J = ẋy − ẏx is not conserved. Find the special value of the ratio β/α for
which J is conserved. Explain what is special about the action S̃ in this case, and state
the interpretation of J .

Paper 4, Section II

16B Variational Principles
Consider a functional

I =

∫ b

a
F (x, y, y′)dx

where F is smooth in all its arguments, y(x) is a C1 function and y′ = dy
dx . Consider the

function y(x) + h(x) where h(x) is a small C1 function which vanishes at a and b. Obtain
formulae for the first and second variations of I about the function y(x). Derive the
Euler-Lagrange equation from the first variation, and state its variational interpretation.

Suppose now that

I =

∫ 1

0
(y′2 − 1)2dx

where y(0) = 0 and y(1) = β. Find the Euler-Lagrange equation and the formula for the
second variation of I. Show that the function y(x) = βx makes I stationary, and that it
is a (local) minimizer if β > 1√

3
.

Show that when β = 0, the function y(x) = 0 is not a minimizer of I.
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Paper 1, Section I

4D Variational Principles
(i) Write down the Euler-Lagrange equations for the volume integral

∫

V

(∇u ·∇u+ 12u
)
dV ,

where V is the unit ball x2+y2+z2 6 1, and verify that the function u(x, y, z) = x2+y2+z2

gives a stationary value of the integral subject to the condition u = 1 on the boundary.

(ii) Write down the Euler-Lagrange equations for the integral

∫ 1

0

(
ẋ2 + ẏ2 + 4x+ 4y

)
dt ,

where the dot denotes differentiation with respect to t, and verify that the functions
x(t) = t2, y(t) = t2 give a stationary value of the integral subject to the boundary
conditions x(0) = y(0) = 0 and x(1) = y(1) = 1.

Paper 3, Section I

6D Variational Principles
Find, using a Lagrange multiplier, the four stationary points in R3 of the function

x2 + y2 + z2 subject to the constraint x2 + 2y2 − z2 = 1. By considering the situation
geometrically, or otherwise, identify the nature of the constrained stationary points.

How would your answers differ if, instead, the stationary points of the function
x2 + 2y2 − z2 were calculated subject to the constraint x2 + y2 + z2 = 1?
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Paper 2, Section II

15D Variational Principles

(i) Let I[y] =

∫ 1

0

(
(y′)2−y2

)
dx, where y is twice differentiable and y(0) = y(1) = 0.

Write down the associated Euler-Lagrange equation and show that the only solution is
y(x) = 0.

(ii) Let J [y] =

∫ 1

0

(
y′+y tan x)2dx, where y is twice differentiable and y(0) = y(1) =

0. Show that J [y] = 0 only if y(x) = 0.

(iii) Show that I[y] = J [y] and deduce that the extremal value of I[y] is a global
minimum.

(iv) Use the second variation of I[y] to verify that the extremal value of I[y] is a
local minimum.

(v) How would your answers to part (i) differ in the case I[y] =

∫ 2π

0

(
(y′)2 − y2

)
dx,

where y(0) = y(2π) = 0? Show that the solution y(x) = 0 is not a global minimizer in
this case. (You may use without proof the result I[x(2π − x)] = − 8

15 (2π
2 − 5).) Explain

why the arguments of parts (iii) and (iv) cannot be used.

Paper 4, Section II

16D Variational Principles
Derive the Euler-Lagrange equation for the integral

∫ x1

x0

f(y, y′, y′′, x) dx

where the endpoints are fixed, and y(x) and y′(x) take given values at the endpoints.

Show that the only function y(x) with y(0) = 1, y′(0) = 2 and y(x) → 0 as x → ∞
for which the integral ∫ ∞

0

(
y2 + (y′)2 + (y′ + y′′)2

)
dx

is stationary is (3x+ 1)e−x.
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Paper 1, Section I

4D Variational Principles
(a) Define what it means for a function f : Rn → R to be convex and strictly convex.

(b) State a necessary and sufficient first-order condition for strict convexity of
f ∈ C1(Rn), and give, with proof, an example of a function which is strictly convex
but with second derivative which is not everywhere strictly positive.

Paper 3, Section I

6D Variational Principles
Derive the Euler-Lagrange equation for the function u(x, y) which gives a stationary

value of

I =

∫

D
L
(
x, y, u,

∂u

∂x
,
∂u

∂y

)
dxdy,

where D is a bounded domain in the (x, y) plane, with u fixed on the boundary ∂D.

Find the equation satisfied by the function u which gives a stationary value of

I =

∫

D

[(∂u
∂x

)2
+

(∂u
∂y

)2]
dxdy,

with u given on ∂D.

Paper 2, Section II

15D Variational Principles
Describe briefly the method of Lagrange multipliers for finding the stationary points

of a function f(x, y) subject to a constraint φ(x, y) = 0.

A tent manufacturer wants to maximize the volume of a new design of tent, subject
only to a constant weight (which is directly proportional to the amount of fabric used).
The models considered have either equilateral-triangular or semi-circular vertical cross–
section, with vertical planar ends in both cases and with floors of the same fabric. Which
shape maximizes the volume for a given area A of fabric?

[Hint: (2π)−1/23−3/4(2 + π) < 1.]
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Paper 4, Section II

16D Variational Principles
A function θ(φ) with given values of θ(φ1) and θ(φ2) makes the integral

I =

∫ φ2

φ1

L(θ, θ′) dφ

stationary with respect to small variations of θ which vanish at φ1 and φ2. Show that θ(φ)
satisfies the first integral of the Euler–Lagrange equation,

L(θ, θ′)− θ′(∂L/∂θ′) = C,

for some constant C. You may state the Euler–Lagrange equation without proof.

It is desired to tow an iceberg across open ocean from a point on the Antarctic coast
(longitude φ1) to a place in Australia (longitude φ2), to provide fresh water for irrigation.
The iceberg will melt at a rate proportional to the difference between its temperature (the
constant T0, measured in degrees Celsius and therefore negative) and the sea temperature
T (θ) > T0, where θ is the colatitude (the usual spherical polar coordinate θ). Assume
that the iceberg is towed at a constant speed along a path θ(φ), where φ is the longitude.
Given that the infinitesimal arc length on the unit sphere is (dθ2 + sin2 θ dφ2)1/2, show
that the total ice melted along the path from φ1 to φ2 is proportional to

I =

∫ φ2

φ1

(T (θ)− T0)(θ
′2 + sin2 θ)1/2 dφ.

Now suppose that in the relevant latitudes, the sea temperature may be approxim-
ated by T (θ) = T0(1+3 tan θ). (Note that (1+3 tan θ) is negative in the relevant latitudes.)
Show that any smooth path θ(φ) which minimizes the total ice melted must satisfy

θ′2 = sin2 θ (14k
2 tan2 θ sin2 θ − 1),

and hence that

sin2 θ =
2

1− (1 + k2)1/2 sin 2(φ− φ0)
,

where k and φ0 are constants.

[Hint: ∫
dx

x(α2x4 + x2 − 1)1/2
=

1

2
arcsin

[ x2 − 2

x2(1 + 4α2)1/2

]
.
]
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