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Paper 1, Section I

5B Numerical Analysis
Given a matrix A ∈ Rm×n and a vector y ∈ Rm where m > n, consider the problem

of finding c∗ ∈ Rn that minimises ‖Ac − y‖2 for c ∈ Rn, where ‖ · ‖2 is the standard
Euclidean norm.

(a) Prove that c∗ is a solution to the above minimisation problem if and only if
ATAc∗ = ATy.

(b) Show that if A is of full rank, then c∗ is unique.

Paper 4, Section I

6B Numerical Analysis
Consider the inner product

〈g, h〉 =

∫ b

a
g(x)h(x)w(x) dx (∗)

on C[a, b], where w(x) > 0 for x ∈ (a, b). Define ‖g‖2 = 〈g, g〉. Let Q0, Q1, Q2, . . . be
orthogonal polynomials with respect to the inner product (∗), and let f ∈ C[a, b].

(a) Prove that the polynomial p∗n ∈ Pn that minimises the squared distance ‖f−p‖2
among all p ∈ Pn is given by

p∗n(x) =

n∑

k=0

〈f,Qk〉
〈Qk, Qk〉

Qk(x).

(b) Hence, show that

‖f‖2 = ‖f − p∗n‖2 + ‖p∗n‖2.

Part IB, Paper 1 [TURN OVER]
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Paper 1, Section II

17B Numerical Analysis
Consider the ODE

y′ = f(y), y(0) = y0 > 0, (∗)
where f(y) = −sign(y), y(t) ∈ R and t ∈ [0, T ], with T > y0. The sign function is defined
as

sign(y) =





1 for y > 0
0 for y = 0
−1 for y < 0.

(a) Does the function f satisfy a Lipschitz condition for y ∈ R? Justify your answer.

(b) Show that there is a unique continuous function y : [0, T ] → R that is
differentiable for all t ∈ [0, T ] except for some t̃ ∈ (0, T ] and satisfies the ODE (∗) for
all t ∈ [0, T ] \ t̃.

(c) The Euler method for (∗) produces a sequence {yn}n6N , where N = bTh c and
h > 0 is the step-size. Is

|yn − y(nh)| 6 O(h), for 0 6 n 6 N,

where y(t) is the solution described in part (b)? Justify your answer.

Paper 2, Section II

17B Numerical Analysis
Consider an ODE of the form

y′ = f(y), y(0) = y0 ∈ R, (∗)

where y(t) exists and is unique for t ∈ [0, T ] and T > 0.

(a) For a numerical method approximating the solution of (∗), define the linear
stability domain. What does it mean for such a numerical method to be A-stable?

(b) Let a ∈ R and consider the Runge–Kutta method—producing a sequence
{yn}n6N , where N = bTh c and h > 0 is the step-size—defined by

k1 = f

(
yn +

1

4
hk1 +

(1

4
− a
)
hk2

)
,

k2 = f

(
yn +

(1

4
+ a
)
hk1 +

1

4
hk2

)
,

yn+1 = yn +
1

2
h(k1 + k2), n = 0, 1, . . . , N − 1.

Determine the values of the parameter a ∈ R for which the Runge–Kutta method is
A-stable.

Part IB, Paper 1
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Paper 3, Section II

17B Numerical Analysis
Consider C[a, b] equipped with the inner product 〈f, g〉 =

∫ b
a f(x)g(x)w(x)dx, where

w(x) > 0 for x ∈ (a, b). Let Pn denote the set of polynomials of degree less than or equal
to n. For f ∈ C[a, b] consider the quadrature formulas

I(f) =

∫ b

a
f(x)w(x)dx ≈

n∑

i=0

a
(n)
i f(x

(n)
i ) = In(f), n = 0, 1, 2, . . . (∗)

with weights a
(n)
i ∈ R and nodes x

(n)
i ∈ [a, b], which are exact on all polynomials q ∈ Pn.

(a) Prove that the quadrature formula (∗) is exact for all q ∈ Pn+1+k if and only

if the polynomial Qn+1(x) =
∏n
i=0(x − x

(n)
i ) is orthogonal (with respect to 〈·, ·〉) to all

polynomials of degree k.

(b) Prove that no quadrature formula (∗) could be exact on polynomials of degree
2n+ 2.

(c) Prove that if (∗) is exact on P2n, then a(n)i > 0.

(d) Show that if a
(n)
i > 0 for all i and n, then

In(f)→ I(f), n→∞.

[Hint: Use the Weierstrass theorem: for any ε > 0 there exists n ∈ N and a polynomial
pn ∈ Pn such that |f(x)− pn(x)| < ε, for x ∈ [a, b].]

Part IB, Paper 1 [TURN OVER]
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Paper 1, Section I
5C Numerical Analysis

Use the Gram–Schmidt algorithm to compute a reduced QR factorization of the
matrix

A =




2 2 0
2 0 −4
2 2 2
−2 0 2


 ,

i.e. find a matrix Q ∈ R4×3 with orthonormal columns and an upper triangular matrix
R ∈ R3×3 such that A = QR.

Paper 4, Section I
6C Numerical Analysis

(a) Suppose that w(x) > 0 for all x ∈ [a, b]. The weights b1, . . . , bn and nodes
c1, . . . , cn are chosen so that the Gaussian quadrature formula for a function f ∈ C[a, b]

∫ b

a
w(x)f(x)dx ≈

n∑

k=1

bkf(ck)

is exact for every polynomial of degree 2n − 1. Show that the bi, i = 1, . . . , n are all
positive.

(b) Evaluate the coefficients bk and ck of the Gaussian quadrature of the integral

∫ 1

−1
x2f(x)dx,

which uses two evaluations of the function f(x) and is exact for all f that are polynomials
of degree 3.

Part IB, Paper 1 [TURN OVER]

2022



30

Paper 1, Section II
17C Numerical Analysis

For a function f ∈ C3[−1, 1] consider the following approximation of f ′′(0):

f ′′(0) ≈ η(f) = a−1f(−1) + a0f(0) + a1f(1) ,

with the error

e(f) = f ′′(0)− η(f).

We want to find the smallest constant c such that

|e(f)| 6 c max
x∈[−1,1]

∣∣f ′′′(x)
∣∣ . (?)

(a) State the necessary conditions on the approximation scheme η for the inequality
(?) to be valid with some c <∞. Hence, determine the coefficients a−1, a0, a1.

(b) State the Peano kernel theorem and use it to find the smallest constant c in the
inequality (?).

(c) Explain briefly why this constant is sharp.

Paper 2, Section II
17C Numerical Analysis

A scalar, autonomous, ordinary differential equation y′ = f(y) is solved using the
Runge–Kutta method

k1 = f(yn) ,

k2 = f(yn + (1 − a)hk1 + ahk2) ,

yn+1 = yn +
h

2
(k1 + k2) ,

where h is a step size and a is a real parameter.

(a) Determine the order of the method and its dependence on a.

(b) Find the range of values of a for which the method is A-stable.

Part IB, Paper 1

2022



31

Paper 3, Section II
17C Numerical Analysis

(a) The equation y′ = f(t, y) is solved using the following multistep method with s
steps,

s∑

k=0

ρkyn+k = h

s∑

k=0

σkf(tn+k, yn+k) ,

where h is the step size and ρk, σk are specified constants with ρs = 1. Prove that this
method is of order p if and only if

s∑

k=0

ρkP (tn+k) = h
s∑

k=0

σkP
′(tn+k) ,

for all polynomials P of degree p.

(b) State the Dahlquist equivalence theorem regarding the convergence of a mul-
tistep method. Consider a multistep method

yn+3 + (2a− 3)(yn+2 − yn+1)− yn = ha(fn+2 + fn+1) ,

where a 6= 0 is a real parameter. Determine the values of a for which this method is
convergent, and find its order.

Part IB, Paper 1 [TURN OVER]

2022
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Paper 1, Section I

5B Numerical Analysis
Prove, from first principles, that there is an algorithm that can determine whether

any real symmetric matrix A ∈ Rn×n is positive definite or not, with the computational
cost (number of arithmetic operations) bounded by O(n3).

[Hint: Consider the LDL decomposition.]

Paper 4, Section I

6B Numerical Analysis
(a) Given the data f(0) = 0, f(1) = 4, f(2) = 2, f(3) = 8, find the interpolating

cubic polynomial p3 ∈ P3[x] in the Newton form.

(b) We add to the data one more value, f(−2) = 10. Find the interpolating quartic
polynomial p4 ∈ P4[x] for the extended data in the Newton form.

Part IB, 2021 List of Questions

2021
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Paper 1, Section II

17B Numerical Analysis
For the ordinary differential equation

y′ = f(t,y), y(0) = ỹ0, t > 0, (∗)

where y(t) ∈ RN and the function f : R × RN → RN is analytic, consider an explicit
one-step method described as the mapping

yn+1 = yn + hϕ(tn,yn, h). (†)

Here ϕ : R+×RN ×R+ → RN , n = 0, 1, . . . and tn = nh with time step h > 0, producing
numerical approximations yn to the exact solution y(tn) of equation (∗), with y0 being
the initial value of the numerical solution.

(i) Define the local error of a one-step method.

(ii) Let ‖ · ‖ be a norm on RN and suppose that

‖ϕ(t,u, h)−ϕ(t,v, h)‖ 6 L‖u− v‖,

for all h > 0, t ∈ R, u,v ∈ RN , where L is some positive constant. Let t∗ > 0 be
given and e0 = y0 − y(0) denote the initial error (potentially non-zero). Show that
if the local error of the one-step method (†) is O(hp+1), then

max
n=0,...,bt∗/hc

‖yn − y(nh)‖ 6 et
∗L‖e0‖+O(hp), h→ 0. (††)

(iii) Let N = 1 and consider equation (∗) where f is time-independent satisfying
|f(u)− f(v)| 6 K|u− v| for all u, v ∈ R, where K is a positive constant. Consider
the one-step method given by

yn+1 = yn +
1

4
h(k1 + 3k2), k1 = f(yn), k2 = f(yn +

2

3
hk1).

Use part (ii) to show that for this method we have that equation (††) holds (with a
potentially different constant L) for p = 2.

Part IB, 2021 List of Questions [TURN OVER]

2021
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Paper 2, Section II

17B Numerical Analysis

(a) Define Householder reflections and show that a real Householder reflection is
symmetric and orthogonal. Moreover, show that if H,A ∈ Rn×n, where H is a
Householder reflection and A is a full matrix, then the computational cost (number
of arithmetic operations) of computingHAH−1 can beO(n2) operations, as opposed
to O(n3) for standard matrix products.

(b) Show that for any A ∈ Rn×n there exists an orthogonal matrix Q ∈ Rn×n such that

QAQT = T =




t1,1 t1,2 t1,3 · · · t1,n
t2,1 t2,2 t2,3 · · · t2,n
0 t3,2 t3,3 · · · t3,n
...

. . .
. . .

. . .
...

0 · · · 0 tn,n−1 tn,n



.

In particular, T has zero entries below the first subdiagonal. Show that one
can compute such a T and Q (they may not be unique) using O(n3) arithmetic
operations.

[Hint: Multiply A from the left and right with Householder reflections.]

Part IB, 2021 List of Questions

2021
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Paper 3, Section II

17B Numerical Analysis
The functions p0, p1, p2, . . . are generated by the formula

pn(x) = (−1)nx−1/2ex
dn

dxn

(
xn+1/2e−x

)
, 0 6 x <∞ .

(a) Show that pn(x) is a monic polynomial of degree n. Write down the explicit
forms of p0(x), p1(x), p2(x).

(b) Demonstrate the orthogonality of these polynomials with respect to the scalar
product

〈f, g〉 =

∫ ∞

0
x1/2e−xf(x)g(x) dx ,

i.e. that 〈pn, pm〉 = 0 for m 6= n, and show that

〈pn, pn〉 = n! Γ

(
n+

3

2

)
,

where Γ(y) =
∫∞
0 xy−1e−x dx.

(c) Assuming that a three-term recurrence relation in the form

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), n = 1, 2, . . . ,

holds, find the explicit expressions for αn and βn as functions of n.

[Hint: you may use the fact that Γ(y + 1) = yΓ(y).]

Part IB, 2021 List of Questions [TURN OVER]

2021
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Paper 1, Section I

5C Numerical Analysis
(a) Find an LU factorisation of the matrix

A =




1 1 0 3
0 2 2 12
0 5 7 32
3 −1 −1 −10


 ,

where the diagonal elements of L are L11 = L44 = 1, L22 = L33 = 2.

(b) Use this factorisation to solve the linear system Ax = b, where

b =




−3
−12
−30
13


 .

Part IB, 2020 List of Questions

2020
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Paper 1, Section II

18C Numerical Analysis
(a) Given a set of n + 1 distinct real points x0, x1, . . . , xn and real numbers

f0, f1, . . . , fn, show that the interpolating polynomial pn ∈ Pn[x], pn(xi) = fi, can be
written in the form

pn(x) =

n∑

k=0

ak

n∏

j=0,j 6=k

x− xj
xk − xj

, x ∈ R ,

where the coefficients ak are to be determined.

(b) Consider the approximation of the integral of a function f ∈ C[a, b] by a finite
sum, ∫ b

a
f(x) dx ≈

s−1∑

k=0

wkf(ck) , (1)

where the weights w0, . . . , ws−1 and nodes c0, . . . , cs−1 ∈ [a, b] are independent of f . Derive
the expressions for the weights wk that make the approximation (1) exact for f being any
polynomial of degree s− 1, i.e. f ∈ Ps−1[x].

Show that by choosing c0, . . . , cs−1 to be zeros of the polynomial qs(x) of degree s,
one of a sequence of orthogonal polynomials defined with respect to the scalar product

〈u, v〉 =

∫ b

a
u(x)v(x)dx , (2)

the approximation (1) becomes exact for f ∈ P2s−1[x] (i.e. for all polynomials of degree
2s− 1).

(c) On the interval [a, b] = [−1, 1] the scalar product (2) generates orthogonal
polynomials given by

qn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
, n = 0, 1, 2, . . . .

Find the values of the nodes ck for which the approximation (1) is exact for all polynomials
of degree 7 (i.e. f ∈ P7[x]) but no higher.

Part IB, 2020 List of Questions [TURN OVER]

2020
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Paper 2, Section II

17C Numerical Analysis
Consider a multistep method for numerical solution of the differential equation

y′ = f(t,y):

yn+2 − yn+1 = h [ (1 + α)f(tn+2,yn+2) + βf(tn+1,yn+1) − (α+ β)f(tn,yn) ] , (∗)

where n = 0, 1, . . . , and α and β are constants.

(a) Define the order of a method for numerically solving an ODE.

(b) Show that in general an explicit method of the form (∗) has order 1. Determine
the values of α and β for which this multistep method is of order 3.

(c) Show that the multistep method (∗) is convergent.

Part IB, 2020 List of Questions

2020
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Paper 1, Section I

6C Numerical Analysis
Let [a, b] be the smallest interval that contains the n + 1 distinct real numbers

x0, x1, . . . , xn, and let f be a continuous function on that interval.

Define the divided difference f [x0, x1, . . . , xm] of degree m 6 n.

Prove that the polynomial of degree n that interpolates the function f at the points
x0, x1, . . . , xn is equal to the Newton polynomial

pn(x) = f [x0] + f [x0, x1](x− x0) + · · · + f [x0, x1, . . . , xn]

n−1∏

i=0

(x− xi) .

Prove the recursive formula

f [x0, x1, . . . , xm] =
f [x1, x2, . . . , xm]− f [x0, x1, . . . , xm−1]

xm − x0

for 1 6 m 6 n.

Paper 4, Section I

8C Numerical Analysis
Calculate the LU factorization of the matrix

A =




3 2 −3 −3
6 3 −7 −8
3 1 −6 −4

−6 −3 9 6


 .

Use this to evaluate det(A) and to solve the equation

Ax = b

with

b =




3
3

−1
−3


 .

Part IB, 2019 List of Questions [TURN OVER

2019
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Paper 1, Section II

18C Numerical Analysis
(a) An s-step method for solving the ordinary differential equation

dy

dt
= f(t,y)

is given by
s∑

l=0

ρl yn+l = h
s∑

l=0

σl f(tn+l,yn+l) , n = 0, 1, . . . ,

where ρl and σl (l = 0, 1, . . . , s) are constant coefficients, with ρs = 1, and h is the
time-step. Prove that the method is of order p > 1 if and only if

ρ(ez)− zσ(ez) = O(zp+1)

as z → 0, where

ρ(w) =

s∑

l=0

ρlw
l , σ(w) =

s∑

l=0

σlw
l .

(b) Show that the Adams–Moulton method

yn+2 = yn+1 +
h

12

(
5 f(tn+2,yn+2) + 8 f(tn+1,yn+1)− f(tn,yn)

)

is of third order and convergent.

[You may assume the Dahlquist equivalence theorem if you state it clearly.]

Part IB, 2019 List of Questions

2019
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Paper 3, Section II

19C Numerical Analysis
(a) Let w(x) be a positive weight function on the interval [a, b]. Show that

〈f, g〉 =
∫ b

a
f(x)g(x)w(x) dx

defines an inner product on C[a, b].

(b) Consider the sequence of polynomials pn(x) defined by the three-term recurrence
relation

pn+1(x) = (x− αn)pn(x)− βnpn−1(x) , n = 1, 2, . . . , (∗)
where

p0(x) = 1 , p1(x) = x− α0 ,

and the coefficients αn (for n > 0) and βn (for n > 1) are given by

αn =
〈pn, xpn〉
〈pn, pn〉

, βn =
〈pn, pn〉

〈pn−1, pn−1〉
.

Prove that this defines a sequence of monic orthogonal polynomials on [a, b].

(c) The Hermite polynomials Hen(x) are orthogonal on the interval (−∞,∞) with
weight function e−x2/2. Given that

Hen(x) = (−1)nex
2/2 d

n

dxn

(
e−x2/2

)
,

deduce that the Hermite polynomials satisfy a relation of the form (∗) with αn = 0 and
βn = n. Show that 〈Hen,Hen〉 = n!

√
2π.

(d) State, without proof, how the properties of the Hermite polynomial HeN (x), for
some positive integer N , can be used to estimate the integral

∫ ∞

−∞
f(x) e−x2/2 dx ,

where f(x) is a given function, by the method of Gaussian quadrature. For which
polynomials is the quadrature formula exact?

Part IB, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section II

19C Numerical Analysis
Define the linear least squares problem for the equation

Ax = b ,

where A is a given m× n matrix with m > n, b ∈ Rm is a given vector and x ∈ Rn is an
unknown vector.

Explain how the linear least squares problem can be solved by obtaining a QR
factorization of the matrix A, where Q is an orthogonal m×m matrix and R is an upper-
triangular m× n matrix in standard form.

Use the Gram–Schmidt method to obtain a QR factorization of the matrix

A =




1 1 1
1 0 1
1 1 0
1 0 0




and use it to solve the linear least squares problem in the case

b =




1
2
3
6


 .

Part IB, 2019 List of Questions

2019
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Paper 1, Section I

6D Numerical Analysis
The Trapezoidal Rule for solving the differential equation

y′(t) = f(t, y), t ∈ [0, T ], y(0) = y0

is defined by
yn+1 = yn + 1

2h [f(tn, yn) + f(tn+1, yn+1)] ,

where h = tn+1 − tn.

Determine the minimum order of convergence k of this rule for general functions f
that are sufficiently differentiable. Show with an explicit example that there is a function
f for which the local truncation error is Ahk+1 for some constant A.

Paper 4, Section I

8D Numerical Analysis
Let

A =




1 2 1 2
2 5 5 6
1 5 13 14
2 6 14 λ


 , b =




1
3
7
µ


 ,

where λ and µ are real parameters. Find the LU factorisation of the matrix A. For what
values of λ does the equation Ax = b have a unique solution for x?

For λ = 20, use the LU decomposition with forward and backward substitution to
determine a value for µ for which a solution to Ax = b exists. Find the most general
solution to the equation in this case.

Part IB, 2018 List of Questions

2018
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Paper 1, Section II

18D Numerical Analysis
Show that if u ∈ Rm \ {0} then the m×m matrix transformation

Hu = I − 2
uu⊤

‖u‖2

is orthogonal. Show further that, for any two vectors a, b ∈ Rm of equal length,

Ha−ba = b.

Explain how to use such transformations to convert an m×n matrix A with m > n
into the form A = QR, where Q is an orthogonal matrix and R is an upper-triangular
matrix, and illustrate the method using the matrix

A =




1 −1 4
1 4 −2
1 4 2
1 −1 0


 .

Part IB, 2018 List of Questions [TURN OVER

2018
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Paper 3, Section II

19D Numerical Analysis
Taylor’s theorem for functions f ∈ Ck+1[a, b] is given in the form

f(x) = f(a) + (x− a)f ′(a) + · · ·+ (x− a)k

k!
f (k)(a) +R(x).

Use integration by parts to show that

R(x) =
1

k!

∫ x

a
(x− θ)kf (k+1)(θ) dθ.

Let λk be a linear functional on Ck+1[a, b] such that λk[p] = 0 for p ∈ Pk. Show
that

λk[f ] =
1

k!

∫ b

a
K(θ)f (k+1)(θ) dθ, (†)

where the Peano kernel function K(θ) = λk
[
(x− θ)k+

]
. [You may assume that the

functional commutes with integration over a fixed interval.]

The error in the mid-point rule for numerical quadrature on [0, 1] is given by

e[f ] =

∫ 1

0
f(x)dx− f(12).

Show that e[p] = 0 if p is a linear polynomial. Find the Peano kernel function
corresponding to e explicitly and verify the formula (†) in the case f(x) = x2.

Part IB, 2018 List of Questions

2018
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Paper 2, Section II

19D Numerical Analysis
Show that the recurrence relation

p0(x) = 1,

pn+1(x) = qn+1(x)−
n∑

k=0

〈qn+1, pk〉
〈pk, pk〉

pk(x),

where 〈·, ·〉 is an inner product on real polynomials, produces a sequence of orthogonal,
monic, real polynomials pn(x) of degree exactly n of the real variable x, provided that qn
is a monic, real polynomial of degree exactly n.

Show that the choice qn+1(x) = xpn(x) leads to a three-term recurrence relation of
the form

p0(x) = 1,

p1(x) = x− α0,

pn+1(x) = (x− αn)pn(x)− βnpn−1(x),

where αn and βn are constants that should be determined in terms of the inner products
〈pn, pn〉, 〈pn−1, pn−1〉 and 〈pn, xpn〉.

Use this recurrence relation to find the first four monic Legendre polynomials, which
correspond to the inner product defined by

〈p, q〉 ≡
∫ 1

−1
p(x)q(x)dx.

Part IB, 2018 List of Questions [TURN OVER

2018
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Paper 1, Section I

6C Numerical Analysis
Given n+1 real points x0 < x1 < · · · < xn, define the Lagrange cardinal polynomials

ℓi(x), i = 0, 1, . . . , n. Let p(x) be the polynomial of degree n that interpolates the
function f ∈ Cn[x0, xn] at these points. Express p(x) in terms of the values fi = f(xi),
i = 0, 1, . . . , n and the Lagrange cardinal polynomials.

Define the divided difference f [x0, x1, . . . , xn] and give an expression for it in terms
of f0, f1, . . . , fn and x0, x1, . . . , xn. Prove that

f [x0, x1, . . . , xn] =
1

n!
f (n)(ξ)

for some number ξ ∈ [x0, xn].

Paper 4, Section I

8C Numerical Analysis
For the matrix

A =




1 1 1 1
1 5 5 5
1 5 14 14
1 5 14 λ




find a factorization of the form
A = LDL⊤ ,

where D is diagonal and L is lower triangular with ones on its diagonal.

For what values of λ is A positive definite?

In the case λ = 30 find the Cholesky factorization of A.
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Paper 1, Section II

18C Numerical Analysis
A three-stage explicit Runge–Kutta method for solving the autonomous ordinary

differential equation
dy

dt
= f(y)

is given by
yn+1 = yn + h(b1k1 + b2k2 + b3k3) ,

where

k1 = f(yn) ,

k2 = f(yn + ha1k1) ,

k3 = f(yn + h(a2k1 + a3k2))

and h > 0 is the time-step. Derive sufficient conditions on the coefficients b1, b2, b3, a1,
a2 and a3 for the method to be of third order.

Assuming that these conditions hold, verify that −5
2 belongs to the linear stability

domain of the method.

Paper 2, Section II

19C Numerical Analysis
Define the linear least-squares problem for the equation Ax = b, where A is an

m× n matrix with m > n, b ∈ Rm is a given vector and x ∈ Rn is an unknown vector.

If A = QR, where Q is an orthogonal matrix and R is an upper triangular matrix
in standard form, explain why the least-squares problem is solved by minimizing the
Euclidean norm ‖Rx−Q⊤b‖.

Using the method of Householder reflections, find a QR factorization of the matrix

A =




1 3 3
1 3 1
1 1 1
1 1 −1


 .

Hence find the solution of the least-squares problem in the case

b =




1
1
3

−1


 .

Part IB, 2017 List of Questions [TURN OVER

2017



34

Paper 3, Section II

19C Numerical Analysis
Let pn ∈ Pn be the nth monic orthogonal polynomial with respect to the inner

product

〈f, g〉 =
∫ b

a
w(x)f(x)g(x) dx

on C[a, b], where w is a positive weight function.

Prove that, for n > 1, pn has n distinct zeros in the interval (a, b).

Let c1, c2, . . . , cn ∈ [a, b] be n distinct points. Show that the quadrature formula

∫ b

a
w(x)f(x) dx ≈

n∑

i=1

bif(ci)

is exact for all f ∈ Pn−1 if the weights bi are chosen to be

bi =

∫ b

a
w(x)

n∏

j=1
j 6=i

x− cj
ci − cj

dx .

Show further that the quadrature formula is exact for all f ∈ P2n−1 if the nodes ci are
chosen to be the zeros of pn (Gaussian quadrature). [Hint: Write f as qpn + r, where
q, r ∈ Pn−1.]

Use the Peano kernel theorem to write an integral expression for the approximation
error of Gaussian quadrature for sufficiently differentiable functions. (You should give a
formal expression for the Peano kernel but are not required to evaluate it.)
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Paper 1, Section I

6D Numerical Analysis
(a) What are real orthogonal polynomials defined with respect to an inner product

〈·, ·〉? What does it mean for such polynomials to be monic?

(b) Real monic orthogonal polynomials, pn(x), of degree n = 0, 1, 2, . . ., are defined
with respect to the inner product,

〈p, q〉 =
∫ 1

−1
w(x)p(x)q(x) dx,

where w(x) is a positive weight function. Show that such polynomials obey the three-term
recurrence relation,

pn+1(x) = (x− αn)pn(x)− βnpn−1(x) ,

for appropriate αn and βn which should be given in terms of inner products.

Paper 4, Section I

8D Numerical Analysis
(a) Define the linear stability domain for a numerical method to solve y′ = f(t,y).

What is meant by an A-stable method?

(b) A two-stage Runge–Kutta scheme is given by

k1 = f(tn,yn), k2 = f(tn + h
2 ,yn + h

2k1), yn+1 = yn + hk2 ,

where h is the step size and tn = nh. Show that the order of this scheme is at least two.
For this scheme, find the intersection of the linear stability domain with the real axis.
Hence show that this method is not A-stable.
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Paper 1, Section II

18D Numerical Analysis
(a) Consider a method for numerically solving an ordinary differential equation

(ODE) for an initial value problem, y′ = f(t,y). What does it mean for a method to
converge over t ∈ [0, T ] where T ∈ R? What is the definition of the order of a method?

(b) A general multistep method for the numerical solution of an ODE is

s∑

l=0

ρl yn+l = h

s∑

l=0

σl f(tn+l,yn+l), n = 0, 1, . . . ,

where s is a fixed positive integer. Show that this method is at least of order p > 1 if and
only if

s∑

l=0

ρl = 0 and
s∑

l=0

lk ρl = k
s∑

l=0

lk−1 σl, k = 1, . . . , p .

(c) State the Dahlquist equivalence theorem regarding the convergence of a multistep
method.

(d) Consider the multistep method,

yn+2 + θ yn+1 + ayn = h
[
σ0f(tn,yn) + σ1f(tn+1,yn+1) + σ2f(tn+2,yn+2)

]
.

Determine the values of σi and a (in terms of the real parameter θ) such that the method
is at least third order. For what values of θ does the method converge?

Part IB, 2016 List of Questions [TURN OVER

2016



38

Paper 3, Section II

19D Numerical Analysis
(a) Determine real quadratic functions a(x), b(x), c(x) such that the interpolation

formula,
f(x) ≈ a(x)f(0) + b(x)f(2) + c(x)f(3) ,

is exact when f(x) is any real polynomial of degree 2.

(b) Use this formula to construct approximations for f(5) and f ′(1) which are exact
when f(x) is any real polynomial of degree 2. Calculate these approximations for f(x) = x3

and comment on your answers.

(c) State the Peano kernel theorem and define the Peano kernel K(θ). Use this
theorem to find the minimum values of the constants α and β such that

∣∣∣f(1)− 1
3

[
f(0) + 3f(2) − f(3)

]∣∣∣ 6 α max
ξ∈[0,3]

∣∣∣f (2)(ξ)
∣∣∣ ,

and ∣∣∣f(1)− 1
3

[
f(0) + 3f(2)− f(3)

]∣∣∣ 6 β ‖f (2)‖1 ,

where f ∈ C2[0, 3]. Check that these inequalities hold for f(x) = x3.

Paper 2, Section II

19D Numerical Analysis
(a) Define a Givens rotation Ω[p,q] ∈ Rm×m and show that it is an orthogonal matrix.

(b) Define a QR factorization of a matrix A ∈ Rm×n with m > n. Explain how
Givens rotations can be used to find Q ∈ Rm×m and R ∈ Rm×n.

(c) Let

A =




3 1 1
0 4 1
0 3 2
0 0 3/4


 , b =




98/25
25
25
0


 .

(i) Find a QR factorization of A using Givens rotations.

(ii) Hence find the vector x∗ ∈ R3 which minimises ‖Ax−b‖, where ‖ · ‖ is the
Euclidean norm. What is ‖Ax∗ − b‖?
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Paper 1, Section I

6D Numerical Analysis
Let

A =




1 4 3 2
4 17 13 11
3 13 13 12
2 11 12 λ


 , b =




1
1
3
2


 ,

where λ is a real parameter. Find the LU factorization of the matrix A. Give the constraint
on λ for A to be positive definite.

For λ = 18, use this factorization to solve the system Ax = b via forward and
backward substitution.

Paper 4, Section I

8D Numerical Analysis
Given n + 1 distinct points {x0, x1, . . . , xn}, let pn ∈ Pn be the real polynomial of

degree n that interpolates a continuous function f at these points. State the Lagrange
interpolation formula.

Prove that pn can be written in the Newton form

pn(x) = f(x0) +
n∑

k=1

f [x0, . . . , xk]
k−1∏

i=0

(x− xi) ,

where f [x0, . . . , xk] is the divided difference, which you should define. [An explicit
expression for the divided difference is not required.]

Explain why it can be more efficient to use the Newton form rather than the
Lagrange formula.
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Paper 1, Section II

18D Numerical Analysis
Determine the real coefficients b1, b2, b3 such that

∫ 2

−2
f(x)dx = b1f(−1) + b2f(0) + b3f(1) ,

is exact when f(x) is any real polynomial of degree 2. Check explicitly that the quadrature
is exact for f(x) = x2 with these coefficients.

State the Peano kernel theorem and define the Peano kernel K(θ). Use this theorem
to show that if f ∈ C3[−2, 2], and b1, b2, b3 are chosen as above, then

∣∣∣∣
∫ 2

−2
f(x)dx− b1f(−1)− b2f(0)− b3f(1)

∣∣∣∣ 6
4

9
max

ξ∈[−2,2]

∣∣∣f (3)(ξ)
∣∣∣ .

Paper 3, Section II

19D Numerical Analysis
Define the QR factorization of an m × n matrix A. Explain how it can be used to

solve the least squares problem of finding the vector x∗ ∈ Rn which minimises ||Ax − b||,
where b ∈ Rm, m > n, and || · || is the Euclidean norm.

Explain how to construct Q and R by the Gram-Schmidt procedure. Why is this
procedure not useful for numerical factorization of large matrices?

Let

A =




5 6 −14
5 4 4

−5 2 −8
5 12 −18


 , b =




1
1
1
0


 .

Using the Gram-Schmidt procedure find a QR decomposition of A. Hence solve the least
squares problem giving both x∗ and ||Ax∗ − b||.
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Paper 2, Section II

19D Numerical Analysis
Define the linear stability domain for a numerical method to solve y′ = f(t, y).

What is meant by an A-stable method? Briefly explain the relevance of these concepts in
the numerical solution of ordinary differential equations.

Consider
yn+1 = yn + h [θf(tn, yn) + (1− θ)f(tn+1, yn+1)] ,

where θ ∈ [0, 1]. What is the order of this method?

Find the linear stability domain of this method. For what values of θ is the method
A-stable?
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Paper 1, Section I

6C Numerical Analysis
(i) A general multistep method for the numerical approximation to the scalar

differential equation y′ = f(t, y) is given by

s∑

ℓ=0

ρℓ yn+ℓ = h
s∑

ℓ=0

σℓfn+ℓ, n = 0, 1, . . .

where fn+ℓ = f(tn+ℓ, yn+ℓ). Show that this method is of order p > 1 if and only if

ρ(ez)− zσ(ez) = O(zp+1) as z → 0

where

ρ(w) =

s∑

ℓ=0

ρℓw
ℓ and σ(w) =

s∑

ℓ=0

σℓw
ℓ .

(ii) A particular three-step implicit method is given by

yn+3 + (a− 1)yn+1 − ayn = h

(
fn+3 +

2∑

ℓ=0

σℓfn+ℓ

)
.

where the σℓ are chosen to make the method third order. [The σℓ need not be found.] For
what values of a is the method convergent?

Paper 4, Section I

8C Numerical Analysis
Consider the quadrature given by

∫ π

0
w(x)f(x)dx ≈

ν∑

k=1

bkf(ck)

for ν ∈ N, disjoint ck ∈ (0, π) and w > 0 . Show that it is not possible to make this
quadrature exact for all polynomials of order 2ν.

For the case that ν = 2 and w(x) = sinx, by considering orthogonal polynomials
find suitable bk and ck that make the quadrature exact on cubic polynomials.

[Hint:
∫ π
0 x2 sinx dx = π2 − 4 and

∫ π
0 x3 sinx dx = π3 − 6π.]
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Paper 1, Section II

18C Numerical Analysis
Define a Householder transformation H and show that it is an orthogonal matrix.

Briefly explain how these transformations can be used for QR factorisation of an m × n
matrix.

Using Householder transformations, find a QR factorisation of

A =




2 5 4
2 5 1

−2 1 5
2 −1 16


 .

Using this factorisation, find the value of λ for which

Ax =




1 + λ
2
3
4




has a unique solution x ∈ R3.

Paper 3, Section II

19C Numerical Analysis
A Runge–Kutta scheme is given by

k1 = hf(yn), k2 = hf(yn + [(1 − a)k1 + ak2]), yn+1 = yn +
1

2
(k1 + k2)

for the solution of an autonomous differential equation y′ = f(y), where a is a real
parameter. What is the order of the scheme? Identify all values of a for which the
scheme is A-stable. Determine the linear stability domain for this range.
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Paper 2, Section II

19C Numerical Analysis
A linear functional acting on f ∈ Ck+1[a, b] is approximated using a linear scheme

L(f). The approximation is exact when f is a polynomial of degree k. The error is given
by λ(f). Starting from the Taylor formula for f(x) with an integral remainder term, show
that the error can be written in the form

λ(f) =
1

k!

∫ b

a
K(θ)f (k+1)(θ)dθ

subject to a condition on λ that you should specify. Give an expression for K(θ).

Find c0, c1 and c3 such that the approximation scheme

f ′′(2) ≈ c0f(0) + c1f(1) + c3f(3)

is exact for all f that are polynomials of degree 2. Assuming f ∈ C3[0, 3], apply the Peano
kernel theorem to the error. Find and sketch K(θ) for k = 2.

Find the minimum values for the constants r and s for which

|λ(f)| 6 r‖f (3)‖1 and |λ(f)| 6 s‖f (3)‖∞

and show explicitly that both error bounds hold for f(x) = x3.
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Paper 1, Section I

6C Numerical Analysis
Determine the nodes x1, x2 of the two-point Gaussian quadrature

∫ 1

0
f(x)w(x) dx ≈ a1f(x1) + a2f(x2), w(x) = x,

and express the coefficients a1, a2 in terms of x1, x2. [You don’t need to find numerical
values of the coefficients.]

Paper 4, Section I

8C Numerical Analysis
For a continuous function f , and k + 1 distinct points {x0, x1, . . . , xk}, define the

divided difference f [x0, . . . , xk] of order k.

Given n+ 1 points {x0, x1, . . . , xn}, let pn ∈ Pn be the polynomial of degree n that
interpolates f at these points. Prove that pn can be written in the Newton form

pn(x) = f(x0) +
n∑

k=1

f [x0, . . . , xk]
k−1∏

i=0

(x− xi) .

Paper 1, Section II

18C Numerical Analysis
Define the QR factorization of an m×n matrix A and explain how it can be used to

solve the least squares problem of finding the vector x∗ ∈ Rn which minimises ‖Ax − b‖,
where b ∈ Rm, m > n, and the norm is the Euclidean one.

Define a Givens rotation Ω[p,q] and show that it is an orthogonal matrix.

Using a Givens rotation, solve the least squares problem for

A =




2 1 1
0 4 1
0 3 2
0 0 0


 , b =




2
3
1
2


 ,

giving both x∗ and ‖Ax∗ − b‖.
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Paper 3, Section II

19C Numerical Analysis
Let

f ′(0) ≈ a0f(0) + a1f(1) + a2f(2) =: λ(f)

be a formula of numerical differentiation which is exact on polynomials of degree 2, and
let

e(f) = f ′(0)− λ(f)

be its error.

Find the values of the coefficients a0, a1, a2.

Using the Peano kernel theorem, find the least constant c such that, for all functions
f ∈ C3[0, 2], we have

|e(f)| 6 c ‖f ′′′‖∞ .

Paper 2, Section II

19C Numerical Analysis
Explain briefly what is meant by the convergence of a numerical method for solving

the ordinary differential equation

y′(t) = f(t, y), t ∈ [0, T ], y(0) = y0 .

Prove from first principles that if the function f is sufficiently smooth and satisfies
the Lipschitz condition

|f(t, x)− f(t, y)| 6 L |x− y|, x, y ∈ R, t ∈ [0, T ],

for some L > 0, then the backward Euler method

yn+1 = yn + hf(tn+1, yn+1) ,

converges and find the order of convergence.

Find the linear stability domain of the backward Euler method.
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Paper 1, Section I

6D Numerical Analysis
Let

A =




1 a a2 a3

a3 1 a a2

a2 a3 1 a

a a2 a3 1



, b =




γ

0

0

0



, γ = 1− a4 6= 0 .

Find the LU factorization of the matrix A and use it to solve the system Ax = b via
forward and backward substitution. [Other methods of solution are not acceptable.]

Paper 4, Section I

8D Numerical Analysis
State the Dahlquist equivalence theorem regarding convergence of a multistep

method.

The multistep method, with a real parameter a,

yn+3 + (2a− 3)(yn+2 − yn+1)− yn = ha (fn+2 − fn+1)

is of order 2 for any a, and also of order 3 for a = 6. Determine all values of a for which
the method is convergent, and find the order of convergence.

Paper 1, Section II

18D Numerical Analysis
For a numerical method for solving y′ = f(t, y), define the linear stability domain,

and state when such a method is A-stable.

Determine all values of the real parameter a for which the Runge-Kutta method

k1 = f
(
tn + (12 − a)h, yn +

(
1
4hk1 + (14 − a)hk2

))
,

k2 = f
(
tn + (12 + a)h, yn +

(
(14 + a)hk1 +

1
4hk2

))
,

yn+1 = yn + 1
2h(k1 + k2)

is A-stable.
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Paper 3, Section II

19D Numerical Analysis
Define the QR factorization of an m×n matrix A and explain how it can be used to

solve the least squares problem of finding the vector x∗ ∈ Rn which minimises ‖Ax∗ − b‖,
where b ∈ Rm, m > n, and the norm is the Euclidean one.

Define a Householder transformation H and show that it is an orthogonal matrix.

Using a Householder transformation, solve the least squares problem for

A =




1 −1 5
0 1 5
0 0 3
0 0 4


 , b =




1
2

−1
2


 ,

giving both x∗ and ‖Ax∗ − b‖.

Paper 2, Section II

19D Numerical Analysis
Let {Pn}∞n=0 be the sequence of monic polynomials of degree n orthogonal on the

interval [−1, 1] with respect to the weight function w .

Prove that each Pn has n distinct zeros in the interval (−1, 1).

Let P0(x) = 1, P1(x) = x−a1, and let Pn satisfy the following three-term recurrence
relation:

Pn(x) = (x− an)Pn−1(x)− b2nPn−2(x) , n > 2 .

Set

An =




a1 b2 0 · · · 0

b2 a2 b3
. . .

...

0
. . .

. . .
. . . 0

...
. . . bn−1 an−1 bn

0 · · · 0 bn an




.

Prove that Pn(x) = det(xI − An), n > 1, and deduce that all the eigenvalues of An are
distinct and reside in (−1, 1).
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Paper 1, Section I

6B Numerical Analysis
Orthogonal monic polynomials p0, p1, . . . , pn, . . . are defined with respect to the inner

product 〈p, q〉 =
∫ 1
−1 w(x)p(x)q(x) dx, where pn is of degree n. Show that such polynomials

obey a three-term recurrence relation

pn+1(x) = (x− αn)pn(x)− βnpn−1(x)

for appropriate choices of αn and βn.

Now suppose that w(x) is an even function of x. Show that the pn are even or odd
functions of x according to whether n is even or odd.

Paper 4, Section I

8B Numerical Analysis
Consider the multistep method for numerical solution of the differential equation

y′ = f(t,y):

s∑

l=0

ρlyn+l = h

s∑

l=0

σlf(tn+l,yn+l), n = 0, 1, . . . .

What does it mean to say that the method is of order p, and that the method is
convergent?

Show that the method is of order p if

s∑

l=0

ρl = 0,

s∑

l=0

lkρl = k

s∑

l=0

lk−1σl, k = 1, 2, . . . , p,

and give the conditions on ρ(w) =
∑s

l=0 ρlw
l that ensure convergence.

Hence determine for what values of θ and the σi the two-step method

yn+2 − (1− θ)yn+1 − θyn = h[σ0f(tn,yn) + σ1f(tn+1,yn+1) + σ2f(tn+2,yn+2)]

is (a) convergent, and (b) of order 3.
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Paper 1, Section II

18B Numerical Analysis
Consider a function f(x) defined on the domain x ∈ [0, 1]. Find constants α, β, γ so

that for any fixed ξ ∈ [0, 1],

f ′′(ξ) = αf(0) + βf ′(0) + γf(1)

is exactly satisfied for polynomials of degree less than or equal to two.

By using the Peano kernel theorem, or otherwise, show that

f ′(ξ)− f ′(0)− ξ (αf(0)+ βf ′(0) + γf(1)
)
=

∫ ξ

0
(ξ − θ)H1(θ)f

′′′(θ) dθ

+

∫ ξ

0
θH2(θ)f

′′′(θ) dθ +
∫ 1

ξ
ξH2(θ)f

′′′(θ) dθ,

where H1(θ) = 1− (1− θ)2 > 0, H2(θ) = −(1− θ)2 6 0. Thus show that

∣∣f ′(ξ)− f ′(0) − ξ(αf(0) + βf ′(0) + γf(1))
∣∣ 6 1

6
(2ξ − 3ξ2 + 4ξ3 − ξ4)

∣∣∣∣f ′′′∣∣∣∣
∞ .

Paper 2, Section II

19B Numerical Analysis
What is the QR-decomposition of a matrix A? Explain how to construct the

matrices Q and R by the Gram-Schmidt procedure, and show how the decomposition
can be used to solve the matrix equation Ax = b when A is a square matrix.

Why is this procedure not useful for numerical decomposition of large matrices?
Give a brief description of an alternative procedure using Givens rotations.

Find a QR-decomposition for the matrix

A =




3 4 7 13
−6 −8 −8 −12
3 4 7 11
0 2 5 7


 .

Is your decomposition unique? Use the decomposition you have found to solve the equation

Ax =




4
6
2
9


 .
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Paper 3, Section II

19B Numerical Analysis
A Gaussian quadrature formula provides an approximation to the integral

∫ 1

−1
(1− x2)f(x) dx ≈

ν∑

k=1

bkf(ck)

which is exact for all f(x) that are polynomials of degree 6 (2ν − 1).

Write down explicit expressions for the bk in terms of integrals, and explain why it
is necessary that the ck are the zeroes of a (monic) polynomial pν of degree ν that satisfies∫ 1
−1(1− x2)pν(x)q(x) dx = 0 for any polynomial q(x) of degree less than ν.

The first such polynomials are p0 = 1, p1 = x, p2 = x2 − 1/5, p3 = x3 − 3x/7. Show
that the Gaussian quadrature formulae for ν = 2, 3 are

ν = 2 :
2

3

[
f(− 1√

5
) + f( 1√

5
)
]
,

ν = 3 :
14

45

[
f(−

√
3
7
) + f(

√
3
7
)
]
+

32

45
f(0).

Verify the result for ν = 3 by considering f(x) = 1, x2, x4.
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Paper 1, Section I

6C Numerical Analysis
Obtain the Cholesky decompositions of

H3 =




1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5


 , H4 =




1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6 λ




.

What is the minimum value of λ for H4 to be positive definite? Verify that if λ = 1
7 then

H4 is positive definite.

Paper 4, Section I

8C Numerical Analysis
Suppose x0, x1, . . . , xn ∈ [a, b] ⊂ R are pointwise distinct and f(x) is continuous on

[a, b]. For k = 1, 2, . . . , n define

I0,k(x) =
f(x0)(xk − x)− f(xk)(x0 − x)

xk − x0
,

and for k = 2, 3, . . . , n

I0, 1, ... , k−2, k−1,k(x) =
I0, 1, ... , k−2, k−1(x)(xk − x)− I0, 1, ... , k−2, k(x)(xk−1 − x)

xk − xk−1
.

Show that I0,1, ... , k−2,k−1,k(x) is a polynomial of order k which interpolates f(x) at
x0, x1, . . . , xk.

Given xk = {−1, 0, 2, 5} and f(xk) = {33, 5, 9, 1335}, determine the interpolating
polynomial.
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Paper 1, Section II

18C Numerical Analysis
Let

〈f, g〉 =

∫ ∞

−∞
e−x2

f(x) g(x) dx ,

be an inner product. The Hermite polynomials Hn(x), n = 0, 1, 2, . . . are polynomials
in x of degree n with leading term 2nxn which are orthogonal with respect to the inner
product, with

〈Hm,Hn〉 =

{
γm > 0 if m = n ,

0 otherwise,

and H0(x) = 1. Find a three-term recurrence relation which is satisfied by Hn(x) and γn
for n = 1, 2, 3. [You may assume without proof that

〈1, 1〉 = √
π , 〈x, x〉 = 1

2

√
π , 〈x2, x2〉 = 3

4

√
π , 〈x3, x3〉 = 15

8

√
π .]

Next let x0, x1, . . . , xk be the k+1 distinct zeros of Hk+1(x) and for i, j = 0, 1, . . . , k
define the Lagrangian polynomials

Li(x) =
∏

j 6=i

x− xj
xi − xj

associated with these points. Prove that 〈Li, Lj〉 = 0 if i 6= j.

Paper 2, Section II

19C Numerical Analysis
Consider the initial value problem for an autonomous differential equation

y′(t) = f(y(t)), y(0) = y0 given,

and its approximation on a grid of points tn = nh, n = 0, 1, 2, . . .. Writing yn = y(tn), it
is proposed to use one of two Runge–Kutta schemes defined by

yn+1 = yn + 1
2 (k1 + k2),

where k1 = hf(yn) and

k2 =

{
hf(yn + k1) scheme I ,

hf(yn + 1
2 (k1 + k2)) scheme II .

What is the order of each scheme? Determine the A-stability of each scheme.
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Paper 3, Section II

19C Numerical Analysis
Define the QR factorization of an m× n matrix A and explain how it can be used

to solve the least squares problem of finding the x∗ ∈ Rn which minimises ‖Ax− b‖ where
b ∈ Rm, m > n, and the norm is the Euclidean one.

Define a Householder (reflection) transformationH and show that it is an orthogonal
matrix.

Using a Householder reflection, solve the least squares problem for

A =




2 4 7
0 3 −1
0 0 2
0 0 1
0 0 −2




, b =




9
−7
3
1

−1




,

giving both x∗ and ‖Ax∗ − b‖.
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Paper 1, Section I

6C Numerical Analysis

The real non-singular matrix A ∈ Rm×m is written in the form A = AD +AU +AL,

where the matrices AD, AU , AL ∈ Rm×m are diagonal and non-singular, strictly upper-

triangular and strictly lower-triangular respectively.

Given b ∈ Rm, the Jacobi iteration for solving Ax = b is

ADxn = −(AU +AL)xn−1 + b, n = 1, 2...

where the nth iterate is xn ∈ Rm. Show that the iteration converges to the solution x of

Ax = b, independent of the starting choice x0, if and only if the spectral radius ρ(H) of

the matrix H = −A−1
D (AU +AL) is less than 1.

Hence find the range of values of the real number µ for which the iteration will

converge when

A =




1 0 −µ

−µ 3 −µ

−4µ 0 4


 .
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Paper 4, Section I

8C Numerical Analysis

Suppose that w(x) > 0 for all x ∈ (a, b). The weights b1, ..., bn and nodes x1, ..., xn are

chosen so that the Gaussian quadrature formula

∫ b

a
w(x)f(x)dx ∼

n∑

k=1

bkf(xk)

is exact for every polynomial of degree 2n−1. Show that the bi, i = 1, ..., n are all positive.

When w(x) = 1 + x2, a = −1 and b = 1, the first three underlying orthogonal

polynomials are p0(x) = 1, p1(x) = x, and p2(x) = x2 − 2/5. Find x1, x2 and b1, b2 when

n = 2.
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Paper 2, Section II

18C Numerical Analysis

The real orthogonal matrix Ω[p,q] ∈ Rm×m with 1 6 p < q 6 m is a Givens rotation

with rotation angle θ. Write down the form of Ω[p,q].

Show that for any matrix A ∈ Rm×m it is possible to choose θ such that the matrix

Ω[p,q]A satisfies (Ω[p,q]A)q,j = 0 for any j, where 1 6 j 6 m.

Let

A =




1 3 2

1 4 4√
2 7/

√
2 4

√
2


 .

By applying a sequence of Givens rotations of the form Ω[1,3]Ω[1,2], chosen to reduce the

elements in the first column below the main diagonal to zero, find a factorisation of the

matrix A ∈ R3×3 of the form A = QR, where Q ∈ R3×3 is an orthogonal matrix and

R ∈ R3×3 is an upper-triangular matrix for which the leading non-zero element in each

row is positive.
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Paper 3, Section II

19C Numerical Analysis

Starting from Taylor’s theorem with integral form of the remainder, prove the Peano

kernel theorem: the error of an approximant L(f) applied to f(x) ∈ Ck+1[a, b] can be

written in the form

L(f) =
1

k!

∫ b

a
K(θ)f (k+1)(θ)dθ.

You should specify the form of K(θ). Here it is assumed that L(f) is identically zero when

f(x) is a polynomial of degree k. State any other necessary conditions.

Setting a = 0 and b = 2, find K(θ) and show that it is negative for 0 < θ < 2 when

L(f) =

∫ 2

0
f(x)dx− 1

3
(f(0) + 4f(1) + f(2)) for f(x) ∈ C4[0, 2].

Hence determine the minimum value of ρ for which

|L(f)| 6 ρ‖f (4)||∞,

holds for all f(x) ∈ C4[0, 2].
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1/I/6D Numerical Analysis

Show that if A = LDLT , where L ∈ Rm×m is a lower triangular matrix with all
elements on the main diagonal being unity and D ∈ Rm×m is a diagonal matrix with
positive elements, then A is positive definite. Find L and the corresponding D when

A =




1 −1 2
−1 3 1

2 1 3


 .

2/II/18D Numerical Analysis

(a) A Householder transformation (reflection) is given by

H = I − 2uuT

‖u‖2 ,

where H ∈ Rm×m, u ∈ Rm, and I is the m ×m unit matrix and u is a non-zero vector
which has norm ‖u‖ = (

∑m
i=1 u

2
i )

1/2. Show that H is orthogonal.

(b) Suppose that A ∈ Rm×n, x ∈ Rn and b ∈ Rm with n < m. Show that if x
minimises ‖Ax− b‖2 then it also minimises ‖QAx−Qb‖2, where Q is an arbitrary m×m
orthogonal matrix.

(c) Using Householder reflection, find the x that minimises ‖Ax− b‖2 when

A =




1 2
0 4
0 2
0 4


 b =




1
1
2
−1


 .
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3/II/19D Numerical Analysis

Starting from the Taylor formula for f(x) ∈ Ck+1[a, b] with an integral remainder
term, show that the error of an approximant L(f) can be written in the form (Peano
kernel theorem)

L(f) =
1

k!

∫ b

a

K(θ)f (k+1)(θ)dθ,

when L(f), which is identically zero if f(x) is a polynomial of degree k, satisfies conditions
that you should specify. Give an expression for K(θ).

Hence determine the minimum value of c in the inequality

|L(f)| ≤ c‖f ′′′‖∞ ,

when

L(f) = f ′(1)− 1

2
(f(2)− f(0)) for f(x) ∈ C3[0, 2].

4/I/8D Numerical Analysis

Show that the Chebyshev polynomials, Tn(x) = cos(n cos−1 x) , n = 0, 1, 2, . . .
obey the orthogonality relation

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
π

2
δn,m(1 + δn,0).

State briefly how an optimal choice of the parameters ak, xk, k = 1, 2 . . . n is made
in the Gaussian quadrature formula

∫ 1

−1

f(x)√
1− x2

dx ∼
n∑

k=1

akf(xk).

Find these parameters for the case n = 3.
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1/I/6F Numerical Analysis

Solve the least squares problem



1 3
0 2
0 2
0 1



[
x1
x2

]
=




4
1
4

−1




using QR method with Householder transformation. (A solution using normal equations
is not acceptable.)

2/II/18F Numerical Analysis

For a symmetric, positive definite matrix A with the spectral radius ρ(A), the linear
system Ax = b is solved by the iterative procedure

x(k+1) = x(k) − τ(Ax(k) − b), k ≥ 0 ,

where τ is a real parameter. Find the range of τ that guarantees convergence of x(k) to
the exact solution for any choice of x(0).

3/II/19F Numerical Analysis

Prove that the monic polynomials Qn, n ≥ 0, orthogonal with respect to a given
weight function w(x) > 0 on [a, b], satisfy the three-term recurrence relation

Qn+1(x) = (x− an)Qn(x)− bnQn−1(x), n ≥ 0 .

where Q−1(x) ≡ 0, Q0(x) ≡ 1. Express the values an and bn in terms of Qn and Qn−1

and show that bn > 0.

4/I/8F Numerical Analysis

Given f ∈ C3[0, 2], we approximate f ′(0) by the linear combination

µ(f) = −3

2
f(0) + 2f(1)− 1

2
f(2) .

Using the Peano kernel theorem, determine the least constant c in the inequality

|f ′(0)− µ(f)| ≤ c ‖f ′′′‖∞ ,

and give an example of f for which the inequality turns into equality.
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1/I/6D Numerical Analysis

(a) Perform the LU-factorization with column pivoting of the matrix

A =




2 1 1
4 1 0

−2 2 1


 .

(b) Explain briefly why every nonsingular matrix A admits an LU-factorization
with column pivoting.

2/II/18D Numerical Analysis

(a) For a positive weight function w, let

∫ 1

−1

f(x)w(x) dx ≈
n∑

i=0

aif(xi)

be the corresponding Gaussian quadrature with n+1 nodes. Prove that all the coefficients
ai are positive.

(b) The integral

I(f) =

∫ 1

−1

f(x)w(x) dx

is approximated by a quadrature

In(f) =
n∑

i=0

a
(n)
i f(x

(n)
i )

which is exact on polynomials of degree 6 n and has positive coefficients a
(n)
i . Prove that,

for any f continuous on [−1, 1], the quadrature converges to the integral, i.e.,

|I(f)− In(f)| → 0 as n→ ∞.

[You may use the Weierstrass theorem: for any f continuous on [−1, 1], and for any ε > 0,
there exists a polynomial Q of degree n=n(ε, f) such that max

x∈[−1,1]
|f(x)−Q(x)| < ε.]
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3/II/19D Numerical Analysis

(a) Define the QR factorization of a rectangular matrix and explain how it can be
used to solve the least squares problem of finding an x∗ ∈ Rn such that

‖Ax∗ − b‖ = min
x∈Rn

‖Ax− b‖, where A ∈ Rm×n, b ∈ Rm, m > n,

and the norm is the Euclidean distance ‖y‖ =
√∑m

i=1 |yi|2.
(b) Define a Householder transformation (reflection) H and prove that H is an

orthogonal matrix.

(c) Using Householder reflection, solve the least squares problem for the case

A =



2 4
1 −1
2 1


 , b =



1
5
1


 ,

and find the value of ‖Ax∗ − b‖ = min
x∈R2

‖Ax− b‖.

4/I/8D Numerical Analysis

(a) Given the data

xi −1 0 1 3

f(xi) −7 −3 −3 9
,

find the interpolating cubic polynomial p ∈ P3 in the Newton form, and transform it to
the power form.

(b) We add to the data one more value f(xi) at xi = 2. Find the power form of
the interpolating quartic polynomial q ∈ P4 to the extended data

xi −1 0 1 2 3

f(xi) −7 −3 −3 −7 9
.

Part IB 2006

20062006



31

1/I/6F Numerical Analysis

Determine the Cholesky factorization (without pivoting) of the matrix

A =

[
2 −4 2
−4 10 + λ 2 + 3λ
2 2 + 3λ 23 + 9λ

]

where λ is a real parameter. Hence, find the range of values of λ for which the matrix A
is positive definite.

2/II/18F Numerical Analysis

(a) Let {Qn}n>0 be a set of polynomials orthogonal with respect to some inner
product ( · , · ) in the interval [a, b]. Write explicitly the least-squares approximation to
f ∈ C[a, b] by an nth-degree polynomial in terms of the polynomials {Qn}n>0.

(b) Let an inner product be defined by the formula

(g, h) =

∫ 1

−1

(1− x2)−
1
2 g(x)h(x)dx.

Determine the nth degree polynomial approximation of f(x) = (1− x2)
1
2 with respect to

this inner product as a linear combination of the underlying orthogonal polynomials.

3/II/19F Numerical Analysis

Given real µ 6= 0, we consider the matrix

A =




1
µ 1 0 0

−1 1
µ 1 0

0 −1 1
µ 1

0 0 −1 1
µ


 .

Construct the Jacobi and Gauss–Seidel iteration matrices originating in the solution of
the linear system Ax = b.

Determine the range of real µ 6= 0 for which each iterative procedure converges.

4/I/8F Numerical Analysis

Define Gaussian quadrature.

Evaluate the coefficients of the Gaussian quadrature of the integral
∫ 1

−1

(1− x2)f(x)dx

which uses two function evaluations.
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2/I/9A Numerical Analysis

Determine the coefficients of Gaussian quadrature for the evaluation of the integral

∫ 1

0

f(x)x dx

that uses two function evaluations.

2/II/20A Numerical Analysis

Given an m×n matrix A and b ∈ Rm, prove that the vector x ∈ Rn is the solution
of the least-squares problem for Ax ≈ b if and only if AT (Ax− b) = 0. Let

A =




1 2
−3 1
1 3
4 1


 , b =




3
0
−1
2


 .

Determine the solution of the least-squares problem for Ax ≈ b.

3/I/11A Numerical Analysis

The linear system 

α 2 1
1 α 2
2 1 α


x = b,

where real α 6= 0 and b ∈ R3 are given, is solved by the iterative procedure

x(k+1) = − 1

α



0 2 1
1 0 2
2 1 0


x(k) +

1

α
b, k > 0.

Determine the conditions on α that guarantee convergence.

3/II/22A Numerical Analysis

Given f ∈ C3[0, 1], we approximate f ′( 13 ) by the linear combination

T [f ] = −5

3
f(0) +

4

3
f( 12 ) +

1

3
f(1) .

By finding the Peano kernel, determine the least constant c such that

∣∣T [f ]− f ′( 13 )
∣∣ ≤ c

∥∥f ′′′∥∥
∞.
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2/I/5B Numerical Analysis

Let

A =




1 a a2 a3

a3 1 a a2

a2 a3 1 a
a a2 a3 1


 , b =




γ
0
0
γa


 , γ = 1− a4 6= 0.

Find the LU factorization of the matrix A and use it to solve the system Ax = b.

2/II/14B Numerical Analysis

Let
f ′′(0) ≈ a0f(−1) + a1f(0) + a2f(1) = µ(f)

be an approximation of the second derivative which is exact for f ∈ P2, the set of
polynomials of degree ≤ 2, and let

e(f) = f ′′(0)− µ(f)

be its error.

(a) Determine the coefficients a0, a1, a2.

(b) Using the Peano kernel theorem prove that, for f ∈ C3[−1, 1], the set of three-
times continuously differentiable functions, the error satisfies the inequality

|e(f)| ≤ 1

3
max

x∈[−1,1]
|f ′′′(x)| .

Part IB 2003

20032003



23

3/I/6B Numerical Analysis

Given (n+ 1) distinct points x0, x1, . . . , xn, let

`i(x) =
n∏

k=0
k 6=i

x− xk
xi − xk

be the fundamental Lagrange polynomials of degree n, let

ω(x) =
n∏

i=0

(x− xi),

and let p be any polynomial of degree ≤ n.

(a) Prove that
∑n
i=0 p(xi)`i(x) ≡ p(x).

(b) Hence or otherwise derive the formula

p(x)

ω(x)
=

n∑

i=0

Ai
x− xi

, Ai =
p(xi)

ω′(xi)
,

which is the decomposition of p(x)/ω(x) into partial fractions.

3/II/16B Numerical Analysis

The functions H0,H1, . . . are generated by the Rodrigues formula:

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

(a) Show that Hn is a polynomial of degree n, and that the Hn are orthogonal with
respect to the scalar product

(f, g) =

∫ ∞

−∞
f(x)g(x)e−x

2

dx .

(b) By induction or otherwise, prove that the Hn satisfy the three-term recurrence
relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x) .

[Hint: you may need to prove the equality H ′
n(x) = 2nHn−1(x) as well.]
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2/I/5B Numerical Analysis

Applying the Gram–Schmidt orthogonalization, compute a “skinny”
QR-factorization of the matrix

A =



1 1 2
1 3 6
1 1 0
1 3 4


 ,

i.e. find a 4×3 matrix Q with orthonormal columns and an upper triangular 3×3 matrix
R such that A = QR.

2/II/14B Numerical Analysis

Let f ∈ C[a, b] and let n+ 1 distinct points x0, . . . , xn ∈ [a, b] be given.

(a) Define the divided difference f [x0, . . . , xn] of order n in terms of interpolating
polynomials. Prove that it is a symmetric function of the variables xi, i = 0, . . . , n.

(b) Prove the recurrence relation

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

(c) Hence or otherwise deduce that, for any i 6= j, we have

f [x0, . . . , xn] =
f [x0, . . . , xi−1, xi+1, . . . , xn]− f [x0, . . . , xj−1, xj+1, . . . , xn]

xj − xi
.

(d) From the formulas above, show that, for any i = 1, . . . , n− 1,

f [x0, . . . , xi−1, xi+1, . . . , xn] = γf [x0, . . . , xn−1] + (1− γ)f [x1, . . . , xn],

where γ =
xi − x0
xn − x0

.

3/I/6B Numerical Analysis

For numerical integration, a quadrature formula

∫ b

a

f(x) dx ≈
n∑

i=0

aif(xi)

is applied which is exact on Pn, i.e., for all polynomials of degree n.

Prove that such a formula is exact for all f ∈ P2n+1 if and only if xi, i = 0, . . . , n, are

the zeros of an orthogonal polynomial pn+1 ∈ Pn+1 which satisfies
∫ b
a
pn+1(x)r(x) dx = 0

for all r ∈ Pn. [You may assume that pn+1 has (n+ 1) distinct zeros.]
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3/II/16B Numerical Analysis

(a) Consider a system of linear equations Ax = b with a non-singular square n× n
matrix A. To determine its solution x = x∗ we apply the iterative method

xk+1 = Hxk + v.

Here v ∈ Rn, while the matrix H ∈ Rn×n is such that x∗ = Hx∗ + v implies Ax∗ = b.
The initial vector x0 ∈ Rn is arbitrary. Prove that, if the matrix H possesses n linearly
independent eigenvectors w1, . . . , wn whose corresponding eigenvalues λ1, . . . , λn satisfy
maxi |λi| < 1, then the method converges for any choice of x0, i.e. xk → x∗ as k → ∞.

(b) Describe the Jacobi iteration method for solving Ax = b. Show directly from
the definition of the method that, if the matrix A is strictly diagonally dominant by rows,
i.e.

|aii|−1
n∑

j=1,j 6=i
|aij | ≤ γ < 1, i = 1, . . . , n,

then the method converges.
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2/I/5E Numerical Analysis

Find an LU factorization of the matrix

A =




2 −1 3 2
−4 3 −4 −2
4 −2 3 6

−6 5 −8 1


 ,

and use it to solve the linear system Ax = b, where

b =




−2
2
4

11


 .

2/II/14E Numerical Analysis

(a) Let B be an n × n positive-definite, symmetric matrix. Define the Cholesky
factorization of B and prove that it is unique.

(b) Let A be an m×n matrix, m > n, such that rankA = n. Prove the uniqueness
of the “skinny QR factorization”

A = QR,

where the matrixQ ism×n with orthonormal columns, while R is an n×n upper-triangular
matrix with positive diagonal elements.

[Hint: Show that you may choose R as a matrix that features in the Cholesky factorization
of B = ATA.]

3/I/6E Numerical Analysis

Given f ∈ Cn+1[a, b], let the nth-degree polynomial p interpolate the values f(xi),
i = 0, 1, . . . , n, where x0, x1, . . . , xn ∈ [a, b] are distinct. Given x ∈ [a, b], find the error
f(x)− p(x) in terms of a derivative of f .
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3/II/16E Numerical Analysis

Let the monic polynomials pn, n > 0, be orthogonal with respect to the weight
function w(x) > 0, a < x < b, where the degree of each pn is exactly n.

(a) Prove that each pn, n > 1, has n distinct zeros in the interval (a, b).

(b) Suppose that the pn satisfy the three-term recurrence relation

pn(x) = (x− an)pn−1(x)− b2npn−2(x), n > 2,

where p0(x) ≡ 1, p1(x) = x− a1. Set

An =




a1 b2 0 · · · 0

b2 a2 b3
. . .

...

0
. . .

. . .
. . . 0

...
. . . bn−1 an−1 bn

0 · · · 0 bn an



, n > 2.

Prove that pn(x) = det(xI −An), n > 2, and deduce that all the eigenvalues of An reside
in (a, b).
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