Part IB

Metric and Topological Spaces

Year

3G Metric and Topological Spaces

Let X be a metric space.

- (a) What does it mean for X to be compact? What does it mean for X to be $sequentially\ compact$?
 - (b) Prove that if X is compact then X is sequentially compact.

Paper 2, Section I

4G Metric and Topological Spaces

- (a) Let $f: X \to Y$ be a continuous surjection of topological spaces. Prove that, if X is connected, then Y is also connected.
- (b) Let $g:[0,1] \to [0,1]$ be a continuous map. Deduce from part (a) that, for every y between g(0) and g(1), there is $x \in [0,1]$ such that g(x) = y. [You may not assume the Intermediate Value Theorem, but you may use the fact that suprema exist in \mathbb{R} .]

Paper 1, Section II

12G Metric and Topological Spaces

Consider the set of sequences of integers

$$X = \{(x_1, x_2, \ldots) \mid x_n \in \mathbb{Z} \text{ for all } n\}.$$

Define

$$n_{\min}((x_n), (y_n)) = \begin{cases} \infty & x_n = y_n \text{ for all } n\\ \min\{n \mid x_n \neq y_n\} & \text{otherwise} \end{cases}$$

for two sequences $(x_n), (y_n) \in X$. Let

$$d((x_n), (y_n)) = 2^{-n_{\min}((x_n), (y_n))}$$

where, as usual, we adopt the convention that $2^{-\infty} = 0$.

- (a) Prove that d defines a metric on X.
- (b) What does it mean for a metric space to be complete? Prove that (X, d) is complete.
 - (c) Is (X, d) path connected? Justify your answer.

13G Metric and Topological Spaces

- (a) Define the subspace, quotient and product topologies.
- (b) Let X be a compact topological space and Y a Hausdorff topological space. Prove that a continuous bijection $f: X \to Y$ is a homeomorphism.
- (c) Let $S = [0,1] \times [0,1]$, equipped with the product topology. Let \sim be the smallest equivalence relation on S such that $(s,0) \sim (s,1)$ and $(0,t) \sim (1,t)$, for all $s,t \in [0,1]$. Let

$$T = \{(x, y, z) \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1\}$$

equipped with the subspace topology from \mathbb{R}^3 . Prove that S/\sim and T are homeomorphic.

[You may assume without proof that S is compact.]

3E Metric and Topological Spaces

What does it mean to say that a topological space is *connected*? If X is a topological space and $x \in X$, show that there is a connected subspace K_x of X so that if S is any other connected subspace containing x then $S \subseteq K_x$.

Show that the sets K_x partition X.

Paper 2, Section I

4E Metric and Topological Spaces

What does it mean to say that d is a *metric* on a set X? What does it mean to say that a subset of X is *open* with respect to the metric d? Show that the collection of subsets of X that are open with respect to d satisfies the axioms of a topology.

For X = C[0,1], the set of continuous functions $f:[0,1] \to \mathbb{R}$, show that the metrics

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx$$
$$d_2(f,g) = \left[\int_0^1 |f(x) - g(x)|^2 dx \right]^{1/2}$$

give different topologies.

Paper 1, Section II

12E Metric and Topological Spaces

What does it mean to say that a topological space is *compact*? Prove directly from the definition that [0,1] is compact. Hence show that the unit circle $S^1 \subset \mathbb{R}^2$ is compact, proving any results that you use. [You may use without proof the continuity of standard functions.]

The set \mathbb{R}^2 has a topology \mathcal{T} for which the closed sets are the empty set and the finite unions of vector subspaces. Let X denote the set $\mathbb{R}^2 \setminus \{0\}$ with the subspace topology induced by \mathcal{T} . By considering the subspace topology on $S^1 \subset \mathbb{R}^2$, or otherwise, show that X is compact.

13E Metric and Topological Spaces

Let $X = \{2, 3, 4, 5, 6, 7, 8, ...\}$ and for each $n \in X$ let

$$U_n = \{ d \in X \mid d \text{ divides } n \}.$$

Prove that the set of unions of the sets U_n forms a topology on X.

Prove or disprove each of the following:

- (i) X is Hausdorff;
- (ii) X is compact.

If Y and Z are topological spaces, Y is the union of closed subspaces A and B, and $f:Y\to Z$ is a function such that both $f|_A:A\to Z$ and $f|_B:B\to Z$ are continuous, show that f is continuous. Hence show that X is path-connected.

3E Metric and Topological Spaces

Let X and Y be topological spaces.

- (a) Define what is meant by the *product topology* on $X \times Y$. Define the *projection* $maps\ p\colon X\times Y\to X$ and $q\colon X\times Y\to Y$ and show they are continuous.
- (b) Consider $\Delta = \{(x, x) \mid x \in X\}$ in $X \times X$. Show that X is Hausdorff if and only if Δ is a closed subset of $X \times X$ in the product topology.

Paper 2, Section I

4E Metric and Topological Spaces

Let $f:(X,d)\to (Y,e)$ be a function between metric spaces.

- (a) Give the ϵ - δ definition for f to be *continuous*. Show that f is continuous if and only if $f^{-1}(U)$ is an open subset of X for each open subset U of Y.
- (b) Give an example of f such that f is not continuous but f(V) is an open subset of Y for every open subset V of X.

Paper 1, Section II

12E Metric and Topological Spaces

Consider \mathbb{R} and \mathbb{R}^2 with their usual Euclidean topologies.

- (a) Show that a non-empty subset of \mathbb{R} is connected if and only if it is an interval. Find a compact subset $K \subset \mathbb{R}$ for which $\mathbb{R} \setminus K$ has infinitely many connected components.
- (b) Let T be a countable subset of \mathbb{R}^2 . Show that $\mathbb{R}^2 \setminus T$ is path-connected. Deduce that \mathbb{R}^2 is not homeomorphic to \mathbb{R} .

Paper 4, Section II

13E Metric and Topological Spaces

Let $f: X \to Y$ be a continuous map between topological spaces.

- (a) Assume X is compact and that $Z\subseteq X$ is a closed subset. Prove that Z and f(Z) are both compact.
 - (b) Suppose that
 - (i) $f^{-1}(\{y\})$ is compact for each $y \in Y$, and
 - (ii) if A is any closed subset of X, then f(A) is a closed subset of Y.

Show that if $K \subseteq Y$ is compact, then $f^{-1}(K)$ is compact.

[Hint: Given an open cover $f^{-1}(K) \subseteq \bigcup_{i \in I} U_i$, find a finite subcover, say $f^{-1}(\{y\}) \subseteq \bigcup_{i \in I_y} U_i$, for each $y \in K$; use closedness of $X \setminus \bigcup_{i \in I_y} U_i$ and property (ii) to produce an open cover of K.]

3E Metric and Topological Spaces

Let X be a topological space and $A \subseteq X$ be a subset. A *limit point* of A is a point $x \in X$ such that any open neighbourhood U of x intersects A. Show that A is closed if and only if it contains all its limit points. Explain what is meant by the *interior* Int(A) and the *closure* \overline{A} of A. Show that if A is connected, then \overline{A} is connected.

Paper 2, Section I

4E Metric and Topological Spaces

Consider \mathbb{R} and \mathbb{Q} with their usual topologies.

- (a) Show that compact subsets of a Hausdorff topological space are closed. Show that compact subsets of $\mathbb R$ are closed and bounded.
- (b) Show that there exists a complete metric space (X,d) admitting a surjective continuous map $f\colon X\to \mathbb{Q}$.

Paper 1, Section II

12E Metric and Topological Spaces

Let p be a prime number. Define what is meant by the p-adic metric d_p on \mathbb{Q} . Show that for $a, b, c \in \mathbb{Q}$ we have

$$d_{p}(a,b) \leqslant \max\{d_{p}(a,c), d_{p}(c,b)\}.$$

Show that the sequence (a_n) , where $a_n = 1 + p + \cdots + p^{n-1}$, converges to some element in \mathbb{Q} .

For $a \in \mathbb{Q}$ define $|a|_p = d_p(a,0)$. Show that if $a,b \in \mathbb{Q}$ and if $|a|_p \neq |b|_p$, then

$$|a+b|_p = \max\{|a|_p, |b|_p\}.$$

Let $a \in \mathbb{Q}$ and let $B(a, \delta)$ be the open ball with centre a and radius $\delta > 0$, with respect to the metric d_p . Show that $B(a, \delta)$ is a closed subset of \mathbb{Q} with respect to the topology induced by d_p .

13E Metric and Topological Spaces

- (a) Let X be a topological space. Define what is meant by a *quotient* of X and describe the *quotient topology* on the quotient space. Give an example in which X is Hausdorff but the quotient space is not Hausdorff.
- (b) Let T^2 be the 2-dimensional torus considered as the quotient $\mathbb{R}^2/\mathbb{Z}^2$, and let $\pi: \mathbb{R}^2 \to T^2$ be the quotient map.
 - (i) Let B(u,r) be the open ball in \mathbb{R}^2 with centre u and radius r < 1/2. Show that $U = \pi(B(u,r))$ is an open subset of T^2 and show that $\pi^{-1}(U)$ has infinitely many connected components. Show each connected component is homeomorphic to B(u,r).
 - (ii) Let $\alpha \in \mathbb{R}$ be an irrational number and let $L \subset \mathbb{R}^2$ be the line given by the equation $y = \alpha x$. Show that $\pi(L)$ is dense in T^2 but $\pi(L) \neq T^2$.

Paper 3, Section I

3E Metric and Topological Spaces

Define what it means for a topological space X to be (i) connected (ii) path-connected.

Prove that any path-connected space X is connected. [You may assume the interval [0,1] is connected.]

Give a counterexample (without justification) to the converse statement.

Paper 2, Section I

4E Metric and Topological Spaces

Let X and Y be topological spaces and $f: X \to Y$ a continuous map. Suppose H is a subset of X such that $f(\overline{H})$ is closed (where \overline{H} denotes the closure of H). Prove that $f(\overline{H}) = \overline{f(H)}$.

Give an example where f, X, Y and H are as above but $f(\overline{H})$ is not closed.

Paper 1, Section II

12E Metric and Topological Spaces

Give the definition of a metric on a set X and explain how this defines a topology on X.

Suppose (X, d) is a metric space and U is an open set in X. Let $x, y \in X$ and $\epsilon > 0$ such that the open ball $B_{\epsilon}(y) \subseteq U$ and $x \in B_{\epsilon/2}(y)$. Prove that $y \in B_{\epsilon/2}(x) \subseteq U$.

Explain what it means (i) for a set S to be *dense* in X, (ii) to say \mathcal{B} is a *base* for a topology \mathcal{T} .

Prove that any metric space which contains a countable dense set has a countable basis.

Paper 4, Section II

13E Metric and Topological Spaces

Explain what it means for a metric space (M,d) to be (i) compact, (ii) sequentially compact. Prove that a compact metric space is sequentially compact, stating clearly any results that you use.

Let (M,d) be a compact metric space and suppose $f: M \to M$ satisfies d(f(x),f(y))=d(x,y) for all $x,y\in M$. Prove that f is surjective, stating clearly any results that you use. [Hint: Consider the sequence $(f^n(x))$ for $x\in M$.]

Give an example to show that the result does not hold if M is not compact.

Paper 3, Section I

3E Metric and Topological Spaces

Suppose (X, d) is a metric space. Do the following necessarily define a metric on X? Give proofs or counterexamples.

- (i) $d_1(x,y) = kd(x,y)$ for some constant k > 0, for all $x, y \in X$.
- (ii) $d_2(x, y) = \min\{1, d(x, y)\}\$ for all $x, y \in X$.
- (iii) $d_3(x, y) = (d(x, y))^2$ for all $x, y \in X$.

Paper 2, Section I

4E Metric and Topological Spaces

Let X and Y be topological spaces. What does it mean to say that a function $f: X \to Y$ is *continuous*?

Are the following statements true or false? Give proofs or counterexamples.

- (i) Every continuous function $f: X \to Y$ is an open map, i.e. if U is open in X then f(U) is open in Y.
 - (ii) If $f: X \to Y$ is continuous and bijective then f is a homeomorphism.
 - (iii) If $f: X \to Y$ is continuous, open and bijective then f is a homeomorphism.

Paper 1, Section II

12E Metric and Topological Spaces

Define what it means for a topological space to be *compact*. Define what it means for a topological space to be *Hausdorff*.

Prove that a compact subspace of a Hausdorff space is closed. Hence prove that if C_1 and C_2 are compact subspaces of a Hausdorff space X then $C_1 \cap C_2$ is compact.

A subset U of \mathbb{R} is open in the *cocountable topology* if U is empty or its complement in \mathbb{R} is countable. Is \mathbb{R} Hausdorff in the cocountable topology? Which subsets of \mathbb{R} are compact in the cocountable topology?

Paper 4, Section II

13E Metric and Topological Spaces

Explain what it means for a metric space to be complete.

Let X be a metric space. We say the subsets A_i of X, with $i \in \mathbb{N}$, form a descending sequence in X if $A_1 \supset A_2 \supset A_3 \supset \cdots$.

Prove that the metric space X is complete if and only if any descending sequence $A_1 \supset A_2 \supset \cdots$ of non-empty closed subsets of X, such that the diameters of the subsets A_i converge to zero, has an intersection $\bigcap_{i=1}^{\infty} A_i$ that is non-empty.

[Recall that the diameter $\mathrm{diam}(S)$ of a set S is the supremum of the set $\{d(x,y):x,y\in S\}.]$

Give examples of

- (i) a metric space X, and a descending sequence $A_1 \supset A_2 \supset \cdots$ of non-empty closed subsets of X, with $\operatorname{diam}(A_i)$ converging to 0 but $\bigcap_{i=1}^{\infty} A_i = \emptyset$.
- (ii) a descending sequence $A_1 \supset A_2 \supset \cdots$ of non-empty sets in \mathbb{R} with diam (A_i) converging to 0 but $\bigcap_{i=1}^{\infty} A_i = \emptyset$.
- (iii) a descending sequence $A_1 \supset A_2 \supset \cdots$ of non-empty closed sets in \mathbb{R} with $\bigcap_{i=1}^{\infty} A_i = \emptyset$.

3G Metric and Topological Spaces

Let X be a metric space with the metric $d: X \times X \to \mathbb{R}$.

- (i) Show that if X is compact as a topological space, then X is complete.
- (ii) Show that the completeness of X is not a topological property, i.e. give an example of two metrics d, d' on a set X, such that the associated topologies are the same, but (X, d) is complete and (X, d') is not.

Paper 2, Section I

4G Metric and Topological Spaces

Let X be a topological space. Prove or disprove the following statements.

- (i) If X is discrete, then X is compact if and only if it is a finite set.
- (ii) If Y is a subspace of X and X, Y are both compact, then Y is closed in X.

Paper 1, Section II

12G Metric and Topological Spaces

Consider the sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$, a subset of \mathbb{R}^3 , as a subspace of \mathbb{R}^3 with the Euclidean metric.

- (i) Show that S^2 is compact and Hausdorff as a topological space.
- (ii) Let $X=S^2/\sim$ be the quotient set with respect to the equivalence relation identifying the antipodes, i.e.

$$(x,y,z) \sim (x',y',z') \iff (x',y',z') = (x,y,z) \text{ or } (-x,-y,-z).$$

Show that X is compact and Hausdorff with respect to the quotient topology.

Paper 4, Section II

13G Metric and Topological Spaces

Let X be a topological space. A connected component of X means an equivalence class with respect to the equivalence relation on X defined as:

 $x \sim y \iff x, y$ belong to some connected subspace of X.

- (i) Show that every connected component is a connected and closed subset of X.
- (ii) If X, Y are topological spaces and $X \times Y$ is the product space, show that every connected component of $X \times Y$ is a direct product of connected components of X and Y.

3F Metric and Topological Spaces

Define the notion of a connected component of a space X.

If $A_{\alpha} \subset X$ are connected subsets of X such that $\bigcap_{\alpha} A_{\alpha} \neq \emptyset$, show that $\bigcup_{\alpha} A_{\alpha}$ is connected.

Prove that any point $x \in X$ is contained in a unique connected component.

Let $X \subset \mathbb{R}$ consist of the points $0, 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots$. What are the connected components of X?

Paper 2, Section I

4F Metric and Topological Spaces

For each case below, determine whether the given metrics d_1 and d_2 induce the same topology on X. Justify your answers.

(i)
$$X = \mathbb{R}^2$$
, $d_1((x_1, y_1), (x_2, y_2)) = \sup\{|x_1 - x_2|, |y_1 - y_2|\}\$
 $d_2((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|.$

(ii)
$$X = C[0,1], d_1(f,g) = \sup_{t \in [0,1]} |f(t) - g(t)|$$

$$d_2(f,g) = \int_0^1 |f(t) - g(t)| dt.$$

Paper 1, Section II

12F Metric and Topological Spaces

A topological space X is said to be *normal* if each point of X is a closed subset of X and for each pair of closed sets $C_1, C_2 \subset X$ with $C_1 \cap C_2 = \emptyset$ there are open sets $U_1, U_2 \subset X$ so that $C_i \subset U_i$ and $U_1 \cap U_2 = \emptyset$. In this case we say that the U_i separate the C_i .

Show that a compact Hausdorff space is normal. [Hint: first consider the case where C_2 is a point.]

For $C \subset X$ we define an equivalence relation \sim_C on X by $x \sim_C y$ for all $x, y \in C$, $x \sim_C x$ for $x \notin C$. If C, C_1 and C_2 are pairwise disjoint closed subsets of a normal space X, show that C_1 and C_2 may be separated by open subsets U_1 and U_2 such that $U_i \cap C = \emptyset$. Deduce that the quotient space X/\sim_C is also normal.

Paper 4, Section II

13F Metric and Topological Spaces

Suppose A_1 and A_2 are topological spaces. Define the product topology on $A_1 \times A_2$. Let $\pi_i : A_1 \times A_2 \to A_i$ be the projection. Show that a map $F : X \to A_1 \times A_2$ is continuous if and only if $\pi_1 \circ F$ and $\pi_2 \circ F$ are continuous.

Prove that if A_1 and A_2 are connected, then $A_1 \times A_2$ is connected.

Let X be the topological space whose underlying set is \mathbb{R} , and whose open sets are of the form (a, ∞) for $a \in \mathbb{R}$, along with the empty set and the whole space. Describe the open sets in $X \times X$. Are the maps $f, g: X \times X \to X$ defined by f(x, y) = x + y and g(x, y) = xy continuous? Justify your answers.

Paper 2, Section I

4G Metric and Topological Spaces

(i) Let t > 0. For $\mathbf{x} = (x, y)$, $\mathbf{x}' = (x', y') \in \mathbb{R}^2$, let

$$d(\mathbf{x}, \mathbf{x}') = |x' - x| + t|y' - y|,$$

$$\delta(\mathbf{x}, \mathbf{x}') = \sqrt{(x'-x)^2 + (y'-y)^2}.$$

(δ is the usual Euclidean metric on \mathbb{R}^2 .) Show that d is a metric on \mathbb{R}^2 and that the two metrics d, δ give rise to the same topology on \mathbb{R}^2 .

(ii) Give an example of a topology on \mathbb{R}^2 , different from the one in (i), whose induced topology (subspace topology) on the x-axis is the usual topology (the one defined by the metric d(x, x') = |x' - x|). Justify your answer.

Paper 3, Section I

3G Metric and Topological Spaces

Let X, Y be topological spaces, and suppose Y is Hausdorff.

(i) Let $f, g: X \to Y$ be two continuous maps. Show that the set

$$E(f,g) := \{ x \in X \mid f(x) = g(x) \} \subset X$$

is a closed subset of X.

(ii) Let W be a dense subset of X. Show that a continuous map $f: X \to Y$ is determined by its restriction $f|_W$ to W.

Paper 1, Section II

12G Metric and Topological Spaces

Let X be a metric space with the distance function $d: X \times X \to \mathbb{R}$. For a subset Y of X, its diameter is defined as $\delta(Y) := \sup\{d(y, y') \mid y, y' \in Y\}$.

Show that, if X is compact and $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ is an open covering of X, then there exists an $\epsilon>0$ such that every subset $Y\subset X$ with $\delta(Y)<\epsilon$ is contained in some U_{λ} .

Paper 4, Section II

13G Metric and Topological Spaces

Let X,Y be topological spaces and $X\times Y$ their product set. Let $p_Y:X\times Y\to Y$ be the projection map.

- (i) Define the product topology on $X \times Y$. Prove that if a subset $Z \subset X \times Y$ is open then $p_Y(Z)$ is open in Y.
- (ii) Give an example of X,Y and a closed set $Z\subset X\times Y$ such that $p_Y(Z)$ is not closed.
- (iii) When X is compact, show that if a subset $Z \subset X \times Y$ is closed then $p_Y(Z)$ is closed.

Paper 2, Section I

4H Metric and Topological Spaces

On the set \mathbb{Q} of rational numbers, the 3-adic metric d_3 is defined as follows: for $x, y \in \mathbb{Q}$, define $d_3(x, x) = 0$ and $d_3(x, y) = 3^{-n}$, where n is the integer satisfying $x - y = 3^n u$ where u is a rational number whose denominator and numerator are both prime to 3.

- (1) Show that this is indeed a metric on \mathbb{Q} .
- (2) Show that in (\mathbb{Q}, d_3) , we have $3^n \to 0$ as $n \to \infty$ while $3^{-n} \not\to 0$ as $n \to \infty$. Let d be the usual metric d(x, y) = |x y| on \mathbb{Q} . Show that neither the identity map $(\mathbb{Q}, d) \to (\mathbb{Q}, d_3)$ nor its inverse is continuous.

Paper 3, Section I

3H Metric and Topological Spaces

Let X be a topological space and Y be a set. Let $p: X \to Y$ be a surjection. The quotient topology on Y is defined as follows: a subset $V \subset Y$ is open if and only if $p^{-1}(V)$ is open in X.

- (1) Show that this does indeed define a topology on Y, and show that p is continuous when we endow Y with this topology.
- (2) Let Z be another topological space and $f: Y \to Z$ be a map. Show that f is continuous if and only if $f \circ p: X \to Z$ is continuous.

Paper 1, Section II

12H Metric and Topological Spaces

Let $f:X\to Y$ and $g:Y\to X$ be continuous maps of topological spaces with $f\circ g=\mathrm{id}_Y.$

- (1) Suppose that (i) Y is path-connected, and (ii) for every $y \in Y$, its inverse image $f^{-1}(y)$ is path-connected. Prove that X is path-connected.
- (2) Prove the same statement when "path-connected" is everywhere replaced by "connected".

Paper 4, Section II

13H Metric and Topological Spaces

- (1) Prove that if X is a compact topological space, then a closed subset Y of X endowed with the subspace topology is compact.
 - (2) Consider the following equivalence relation on \mathbb{R}^2 :

$$(x_1, y_1) \sim (x_2, y_2) \iff (x_1 - x_2, y_1 - y_2) \in \mathbb{Z}^2.$$

Let $X=\mathbb{R}^2/\sim$ be the quotient space endowed with the quotient topology, and let $p:\mathbb{R}^2\to X$ be the canonical surjection mapping each element to its equivalence class. Let $Z=\{(x,y)\in\mathbb{R}^2\mid y=\sqrt{2}x\}.$

- (i) Show that X is compact.
- (ii) Assuming that p(Z) is dense in X, show that $p|_Z:Z\to p(Z)$ is bijective but not homeomorphic.

Paper 2, Section I

4F Metric and Topological Spaces

Explain what is meant by a Hausdorff (topological) space, and prove that every compact subset of a Hausdorff space is closed.

Let X be an uncountable set, and consider the topology \mathcal{T} on X defined by

 $U \in \mathcal{T} \Leftrightarrow \text{ either } U = \emptyset \text{ or } X \setminus U \text{ is countable.}$

Is (X, \mathcal{T}) Hausdorff? Is every compact subset of X closed? Justify your answers.

Paper 3, Section I

4F Metric and Topological Spaces

Are the following statements true or false? Give brief justifications for your answers.

- (i) If X is a connected open subset of \mathbb{R}^n for some n, then X is path-connected.
- (ii) A cartesian product of two connected spaces is connected.
- (iii) If X is a Hausdorff space and the only connected subsets of X are singletons $\{x\}$, then X is discrete.

Paper 1, Section II

12F Metric and Topological Spaces

Given a function $f: X \to Y$ between metric spaces, we write Γ_f for the subset $\{(x, f(x)) \mid x \in X\}$ of $X \times Y$.

- (i) If f is continuous, show that Γ_f is closed in $X \times Y$.
- (ii) If Y is compact and Γ_f is closed in $X \times Y$, show that f is continuous.
- (iii) Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ such that Γ_f is closed but f is not continuous.

Paper 4, Section II

14F Metric and Topological Spaces

A nonempty subset A of a topological space X is called *irreducible* if, whenever we have open sets U and V such that $U \cap A$ and $V \cap A$ are nonempty, then we also have $U \cap V \cap A \neq \emptyset$. Show that the closure of an irreducible set is irreducible, and deduce that the closure of any singleton set $\{x\}$ is irreducible.

X is said to be a *sober* topological space if, for any irreducible closed $A \subseteq X$, there is a unique $x \in X$ such that $A = \overline{\{x\}}$. Show that any Hausdorff space is sober, but that an infinite set with the cofinite topology is not sober.

Given an arbitrary topological space (X, \mathcal{T}) , let \widehat{X} denote the set of all irreducible closed subsets of X, and for each $U \in \mathcal{T}$ let

$$\widehat{U} = \{ A \in \widehat{X} \mid U \cap A \neq \emptyset \} \ .$$

Show that the sets $\{\widehat{U} \mid U \in \mathcal{T}\}$ form a topology $\widehat{\mathcal{T}}$ on \widehat{X} , and that the mapping $U \mapsto \widehat{U}$ is a bijection from \mathcal{T} to $\widehat{\mathcal{T}}$. Deduce that $(\widehat{X},\widehat{\mathcal{T}})$ is sober. [Hint: consider the complement of an irreducible closed subset of \widehat{X} .]

1/II/12F Metric and Topological Spaces

Write down the definition of a topology on a set X.

For each of the following families \mathcal{T} of subsets of \mathbb{Z} , determine whether \mathcal{T} is a topology on \mathbb{Z} . In the cases where the answer is 'yes', determine also whether $(\mathbb{Z}, \mathcal{T})$ is a Hausdorff space and whether it is compact.

- (a) $\mathcal{T} = \{ U \subseteq \mathbb{Z} : \text{ either } U \text{ is finite or } 0 \in U \}$.
- (b) $\mathcal{T} = \{ U \subseteq \mathbb{Z} : \text{ either } \mathbb{Z} \setminus U \text{ is finite or } 0 \notin U \}$.
- (c) $\mathcal{T} = \{ U \subseteq \mathbb{Z} : \text{ there exists } k > 0 \text{ such that, for all } n, n \in U \Leftrightarrow n + k \in U \}$.
- (d) $\mathcal{T} = \{U \subseteq \mathbb{Z} : \text{ for all } n \in U, \text{ there exists } k > 0 \text{ such that } \{n + km : m \in \mathbb{Z}\} \subseteq U\}$.

2/I/4F Metric and Topological Spaces

Stating carefully any results on compactness which you use, show that if X is a compact space, Y is a Hausdorff space and $f: X \to Y$ is bijective and continuous, then f is a homeomorphism.

Hence or otherwise show that the unit circle $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is homeomorphic to the quotient space $[0,1]/\sim$, where \sim is the equivalence relation defined by

$$x \sim y \Leftrightarrow \text{ either } x = y \text{ or } \{x, y\} = \{0, 1\}$$
.

3/I/4F Metric and Topological Spaces

Explain what it means for a topological space to be connected.

Are the following subspaces of the unit square $[0,1] \times [0,1]$ connected? Justify your answers.

- (a) $\{(x,y): x \neq 0, y \neq 0, \text{ and } x/y \in \mathbb{Q}\}$.
- (b) $\{(x,y): (x=0) \text{ or } (x \neq 0 \text{ and } y \in \mathbb{Q})\}$.

4/II/14F Metric and Topological Spaces

Explain what is meant by a base for a topology. Illustrate your definition by describing bases for the topology induced by a metric on a set, and for the product topology on the cartesian product of two topological spaces.

A topological space (X, \mathcal{T}) is said to be *separable* if there is a countable subset $C \subseteq X$ which is dense, i.e. such that $C \cap U \neq \emptyset$ for every nonempty $U \in \mathcal{T}$. Show that a product of two separable spaces is separable. Show also that a metric space is separable if and only if its topology has a countable base, and deduce that every subspace of a separable metric space is separable.

Now let $X=\mathbb{R}$ with the topology $\mathcal T$ having as a base the set of all half-open intervals

$$[a, b) = \{ x \in \mathbb{R} : a \leqslant x < b \}$$

with a < b. Show that X is separable, but that the subspace $Y = \{(x, -x) : x \in \mathbb{R}\}$ of $X \times X$ is not separable.

[You may assume standard results on countability.]

1/II/12A Metric and Topological Spaces

Let X and Y be topological spaces. Define the product topology on $X \times Y$ and show that if X and Y are Hausdorff then so is $X \times Y$.

Show that the following statements are equivalent.

- (i) X is a Hausdorff space.
- (ii) The diagonal $\Delta = \{(x, x) : x \in X\}$ is a closed subset of $X \times X$, in the product topology.
- (iii) For any topological space Y and any continuous maps $f, g: Y \to X$, the set $\{y \in Y: f(y) = g(y)\}$ is closed in Y.

2/I/4A Metric and Topological Spaces

Are the following statements true or false? Give a proof or a counterexample as appropriate.

- (i) If $f:X\to Y$ is a continuous map of topological spaces and $S\subseteq X$ is compact then f(S) is compact.
- (ii) If $f: X \to Y$ is a continuous map of topological spaces and $K \subseteq Y$ is compact then $f^{-1}(K) = \{x \in X : f(x) \in K\}\}$ is compact.
- (iii) If a metric space M is complete and a metric space T is homeomorphic to M then T is complete.

3/I/4A Metric and Topological Spaces

- (a) Let X be a connected topological space such that each point x of X has a neighbourhood homeomorphic to \mathbb{R}^n . Prove that X is path-connected.
- (b) Let τ denote the topology on $\mathbb{N} = \{1, 2, \ldots\}$, such that the open sets are \mathbb{N} , the empty set, and all the sets $\{1, 2, \ldots, n\}$, for $n \in \mathbb{N}$. Prove that any continuous map from the topological space (\mathbb{N}, τ) to the Euclidean \mathbb{R} is constant.

4/II/14A Metric and Topological Spaces

- (a) For a subset A of a topological space X, define the closure cl(A) of A. Let $f: X \to Y$ be a map to a topological space Y. Prove that f is continuous if and only if $f(cl(A)) \subseteq cl(f(A))$, for each $A \subseteq X$.
- (b) Let M be a metric space. A subset S of M is called dense in M if the closure of S is equal to M.

Prove that if a metric space M is compact then it has a countable subset which is dense in M.

1/II/12F Metric and Topological Spaces

- (i) Define the product topology on $X \times Y$ for topological spaces X and Y, proving that your definition does define a topology.
- (ii) Let X be the logarithmic spiral defined in polar coordinates by $r=e^{\theta}$, where $-\infty < \theta < \infty$. Show that X (with the subspace topology from \mathbf{R}^2) is homeomorphic to the real line.

2/I/4F Metric and Topological Spaces

Which of the following subspaces of Euclidean space are connected? Justify your answers.

- (i) $\{(x, y, z) \in \mathbf{R}^3 : z^2 x^2 y^2 = 1\};$
- (ii) $\{(x,y) \in \mathbf{R}^2 : x^2 = y^2\};$
- (iii) $\{(x, y, z) \in \mathbf{R}^3 : z = x^2 + y^2\}.$

3/I/4F Metric and Topological Spaces

Which of the following are topological spaces? Justify your answers.

- (i) The set $X = \mathbf{Z}$ of the integers, with a subset A of X called "open" when A is either finite or the whole set X;
- (ii) The set $X = \mathbf{Z}$ of the integers, with a subset A of X called "open" when, for each element $x \in A$ and every even integer n, x + n is also in A.

4/II/14F Metric and Topological Spaces

- (a) Show that every compact subset of a Hausdorff topological space is closed.
- (b) Let X be a compact metric space. For F a closed subset of X and p any point of X, show that there is a point q in F with

$$d(p,q) = \inf_{q' \in F} d(p,q').$$

Suppose that for every x and y in X there is a point m in X with d(x,m) = (1/2)d(x,y) and d(y,m) = (1/2)d(x,y). Show that X is connected.

1/II/12A Metric and Topological Spaces

Suppose that (X, d_X) and (Y, d_Y) are metric spaces. Show that the definition

$$d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$$

defines a metric on the product $X \times Y$, under which the projection map $\pi: X \times Y \to Y$ is continuous.

If (X, d_X) is compact, show that every sequence in X has a subsequence converging to a point of X. Deduce that the projection map π then has the property that, for any closed subset $F \subset X \times Y$, the image $\pi(F)$ is closed in Y. Give an example to show that this fails if (X, d_X) is not assumed compact.

2/I/4A Metric and Topological Spaces

Let X be a topological space. Suppose that U_1, U_2, \ldots are connected subsets of X with $U_j \cap U_1$ non-empty for all j > 0. Prove that

$$W = \bigcup_{j>0} U_j$$

is connected. If each U_j is path-connected, prove that W is path-connected.

3/I/4A Metric and Topological Spaces

Show that a topology τ_1 is determined on the real line **R** by specifying that a nonempty subset is open if and only if it is a union of half-open intervals $\{a \leq x < b\}$, where a < b are real numbers. Determine whether (\mathbf{R}, τ_1) is Hausdorff.

Let τ_2 denote the *cofinite* topology on **R** (that is, a non-empty subset is open if and only if its complement is finite). Prove that the identity map induces a continuous map $(\mathbf{R}, \tau_1) \to (\mathbf{R}, \tau_2)$.

4/II/14A Metric and Topological Spaces

Let (M,d) be a metric space, and F a non-empty closed subset of M. For $x\in M,$ set

$$d(x,F) = \inf_{z \in F} d(x,z).$$

Prove that d(x, F) is a continuous function of x, and that it is strictly positive for $x \notin F$.

A topological space is called *normal* if for any pair of disjoint closed subsets F_1, F_2 , there exist disjoint open subsets $U_1 \supset F_1, U_2 \supset F_2$. By considering the function

$$d(x, F_1) - d(x, F_2),$$

or otherwise, deduce that any metric space is normal.

Suppose now that X is a normal topological space, and that F_1, F_2 are disjoint closed subsets in X. Prove that there exist open subsets $W_1 \supset F_1, W_2 \supset F_2$, whose closures are disjoint. In the case when $X = \mathbf{R}^2$ with the standard metric topology, $F_1 = \{(x, -1/x) : x < 0\}$ and $F_2 = \{(x, 1/x) : x > 0\}$, find explicit open subsets W_1, W_2 with the above property.