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Paper 3, Section I

6D Quantum Mechanics
Consider the one-dimensional, time-independent Schrödinger equation:

d2χ(x)

dx2
+

2m

~2
[E − U(x)]χ(x) = 0, x ∈ R.

(a) Explain the meaning of the functions χ(x), U(x) and parameters E,m, ~.

(b) Solutions of this equation describing bound states correspond to χ(x) → 0 for
x→ ±∞. Are there bound states for a potential that asymptotes to a constant U0 (that
is U(x)→ U0 as x→ ±∞) for the cases E > U0 > 0 and 0 < E < U0?

(c) Show, by contradiction or otherwise, that the energy spectrum of bound states
is non-degenerate.

Paper 4, Section I

4D Quantum Mechanics
(a) Prove Ehrenfest’s theorem in one-dimensional quantum mechanics:

d

dt
〈Ô〉ψ =

i

~
〈[Ĥ, Ô]〉ψ + 〈∂Ô

∂t
〉ψ,

where Ô is a Hermitian operator, Ĥ is the Hamiltonian and

〈Ô〉ψ =

∫
ψ∗(x, t)Ôψ(x, t)dx

is the expectation value of the operator Ô in a state determined by the wave function
ψ(x, t).

(b) Using Ehrenfest’s theorem prove that

m
d

dt
〈x̂〉ψ = 〈p̂〉ψ,

d

dt
〈p̂〉ψ = −〈dU

dx
〉ψ,

d

dt
〈Ĥ〉ψ = 0,

where U(x) is the scalar potential. Compare with similar expressions in classical
mechanics.

Part IB, Paper 1
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Paper 1, Section II

14D Quantum Mechanics
Consider a physical observable O represented by a Hermitian operator Ô acting on

a Hilbert space H. We define the uncertainty ∆ψO in a measurement of O on a state ψ

as (∆ψO)2 = 〈Ô2〉ψ − 〈Ô〉2ψ with the expectation value defined as 〈Ô〉ψ = (ψ, Ôψ).

(a) Using the Schwartz inequality |(φ, ψ)|2 6 (φ, φ)(ψ,ψ) for two states φ, ψ, prove
the generalised uncertainty relation for the observables A,B:

(∆ψA)(∆ψB) > 1

2

∣∣∣
(
ψ,
[
Â, B̂

]
ψ
) ∣∣∣, (†)

where [Â, B̂] = ÂB̂ − B̂Â is the commutator of Â and B̂.

(b) Given the two Hermitian operators X̂ and Ŷ and a real parameter λ, we define

f(λ) =
〈(
X̂ − iλŶ

)(
X̂ + iλŶ

)〉
ψ
.

Minimising f(λ) and using the fact that f(λ) > 0, provide an alternative derivation of the
uncertainty relation (†).

(c) For the position and momentum operators, x̂ and p̂ = −i~ ∂
∂x , respectively, find

their commutator [x̂, p̂] and derive the Heisenberg uncertainty relation ∆ψx∆ψp > 1
2~.

(d) Show that a Gaussian wave function ψ(x) = Ce−αx
2

solves the one-dimensional
Schrödinger’s equation for a quadratic potential U(x) = kx2 with k > 0. Determine the
value of the constants α,C and the energy E in terms of k and the particle’s mass m. Show
that this wave function saturates the Heisenberg uncertainty relation (∆ψx∆ψp = 1

2~).
Furthermore, show that in order to saturate this Heisenberg relation, the wave function
has to be Gaussian. [Hint: You may use

∫∞
−∞ e

−ax2dx =
√

π
a and

∫∞
−∞ x

2e−ax
2
dx =

√
π
4a3

.]
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Paper 2, Section II

15D Quantum Mechanics
(a) Consider the Schrödinger equation for the wave function ψ(r, t) corresponding

to a particle subject to a real potential energy U(r, t). Defining the probability density
ρ(r, t) = |ψ(r, t)|2 and probability current density

J(r, t) = − i~
2m

[ψ∗∇ψ − (∇ψ)∗ ψ] ,

derive and interpret the continuity equation ∂ρ
∂t +∇ · J = 0.

(b) Consider the one-dimensional Schrödinger equation with a step potential

U(x) =





0 x < −a
U0 − a < x < a

0 x > a,

where a > 0, U0 > 0.

(i) Using matching conditions at x = ±a, find the transmitted wave function
ψ(x, t) and probability density ρ(x, t) in the region x > a, for an incident
wave corresponding to a particle of mass m and energy E = U0/2 moving
towards the potential barrier from x < −a. Express the results in terms of
the quantity k =

√
2mE/~.

(ii) Compute the ratio between the transmitted and the incident current
densities and interpret the result in terms of the continuity equation.

Part IB, Paper 1
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Paper 4, Section II

15D Quantum Mechanics
(a) Using the canonical commutation relations [x̂i, p̂j ] = i~δij with i, j = 1, 2, 3, show

that the angular momentum operators L̂i = εijkx̂j p̂k satisfy the commutation relations:

[L̂i, L̂j ] = i~εijkL̂k, [L̂i, x̂j ] = i~εijkx̂k, [L̂i, p̂j ] = i~εijkp̂k.

Using these relations show that [L̂2, L̂i] = 0 where L̂2 = L̂iL̂i. Show further that for
a spherically symmetric system [L̂2, Ĥ] = 0, where the Hamiltonian Ĥ takes the form

Ĥ = p̂2

2m + U(r̂). Can the operators Ĥ, L̂2, L̂3 be simultaneously diagonalised? Justify
your answer.

(b) Consider the Schrödinger equation for the Hydrogen atom in which the potential

energy is U(r) = − q2

r . Concentrating on the wave function with zero eigenvalues for both

L̂3 and L̂2, the equation for the radial component of the wave function, R(r), reduces to:

R′′ +
2

r
R′ +

(
β

r
− γ2

)
R = 0,

where β = 2mq2

~2 and γ2 = −2mE
~2 , with E denoting the energy.

(i) Considering the r →∞ limit, explain why R ∼ e−γr.

(ii) Consider then the series solution

R(r) = f(r)e−γr, f(r) =
∑

n

anr
n.

Derive the recurrence relation

an =
2γn− β
n(n+ 1)

an−1,

then argue why the energy is quantised and determine the ground state
energy.

(iii) Using the ground state wave function R(r) = Ce−γr, determine the
normalisation factor C and estimate the expectation value of the radius
〈r〉R. Compare with the Bohr radius.
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Paper 3, Section I
6B Quantum Mechanics

(a) A beam of identical, free particles, each of mass m, moves in one dimension.
There is no potential. Show that the wavefunction χ(x) = Aeikx is an energy eigenstate
for any constants A and k.

What is the energy E and the momentum p in terms of k? What can you say about
the sign of E?

(b) Write down expressions for the probability density ρ and the probability current
J in terms of the wavefunction ψ(x, t). Use the current conservation equation, i.e.

∂ρ

∂t
+
∂J

∂x
= 0

to show that, for a stationary state of fixed energy E, the probability current J is
independent of x.

(c) A beam of particles in a stationary state is incident from x → −∞ upon a
potential U(x) with U(x)→ 0 as x→ ±∞. Given the asymptotic behaviour of the form

ψ(x) =





eikx +Re−ikx , x→ −∞ ,

T eikx , x→∞ ,

show that |R|2 + |T |2 = 1. Interpret this result.

Paper 4, Section I
4B Quantum Mechanics

The radial wavefunction g(r) for the hydrogen atom satisfies the equation

− ~2

2mr2
d

dr

(
r2
d

dr
g(r)

)
− e2

4πε0r
g(r) +

l(l + 1)~2

2mr2
g(r) = Eg(r) . (†)

(a) Explain the origin of each of the terms in (†). What are the allowed values of l?

(b) For a given l, the lowest energy bound state solution of (†) takes the form rae−br.
Find a, b, and the corresponding value of E, in terms of l.

(c) A hydrogen atom makes a transition between two such states, corresponding to
l + 1 and l. What is the frequency of the photon emitted?
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2022



36

Paper 1, Section II
14B Quantum Mechanics

(a) Write down the time-dependent Schrödinger equation for a harmonic oscillator
of mass m, frequency ω and coordinate x.

(b) Show that a wavefunction of the form

ψ(x, t) = N(t) exp
(
− F (t)x2 +G(t)x

)
,

where F,G and N are complex functions of time, is a solution to the Schrödinger equation,
provided that F,G,N satisfy certain conditions which you should establish.

(c) Verify that

F (t) = A tanh(a+ iωt), G(t) =

√
mω

~
sech(a+ iωt) ,

where a is a real positive constant, satisfy the conditions you established in part (b). Hence
determine the constant A. [You do not need to find the time-dependent normalization
function N(t).]

(d) By completing the square, or otherwise, show that |ψ(x, t)|2 is peaked around a
certain position x = h(t) and express h(t) in terms of F and G.

(e) Find h(t) as a function of time and describe its behaviour.

(f) Sketch |ψ(x, t)|2 for a fixed value of t. What is the value of 〈x̂〉ψ ?

[You may find the following identities useful:

cosh(α+ iβ) = coshα cosβ + i sinhα sinβ ,

sinh(α+ iβ) = sinhα cosβ + i coshα sinβ . ]

Part IB, Paper 1
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Paper 2, Section II
15B Quantum Mechanics

A particle of mass m is confined to the region 0 6 x 6 a by a potential that is zero
inside the region and infinite outside.

(a) Find the energy eigenvalues En and the corresponding normalised energy
eigenstates χn(x).

(b) At time t = 0 the wavefunction ψ(x, t) of the particle is given by

ψ(x, 0) = f(x) ,

where f(x) is not an energy eigenstate and satisfies the boundary conditions f(0) = f(a) =
0.

(i) Express ψ(x, t) in terms of χn(x) and En.

(ii) Show that T = 2ma2/π~ is the earliest time at which ψ(a − x, T ) and ψ(x, 0)
correspond to physically equivalent states. Thus, determine ψ(x, 2T ).

Show that if ψ(x, 0) = 0 for a/2 6 x 6 a, then the probability of finding the particle
in 0 6 x 6 a/2 at t = T is zero.

(iii) For

f(x) =





2√
a

sin
2πx

a
, 0 6 x 6 a

2
,

0 ,
a

2
6 x 6 a ,

find the probability that a measurement of the energy of the particle at time t = 0
will yield a value 2π2~2/ma2.
What is the probability if, instead, the same measurement is carried out at time
t = 2T? What is the probability at t = T?

Suppose that the result of the measurement of the energy was indeed 2π2~2/ma2.
What is the probability that a subsequent measurement of energy will yield the same
result?
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Paper 4, Section II
15B Quantum Mechanics

(a) Write down the time-dependent Schrödinger equation for the wavefunction
ψ(x, t) of a particle with Hamiltonian Ĥ.

Suppose that A is an observable associated with the operator Â. Show that

i~
d〈Â〉ψ
dt

= 〈[Â, Ĥ]〉ψ + i~

〈
∂Â

∂t

〉

ψ

.

(b) Consider a particle of mass m subject to a constant gravitational field with
potential energy U(x) = mgx.

[For the rest of the question you should assume that ψ(x, t) is normalized.]

(i) Find the differential equation satisfied by the function Φ(x, t) defined by

ψ(x, t) = Φ(x, t) exp

[
− im

~
gt

(
x+

1

6
gt2
)]

.

(ii) Show that Θ(X,T ) = Φ(x, t), with X = x + 1
2gt

2 and T = t, satisfies the
free-particle Schrödinger equation

i~
∂Θ

∂T
= − ~2

2m

∂2Θ

∂X2
.

Hence, show that

d〈X̂〉Θ
dT

=
1

m
〈P̂ 〉Θ ,

d〈P̂ 〉Θ
dT

= 0 ,

where P̂ = −i~ ∂
∂X

.

(iii) Express 〈X̂〉Θ in terms of 〈x̂〉ψ. Deduce that

〈x̂〉ψ = a+ vt− 1
2gt

2 ,

for some constants a and v. Briefly comment on the physical significance of
this result.
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Paper 3, Section I

6C Quantum Mechanics
The electron in a hydrogen-like atom moves in a spherically symmetric potential

V (r) = −K/r where K is a positive constant and r is the radial coordinate of spherical
polar coordinates. The two lowest energy spherically symmetric normalised states of the
electron are given by

χ1(r) =
1√
π a3/2

e−r/a and χ2(r) =
1

4
√
2π a3/2

(
2− r

a

)
e−r/2a

where a = ~2/mK and m is the mass of the electron. For any spherically symmetric

function f(r), the Laplacian is given by ∇2f = d2f
dr2

+ 2
r
df
dr .

(i) Suppose that the electron is in the state χ(r) = 1
2χ1(r)+

√
3
2 χ2(r) and its energy

is measured. Find the expectation value of the result.

(ii) Suppose now that the electron is in state χ(r) (as above) at time t = 0. Let
R(t) be the expectation value of a measurement of the electron’s radial position r at time
t. Show that the value of R(t) oscillates sinusoidally about a constant level and determine
the frequency of the oscillation.

Paper 4, Section I

4C Quantum Mechanics
Let Ψ(x, t) be the wavefunction for a particle of mass m moving in one dimension

in a potential U(x). Show that, with suitable boundary conditions as x→ ±∞,

d

dt

∫ ∞

−∞
|Ψ(x, t)|2 dx = 0 .

Why is this important for the interpretation of quantum mechanics?

Verify the result above by first calculating |Ψ(x, t)|2 for the free particle solution

Ψ(x, t) = Cf(t)1/2 exp
(
− 1

2
f(t)x2

)
with f(t) =

(
α +

i~
m
t
)−1

,

where C and α > 0 are real constants, and then considering the resulting integral.
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Paper 1, Section II

14C Quantum Mechanics
Consider a quantum mechanical particle of mass m in a one-dimensional stepped

potential well U(x) given by:

U(x) =




∞ for x < 0 and x > a
0 for 0 6 x 6 a/2
U0 for a/2 < x 6 a

where a > 0 and U0 > 0 are constants.

(i) Show that all energy levels E of the particle are non-negative. Show that any
level E with 0 < E < U0 satisfies

1

k
tan

ka

2
= −1

l
tanh

la

2

where

k =

√
2mE

~2
> 0 and l =

√
2m(U0 − E)

~2
> 0.

(ii) Suppose that initially U0 = 0 and the particle is in the ground state of the
potential well. U0 is then changed to a value U0 > 0 (while the particle’s wavefunction
stays the same) and the energy of the particle is measured. For 0 < E < U0, give an
expression in terms of E for prob(E), the probability that the energy measurement will
find the particle having energy E. The expression may be left in terms of integrals that
you need not evaluate.
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Paper 2, Section II

15C Quantum Mechanics
(a) Write down the expressions for the probability density ρ and associated current

density j of a quantum particle in one dimension with wavefunction ψ(x, t). Show that if
ψ is a stationary state then the function j is constant.

For the non-normalisable free particle wavefunction ψ(x, t) = Aeikx−iEt/~ (where E
and k are real constants and A is a complex constant) compute the functions ρ and j, and
briefly give a physical interpretation of the functions ψ, ρ and j in this case.

(b) A quantum particle of mass m and energy E > 0 moving in one dimension is
incident from the left in the potential V (x) given by

V (x) =

{
−V0 0 6 x 6 a

0 x < 0 or x > a

where a and V0 are positive constants. Write down the form of the wavefunction in the
regions x < 0, 0 6 x 6 a and x > a.

Suppose now that V0 = 3E. Show that the probability T of transmission of the
particle into the region x > a is given by

T =
16

16 + 9 sin2
(
a
√
8mE
~

) .

Part IB, 2021 List of Questions [TURN OVER]
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Paper 4, Section II

15C Quantum Mechanics
(a) Consider the angular momentum operators L̂x, L̂y, L̂z and L̂2 = L̂2

x + L̂2
y + L̂2

z

where
L̂z = x̂p̂y − ŷp̂x, L̂x = ŷp̂z − ẑp̂y and L̂y = ẑp̂x − x̂p̂z.

Use the standard commutation relations for these operators to show that

L̂± = L̂x ± iL̂y obeys [L̂z, L̂±] = ±~L̂± and [L̂2, L̂±] = 0 .

Deduce that if ϕ is a joint eigenstate of L̂z and L̂2 with angular momentum quantum
numbers m and ` respectively, then L̂±ϕ are also joint eigenstates, provided they are
non-zero, with quantum numbers m± 1 and `.

(b) A harmonic oscillator of mass M in three dimensions has Hamiltonian

Ĥ =
1

2M
( p̂2x + p̂2y + p̂2z ) +

1

2
Mω2( x̂2 + ŷ2 + ẑ2 ) .

Find eigenstates of Ĥ in terms of eigenstates ψn for an oscillator in one dimension with
n = 0, 1, 2, . . . and eigenvalues ~ω(n+ 1

2); hence determine the eigenvalues E of Ĥ.

Verify that the ground state for Ĥ is a joint eigenstate of L̂z and L̂2 with ` = m = 0.
At the first excited energy level, find an eigenstate of L̂z with m = 0 and construct from
this two eigenstates of L̂z with m = ±1.

Why should you expect to find joint eigenstates of L̂z, L̂
2 and Ĥ?

[ The first two eigenstates for an oscillator in one dimension are ψ0(x) =
C0 exp(−Mωx2/2~) and ψ1(x) = C1x exp(−Mωx2/2~), where C0 and C1 are normal-
isation constants. ]
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Paper 1, Section I

4A Quantum Mechanics
Define what it means for an operator Q to be hermitian and briefly explain the

significance of this definition in quantum mechanics.

Define the uncertainty (∆Q)ψ of Q in a state ψ. If P is also a hermitian operator,
show by considering the state (Q+ iλP )ψ, where λ is a real number, that

〈Q2〉ψ 〈P 2〉ψ > 1

4
| 〈i[Q,P ]〉ψ |2 .

Hence deduce that

(∆Q)ψ (∆P )ψ > 1

2
| 〈i[Q,P ]〉ψ | .

Give a physical interpretation of this result.

Paper 1, Section II

15A Quantum Mechanics
Consider a quantum system with Hamiltonian H and wavefunction Ψ obeying the

time-dependent Schrödinger equation. Show that if Ψ is a stationary state then 〈Q〉Ψ is
independent of time, if the observable Q is independent of time.

A particle of mass m is confined to the interval 0 6 x 6 a by infinite potential
barriers, but moves freely otherwise. Let Ψ(x, t) be the normalised wavefunction for the
particle at time t, with

Ψ(x, 0) = c1ψ1(x) + c2ψ2(x)

where

ψ1(x) =
(2

a

)1/2
sin

πx

a
, ψ2(x) =

(2

a

)1/2
sin

2πx

a

and c1, c2 are complex constants. If the energy of the particle is measured at time t, what
are the possible results, and what is the probability for each result to be obtained? Give
brief justifications of your answers.

Calculate 〈x̂〉Ψ at time t and show that the result oscillates with a frequency ω, to
be determined. Show in addition that

∣∣∣〈x̂〉Ψ −
a

2

∣∣∣ 6 16a

9π2
.

Part IB, 2020 List of Questions
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Paper 2, Section II

14A Quantum Mechanics
(a) The potential V (x) for a particle of mass m in one dimension is such that

V → 0 rapidly as x → ±∞. Let ψ(x) be a wavefunction for the particle satisfying the
time-independent Schrödinger equation with energy E.

Suppose ψ has the asymptotic behaviour

ψ(x) ∼ Aeikx +Be−ikx (x→ −∞) , ψ(x) ∼ Ceikx (x→ +∞) ,

where A, B, C are complex coefficients. Explain, in outline, how the probability current
j(x) is used in the interpretation of such a solution as a scattering process and how the
transmission and reflection probabilities Ptr and Pref are found.

Now suppose instead that ψ(x) is a bound state solution. Write down the asymptotic
behaviour in this case, relating an appropriate parameter to the energy E.

(b) Consider the potential

V (x) = − ~2

m

a2

cosh2ax

where a is a real, positive constant. Show that

ψ(x) = Neikx(a tanh ax − ik) ,

where N is a complex coefficient, is a solution of the time-independent Schrödinger
equation for any real k and find the energy E. Show that ψ represents a scattering
process for which Pref = 0, and find Ptr explicitly.

Now let k = iλ in the formula for ψ above. Show that this defines a bound state if
a certain real positive value of λ is chosen and find the energy of this solution.

Part IB, 2020 List of Questions [TURN OVER]
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Paper 4, Section I

6B Quantum Mechanics
(a) Define the probability density ρ and probability current j for the wavefunction

Ψ(x, t) of a particle of mass m. Show that

∂ρ

∂t
+
∂j

∂x
= 0 ,

and deduce that j = 0 for a normalizable, stationary state wavefunction. Give an example
of a non-normalizable, stationary state wavefunction for which j is non-zero, and calculate
the value of j.

(b) A particle has the instantaneous, normalized wavefunction

Ψ(x, 0) =

(
2α

π

)1/4

e−αx2+ikx ,

where α is positive and k is real. Calculate the expectation value of the momentum for
this wavefunction.

Paper 3, Section I

8B Quantum Mechanics
Consider a quantum mechanical particle moving in two dimensions with Cartesian

coordinates x, y. Show that, for wavefunctions with suitable decay as x2 + y2 → ∞, the
operators

x and − i~
∂

∂x

are Hermitian, and similarly

y and − i~
∂

∂y

are Hermitian.

Show that if F and G are Hermitian operators, then

1

2
(FG+GF )

is Hermitian. Deduce that

L = −i~
(
x
∂

∂y
− y

∂

∂x

)
and D = −i~

(
x
∂

∂x
+ y

∂

∂y
+ 1

)

are Hermitian. Show that
[L,D] = 0.
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Paper 1, Section II

15B Quantum Mechanics
Starting from the time-dependent Schrödinger equation, show that a stationary

state ψ(x) of a particle of mass m in a harmonic oscillator potential in one dimension with
frequency ω satisfies

− ~2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ .

Find a rescaling of variables that leads to the simplified equation

−d
2ψ

dy2
+ y2ψ = εψ .

Setting ψ = f(y)e−
1
2
y2 , find the equation satisfied by f(y).

Assume now that f is a polynomial

f(y) = yN + aN−1 y
N−1 + aN−2 y

N−2 + . . .+ a0 .

Determine the value of ε and deduce the corresponding energy level E of the harmonic
oscillator. Show that if N is even then the stationary state ψ(x) has even parity.

Paper 3, Section II

16B Quantum Mechanics
Consider a particle of unit mass in a one-dimensional square well potential

V (x) = 0 for 0 6 x 6 π ,

with V infinite outside. Find all the stationary states ψn(x) and their energies En, and
write down the general normalized solution of the time-dependent Schrödinger equation
in terms of these.

The particle is initially constrained by a barrier to be in the ground state in the
narrower square well potential

V (x) = 0 for 0 6 x 6 π

2
,

with V infinite outside. The barrier is removed at time t = 0, and the wavefunction
is instantaneously unchanged. Show that the particle is now in a superposition of
stationary states of the original potential well, and calculate the probability that an energy
measurement will yield the result En.
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Paper 2, Section II

17B Quantum Mechanics
Let x, y, z be Cartesian coordinates in R3. The angular momentum operators satisfy

the commutation relation
[Lx, Ly] = i~Lz

and its cyclic permutations. Define the total angular momentum operator L2 and show
that [Lz,L

2] = 0. Write down the explicit form of Lz.

Show that a function of the form (x + iy)mznf(r), where r2 = x2 + y2 + z2, is an
eigenfunction of Lz and find the eigenvalue. State the analogous result for (x−iy)mznf(r).

There is an energy level for a particle in a certain spherically symmetric potential
well that is 6-fold degenerate. A basis for the (unnormalized) energy eigenstates is of the
form

(x2 − 1)f(r), (y2 − 1)f(r), (z2 − 1)f(r), xyf(r), xzf(r), yzf(r) .

Find a new basis that consists of simultaneous eigenstates of Lz and L2 and identify their
eigenvalues.

[You may quote the range of Lz eigenvalues associated with a particular eigenvalue of L2.]

Part IB, 2019 List of Questions [TURN OVER

2019



40

Paper 4, Section I

6B Quantum Mechanics
A particle moving in one space dimension with wavefunction Ψ(x, t) obeys the time-

dependent Schrödinger equation. Write down the probability density ρ and current density
j in terms of the wavefunction and show that they obey the equation

∂j

∂x
+
∂ρ

∂t
= 0 .

Evaluate j(x, t) in the case that

Ψ(x, t) =
(
Aeikx +Be−ikx

)
e−iEt/~ ,

where E = ~2k2/2m, and A and B are constants, which may be complex.

Paper 3, Section I

8B Quantum Mechanics
What is meant by the statement that an operator is Hermitian?

Consider a particle of mass m in a real potential V (x) in one dimension. Show that
the Hamiltonian of the system is Hermitian.

Starting from the time-dependent Schrödinger equation, show that

d

dt
〈x̂〉 = 1

m
〈p̂〉, d

dt
〈p̂〉 = −〈V ′(x̂)〉,

where p̂ is the momentum operator and 〈Â〉 denotes the expectation value of the operator Â.

Paper 1, Section II

15B Quantum Mechanics
The relative motion of a neutron and proton is described by the Schrödinger equation

for a single particle of mass m under the influence of the central potential

V (r) =

{
−U r < a

0 r > a

where U and a are positive constants. Solve this equation for a spherically symmetric state
of the deuteron, which is a bound state of a proton and a neutron, giving the condition
on U for this state to exist.

[If ψ is spherically symmetric then ∇2ψ = 1
r

d2

dr2
(rψ).]
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Paper 3, Section II

16B Quantum Mechanics
What is the physical significance of the expectation value

〈Q〉 =
∫
ψ∗(x)Qψ(x)dx

of an observable Q in the normalised state ψ(x)? Let P and Q be two observables. By
considering the norm of (Q+ iλP )ψ for real values of λ, show that

〈Q2〉〈P 2〉 > 1

4
|〈[Q,P ]〉|2.

Deduce the generalised uncertainty relation

∆Q ∆P > 1

2
|〈[Q,P ]〉|,

where the uncertainty ∆Q in the state ψ(x) is defined by

(∆Q)2 = 〈(Q− 〈Q〉)2〉.

A particle of mass m moves in one dimension under the influence of the potential
1
2mω

2x2. By considering the commutator [x, p], show that every energy eigenvalue E
satisfies

E > 1
2~ω.

Paper 2, Section II

17B Quantum Mechanics
For an electron in a hydrogen atom, the stationary-state wavefunctions are of the

form ψ(r, θ, φ) = R(r)Ylm(θ, φ), where in suitable units R obeys the radial equation

d2R

dr2
+

2

r

dR

dr
− l(l + 1)

r2
R+ 2

(
E +

1

r

)
R = 0 .

Explain briefly how the terms in this equation arise.

This radial equation has bound-state solutions of energy E = En, where
En = − 1

2n2 (n = 1, 2, 3, . . . ). Show that when l = n − 1, there is a solution of the form

R(r) = rαe−r/n, and determine α. Find the expectation value 〈r〉 in this state.

Determine the total degeneracy of the energy level with energy En.
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Paper 4, Section I

6B Quantum Mechanics
(a) Give a physical interpretation of the wavefunction φ(x, t) = Aeikxe−iEt/~ (where

A, k and E are real constants).

(b) A particle of mass m and energy E > 0 is incident from the left on the potential
step

V (x) =

{
0 for −∞ < x < a
V0 for a < x <∞.

with V0 > 0.

State the conditions satisfied by a stationary state at the point x = a.

Compute the probability that the particle is reflected as a function of E, and
compare your result with the classical case.

Paper 3, Section I

8B Quantum Mechanics
A particle of mass m is confined to a one-dimensional box 0 6 x 6 a. The potential

V (x) is zero inside the box and infinite outside.

(a) Find the allowed energies of the particle and the normalised energy eigenstates.

(b) At time t = 0 the particle has wavefunction ψ0 that is uniform in the left half

of the box i.e. ψ0(x) =
√

2
a for 0 < x < a/2 and ψ0(x) = 0 for a/2 < x < a. Find

the probability that a measurement of energy at time t = 0 will yield a value less than
5~2π2/(2ma2).
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Paper 1, Section II

15B Quantum Mechanics
Consider the time-independent Schrödinger equation in one dimension for a particle

of mass m with potential V (x).

(a) Show that if the potential is an even function then any non-degenerate stationary state
has definite parity.

(b) A particle of mass m is subject to the potential V (x) given by

V (x) = −λ
(
δ(x− a) + δ(x+ a)

)

where λ and a are real positive constants and δ(x) is the Dirac delta function.

Derive the conditions satisfied by the wavefunction ψ(x) around the points x = ±a.

Show (using a graphical method or otherwise) that there is a bound state of even
parity for any λ > 0, and that there is an odd parity bound state only if λ > ~2/(2ma).
[Hint: You may assume without proof that the functions x tanhx and x coth x are
monotonically increasing for x > 0.]

Paper 3, Section II

16B Quantum Mechanics
(a) Given the position and momentum operators x̂i = xi and p̂i = −i~ ∂/∂xi (for

i = 1, 2, 3) in three dimensions, define the angular momentum operators L̂i and the total
angular momentum L̂2.
Show that L̂3 is Hermitian.

(b) Derive the generalised uncertainty relation for the observables L̂3 and x̂1 in the
form

∆ψL̂3 ∆ψx̂1 >M

for any state ψ and a suitable expression M that you should determine. [Hint: It may be
useful to consider the operator L̂3 + iλx̂1.]

(c) Consider a particle with wavefunction

ψ = K(x1 + x2 + 2x3)e
−αr

where r =
√
x21 + x22 + x23 and K and α are real positive constants.

Show that ψ is an eigenstate of total angular momentum L̂2 and find the corresponding
angular momentum quantum number l. Find also the expectation value of a measurement
of L̂3 on the state ψ.
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Paper 2, Section II

17B Quantum Mechanics
(a) The potential for the one-dimensional harmonic oscillator is V (x) = 1

2mω
2x2. By

considering the associated time-independent Schrödinger equation for the wavefunction
ψ(x) with substitutions

ξ =
(mω

~

)1/2
x and ψ(x) = f(ξ)e−ξ

2/2,

show that the allowed energy levels are given by En = (n+ 1
2 )~ω for n = 0, 1, 2, . . .. [You

may assume without proof that f must be a polynomial for ψ to be normalisable.]

(b) Consider a particle with charge q and mass m = 1 subject to the one-dimensional
harmonic oscillator potential U0(x) = x2/2. You may assume that the normalised ground
state of this potential is

ψ0(x) =

(
1

π~

)1/4

e−x
2/(2~).

The particle is in the stationary state corresponding to ψ0(x) when at time t = t0, an
electric field of constant strength E is turned on, adding an extra term U1(x) = −qEx to
the harmonic potential.

(i) Using the result of part (a) or otherwise, find the energy levels of the new
potential.

(ii) Show that the probability of finding the particle in the ground state immedi-
ately after t0 is given by e−q

2E2/(2~). [You may assume that
∫∞
−∞ e−x

2+2Ax dx =√
πeA

2
.]
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Paper 4, Section I

6B Quantum Mechanics
(a) Define the quantum orbital angular momentum operator L̂ = (L̂1, L̂2, L̂3) in

three dimensions, in terms of the position and momentum operators.

(b) Show that [L̂1, L̂2] = i~L̂3. [You may assume that the position and momentum
operators satisfy the canonical commutation relations.]

(c) Let L̂2 = L̂2
1 + L̂2

2 + L̂2
3. Show that L̂1 commutes with L̂2.

[In this part of the question you may additionally assume without proof the permuted
relations [L̂2, L̂3] = i~L̂1 and [L̂3, L̂1] = i~L̂2.]
[Hint: It may be useful to consider the expression [Â, B̂] B̂+ B̂ [Â, B̂] for suitable operators
Â and B̂.]

(d) Suppose that ψ1(x, y, z) and ψ2(x, y, z) are normalised eigenstates of L̂1 with
eigenvalues ~ and −~ respectively. Consider the wavefunction

ψ =
1

2
ψ1 cosωt +

√
3

2
ψ2 sinωt ,

with ω being a positive constant. Find the earliest time t0 > 0 such that the expectation
value of L̂1 in ψ is zero.

Paper 3, Section I

8B Quantum Mechanics
(a) Consider a quantum particle moving in one space dimension, in a time-

independent real potential V (x). For a wavefunction ψ(x, t), define the probability density
ρ(x, t) and probability current j(x, t) and show that

∂ρ

∂t
+
∂j

∂x
= 0.

(b) Suppose now that V (x) = 0 and ψ(x, t) = (eikx + Re−ikx)e−iEt/~, where
E = ~2k2/(2m), k and m are real positive constants, and R is a complex constant.
Compute the probability current for this wavefunction. Interpret the terms in ψ and
comment on how this relates to the computed expression for the probability current.
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Paper 1, Section II

15B Quantum Mechanics
(a) A particle of mass m in one space dimension is confined to move in a potential

V (x) given by

V (x) =

{
0 for 0 < x < a,
∞ for x < 0 or x > a.

The normalised initial wavefunction of the particle at time t = 0 is

ψ0(x) =
4√
5a

sin3
(πx
a

)
.

(i) Find the expectation value of the energy at time t = 0.

(ii) Find the wavefunction of the particle at time t = 1.

[Hint: It may be useful to recall the identity sin 3θ = 3 sin θ − 4 sin3 θ.]

(b) The right hand wall of the potential is lowered to a finite constant value U0 > 0
giving the new potential:

U(x) =





0 for 0 < x < a,
∞ for x < 0,
U0 for x > a.

This potential is set up in the laboratory but the value of U0 is unknown. The stationary
states of the potential are investigated and it is found that there exists exactly one bound
state. Show that the value of U0 must satisfy

π2~2

8ma2
< U0 <

9π2~2

8ma2
.
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Paper 3, Section II

16B Quantum Mechanics
The spherically symmetric bound state wavefunctions ψ(r) for the Coulomb poten-

tial V = −e2/(4πǫ0r) are normalisable solutions of the equation

d2ψ

dr2
+

2

r

dψ

dr
+

2λ

r
ψ = −2mE

~2
ψ.

Here λ = (me2)/(4πǫ0~2) and E < 0 is the energy of the state.

(a) By writing the wavefunction as ψ(r) = f(r) exp(−Kr), for a suitable constant
K that you should determine, show that there are normalisable wavefunctions ψ(r) only
for energies of the form

E =
−me4

32π2ǫ20~2N2
,

with N being a positive integer.

(b) The energies in (a) reproduce the predictions of the Bohr model of the hydrogen
atom. How do the wavefunctions above compare to the assumptions in the Bohr model?
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Paper 2, Section II

17B Quantum Mechanics
The one dimensional quantum harmonic oscillator has Hamiltonian

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2,

where m and ω are real positive constants and x̂ and p̂ are the standard position and
momentum operators satisfying the commutation relation [x̂, p̂] = i~. Consider the
operators

Â = p̂− imωx̂ and B̂ = p̂+ imωx̂.

(a) Show that

B̂Â = 2m

(
Ĥ − 1

2
~ω

)
and ÂB̂ = 2m

(
Ĥ +

1

2
~ω

)
.

(b) Suppose that φ is an eigenfunction of Ĥ with eigenvalue E. Show that Âφ is
then also an eigenfunction of Ĥ and that its corresponding eigenvalue is E − ~ω.

(c) Show that for any normalisable wavefunctions χ and ψ,

∫ ∞

−∞
χ∗ (Âψ) dx =

∫ ∞

−∞
(B̂χ)∗ ψ dx.

[You may assume that the operators x̂ and p̂ are Hermitian.]

(d) With φ as in (b), obtain an expression for the norm of Âφ in terms of E and
the norm of φ. [The squared norm of any wavefunction ψ is

∫∞
−∞ |ψ|2 dx.]

(e) Show that all eigenvalues of Ĥ are non-negative.

(f) Using the above results, deduce that each eigenvalue E of Ĥ must be of the form
E = (n+ 1

2)~ω for some non-negative integer n.
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Paper 4, Section I

6D Quantum Mechanics
The radial wavefunction R(r) for an electron in a hydrogen atom satisfies the

equation

− ~2

2mr2
d

dr

(
r2

d

dr
R(r)

)
+

~2

2mr2
ℓ(ℓ+ 1)R(r)− e2

4πǫ0r
R(r) = ER(r) (∗)

Briefly explain the origin of each term in this equation.

The wavefunctions for the ground state and the first radially excited state, both
with ℓ = 0, can be written as

R1(r) = N1e
−αr

R2(r) = N2

(
1− 1

2rα
)
e−

1
2αr

where N1 and N2 are normalisation constants. Verify that R1(r) is a solution of (∗),
determining α and finding the corresponding energy eigenvalue E1. Assuming that R2(r)
is a solution of (∗), compare coefficients of the dominant terms when r is large to determine
the corresponding energy eigenvalue E2. [You do not need to find N1 or N2, nor show
that R2 is a solution of (∗).]

A hydrogen atom makes a transition from the first radially excited state to the
ground state, emitting a photon. What is the angular frequency of the emitted photon?

Paper 3, Section I

8D Quantum Mechanics
A quantum-mechanical system has normalised energy eigenstates χ1 and χ2 with

non-degenerate energies E1 and E2 respectively. The observable A has normalised
eigenstates,

φ1 = C(χ1 + 2χ2) , eigenvalue = a1 ,

φ2 = C(2χ1 − χ2) , eigenvalue = a2 ,

where C is a positive real constant. Determine C.

Initially, at time t = 0, the state of the system is φ1. Write down an expression for
ψ(t), the state of the system with t > 0. What is the probability that a measurement of
energy at time t will yield E2?

For the same initial state, determine the probability that a measurement of A at
time t > 0 will yield a1 and the probability that it will yield a2.
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Paper 1, Section II

15D Quantum Mechanics
Write down expressions for the probability density ρ(x, t) and the probability current

j(x, t) for a particle in one dimension with wavefunction Ψ(x, t). If Ψ(x, t) obeys the time-
dependent Schrödinger equation with a real potential, show that

∂j

∂x
+
∂ρ

∂t
= 0 .

Consider a stationary state, Ψ(x, t) = ψ(x)e−iEt/~, with

ψ(x) ∼
{
eik1x +Re−ik1x x→ −∞
Teik2x x→ +∞ ,

where E, k1, k2 are real. Evaluate j(x, t) for this state in the regimes x → +∞ and
x→ −∞.

Consider a real potential,

V (x) = −αδ(x) + U(x) , U(x) =

{
0 x < 0
V0 x > 0

,

where δ(x) is the Dirac delta function, V0 > 0 and α > 0. Assuming that ψ(x) is continuous
at x = 0, derive an expression for

lim
ǫ→0

[
ψ′(ǫ)− ψ′(−ǫ)

]
.

Hence calculate the reflection and transmission probabilities for a particle incident from
x = −∞ with energy E > V0.
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Paper 3, Section II

16D Quantum Mechanics
Define the angular momentum operators L̂i for a particle in three dimensions in

terms of the position and momentum operators x̂i and p̂i = −i~ ∂
∂xi

. Write down an

expression for [L̂i, L̂j ] and use this to show that [L̂2, L̂i] = 0 where L̂2 = L̂2
x + L̂2

y + L̂2
z.

What is the significance of these two commutation relations?

Let ψ(x, y, z) be both an eigenstate of L̂z with eigenvalue zero and an eigenstate of
L̂2 with eigenvalue ~2l(l+1). Show that (L̂x + iL̂y)ψ is also an eigenstate of both L̂z and
L̂2 and determine the corresponding eigenvalues.

Find real constants A and B such that

φ(x, y, z) =
(
Az2 +By2 − r2

)
e−r , r2 = x2 + y2 + z2 ,

is an eigenfunction of L̂z with eigenvalue zero and an eigenfunction of L̂2 with an eigenvalue
which you should determine. [Hint: You might like to show that L̂i f(r) = 0.]

Paper 2, Section II

17D Quantum Mechanics
A quantum-mechanical harmonic oscillator has Hamiltonian

Ĥ =
p̂2

2
+

1

2
k2x̂2 . (∗) ,

where k is a positive real constant. Show that x̂ = x and p̂ = −i~ ∂
∂x are Hermitian

operators.

The eigenfunctions of (∗) can be written as

ψn(x) = hn

(
x
√
k/~

)
exp

(
−kx

2

2~

)
,

where hn is a polynomial of degree n with even (odd) parity for even (odd) n and
n = 0, 1, 2, . . .. Show that 〈x̂〉 = 〈p̂〉 = 0 for all of the states ψn.

State the Heisenberg uncertainty principle and verify it for the state ψ0 by comput-
ing (∆x) and (∆p). [Hint: You should properly normalise the state.]

The oscillator is in its ground state ψ0 when the potential is suddenly changed so
that k → 4k. If the wavefunction is expanded in terms of the energy eigenfunctions of the
new Hamiltonian, φn, what can be said about the coefficient of φn for odd n? What is
the probability that the particle is in the new ground state just after the change?

[Hint: You may assume that if In =
∫∞
−∞ e−ax2

xn dx then I0 =
√

π
a and I2 =

1
2a

√
π
a .]
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Paper 4, Section I

6A Quantum Mechanics
For some quantum mechanical observable Q, prove that its uncertainty (∆Q)

satisfies
(∆Q)2 = 〈Q2〉 − 〈Q〉2.

A quantum mechanical harmonic oscillator has Hamiltonian

H =
p2

2m
+

mω2x2

2
,

where m > 0. Show that (in a stationary state of energy E)

E > (∆p)2

2m
+

mω2(∆x)2

2
.

Write down the Heisenberg uncertainty relation. Then, use it to show that

E > 1

2
~ω

for our stationary state.

Paper 3, Section I

8A Quantum Mechanics
The wavefunction of a normalised Gaussian wavepacket for a particle of mass m in

one dimension with potential V (x) = 0 is given by

ψ(x, t) = B
√
A(t) exp

(−x2A(t)
2

)
,

where A(0) = 1. Given that ψ(x, t) is a solution of the time-dependent Schrödinger
equation, find the complex-valued function A(t) and the real constant B.

[You may assume that
∫∞
−∞ e−λx2

dx =
√
π/

√
λ.]
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Paper 1, Section II

15A Quantum Mechanics
Consider a particle confined in a one-dimensional infinite potential well: V (x) = ∞

for |x| > a and V (x) = 0 for |x| < a. The normalised stationary states are

ψn(x) =




αn sin

(
πn(x+ a)

2a

)
for |x| < a

0 for |x| > a

where n = 1, 2, . . ..

(i) Determine the αn and the stationary states’ energies En.

(ii) A state is prepared within this potential well: ψ(x) ∝ x for 0 < x < a, but
ψ(x) = 0 for x 6 0 or x > a. Find an explicit expansion of ψ(x) in terms of ψn(x).

(iii) If the energy of the state is then immediately measured, show that the

probability that it is greater than ~2π2

ma2
is

4∑

n=0

bn
πn
,

where the bn are integers which you should find.

(iv) By considering the normalisation condition for ψ(x) in terms of the expansion
in ψn(x), show that

π2

3
=

∞∑

p=1

A

p2
+

B

(2p − 1)2

(
1 +

C(−1)p

(2p − 1)π

)2

,

where A, B and C are integers which you should find.
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Paper 3, Section II

16A Quantum Mechanics
The Hamiltonian of a two-dimensional isotropic harmonic oscillator is given by

H =
p2x + p2y
2m

+
mω2

2
(x2 + y2) ,

where x and y denote position operators and px and py the corresponding momentum
operators.

State without proof the commutation relations between the operators x, y, px, py.
From these commutation relations, write [x2, px] and [x, p2x] in terms of a single operator.
Now consider the observable

L = xpy − ypx.

Ehrenfest’s theorem states that, for some observable Q with expectation value 〈Q〉,

d〈Q〉
dt

=
1

i~
〈[Q, H]〉+ 〈∂Q

∂t
〉.

Use it to show that the expectation value of L is constant with time.

Given two states

ψ1 = αx exp
(
−β(x2 + y2)

)
and ψ2 = αy exp

(
−β(x2 + y2)

)
,

where α and β are constants, find a normalised linear combination of ψ1 and ψ2 that is an
eigenstate of L, and the corresponding L eigenvalue. [You may assume that α correctly
normalises both ψ1 and ψ2.] If a quantum state is prepared in the linear combination you
have found at time t = 0, what is the expectation value of L at a later time t?
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Paper 2, Section II

17A Quantum Mechanics
For an electron of mass m in a hydrogen atom, the time-independent Schrödinger

equation may be written as

− ~2

2mr2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

2mr2
L2ψ − e2

4πǫ0r
ψ = Eψ.

Consider normalised energy eigenstates of the form

ψlm(r, θ, φ) = R(r)Ylm(θ, φ)

where Ylm are orbital angular momentum eigenstates:

L2Ylm = ~2l(l + 1)Ylm, L3Ylm = ~mYlm,

where l = 1, 2, . . . and m = 0, ±1, ±2, . . . ± l. The Ylm functions are normalised with∫ π
θ=0

∫ 2π
φ=0 |Ylm|2 sin θ dθ dφ = 1.

(i) Write down the resulting equation satisfied by R(r), for fixed l. Show that it has
solutions of the form

R(r) = Arl exp

(
− r

a(l + 1)

)
,

where a is a constant which you should determine. Show that

E = − e2

Dπǫ0a
,

where D is an integer which you should find (in terms of l). Also, show that

|A|2 = 22l+3

aFG!(l + 1)H
,

where F , G and H are integers that you should find in terms of l.

(ii) Given the radius of the proton rp ≪ a, show that the probability of the electron
being found within the proton is approximately

22l+3

C

(rp
a

)2l+3 [
1 +O

(rp
a

)]
,

finding the integer C in terms of l.

[You may assume that
∫∞
0 tle−tdt = l! .]
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Paper 4, Section I

6B Quantum Mechanics
The components of the three-dimensional angular momentum operator L̂ are defined

as follows:

L̂x = −i~
(
y
∂

∂z
− z

∂

∂y

)
L̂y = −i~

(
z
∂

∂x
− x

∂

∂z

)
L̂z = −i~

(
x
∂

∂y
− y

∂

∂x

)
.

Given that the wavefunction
ψ = (f(x) + iy)z

is an eigenfunction of L̂z, find all possible values of f(x) and the corresponding eigenvalues
of ψ. Letting f(x) = x, show that ψ is an eigenfunction of L̂2 and calculate the
corresponding eigenvalue.

Paper 3, Section I

8B Quantum Mechanics
If α, β and γ are linear operators, establish the identity

[αβ, γ] = α[β, γ] + [α, γ]β.

In what follows, the operators x and p are Hermitian and represent position and momentum
of a quantum mechanical particle in one-dimension. Show that

[xn, p] = i~nxn−1

and
[x, pm] = i~mpm−1

where m,n ∈ Z+. Assuming [xn, pm] 6= 0, show that the operators xn and pm are
Hermitian but their product is not. Determine whether xnpm + pmxn is Hermitian.
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Paper 1, Section II

15B Quantum Mechanics
A particle with momentum p̂ moves in a one-dimensional real potential with

Hamiltonian given by

Ĥ =
1

2m
(p̂+ isA)(p̂ − isA), −∞ < x <∞

where A is a real function and s ∈ R+. Obtain the potential energy of the system. Find
χ(x) such that (p̂− isA)χ(x) = 0. Now, putting A = xn, for n ∈ Z+, show that χ(x) can
be normalised only if n is odd. Letting n = 1, use the inequality

∫ ∞

−∞
ψ∗(x)Ĥψ(x)dx > 0

to show that

∆x∆p > ~
2

assuming that both 〈p̂〉 and 〈x̂〉 vanish.

Paper 3, Section II

16B Quantum Mechanics
Obtain, with the aid of the time-dependent Schrödinger equation, the conservation

equation
∂

∂t
ρ(x, t) +∇ · j(x, t) = 0

where ρ(x, t) is the probability density and j(x, t) is the probability current. What have
you assumed about the potential energy of the system?

Show that if the potential U(x, t) is complex the conservation equation becomes

∂

∂t
ρ(x, t) +∇ · j(x, t) = 2

~
ρ(x, t) ImU(x, t).

Take the potential to be time-independent. Show, with the aid of the divergence theorem,
that

d

dt

∫

R3

ρ(x, t) dV =
2

~

∫

R3

ρ(x, t) ImU(x) dV.

Assuming the wavefunction ψ(x, 0) is normalised to unity, show that if ρ(x, t) is expanded
about t = 0 so that ρ(x, t) = ρ0(x) + tρ1(x) + · · · , then

∫

R3

ρ(x, t) dV = 1 +
2t

~

∫

R3

ρ0(x) ImU(x) dV + · · · .

As time increases, how does the quantity on the left of this equation behave if ImU(x) < 0?
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Paper 2, Section II

17B Quantum Mechanics
(i) Consider a particle of mass m confined to a one-dimensional potential well of

depth U > 0 and potential

V (x) =

{
−U, |x| < l

0, |x| > l.

If the particle has energy E where −U 6 E < 0, show that for even states

α tanαl = β

where α = [2m~2 (U + E)]1/2 and β = [−2m
~2 E]1/2.

(ii) A particle of mass m that is incident from the left scatters off a one-dimensional
potential given by

V (x) = kδ(x)

where δ(x) is the Dirac delta. If the particle has energy E > 0 and k > 0, obtain the
reflection and transmission coefficients R and T , respectively. Confirm that R+ T = 1.

For the case k < 0 and E < 0 show that the energy of the only even parity bound
state of the system is given by

E = −mk2

2~2
.

Use part (i) to verify this result by taking the limit U → ∞, l → 0 with Ul fixed.
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Paper 4, Section I

6C Quantum Mechanics
In terms of quantum states, what is meant by energy degeneracy?

A particle of mass m is confined within the box 0 < x < a, 0 < y < a and 0 < z < c.
The potential vanishes inside the box and is infinite outside. Find the allowed energies by
considering a stationary state wavefunction of the form

χ(x, y, z) = X(x)Y (y)Z(z) .

Write down the normalised ground state wavefunction. Assuming that c < a <
√
2c, give

the energies of the first three excited states.

Paper 3, Section I

8C Quantum Mechanics
A one-dimensional quantum mechanical particle has normalised bound state energy

eigenfunctions χn(x) and corresponding non-degenerate energy eigenvalues En. At t = 0
the normalised wavefunction ψ(x, t) is given by

ψ(x, 0) =

√
5

6
eik1χ1(x) +

√
1

6
eik2χ2(x)

where k1 and k2 are real constants. Write down the expression for ψ(x, t) at a later time
t and give the probability that a measurement of the particle’s energy will yield a value
of E2.

Show that the expectation value of x at time t is given by

〈x〉 = 5

6
〈x〉11 +

1

6
〈x〉22 +

√
5

3
Re

[
〈x〉12 ei(k2−k1)−i(E2−E1)t/~

]

where 〈x〉ij =
∫∞
−∞ χ∗

i (x)xχj(x) dx.
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Paper 1, Section II

15C Quantum Mechanics
Show that if the energy levels are discrete, the general solution of the Schrödinger

equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (x)ψ

is a linear superposition of stationary states

ψ(x, t) =
∞∑

n=1

anχn(x) exp(−iEnt/~) ,

where χn(x) is a solution of the time-independent Schrödinger equation and an are complex
coefficients. Can this general solution be considered to be a stationary state? Justify your
answer.

A linear operator Ô acts on the orthonormal energy eigenfunctions χn as follows:

Ôχ1 = χ1 + χ2

Ôχ2 = χ1 + χ2

Ôχn = 0, n > 3.

Obtain the eigenvalues of Ô. Hence, find the normalised eigenfunctions of Ô. In an
experiment a measurement is made of Ô at t = 0 yielding an eigenvalue of 2. What is the
probability that a measurement at some later time t will yield an eigenvalue of 2?

Paper 3, Section II

16C Quantum Mechanics
State the condition for a linear operator Ô to be Hermitian.

Given the position and momentum operators x̂i and p̂i = −i~ ∂
∂xi

, define the angular

momentum operators L̂i. Establish the commutation relations

[L̂i, L̂j ] = i~ǫijkL̂k

and use these relations to show that L̂3 is Hermitian assuming L̂1 and L̂2 are.

Consider a wavefunction of the form

χ(x) = x3(x1 + kx2)e
−r

where r = |x| and k is some constant. Show that χ(x) is an eigenstate of the total angular
momentum operator L̂2 for all k, and calculate the corresponding eigenvalue. For what
values of k is χ(x) an eigenstate of L̂3? What are the corresponding eigenvalues?
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Paper 2, Section II

17C Quantum Mechanics
Consider a quantum mechanical particle in a one-dimensional potential V (x), for

which V (x) = V (−x). Prove that when the energy eigenvalue E is non-degenerate, the
energy eigenfunction χ(x) has definite parity.

Now assume the particle is in the double potential well

V (x) =





U , 0 6 |x| 6 l1

0 , l1 < |x| 6 l2

∞ , l2 < |x| ,

where 0 < l1 < l2 and 0 < E < U (U being large and positive). Obtain general expressions
for the even parity energy eigenfunctions χ+(x) in terms of trigonometric and hyperbolic
functions. Show that

− tan[k(l2 − l1)] =
k

κ
coth(κl1) ,

where k2 =
2mE

~2
and κ2 =

2m(U − E)

~2
.
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Paper 3, Section I

8C Quantum Mechanics
A particle of mass m and energy E, incident from x = −∞, scatters off a delta

function potential at x = 0. The time independent Schrödinger equation is

− ~2

2m

d2ψ

dx2
+ Uδ(x)ψ = Eψ

where U is a positive constant. Find the reflection and transmission probabilities.

Paper 4, Section I

6C Quantum Mechanics
Consider the 3-dimensional oscillator with Hamiltonian

H = − ~2

2m
∇2 +

mω2

2
(x2 + y2 + 4z2) .

Find the ground state energy and the spacing between energy levels. Find the degeneracies
of the lowest three energy levels.

[You may assume that the energy levels of the 1-dimensional harmonic oscillator
with Hamiltonian

H0 = − ~2

2m

d2

dx2
+

mω2

2
x2

are (n+ 1
2)~ω, n = 0, 1, 2, . . . .]
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Paper 1, Section II

15C Quantum Mechanics
For a quantum mechanical particle moving freely on a circle of length 2π, the

wavefunction ψ(t, x) satisfies the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2

on the interval 0 6 x 6 2π, and also the periodicity conditions ψ(t, 2π) = ψ(t, 0), and
∂ψ

∂x
(t, 2π) =

∂ψ

∂x
(t, 0). Find the allowed energy levels of the particle, and their degeneracies.

The current is defined as

j =
i~
2m

(
ψ
∂ψ

∂x

∗
− ψ∗ ∂ψ

∂x

)

where ψ is a normalized state. Write down the general normalized state of the particle
when it has energy 2~2/m, and show that in any such state the current j is independent
of x and t. Find a state with this energy for which the current has its maximum positive
value, and find a state with this energy for which the current vanishes.

Paper 2, Section II

17C Quantum Mechanics
The quantum mechanical angular momentum operators are

Li = −i~ ǫijk xj
∂

∂xk
(i = 1, 2, 3).

Show that each of these is hermitian.

The total angular momentum operator is defined as L2 = L2
1 +L2

2 +L2
3. Show that

〈L2〉 > 〈L2
3〉 in any state, and show that the only states where 〈L2〉 = 〈L2

3〉 are those with
no angular dependence. Verify that the eigenvalues of the operators L2 and L2

3 (whose
values you may quote without proof) are consistent with these results.
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Paper 3, Section II

16C Quantum Mechanics
For an electron in a hydrogen atom, the stationary state wavefunctions are of the

form ψ(r, θ, φ) = R(r)Ylm(θ, φ), where in suitable units R obeys the radial equation

d2R

dr2
+

2

r

dR

dr
− l(l + 1)

r2
R+ 2

(
E +

1

r

)
R = 0 .

Explain briefly how the terms in this equation arise.

This radial equation has bound state solutions of energy E = En, where
En = − 1

2n2 (n = 1, 2, 3, . . . ). Show that when l = n − 1, there is a solution of the

form R(r) = rαe−r/n, and determine α. Find the expectation value 〈r〉 in this state.

What is the total degeneracy of the energy level with energy En?
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Paper 3, Section I

8D Quantum Mechanics
Write down the commutation relations between the components of position x and

momentum p for a particle in three dimensions.

A particle of mass m executes simple harmonic motion with Hamiltonian

H =
1

2m
p2 +

mω2

2
x2,

and the orbital angular momentum operator is defined by

L = x× p.

Show that the components of L are observables commuting with H. Explain briefly why
the components of L are not simultaneous observables. What are the implications for the
labelling of states of the three-dimensional harmonic oscillator?

Paper 4, Section I

6D Quantum Mechanics
Determine the possible values of the energy of a particle free to move inside a cube

of side a , confined there by a potential which is infinite outside and zero inside.

What is the degeneracy of the lowest-but-one energy level?
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Paper 1, Section II

15D Quantum Mechanics
A particle of unit mass moves in one dimension in a potential

V =
1

2
ω2x2.

Show that the stationary solutions can be written in the form

ψn(x) = fn(x) exp(−αx2).

You should give the value of α and derive any restrictions on fn(x). Hence determine the
possible energy eigenvalues En.

The particle has a wave function ψ(x, t) which is even in x at t = 0. Write down
the general form for ψ(x, 0), using the fact that fn(x) is an even function of x only if n is
even. Hence write down ψ(x, t) and show that its probability density is periodic in time
with period π/ω.

Paper 2, Section II

17D Quantum Mechanics
A particle of mass m moves in a one-dimensional potential defined by

V (x) =





∞ for x < 0,

0 for 0 6 x 6 a,

V0 for a < x,

where a and V0 are positive constants. Defining c = [2m(V0 − E)]1/2/~ and k =
(2mE)1/2/~, show that for any allowed positive value E of the energy with E < V0

then
c+ k cot ka = 0.

Find the minimum value of V0 for this equation to have a solution.

Find the normalized wave function for the particle. Write down an expression for
the expectation value of x in terms of two integrals, which you need not evaluate. Given
that

〈x〉 = 1

2k
(ka− tan ka),

discuss briefly the possibility of 〈x〉 being greater than a. [Hint: consider the graph of
−ka cot ka against ka.]
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Paper 3, Section II

16D Quantum Mechanics
A π− (a particle of the same charge as the electron but 270 times more massive) is

bound in the Coulomb potential of a proton. Assuming that the wave function has the
form ce−r/a, where c and a are constants, determine the normalized wave function of the
lowest energy state of the π−, assuming it to be an S-wave (i.e. the state with l = 0).
(You should treat the proton as fixed in space.)

Calculate the probability of finding the π− inside a sphere of radius R in terms of
the ratio µ = R/a, and show that this probability is given by 4µ3/3 + O(µ4) if µ is very
small. Would the result be larger or smaller if the π− were in a P -wave (l = 1) state?
Justify your answer very briefly.

[Hint: in spherical polar coordinates,

∇2ψ(r) =
1

r

∂2

∂r2
(rψ) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
.

]
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Paper 3, Section I

7B Quantum Mechanics
The motion of a particle in one dimension is described by the time-independent

hermitian Hamiltonian operator H whose normalized eigenstates ψn(x), n = 0, 1, 2, . . . ,
satisfy the Schrödinger equation

Hψn = Enψn ,

with E0 < E1 < E2 < · · · < En < · · · . Show that

∫ ∞

−∞
ψ∗
mψn dx = δmn .

The particle is in a state represented by the wavefunction Ψ(x, t) which, at time
t = 0, is given by

Ψ(x, 0) =

∞∑

n=0

(
1√
2

)n+1

ψn(x) .

Write down an expression for Ψ(x, t) and show that it is normalized to unity.

Derive an expression for the expectation value of the energy for this state and show
that it is independent of time.

Calculate the probability that the particle has energy Em for a given integer m > 0,
and show that this also is time-independent.

Paper 4, Section I

6B Quantum Mechanics
The wavefunction of a Gaussian wavepacket for a particle of mass m moving in one

dimension is

ψ(x, t) =
1

π1/4

√
1

1 + i~t/m
exp

(
− x2

2(1 + i~t/m)

)
.

Show that ψ(x, t) satisfies the appropriate time-dependent Schrödinger equation.

Show that ψ(x, t) is normalized to unity and calculate the uncertainty in measure-
ment of the particle position, ∆x =

√
〈x2〉 − 〈x〉2.

Is ψ(x, t) a stationary state? Give a reason for your answer.
[
You may assume that

∫∞
−∞ e−λx2

dx =
√

π
λ .
]
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Paper 1, Section II

15B Quantum Mechanics
A particle of mass m moves in one dimension in a potential V (x) which satisfies

V (x) = V (−x). Show that the eigenstates of the Hamiltonian H can be chosen so that
they are also eigenstates of the parity operator P . For eigenstates with odd parity ψodd(x),
show that ψodd(0) = 0.

A potential V (x) is given by

V (x) =

{
κδ(x) |x| < a
∞ |x| > a .

State the boundary conditions satisfied by ψ(x) at |x| = a, and show also that

~2

2m
lim
ǫ→0

[
dψ

dx

∣∣∣∣
ǫ

− dψ

dx

∣∣∣∣
−ǫ

]
= κψ(0) .

Let the energy eigenstates of even parity be given by

ψeven(x) =





A cos λx + B sinλx −a < x < 0
A cos λx − B sinλx 0 < x < a
0 otherwise .

Verify that ψeven(x) satisfies

Pψeven(x) = ψeven(x) .

By demanding that ψeven(x) satisfy the relevant boundary conditions show that

tanλa = −~2

m

λ

κ
.

For κ > 0 show that the energy eigenvalues Eeven
n , n = 0, 1, 2, . . ., withEeven

n < Eeven
n+1 ,

satisfy

ηn = Eeven
n − 1

2m

[
(2n + 1)~π

2a

]2
> 0.

Show also that
lim
n→∞

ηn = 0,

and give a physical explanation of this result.

Show that the energy eigenstates with odd parity and their energy eigenvalues do
not depend on κ.
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Paper 2, Section II

16B Quantum Mechanics
Write down the expressions for the probability density ρ and the associated current

density j for a particle with wavefunction ψ(x, t) moving in one dimension. If ψ(x, t) obeys
the time-dependent Schrödinger equation show that ρ and j satisfy

∂j

∂x
+
∂ρ

∂t
= 0 .

Give an interpretation of ψ(x, t) in the case that

ψ(x, t) = (eikx +Re−ikx)e−iEt/~ ,

and show that E =
~2k2

2m
and

∂ρ

∂t
= 0.

A particle of mass m and energy E > 0 moving in one dimension is incident from
the left on a potential V (x) given by

V (x) =

{
−V0 0 < x < a

0 x < 0, x > a ,

where V0 is a positive constant. What conditions must be imposed on the wavefunction
at x = 0 and x = a? Show that when 3E = V0 the probability of transmission is

[
1 +

9

16
sin2

a
√
8mE

~

]−1

.

For what values of a does this agree with the classical result?
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Paper 3, Section II

16B Quantum Mechanics
If A,B, and C are operators establish the identity

[AB,C] = A[B,C] + [A,C]B .

A particle moves in a two-dimensional harmonic oscillator potential with Hamil-
tonian

H = 1
2(p

2
x + p2y) +

1
2(x

2 + y2) .

The angular momentum operator is defined by

L = xpy − ypx .

Show that L is hermitian and hence that its eigenvalues are real. Establish the commut-
ation relation [L,H] = 0. Why does this ensure that eigenstates of H can also be chosen
to be eigenstates of L?

Let φ0(x, y) = e−(x2+y2)/2~, and show that φ0, φx = xφ0 and φy = yφ0 are all
eigenstates of H, and find their respective eigenvalues. Show that

Lφ0 = 0, Lφx = i~φy, Lφy = −i~φx ,

and hence, by taking suitable linear combinations of φx and φy, find two states, ψ1 and
ψ2, satisfying

Lψj = λjψj , Hψj = Ejψj j = 1, 2 .

Show that ψ1 and ψ2 are orthogonal, and find λ1, λ2, E1 and E2.

The particle has charge e, and an electric field of strength E is applied in the x-
direction so that the Hamiltonian is now H ′, where

H ′ = H − eEx .

Show that [L,H ′] = −i~eEy. Why does this mean that L andH ′ cannot have simultaneous
eigenstates?

By making the change of coordinates x′ = x− eE , y′ = y, show that ψ1(x
′, y′) and

ψ2(x
′, y′) are eigenstates of H ′ and write down the corresponding energy eigenvalues.

Find a modified angular momentum operator L′ for which ψ1(x
′, y′) and ψ2(x

′, y′)
are also eigenstates.
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1/II/15A Quantum Mechanics

The radial wavefunction g(r) for the hydrogen atom satisfies the equation

− ~2

2mr2
d

dr

(
r2
dg(r)

dr

)
− e2g(r)

4πε0r
+ ~2

`(`+ 1)

2mr2
g(r) = Eg(r) . (∗)

With reference to the general form for the time-independent Schrödinger equation,
explain the origin of each term. What are the allowed values of `?

The lowest-energy bound-state solution of (∗), for given `, has the form rαe−βr.
Find α and β and the corresponding energy E in terms of `.

A hydrogen atom makes a transition between two such states corresponding to `+1
and `. What is the frequency of the emitted photon?

2/II/16A Quantum Mechanics

Give the physical interpretation of the expression

〈A〉ψ =

∫
ψ(x)∗Âψ(x)dx

for an observable A, where Â is a Hermitian operator and ψ is normalised. By considering
the norm of the state (A+ iλB)ψ for two observables A and B, and real values of λ, show
that

〈A2〉ψ〈B2〉ψ > 1

4
|〈[A,B]〉ψ|2 .

Deduce the uncertainty relation

∆A∆B > 1

2
|〈[A,B]〉ψ| ,

where ∆A is the uncertainty of A.

A particle of mass m moves in one dimension under the influence of potential
1
2mω

2x2. By considering the commutator [x, p], show that the expectation value of the
Hamiltonian satisfies

〈H〉ψ > 1

2
~ω .
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3/I/7A Quantum Mechanics

Write down a formula for the orbital angular momentum operator L̂. Show that
its components satisfy

[Li, Lj ] = i~ εijk Lk .

If L3ψ = 0, show that (L1 ± iL2)ψ are also eigenvectors of L3, and find their eigenvalues.

3/II/16A Quantum Mechanics

What is the probability current for a particle of mass m, wavefunction ψ, moving
in one dimension?

A particle of energy E is incident from x < 0 on a barrier given by

V (x) =





0 x 6 0
V1 0 < x < a
V0 x > a

where V1 > V0 > 0. What are the conditions satisfied by ψ at x = 0 and x = a? Write
down the form taken by the wavefunction in the regions x 6 0 and x > a distinguishing
between the cases E > V0 and E < V0. For both cases, use your expressions for ψ to
calculate the probability currents in these two regions.

Define the reflection and transmission coefficients, R and T . Using current
conservation, show that the expressions you have derived satisfy R + T = 1. Show that
T = 0 if 0 < E < V0.

4/I/6A Quantum Mechanics

What is meant by a stationary state? What form does the wavefunction take in
such a state? A particle has wavefunction ψ(x, t), such that

ψ(x, 0) =

√
1

2
(χ1(x) + χ2(x)) ,

where χ1 and χ2 are normalised eigenstates of the Hamiltonian with energies E1 and E2.
Write down ψ(x, t) at time t. Show that the expectation value of A at time t is

〈A〉ψ =
1

2

∫ ∞

−∞

(
χ∗1Âχ1 + χ∗2Âχ2

)
dx+Re

(
ei(E1−E2)t/~

∫ ∞

−∞
χ∗1Âχ2 dx

)
.
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1/II/15B Quantum Mechanics

The relative motion of a neutron and proton is described by the Schrödinger
equation for a single particle of mass m under the influence of the central potential

V (r) =

{
−U r < a

0 r > a,

where U and a are positive constants. Solve this equation for a spherically symmetric state
of the deuteron, which is a bound state of a proton and neutron, giving the condition on
U for this state to exist.

[If ψ is spherically symmetric then ∇2ψ = 1
r

d2

dr2 (rψ).]

2/II/16B Quantum Mechanics

Write down the angular momentum operators L1, L2, L3 in terms of the position
and momentum operators, x and p, and the commutation relations satisfied by x and p.

Verify the commutation relations

[Li, Lj ] = i~εijkLk .

Further, show that
[Li, pj ] = i~εijkpk .

A wave-function Ψ0(r) is spherically symmetric. Verify that

LΨ0(r) = 0 .

Consider the vector function Φ = ∇Ψ0(r). Show that Φ3 and Φ1 ± iΦ2 are eigenfunctions
of L3 with eigenvalues 0,±~ respectively.
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3/I/7B Quantum Mechanics

The quantum mechanical harmonic oscillator has Hamiltonian

H =
1

2m
p2 +

1

2
mω2x2 ,

and is in a stationary state of energy < H >= E. Show that

E > 1

2m
(∆p)2 +

1

2
mω2(∆x)2 ,

where (∆p)2 = 〈p2〉 − 〈p〉2 and (∆x)2 = 〈x2〉 − 〈x〉2. Use the Heisenberg Uncertainty
Principle to show that

E > 1

2
~ω .

3/II/16B Quantum Mechanics

A quantum system has a complete set of orthonormal eigenstates, ψn(x), with non-
degenerate energy eigenvalues, En, where n = 1, 2, 3 . . .. Write down the wave-function,
Ψ(x, t), t > 0 in terms of the eigenstates.

A linear operator acts on the system such that

Aψ1 = 2ψ1 − ψ2

Aψ2 = 2ψ2 − ψ1

Aψn = 0, n > 3

.

Find the eigenvalues of A and obtain a complete set of normalised eigenfunctions,
φn, of A in terms of the ψn.

At time t = 0 a measurement is made and it is found that the observable
corresponding to A has value 3. After time t, A is measured again. What is the probability
that the value is found to be 1?

4/I/6B Quantum Mechanics

A particle moving in one space dimension with wave-function Ψ(x, t) obeys the
time-dependent Schrödinger equation. Write down the probability density, ρ, and current
density, j, in terms of the wave-function and show that they obey the equation

∂j

∂x
+
∂ρ

∂t
= 0 .

The wave-function is
Ψ(x, t) =

(
eikx +Re−ikx

)
e−iEt/~ ,

where E = ~2k2/2m and R is a constant, which may be complex. Evaluate j.
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1/II/15B Quantum Mechanics

Let V1(x) and V2(x) be two real potential functions of one space dimension, and
let a be a positive constant. Suppose also that V1(x) 6 V2(x) 6 0 for all x and that
V1(x) = V2(x) = 0 for all x such that |x| > a. Consider an incoming beam of particles
described by the plane wave exp(ikx), for some k > 0, scattering off one of the potentials
V1(x) or V2(x). Let pi be the probability that a particle in the beam is reflected by the
potential Vi(x). Is it necessarily the case that p1 6 p2? Justify your answer carefully, either
by giving a rigorous proof or by presenting a counterexample with explicit calculations of
p1 and p2.

2/II/16B Quantum Mechanics

The spherically symmetric bound state wavefunctions ψ(r), where r = |x|, for
an electron orbiting in the Coulomb potential V (r) = −e2/(4πε0r) of a hydrogen atom
nucleus, can be modelled as solutions to the equation

d2ψ

dr2
+

2

r

dψ

dr
+
a

r
ψ(r)− b2ψ(r) = 0

for r > 0, where a = e2m/(2πε0~2), b =
√
−2mE/~, and E is the energy of the

corresponding state. Show that there are normalisable and continuous wavefunctions ψ(r)
satisfying this equation with energies

E = − me4

32π2ε20~2N2

for all integers N > 1.

3/I/7B Quantum Mechanics

Define the quantum mechanical operators for the angular momentum L̂ and the
total angular momentum L̂2 in terms of the operators x̂ and∇. Calculate the commutators
[L̂i, L̂j ] and [L̂2, L̂i].

Part IB 2006

20062006



21

3/II/16B Quantum Mechanics

The expression ∆ψA denotes the uncertainty of a quantum mechanical observable
A in a state with normalised wavefunction ψ. Prove that the Heisenberg uncertainty
principle

(∆ψx)(∆ψp) >
~
2

holds for all normalised wavefunctions ψ(x) of one spatial dimension.

[You may quote Schwarz’s inequality without proof.]

A Gaussian wavepacket evolves so that at time t its wavefunction is

ψ(x, t) = (2π)−
1
4

(
1 + i~t

)− 1
2

exp
(
− x2

4(1 + i~t)

)
.

Calculate the uncertainties ∆ψx and ∆ψp at each time t, and hence verify explicitly that
the uncertainty principle holds at each time t.

[
You may quote without proof the results that if Re(a) > 0 then

∫ ∞

−∞
exp

(
−x

2

a∗

)
x2 exp

(
−x

2

a

)
dx =

1

4

(π
2

) 1
2 |a|3

(Re(a))
3
2

and ∫ ∞

−∞

(
d

dx
exp

(
−x

2

a∗

))(
d

dx
exp

(
−x

2

a

))
dx =

(π
2

) 1
2 |a|
(Re(a))

3
2

.
]

4/I/6B Quantum Mechanics

(a) Define the probability density ρ(x, t) and the probability current J(x, t) for a
quantum mechanical wave function ψ(x, t), where the three dimensional vector x defines
spatial coordinates.

Given that the potential V (x) is real, show that

∇·J+
∂ρ

∂t
= 0 .

(b) Write down the standard integral expressions for the expectation value 〈A〉ψ and
the uncertainty ∆ψA of a quantum mechanical observable A in a state with wavefunction
ψ(x). Give an expression for ∆ψA in terms of 〈A2〉ψ and 〈A〉ψ, and justify your answer.
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1/II/15G Quantum Mechanics

The wave function of a particle of mass m that moves in a one-dimensional
potential well satisfies the Schrödinger equation with a potential that is zero in the region
−a ≤ x ≤ a and infinite elsewhere,

V (x) = 0 for |x| ≤ a , V (x) = ∞ for |x| > a .

Determine the complete set of normalised energy eigenfunctions for the particle and show
that the energy eigenvalues are

E =
~2π2n2

8ma2
,

where n is a positive integer.

At time t = 0 the wave function is

ψ(x) =
1√
5a

cos
(πx
2a

)
+

2√
5a

sin
(πx
a

)
,

in the region −a ≤ x ≤ a, and zero otherwise. Determine the possible results for a
measurement of the energy of the system and the relative probabilities of obtaining these
energies.

In an experiment the system is measured to be in its lowest possible energy
eigenstate. The width of the well is then doubled while the wave function is unaltered.
Calculate the probability that a later measurement will find the particle to be in the lowest
energy state of the new potential well.
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2/II/16G Quantum Mechanics

A particle of mass m moving in a one-dimensional harmonic oscillator potential
satisfies the Schrödinger equation

H Ψ(x, t) = i~
∂

∂t
Ψ(x, t) ,

where the Hamiltonian is given by

H = − ~2

2m

d2

dx2
+

1

2
mω2 x2 .

The operators a and a† are defined by

a =
1√
2

(
βx+

i

β~
p

)
, a† =

1√
2

(
βx− i

β~
p

)
,

where β =
√
mω/~ and p = −i~∂/∂x is the usual momentum operator. Show that

[a, a†] = 1.

Express x and p in terms of a and a† and, hence or otherwise, show that H can be
written in the form

H =
(
a†a+ 1

2

)
~ω .

Show, for an arbitrary wave function Ψ, that
∫
dxΨ∗H Ψ ≥ 1

2~ω and hence that
the energy of any state satisfies the bound

E ≥ 1
2~ω .

Hence, or otherwise, show that the ground state wave function satisfies aΨ0 = 0 and that
its energy is given by

E0 = 1
2~ω .

By considering H acting on a† Ψ0, (a
†)2 Ψ0, and so on, show that states of the form

(a†)nΨ0

(n > 0) are also eigenstates and that their energies are given by En =
(
n+ 1

2

)
~ω.
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3/I/7G Quantum Mechanics

The wave function Ψ(x, t) is a solution of the time-dependent Schrödinger equation
for a particle of mass m in a potential V (x),

H Ψ(x, t) = i~
∂

∂t
Ψ(x, t) ,

where H is the Hamiltonian. Define the expectation value, 〈O〉, of any operator O.

At time t = 0, Ψ(x, t) can be written as a sum of the form

Ψ(x, 0) =
∑

n

an un(x) ,

where un is a complete set of normalized eigenfunctions of the Hamiltonian with energy
eigenvalues En and an are complex coefficients that satisfy

∑
n a

∗
nan = 1. Find Ψ(x, t) for

t > 0. What is the probability of finding the system in a state with energy Ep at time t?

Show that the expectation value of the energy is independent of time.

3/II/16G Quantum Mechanics

A particle of mass µ moves in two dimensions in an axisymmetric potential. Show
that the time-independent Schrödinger equation can be separated in polar coordinates.
Show that the angular part of the wave function has the form eimφ, where φ is the angular
coordinate and m is an integer. Suppose that the potential is zero for r < a, where r is the
radial coordinate, and infinite otherwise. Show that the radial part of the wave function
satisfies

d2R

dρ2
+

1

ρ

dR

dρ
+

(
1− m2

ρ2

)
R = 0 ,

where ρ = r
(
2µE/~2

)1/2
. What conditions must R satisfy at r = 0 and R = a?

Show that, when m = 0, the equation has the solution R(ρ) =
∑∞
k=0Ak ρ

k, where
Ak = 0 if k is odd and

Ak+2 = − Ak
(k + 2)2

,

if k is even.

Deduce the coefficients A2 and A4 in terms of A0. By truncating the series
expansion at order ρ4, estimate the smallest value of ρ at which the R is zero. Hence
give an estimate of the ground state energy.

[You may use the fact that the Laplace operator is given in polar coordinates by the
expression

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
.

]
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4/I/6G Quantum Mechanics

Define the commutator [A ,B] of two operators, A and B. In three dimensions
angular momentum is defined by a vector operator L with components

Lx = y pz − z py Ly = z px − x pz Lz = x py − y px .

Show that [Lx , Ly] = i ~Lz and use this, together with permutations, to show that
[L2 , Lw] = 0, where w denotes any of the directions x, y, z.

At a given time the wave function of a particle is given by

ψ = (x+ y + z) exp
(
−
√
x2 + y2 + z2

)
.

Show that this is an eigenstate of L2 with eigenvalue equal to 2~2.
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1/I/8D Quantum Mechanics

From the time-dependent Schrödinger equation for ψ(x, t), derive the equation

∂ρ

∂t
+
∂j

∂x
= 0

for ρ(x, t) = ψ∗(x, t)ψ(x, t) and some suitable j(x, t).

Show that ψ(x, t) = ei(kx−ωt) is a solution of the time-dependent Schrödinger
equation with zero potential for suitable ω(k) and calculate ρ and j. What is the
interpretation of this solution?

1/II/19D Quantum Mechanics

The angular momentum operators are L = (L1, L2, L3). Write down their
commutation relations and show that [Li,L

2] = 0. Let

L± = L1 ± iL2 ,

and show that
L2 = L−L+ + L3

2 + ~L3 .

Verify that Lf(r) = 0, where r2 = xixi, for any function f . Show that

L3(x1 + ix2)
nf(r) = n~(x1 + ix2)

nf(r) , L+(x1 + ix2)
nf(r) = 0 ,

for any integer n. Show that (x1 + ix2)
nf(r) is an eigenfunction of L2 and determine

its eigenvalue. Why must L−(x1 + ix2)
nf(r) be an eigenfunction of L2? What is its

eigenvalue?

2/I/8D Quantum Mechanics

A quantum mechanical system is described by vectors ψ =

(
a
b

)
. The energy

eigenvectors are

ψ0 =

(
cos θ
sin θ

)
, ψ1 =

(
− sin θ
cos θ

)
,

with energies E0, E1 respectively. The system is in the state

(
1
0

)
at time t = 0. What

is the probability of finding it in the state

(
0
1

)
at a later time t?
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2/II/19D Quantum Mechanics

Consider a Hamiltonian of the form

H =
1

2m

(
p+ if(x)

)(
p− if(x)

)
, −∞ < x <∞ ,

where f(x) is a real function. Show that this can be written in the form
H = p2/(2m) + V (x), for some real V (x) to be determined. Show that there is a wave
function ψ0(x), satisfying a first-order equation, such that Hψ0 = 0. If f is a polynomial
of degree n, show that n must be odd in order for ψ0 to be normalisable. By considering∫
dxψ∗Hψ show that all energy eigenvalues other than that for ψ0 must be positive.

For f(x) = kx, use these results to find the lowest energy and corresponding wave
function for the harmonic oscillator Hamiltonian

Hoscillator =
p2

2m
+ 1

2mω
2x2 .

3/I/9D Quantum Mechanics

Write down the expressions for the classical energy and angular momentum for an
electron in a hydrogen atom. In the Bohr model the angular momentum L is quantised
so that

L = n~ ,

for integer n. Assuming circular orbits, show that the radius of the n’th orbit is

rn = n2a ,

and determine a. Show that the corresponding energy is then

En = − e2

8πε0 rn
.
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3/II/20D Quantum Mechanics

A one-dimensional system has the potential

V (x) =

{
0 x < 0 ,
~2U
2m 0 < x < L ,
0 x > L .

For energy E = ~2ε/(2m), ε < U , the wave function has the form

ψ(x) =




a eikx + c e−ikx x < 0 ,
e coshKx+ f sinhKx 0 < x < L ,
d eik(x−L) + b e−ik(x−L) x > L .

By considering the relation between incoming and outgoing waves explain why we should
expect

|c|2 + |d|2 = |a|2 + |b|2 .
Find four linear relations between a, b, c, d, e, f . Eliminate d, e, f and show that

c =
1

D

[
b+

1

2

(
λ− 1

λ

)
sinhKL a

]
,

where D = coshKL − 1
2

(
λ + 1

λ

)
sinhKL and λ = K/(ik). By using the result for c, or

otherwise, explain why the solution for d is

d =
1

D

[
a+

1

2

(
λ− 1

λ

)
sinhKL b

]
.

For b = 0 define the transmission coefficient T and show that, for large L,

T ≈ 16
ε(U − ε)

U2
e−2

√
U−ε L .
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1/I/9A Quantum Mechanics

A particle of massm is confined inside a one-dimensional box of length a. Determine
the possible energy eigenvalues.

1/II/18A Quantum Mechanics

What is the significance of the expectation value

〈Q〉 =
∫
ψ∗(x) Q ψ(x)dx

of an observable Q in the normalized state ψ(x)? Let Q and P be two observables. By
considering the norm of (Q+ iλP )ψ for real values of λ, show that

〈Q2〉〈P 2〉 > 1
4 |〈[Q,P ]〉|2 .

The uncertainty ∆Q of Q in the state ψ(x) is defined as

(∆Q)2 = 〈(Q− 〈Q〉)2〉 .

Deduce the generalized uncertainty relation,

∆Q∆P > 1
2 |〈[Q,P ]〉| .

A particle of mass m moves in one dimension under the influence of the potential
1
2mω

2x2. By considering the commutator [x, p], show that the expectation value of the
Hamiltonian satisfies

〈H〉 > 1
2~ω .

2/I/9A Quantum Mechanics

What is meant by the statement than an operator is hermitian?

A particle of mass m moves in the real potential V (x) in one dimension. Show that
the Hamiltonian of the system is hermitian.

Show that
d

dt
〈x〉 = 1

m
〈p〉 ,

d

dt
〈p〉 = 〈−V ′(x)〉 ,

where p is the momentum operator and 〈A〉 denotes the expectation value of the
operator A.
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2/II/18A Quantum Mechanics

A particle of mass m and energy E moving in one dimension is incident from the
left on a potential barrier V (x) given by

V (x) =
{
V0 0 6 x 6 a
0 otherwise

with V0 > 0.

In the limit V0 → ∞, a → 0 with V0a = U held fixed, show that the transmission
probability is

T =

(
1 +

mU2

2E~2

)−1

.

3/II/20A Quantum Mechanics

The radial wavefunction for the hydrogen atom satisfies the equation

−~2

2m

1

r2
d

dr

(
r2
d

dr
R(r)

)
+

~2

2mr2
`(`+ 1)R(r)− e2

4πε0r
R(r) = ER(r) .

Explain the origin of each term in this equation.

The wavefunctions for the ground state and first radially excited state, both with
` = 0, can be written as

R1(r) = N1 exp(−αr)
R2(r) = N2(r + b) exp(−βr)

respectively, where N1 and N2 are normalization constants. Determine α, β, b and the
corresponding energy eigenvalues E1 and E2.

A hydrogen atom is in the first radially excited state. It makes the transition to
the ground state, emitting a photon. What is the frequency of the emitted photon?
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1/I/9D Quantum Mechanics

Consider a quantum mechanical particle of mass m moving in one dimension, in a
potential well

V (x) =





∞, x < 0,
0, 0 < x < a,
V0, x > a.

Sketch the ground state energy eigenfunction χ(x) and show that its energy is

E = ~2k2

2m , where k satisfies

tan ka = − k√
2mV0

~2 − k2
.

[Hint: You may assume that χ(0) = 0. ]

1/II/18D Quantum Mechanics

A quantum mechanical particle of mass M moves in one dimension in the presence
of a negative delta function potential

V = − ~2

2M∆
δ(x),

where ∆ is a parameter with dimensions of length.

(a) Write down the time-independent Schrödinger equation for energy eigenstates
χ(x), with energy E. By integrating this equation across x = 0, show that the gradient of
the wavefunction jumps across x = 0 according to

lim
ε→0

(dχ
dx

(ε)− dχ

dx
(−ε)

)
= − 1

∆
χ(0).

[You may assume that χ is continuous across x = 0.]

(b) Show that there exists a negative energy solution and calculate its energy.

(c) Consider a double delta function potential

V (x) = − ~2

2M∆
[δ(x+ a) + δ(x− a)].

For sufficiently small ∆, this potential yields a negative energy solution of odd parity, i.e.
χ(−x) = −χ(x). Show that its energy is given by

E = − ~2

2M
λ2, where tanhλa =

λ∆

1− λ∆
.

[You may again assume χ is continuous across x = ±a.]
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2/I/9D Quantum Mechanics

From the expressions

Lx = yPz − zPy, Ly = zPx − xPz, Lz = xPy − yPx,

show that
(x+ iy)z

is an eigenfunction of L2 and Lz, and compute the corresponding eigenvalues.
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2/II/18D Quantum Mechanics

Consider a quantum mechanical particle moving in an upside-down harmonic
oscillator potential. Its wavefunction Ψ(x, t) evolves according to the time-dependent
Schrödinger equation,

i~
∂Ψ

∂t
= −~2

2

∂2Ψ

∂x2
− 1

2
x2Ψ. (1)

(a) Verify that

Ψ(x, t) = A(t)e−B(t)x2

(2)

is a solution of equation (1), provided that

dA

dt
= −i~ AB,

and
dB

dt
= − i

2~
− 2i~B2. (3)

(b) Verify that B = 1
2~ tan(φ−it) provides a solution to (3), where φ is an arbitrary

real constant.

(c) The expectation value of an operator O at time t is

〈O〉(t) ≡
∫ ∞

−∞
dxΨ∗(x, t)OΨ(x, t),

where Ψ(x, t) is the normalised wave function. Show that for Ψ(x, t) given by (2),

〈x2〉 = 1

4Re(B)
, 〈p2〉 = 4~2|B|2〈x2〉.

Hence show that as t→ ∞,

〈x2〉 ≈ 〈p2〉 ≈ ~
4 sin 2φ

e2t.

[Hint: You may use ∫∞
−∞ dx e−Cx

2

x2
∫∞
−∞ dx e−Cx2

=
1

2C
.
]
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3/II/20D Quantum Mechanics

A quantum mechanical system has two states χ0 and χ1, which are normalised
energy eigenstates of a Hamiltonian H3, with

H3χ0 = −χ0, H3χ1 = +χ1.

A general time-dependent state may be written

Ψ(t) = a0(t)χ0 + a1(t)χ1, (1)

where a0(t) and a1(t) are complex numbers obeying |a0(t)|2 + |a1(t)|2 = 1.

(a) Write down the time-dependent Schrödinger equation for Ψ(t), and show that
if the Hamiltonian is H3, then

i~
da0
dt

= −a0, i~
da1
dt

= +a1.

For the general state given in equation (1) above, write down the probability to observe
the system, at time t, in a state αχ0 + βχ1, properly normalised so that |α|2 + |β|2 = 1.

(b) Now consider starting the system in the state χ0 at time t = 0, and evolving it
with a different Hamiltonian H1, which acts on the states χ0 and χ1 as follows:

H1χ0 = χ1, H1χ1 = χ0.

By solving the time-dependent Schrödinger equation for the Hamiltonian H1, find a0(t)
and a1(t) in this case. Hence determine the shortest time T > 0 such that Ψ(T ) is an
eigenstate of H3 with eigenvalue +1.

(c) Now consider taking the state Ψ(T ) from part (b), and evolving it for further
length of time T , with Hamiltonian H2, which acts on the states χ0 and χ1 as follows:

H2χ0 = −iχ1, H2χ1 = iχ0.

What is the final state of the system? Is this state observationally distinguishable from
the original state χ0?
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1/I/9F Quantum Mechanics

A quantum mechanical particle of mass m and energy E encounters a potential
step,

V (x) =

{
0, x < 0,
V0, x > 0.

Calculate the probability P that the particle is reflected in the case E > V0.

If V0 is positive, what is the limiting value of P when E tends to V0? If V0 is
negative, what is the limiting value of P as V0 tends to −∞ for fixed E?
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1/II/18F Quantum Mechanics

Consider a quantum-mechanical particle of mass m moving in a potential well,

V (x) =

{
0, −a < x < a,
∞, elsewhere.

(a) Verify that the set of normalised energy eigenfunctions are

ψn(x) =

√
1

a
sin

(
nπ(x+ a)

2a

)
, n = 1, 2, . . . ,

and evaluate the corresponding energy eigenvalues En.

(b) At time t = 0 the wavefunction for the particle is only nonzero in the positive
half of the well,

ψ(x) =

{√
2
a sin

(
πx
a

)
, 0 < x < a,

0, elsewhere.

Evaluate the expectation value of the energy, first using

〈E〉 =
∫ a

−a
ψHψdx,

and secondly using

〈E〉 =
∑

n

|an|2En,

where the an are the expansion coefficients in

ψ(x) =
∑

n

anψn(x).

Hence, show that

1 =
1

2
+

8

π2

∞∑

p=0

(2p+ 1)2

[(2p+ 1)2 − 4]2
·
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2/I/9F Quantum Mechanics

Consider a solution ψ(x, t) of the time-dependent Schrödinger equation for a particle
of mass m in a potential V (x). The expectation value of an operator O is defined as

〈 O 〉 =
∫

dx ψ∗(x, t) O ψ(x, t).

Show that
d

dt
〈x〉 = 〈p〉

m
,

where

p =
~
i

∂

∂x
,

and that
d

dt
〈p〉 =

〈
−∂V
∂x

(x)

〉
.

[You may assume that ψ(x, t) vanishes as x→ ±∞.]

2/II/18F Quantum Mechanics

(a) Write down the angular momentum operators L1, L2, L3 in terms of xi and

pi = −i~ ∂

∂xi
, i = 1, 2, 3.

Verify the commutation relation

[L1, L2] = i~L3.

Show that this result and its cyclic permutations imply

[L3, L1 ± iL2] = ±~ (L1 ± iL2),

[L2, L1 ± iL2] = 0.

(b) Consider a wavefunction of the form ψ = (x23 + ar2)f(r), where
r2 = x21 + x22 + x23. Show that for a particular value of a, ψ is an eigenfunction of both L2

and L3. What are the corresponding eigenvalues?
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3/II/20F Quantum Mechanics

A quantum system has a complete set of orthonormalised energy eigenfunctions
ψn(x) with corresponding energy eigenvalues En, n = 1, 2, 3, . . ..

(a) If the time-dependent wavefunction ψ(x, t) is, at t = 0,

ψ(x, 0) =
∞∑

n=1

anψn(x),

determine ψ(x, t) for all t > 0.

(b) A linear operator S acts on the energy eigenfunctions as follows:

Sψ1 = 7ψ1 + 24ψ2,

Sψ2 = 24ψ1 − 7ψ2,

Sψn = 0, n > 3.

Find the eigenvalues of S. At time t = 0, S is measured and its lowest eigenvalue is found.
At time t > 0, S is measured again. Show that the probability for obtaining the lowest
eigenvalue again is

1

625

(
337 + 288 cos(ωt)

)
,

where ω = (E1 − E2)/~.
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