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Paper 2, Section I

3A Methods
Expand f(x) = x3 − π2x as a Fourier series on −π < x < π.

Use the series and Parseval’s theorem for Fourier series (which you may quote without
proof) to show that

∞∑

n=1

1

n6
=

π6

945
.

Paper 3, Section I

5A Methods
Calculate the Green’s function G(x; ξ) given by the solution to

d2G

dx2
−G = δ(x− ξ); G(0; ξ) = 0 and G(x; ξ)→ 0 as x→∞,

where ξ ∈ (0,∞), x ∈ (0,∞) and δ(x) is the Dirac δ-function.

Use this Green’s function to calculate an explicit solution y(x) to the boundary value
problem

d2y

dx2
− y = e−2x,

where x ∈ (0,∞), y(0) = 0 and y(x)→ 0 as x→∞.

Part IB, Paper 1
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Paper 1, Section II

13A Methods
(a) Let y0(x) be a non-trivial solution of the Sturm–Liouville problem

L(y0;λ0) = 0; y0(0) = y0(1) = 0,

where

L(y;λ) = d

dx

[
p(x)

dy

dx

]
+ [q(x) + λw(x)] y.

Show that, if y(x) and f(x) are related by

L(y;λ0) = f,

with y(x) satisfying the same boundary conditions as y0(x), then

∫ 1

0
y0f dx = 0. (?)

(b) Now assume that y0 is normalised so that

∫ 1

0
wy20 dx = 1,

and consider the problem

L(y;λ) = ym+1; y(0) = y(1) = 0,

where m is a positive integer. By choosing f appropriately in (?) deduce that, if

λ− λ0 = εmµ and y(x) = εy0(x) + ε2y1(x),

where 0 < ε� 1 and µ = O(1), then

µ =

∫ 1

0
ym+2
0 dx+O(ε).

Part IB, Paper 1 [TURN OVER]
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Paper 2, Section II

14A Methods
(a) Laplace’s equation in plane polar coordinates has the form

∇2φ =

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

]
φ(r, θ) = 0.

Using separation of variables, show that the general solution is:

φ(r, θ) = a0 + c0lnr +
∞∑

n=1

(
anr

n + cnr
−n) cosnθ +

∞∑

n=1

(
bnr

n + dnr
−n) sinnθ,

for arbitrary real constants ai, bi, ci and di.

Which (if any) constants must be zero for the solution to be regular in:

(i) the interior of a disc centred at the origin?

(ii) the exterior of a disc centred at the origin?

(iii) an annular region centred at the origin?

(b) Consider 2π-periodic functions f(θ) such that

f(θ) =
∞∑

n=1

An cosnθ,

for some coefficients An.

(i) Solve Laplace’s equation ∇2φ = 0 in the annulus 1 < r < e2 with boundary
conditions:

φ(r, θ) =

{
f(θ)− 1, r = 1
f(θ) + 1, r = e2,

for general f(θ).

(ii) Calculate the explicit solution for the specific choice:

f(θ) =





π
2 − θ, 0 6 θ < π

−3π
2 + θ, π 6 θ < 2π.

Part IB, Paper 1
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Paper 3, Section II

14A Methods
(a) You are given that f(x), g(x) and h(x) are all absolutely integrable functions

with absolutely integrable Fourier transforms f̃(k), g̃(k) and h̃(k) such that

h̃(k) = [f̃(k)][g̃(k)],

i.e. that h̃(k) is the product of f̃(k) and g̃(k). Express h(x) in terms of an integral
expression involving f(x) and g(x).

(b) If p′(x) = g(x), express p̃(k) in terms of g̃(k). [You may assume that the
transforms are well-defined.]

(c) Express the inverse transforms of cos ka and sin ka in terms of the δ-function,
where a is a positive constant.

(d) Consider the following wave problem for u(x, t):

∂2u

∂t2
=
∂2u

∂x2
; u(x, 0) = f(x),

∂

∂t
u(x, 0) = g(x).

Use parts (a)-(c) to construct d’Alembert’s solution:

u(x, t) =
1

2
[f(x+ t) + f(x− t)] +

1

2

∫ x+t

x−t
g(ξ) dξ. (?)

[No credit will be given for using any other approach to derive (?). You may assume the
expression derived in part (a) applies.]

(e) Consider the specific case

f(x) = 0; g(x) =

{
x for |x| 6 1,
0 otherwise.

For t > 1, identify a region of the x-t plane including the line x = 0 where u(x, t) = 0.
Briefly interpret this result physically. [Hint: You may find it useful to consider the lines
x = 1− t and x = −1 + t.]
[The following convention is used in this question:

f̃(k) =

∫ ∞

−∞
f(x)e−ikx dx and f(x) =

1

2π

∫ ∞

−∞
f̃(k)eikx dk.]

Part IB, Paper 1 [TURN OVER]
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Paper 4, Section II

14A Methods
(a) Using Fourier transforms with respect to x, express in integral form the general

solution θ(x, t) to the (unforced) heat equation with initial data Θ(x) and diffusivity
D > 0:

∂θ

∂t
= D

∂2θ

∂x2
; θ(x, 0) = Θ(x).

[You may quote the convolution theorem for Fourier transforms without proof.]

(b) By constructing an appropriate Green’s function, express in integral form the
general solution θf (x, t) to the forced heat equation with homogeneous initial data:

∂θf
∂t
−D∂

2θf
∂x2

= f(x, t); θf (x, 0) = 0,

for some function f(x, t).

(c) Now consider the combined problem:

∂θc
∂t
−D∂

2θc
∂x2

= −Aδ
(
x+ 2

√
D
)
δ(t− 1); θc(x, 0) = δ

(
x− 2

√
D
)
,

where A is a positive real constant. Determine θc(x, t), and hence deduce that θc(0, 2) = 0
if

A =

√
e

2
.

[The following convention is used in this question:

f̃(k) =

∫ ∞

−∞
f(x)e−ikx dx and f(x) =

1

2π

∫ ∞

−∞
f̃(k)eikx dk.

You may also quote the transform pair

g(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
; g̃(k, t) = e−Dk

2t,

as well as any relevant properties of the δ-function without proof.]

Part IB, Paper 1
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Paper 2, Section I
3B Methods

The function u(x, y) satisfies

x
∂u

∂y
− y

∂u

∂x
= 0 ,

with boundary data u(x, 0) = f(x2) . Find and sketch the characteristic curves. Hence
determine u(x, y) .

Paper 3, Section I
5A Methods

The Legendre polynomial Pn(x) satisfies

(1− x2)P ′′
n − 2xP ′

n + n(n+ 1)Pn = 0, n = 0, 1, . . . , for − 1 6 x 6 1.

Show that Qn(x) = P ′
n(x) satisfies an equation which can be recast in self-adjoint form

with eigenvalue (n − 1)(n + 2). Write down the orthogonality relation for Qn(x), Qm(x)
for n 6= m.

Part IB, Paper 1
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Paper 1, Section II
13B Methods

A uniform string of length l and mass per unit length µ is stretched horizontally
under tension T = µc2 and fixed at both ends. The string is subject to the gravitational
force µg per unit length and a resistive force with value

−2kµ
∂y

∂t

per unit length, where y(x, t) is the transverse, vertical displacement of the string and k
is a positive constant.

(a) Derive the equation of motion of the string assuming that y(x, t) remains small.

[In the remaining parts of the question you should assume that gravity is negligible.]

(b) Find y(x, t) for t > 0, given that

y(x, 0) = 0,
∂y

∂t
(x, 0) = A sin

(πx
l

)
(?)

with A constant, and k = πc/l.

(c) An extra transverse force

αµ sin

(
3πx

l

)
cos kt

per unit length is applied to the string, where α is a constant. With the initial conditions
(?), find y(x, t) for t > 0 and comment on the behaviour of the string as t→∞.

Compute the total energy E of the string as t→∞.

Part IB, Paper 1 [TURN OVER]
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Paper 2, Section II
14A Methods

(a) Verify that y = e−x is a solution of the differential equation

(x+ λ+ 1)y′′ + (x+ λ)y′ − y = 0,

where λ is a constant. Find a second solution of the form y = ax+ b.

(b) Let L be the operator

L[y] = y′′ +
(x+ λ)

(x+ λ+ 1)
y′ − 1

(x+ λ+ 1)
y

acting on functions y(x) satisfying

y(0) = λy′(0) and lim
x→∞

y(x) = 0. (?)

The Green’s function G(x; ξ) for L satisfies

L[G] = δ(x− ξ),

with ξ > 0. Show that

G(x; ξ) = − (x+ λ)

(ξ + λ+ 1)

for 0 6 x < ξ, and find G(x; ξ) for x > ξ.

(c) Hence or otherwise find the solution when λ = 2 for the problem

L[y] = −(x+ 3)e−x,

for x > 0 and y(x) satisfying the boundary conditions given in (?).

Part IB, Paper 1

2022
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Paper 3, Section II
14A Methods

(a) Prove Green’s third identity for functions u(r) satisfying Laplace’s equation in
a volume V with surface S, namely

u(r0) =

∫

S

(
u
∂Gfs
∂n

− ∂u

∂n
Gfs

)
dS,

where Gfs(r; r0) = −1/(4π|r − r0|) is the free space Green’s function.

(b) A solution is sought to the Neumann problem for ∇2u = 0 in the half-space
z > 0 with boundary condition

∂u

∂z

∣∣∣∣
z=0

= p(x, y),

where both u and its spatial derivatives decay sufficiently rapidly as |r| → ∞.

(i) Explain why it is necessary to assume that

∫ ∞

−∞

∫ ∞

−∞
p(x, y)dx dy = 0.

(ii) Using the method of images or otherwise, construct an appropriate Green’s function
G(r; r0) satisfying ∂G/∂z = 0 at z = 0.

(iii) Hence find the solution in the form

u(x0, y0, z0) =

∫ ∞

−∞

∫ ∞

−∞
p(x, y)f(x− x0, y − y0, z0)dx dy ,

where f is to be determined.

(iv) Now let

p(x, y) =

{
sin(x) for |x|, |y| < π

2 ,

0 otherwise.

By expanding f in inverse powers of z0, determine the leading order term for u
(proportional to z−30 ) as z0 →∞.
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Paper 4, Section II
14B Methods

(a) Let h(x) = m′(x). Express the Fourier transform h̃(k) of h(x) in terms of the
Fourier transform m̃(k) of m(x), given that m → 0 as |x| → ∞. [You need to show an
explicit calculation.]

(b) Calculate the inverse Fourier transform of

m̃(k) = −iπ sgn(k)e−α|k| ,

with Reα > 0.

(c) The function u(x, y) obeys Laplace’s equation ∇2u = 0 in the region defined by
−∞ < x < ∞ and 0 < y < a, with real positive a, where u(x, 0) = f(x), u(x, a) = g(x)
and u→ 0 as |x| → ∞.

(i) By performing a suitable Fourier transform of Laplace’s equation, determine the
ordinary differential equation satisfied by ũ(k, y). Hence express ũ(k, y) in terms of
the Fourier transforms f̃(k), g̃(k) of f(x) and g(x).

(ii) Find ũ(k, y) for

f(x) = 0, g(x) =
x

x2 + a2
− x

x2 + 9a2
.

Hence, determine u(x, y).

[The following convention is used in this question:

f̃(k) =

∫ ∞

−∞
f(x)e−ikxdx and f(x) =

1

2π

∫ ∞

−∞
f̃(k)eikxdk . ]

Part IB, Paper 1
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Paper 2, Section I

3C Methods
Consider the differential operator

Ly =
d2y

dx2
+ 2

dy

dx

acting on real functions y(x) with 0 6 x 6 1.

(i) Recast the eigenvalue equation Ly = −λy in Sturm-Liouville form L̃y = −λwy,
identifying L̃ and w.

(ii) If boundary conditions y(0) = y(1) = 0 are imposed, show that the eigenvalues
form an infinite discrete set λ1 < λ2 < . . . and find the corresponding eigenfunctions yn(x)
for n = 1, 2, . . .. If f(x) = x−x2 on 0 6 x 6 1 is expanded in terms of your eigenfunctions
i.e. f(x) =

∑∞
n=1An yn(x), give an expression for An. The expression can be given in

terms of integrals that you need not evaluate.

Paper 3, Section I

5A Methods
Let f(θ) be a 2π-periodic function with Fourier expansion

f(θ) =
1

2
a0 +

∞∑

n=1

( an cosnθ + bn sinnθ ) .

Find the Fourier coefficients an and bn for

f(θ) =

{
1 , 0 < θ < π

−1 , π < θ < 2π .

Hence, or otherwise, find the Fourier coefficients An and Bn for the 2π-periodic function
F defined by

F (θ) =

{
θ , 0 < θ < π

2π − θ , π < θ < 2π .

Use your answers to evaluate

∞∑

r=0

(−1)r

2r + 1
and

∞∑

r=0

1

(2r + 1)2
.

Part IB, 2021 List of Questions [TURN OVER]
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Paper 1, Section II

13C Methods
(a) By introducing the variables ξ = x+ ct and η = x− ct (where c is a constant),

derive d’Alembert’s solution of the initial value problem for the wave equation:

utt − c2uxx = 0, u(x, 0) = φ(x), ut(x, 0) = ψ(x)

where −∞ < x <∞, t > 0 and φ and ψ are given functions (and subscripts denote partial
derivatives).

(b) Consider the forced wave equation with homogeneous initial conditions:

utt − c2uxx = f(x, t), u(x, 0) = 0, ut(x, 0) = 0

where −∞ < x <∞, t > 0 and f is a given function. You may assume that the solution
is given by

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dy ds.

For the forced wave equation utt − c2uxx = f(x, t), now in the half space x > 0 (and
with t > 0 as before), find (in terms of f) the solution for u(x, t) that satisfies the
(inhomogeneous) initial conditions

u(x, 0) = sinx, ut(x, 0) = 0, for x > 0

and the boundary condition u(0, t) = 0 for t > 0.

Part IB, 2021 List of Questions

2021
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Paper 2, Section II

14A Methods
The Fourier transform f̃(k) of a function f(x) and its inverse are given by

f̃(k) =

∫ ∞

−∞
f(x)e−ikxdx, f(x) =

1

2π

∫ ∞

−∞
f̃(k)eikxdk.

(a) Calculate the Fourier transform of the function f(x) defined by:

f(x) =





1 for 0 < x < 1,

−1 for −1 < x < 0,

0 otherwise.

(b) Show that the inverse Fourier transform of g̃(k) = e−λ|k|, for λ a positive real
constant, is given by

g(x) =
λ

π(x2 + λ2)
.

(c) Consider the problem in the quarter plane 0 6 x, 0 6 y:

∂2u

∂x2
+
∂2u

∂y2
= 0;

u(x, 0) =

{
1 for 0 < x < 1,

0 otherwise;

u(0, y) = lim
x→∞

u(x, y) = lim
y→∞

u(x, y) = 0.

Use the answers from parts (a) and (b) to show that

u(x, y) =
4xy

π

∫ 1

0

vdv

[(x− v)2 + y2][(x+ v)2 + y2]
.

(d) Hence solve the problem in the quarter plane 0 6 x, 0 6 y:

∂2w

∂x2
+
∂2w

∂y2
= 0;

w(x, 0) =

{
1 for 0 < x < 1,

0 otherwise;

w(0, y) =

{
1 for 0 < y < 1,

0 otherwise;

lim
x→∞

w(x, y) = lim
y→∞

w(x, y) = 0.

[You may quote without proof any property of Fourier transforms.]

Part IB, 2021 List of Questions [TURN OVER]
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Paper 3, Section II

14A Methods
Let P (x) be a solution of Legendre’s equation with eigenvalue λ,

(1 − x2)
d2P

dx2
− 2x

dP

dx
+ λP = 0 ,

such that P and its derivatives P (k)(x) = dkP/dxk , k = 0, 1, 2, . . . , are regular at all
points x with −1 6 x 6 1.

(a) Show by induction that

(1 − x2)
d2

dx2

[
P (k)

]
− 2(k + 1)x

d

dx

[
P (k)

]
+ λkP

(k) = 0

for some constant λk. Find λk explicitly and show that its value is negative when k is
sufficiently large, for a fixed value of λ.

(b) Write the equation for P (k)(x) in part (a) in self-adjoint form. Hence deduce
that if P (k)(x) is not identically zero, then λk > 0.

[Hint: Establish a relation between integrals of the form
∫ 1
−1[P

(k+1)(x)]2f(x) dx and∫ 1
−1[P

(k)(x)]2g(x) dx for certain functions f(x) and g(x).]

(c) Use the results of parts (a) and (b) to show that if P (x) is a non-zero, regular
solution of Legendre’s equation on −1 6 x 6 1, then P (x) is a polynomial of degree n and
λ = n(n+ 1) for some integer n = 0, 1, 2, . . . .

Part IB, 2021 List of Questions

2021



33

Paper 4, Section II

14C Methods
The function θ(x, t) obeys the diffusion equation

∂θ

∂t
= D

∂2θ

∂x2
. (∗)

Verify that

θ(x, t) =
1√
t
e−x

2/4Dt

is a solution of (∗), and by considering
∫∞
−∞ θ(x, t) dx, find the solution having the initial

form θ(x, 0) = δ(x) at t = 0.

Find, in terms of the error function, the solution of (∗) having the initial form

θ(x, 0) =

{
1 , |x| 6 1 ,

0 , |x| > 1 .

Sketch a graph of this solution at various times t > 0 .

[The error function is

Erf(x) =
2√
π

∫ x

0
e−y

2
dy .]

Part IB, 2021 List of Questions [TURN OVER]
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Paper 2, Section I

4B Methods
Find the Fourier transform of the function

f(x) =

{
A , |x| 6 1

0 , |x| > 1 .

Determine the convolution of the function f(x) with itself.

State the convolution theorem for Fourier transforms. Using it, or otherwise,
determine the Fourier transform of the function

g(x) =

{
B(2− |x|) , |x| 6 2

0 , |x| > 2 .

Paper 1, Section II

14B Methods
Consider the equation

∇2φ = δ(x)g(y) (∗)
on the two-dimensional strip −∞ < x < ∞, 0 6 y 6 a, where δ(x) is the delta function
and g(y) is a smooth function satisfying g(0) = g(a) = 0. φ(x, y) satisfies the boundary
conditions φ(x, 0) = φ(x, a) = 0 and limx→±∞ φ(x, y) = 0. By using solutions of Laplace’s
equation for x < 0 and x > 0, matched suitably at x = 0, find the solution of (∗) in terms
of Fourier coefficients of g(y).

Find the solution of (∗) in the limiting case g(y) = δ(y − c), where 0 < c < a, and
hence determine the Green’s function φ(x, y) in the strip, satisfying

∇2φ = δ(x− b)δ(y − c)

and the same boundary conditions as before.

Part IB, 2020 List of Questions
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Paper 2, Section II

13A Methods
(i) The solution to the equation

d

dx

(
x
dF

dx

)
+ α2xF = 0

that is regular at the origin is F (x) = CJ0(αx), where α is a real, positive parameter,
J0 is a Bessel function, and C is an arbitrary constant. The Bessel function has infinitely
many zeros: J0(γk) = 0 with γk > 0, for k = 1, 2, . . . . Show that

∫ 1

0
J0(αx) J0(βx)x dx =

βJ0(α)J ′
0(β)− αJ0(β)J ′

0(α)

α2 − β2 , α 6= β ,

(where α and β are real and positive) and deduce that

∫ 1

0
J0(γkx) J0(γ`x)x dx = 0 , k 6= ` ;

∫ 1

0
(J0(γkx))2 x dx =

1

2
(J ′

0(γk))
2 .

[Hint: For the second identity, consider α = γk and β = γk + ε with ε small.]

(ii) The displacement z(r, t) of the membrane of a circular drum of unit radius obeys

1

r

∂

∂r

(
r
∂z

∂r

)
=

∂2z

∂t2
, z(1, t) = 0 ,

where r is the radial coordinate on the membrane surface, t is time (in certain units), and
the displacement is assumed to have no angular dependence. At t = 0 the drum is struck,
so that

z(r, 0) = 0 ,
∂z

∂t
(r, 0) =

{
U , r < b

0 , r > b

where U and b < 1 are constants. Show that the subsequent motion is given by

z(r, t) =
∞∑

k=1

Ck J0(γkr) sin(γkt) where Ck = −2bU
J ′
0(γkb)

γ2k(J ′
0(γk))

2
.

Part IB, 2020 List of Questions [TURN OVER]
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Paper 2, Section I

5B Methods
Let r, θ, φ be spherical polar coordinates, and let Pn denote the nth Legendre

polynomial. Write down the most general solution for r > 0 of Laplace’s equation ∇2Φ = 0
that takes the form Φ(r, θ, φ) = f(r)Pn(cos θ).

Solve Laplace’s equation in the spherical shell 1 6 r 6 2 subject to the boundary
conditions

Φ = 3 cos 2θ at r = 1 ,
Φ = 0 at r = 2 .

[The first three Legendre polynomials are

P0(x) = 1, P1(x) = x and P2(x) =
3

2
x2 − 1

2
.]

Paper 4, Section I

5D Methods
Let

gǫ(x) =
−2ǫx

π(ǫ2 + x2)2
.

By considering the integral
∫∞
−∞ φ(x) gǫ(x) dx, where φ is a smooth, bounded function that

vanishes sufficiently rapidly as |x| → ∞, identify limǫ→0 gǫ(x) in terms of a generalized
function.

Paper 3, Section I

7D Methods
Define the discrete Fourier transform of a sequence {x0, x1, . . . , xN−1} of N complex

numbers.

Compute the discrete Fourier transform of the sequence

xn =
1

N
(1 + e2πin/N )N−1 for n = 0, . . . , N − 1 .

Part IB, 2019 List of Questions

2019
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Paper 1, Section II

14B Methods
The Bessel functions Jn(r) (n > 0) can be defined by the expansion

eir cos θ = J0(r) + 2
∞∑

n=1

inJn(r) cos nθ . (∗)

By using Cartesian coordinates x = r cos θ, y = r sin θ, or otherwise, show that

(∇2 + 1)eir cos θ = 0 .

Deduce that Jn(r) satisfies Bessel’s equation

(
r2
d2

dr2
+ r

d

dr
− (n2 − r2)

)
Jn(r) = 0 .

By expanding the left-hand side of (∗) up to cubic order in r, derive the series
expansions of J0(r), J1(r), J2(r) and J3(r) up to this order.

Part IB, 2019 List of Questions [TURN OVER
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Paper 3, Section II

15D Methods
By differentiating the expression ψ(t) = H(t) sin(αt)/α, where α is a constant and

H(t) is the Heaviside step function, show that

d2ψ

dt2
+ α2ψ = δ(t) ,

where δ(t) is the Dirac δ-function.

Hence, by taking a Fourier transform with respect to the spatial variables only,
derive the retarded Green’s function for the wave operator ∂2t − c2∇2 in three spatial
dimensions.

[You may use that

1

2π

∫

R3

eik·(x−y) sin(kct)

kc
d3k = − i

c|x− y|

∫ ∞

−∞
eik|x−y| sin(kct) dk

without proof.]

Thus show that the solution to the homogeneous wave equation ∂2t u− c2∇2u = 0,
subject to the initial conditions u(x, 0) = 0 and ∂tu(x, 0) = f(x), may be expressed as

u(x, t) = 〈f〉 t ,

where 〈f〉 is the average value of f on a sphere of radius ct centred on x. Interpret this
result.
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Paper 2, Section II

16D Methods
For n = 0, 1, 2, . . ., the degree n polynomial Cα

n (x) satisfies the differential equation

(1− x2)y′′ − (2α + 1)xy′ + n(n+ 2α)y = 0

where α is a real, positive parameter. Show that, when m 6= n,

b∫

a

Cα
m(x)Cα

n (x)w(x) dx = 0

for a weight function w(x) and values a < b that you should determine.

Suppose that the roots of Cα
n (x) that lie inside the domain (a, b) are {x1, x2, . . . , xk},

with k 6 n. By considering the integral

b∫

a

Cα
n (x)

k∏

i=1

(x− xi)w(x) dx ,

show that in fact all n roots of Cα
n (x) lie in (a, b).
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Paper 4, Section II

17B Methods
(a) Show that the operator

d4

dx4
+ p

d2

dx2
+ q

d

dx
+ r ,

where p(x), q(x) and r(x) are real functions, is self-adjoint (for suitable boundary
conditions which you need not state) if and only if

q =
dp

dx
.

(b) Consider the eigenvalue problem

d4y

dx4
+ p

d2y

dx2
+
dp

dx

dy

dx
= λy (∗)

on the interval [a, b] with boundary conditions

y(a) =
dy

dx
(a) = y(b) =

dy

dx
(b) = 0 .

Assuming that p(x) is everywhere negative, show that all eigenvalues λ are positive.

(c) Assume now that p ≡ 0 and that the eigenvalue problem (∗) is on the interval
[−c, c] with c > 0. Show that λ = 1 is an eigenvalue provided that

cos c sinh c± sin c cosh c = 0

and show graphically that this condition has just one solution in the range 0 < c < π.

[You may assume that all eigenfunctions are either symmetric or antisymmetric
about x = 0.]
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Paper 2, Section I

5C Methods
Show that

a(x, y)

(
dy

ds

)2

− 2b(x, y)
dx

ds

dy

ds
+ c(x, y)

(
dx

ds

)2

= 0

along a characteristic curve (x(s), y(s)) of the 2nd-order pde

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = f(x, y) .

Paper 4, Section I

5A Methods
By using separation of variables, solve Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0 0 < x < 1, 0 < y < 1,

subject to

u(0, y) = 0 0 6 y 6 1,

u(1, y) = 0 0 6 y 6 1,

u(x, 0) = 0 0 6 x 6 1,

u(x, 1) = 2 sin(3πx) 0 6 x 6 1.

Paper 3, Section I

7A Methods

(a) Determine the Green’s function G(x; ξ) satisfying

G′′ − 4G′ + 4G = δ(x− ξ),

with G(0; ξ) = G(1; ξ) = 0. Here ′ denotes differentiation with respect to x.

(b) Using the Green’s function, solve

y′′ − 4y′ + 4y = e2x,

with y(0) = y(1) = 0.
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Paper 1, Section II

14C Methods
Define the convolution f ∗g of two functions f and g. Defining the Fourier transform

f̃ of f by

f̃(k) =

∫ ∞

−∞
e−ikx f(x) dx ,

show that
f̃ ∗ g (k) = f̃(k) g̃(k) .

Given that the Fourier transform of f(x) = 1/x is

f̃(k) = −iπ sgn(k) ,

find the Fourier transform of sin(x)/x2.
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Paper 3, Section II

15A Methods
Consider the Dirac delta function, δ(x), defined by the sampling property

∫ ∞

−∞
f(x)δ(x− x0) dx = f(x0),

for any suitable function f(x) and real constant x0.

(a) Show that δ(αx) = |α|−1δ(x) for any non-zero α ∈ R.

(b) Show that xδ′(x) = −δ(x), where ′ denotes differentiation with respect to x.

(c) Calculate ∫ ∞

−∞
f(x) δ(m)(x) dx,

where δ(m)(x) is the mth derivative of the delta function.

(d) For

γn(x) =
1

π

n

(nx)2 + 1
,

show that lim
n→∞

γn(x) = δ(x).

(e) Find expressions in terms of the delta function and its derivatives for

(i)

lim
n→∞

n3x e−x2n2
.

(ii)

lim
n→∞

1

π

∫ n

0
cos(kx) dk.

(f) Hence deduce that

lim
n→∞

1

2π

∫ n

−n
eikx dk = δ(x).

[You may assume that

∫ ∞

−∞
e−y2 dy =

√
π and

∫ ∞

−∞

sin y

y
dy = π.]
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Paper 2, Section II

16A Methods

(a) Let f(x) be a 2π-periodic function (i.e. f(x) = f(x+2π) for all x) defined on [−π, π]
by

f(x) =

{
x x ∈ [0, π]

−x x ∈ [−π, 0]
Find the Fourier series of f(x) in the form

f(x) = 1
2a0 +

∞∑

n=1

an cos(nx) +

∞∑

n=1

bn sin(nx).

(b) Find the general solution to

y′′ + 2y′ + y = f(x)

where f(x) is as given in part (a) and y(x) is 2π-periodic.
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Paper 4, Section II

17C Methods
Let Ω be a bounded region in the plane, with smooth boundary ∂Ω. Green’s second

identity states that for any smooth functions u, v on Ω

∫

Ω

(
u∇2v − v∇2u

)
dxdy =

∮

∂Ω
u (n ·∇v)− v (n ·∇u) ds ,

where n is the outward pointing normal to ∂Ω. Using this identity with v replaced by

G0(x;x0) =
1

2π
ln (‖x− x0‖) =

1

4π
ln
(
(x− x0)

2 + (y − y0)
2
)

and taking care of the singular point (x, y) = (x0, y0), show that if u solves the Poisson
equation ∇2u = −ρ then

u(x) = −
∫

Ω
G0(x;x0) ρ(x0) dx0 dy0

+

∮

∂Ω

(
u(x0)n ·∇G0(x;x0)−G0(x;x0)n ·∇u(x0)

)
ds

at any x = (x, y) ∈ Ω, where all derivatives are taken with respect to x0 = (x0, y0).

In the case that Ω is the unit disc ‖x‖ 6 1, use the method of images to show that
the solution to Laplace’s equation ∇2u = 0 inside Ω, subject to the boundary condition

u(1, θ) = δ(θ − α),

is

u(r, θ) =
1

2π

1− r2

1 + r2 − 2r cos(θ − α)
,

where (r, θ) are polar coordinates in the disc and α is a constant.

[Hint: The image of a point x0 ∈ Ω is the point y0 = x0/‖x0‖2, and then

‖x− x0‖ = ‖x0‖ ‖x− y0‖

for all x ∈ ∂Ω.]
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Paper 2, Section I

5B Methods
Expand f(x) = x as a Fourier series on −π < x < π.

By integrating the series show that x2 on −π < x < π can be written as

x2 =
a0
2

+

∞∑

n=1

an cosnx ,

where an, n = 1, 2, . . ., should be determined and

a0 = 8

∞∑

n=1

(−1)n−1

n2
.

By evaluating a0 another way show that

∞∑

n=1

(−1)n−1

n2
=
π2

12
.

Paper 4, Section I

5A Methods
The Legendre polynomials, Pn(x) for integers n > 0, satisfy the Sturm–Liouville

equation
d

dx

[(
1− x2

) d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0

and the recursion formula

(n + 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), P0(x) = 1, P1(x) = x.

(i) For all n > 0, show that Pn(x) is a polynomial of degree n with Pn(1) = 1.

(ii) For all m,n > 0, show that Pn(x) and Pm(x) are orthogonal over the range
x ∈ [−1, 1] when m 6= n.

(iii) For each n > 0 let

Rn(x) =
dn

dxn
[(
x2 − 1

)n]
.

Assume that for each n there is a constant αn such that Pn(x) = αnRn(x) for
all x. Determine αn for each n.
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Paper 3, Section I

7A Methods
Using the substitution u(x, y) = v(x, y)e−x

2
, find u(x, y) that satisfies

ux + xuy + 2xu = e−x
2

with boundary data u(0, y) = y e−y
2
.

Paper 1, Section II

14B Methods
(a)

(i) Compute the Fourier transform h̃(k) of h(x) = e−a|x|, where a is a real positive
constant.

(ii) Consider the boundary value problem

−d
2u

dx2
+ ω2u = e−|x| on −∞ < x <∞

with real constant ω 6= ±1 and boundary condition u(x) → 0 as |x| → ∞.
Find the Fourier transform ũ(k) of u(x) and hence solve the boundary value
problem. You should clearly state any properties of the Fourier transform that
you use.

(b) Consider the wave equation

vtt = vxx on −∞ < x <∞ and t > 0

with initial conditions
v(x, 0) = f(x) vt(x, 0) = g(x).

Show that the Fourier transform ṽ(k, t) of the solution v(x, t) with respect to the variable
x is given by

ṽ(k, t) = f̃(k) cos kt+
g̃(k)

k
sin kt

where f̃(k) and g̃(k) are the Fourier transforms of the initial conditions.
Starting from ṽ(k, t) derive d’Alembert’s solution for the wave equation:

v(x, t) =
1

2

(
f(x− t) + f(x+ t)

)
+

1

2

∫ x+t

x−t
g(ξ)dξ .

You should state clearly any properties of the Fourier transform that you use.
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Paper 3, Section II

15A Methods
Let L be the linear differential operator

L y = y′′′ − y′′ − 2y′

where ′ denotes differentiation with respect to x.

Find the Green’s function, G(x; ξ), for L satisfying the homogeneous boundary
conditions G(0; ξ) = 0, G′(0; ξ) = 0, G′′(0; ξ) = 0.

Using the Green’s function, solve

Ly = exΘ(x− 1)

with boundary conditions y(0) = 1, y′(0) = −1, y′′(0) = 0. Here Θ(x) is the Heaviside
step function having value 0 for x < 0 and 1 for x > 0.

Paper 2, Section II

16A Methods
Laplace’s equation for φ in cylindrical coordinates (r, θ, z), is

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2
+
∂2φ

∂z2
= 0.

Use separation of variables to find an expression for the general solution to Laplace’s
equation in cylindrical coordinates that is 2π-periodic in θ.

Find the bounded solution φ(r, θ, z) that satisfies

∇2φ = 0 z > 0, 0 6 r 6 1,

φ(1, θ, z) = e−4z(cos θ + sin 2θ) + 2 e−z sin 2θ.
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Paper 4, Section II

17B Methods
(a)

(i) For the diffusion equation

∂φ

∂t
−K

∂2φ

∂x2
= 0 on −∞ < x <∞ and t > 0,

with diffusion constant K, state the properties (in terms of the Dirac delta
function) that define the fundamental solution F (x, t) and the Green’s function
G(x, t; y, τ).
You are not required to give expressions for these functions.

(ii) Consider the initial value problem for the homogeneous equation:

∂φ

∂t
−K

∂2φ

∂x2
= 0, φ(x, t0) = α(x) on −∞ < x <∞ and t > t0, (A)

and the forced equation with homogeneous initial condition (and given forcing
term h(x, t)):

∂φ

∂t
−K

∂2φ

∂x2
= h(x, t), φ(x, 0) = 0 on −∞ < x <∞ and t > 0. (B)

Given that F and G in part (i) are related by

G(x, t; y, τ) = Θ(t− τ)F (x− y, t− τ)

(where Θ(t) is the Heaviside step function having value 0 for t < 0 and 1 for
t > 0), show how the solution of (B) can be expressed in terms of solutions of
(A) with suitable initial conditions. Briefly interpret your expression.

(b) A semi-infinite conducting plate lies in the (x1, x2) plane in the region x1 > 0. The
boundary along the x2 axis is perfectly insulated. Let (r, θ) denote standard polar co-
ordinates on the plane. At time t = 0 the entire plate is at temperature zero except
for the region defined by −π/4 < θ < π/4 and 1 < r < 2 which has constant initial
temperature T0 > 0. Subsequently the temperature of the plate obeys the two-dimensional
heat equation with diffusion constant K. Given that the fundamental solution of the two-
dimensional heat equation on R2 is

F (x1, x2, t) =
1

4πKt
e−(x21+x

2
2)/(4Kt),

show that the origin (0, 0) on the plate reaches its maximum temperature at time
t = 3/(8K log 2).
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Paper 2, Section I

5A Methods
Use the method of characteristics to find u(x, y) in the first quadrant x > 0, y > 0,

where u(x, y) satisfies

∂u

∂x
− 2x

∂u

∂y
= cos x,

with boundary data u(x, 0) = cos x.

Paper 4, Section I

5A Methods
Consider the function f(x) defined by

f(x) = x2, for − π < x < π.

Calculate the Fourier series representation for the 2π-periodic extension of this function.
Hence establish that

π2

6
=

∞∑

n=1

1

n2
,

and that

π2

12
=

∞∑

n=1

(−1)n+1

n2
.

Paper 3, Section I

7A Methods
Calculate the Green’s function G(x; ξ) given by the solution to

d2G

dx2
= δ(x− ξ); G(0; ξ) =

dG

dx
(1; ξ) = 0,

where ξ ∈ (0, 1), x ∈ (0, 1) and δ(x) is the Dirac δ-function. Use this Green’s function to
calculate an explicit solution y(x) to the boundary value problem

d2y

dx2
= xe−x,

where x ∈ (0, 1), and y(0) = y′(1) = 0.
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Paper 1, Section II

14A Methods
(a) Consider the general self-adjoint problem for y(x) on [a, b]:

− d

dx

[
p(x)

d

dx
y

]
+ q(x)y = λw(x)y; y(a) = y(b) = 0,

where λ is the eigenvalue, and w(x) > 0. Prove that eigenfunctions associated with distinct
eigenvalues are orthogonal with respect to a particular inner product which you should
define carefully.

(b) Consider the problem for y(x) given by

xy′′ + 3y′ +
(
1 + λ

x

)
y = 0; y(1) = y(e) = 0.

(i) Recast this problem into self-adjoint form.

(ii) Calculate the complete set of eigenfunctions and associated eigenvalues for
this problem. [Hint: You may find it useful to make the substitution x = es.]

(iii) Verify that the eigenfunctions associated with distinct eigenvalues are indeed
orthogonal.
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Paper 3, Section II

15B Methods
(a) Show that the Fourier transform of f(x) = e−a2x2

, for a > 0, is

f̃(k) =

√
π

a
e−

k2

4a2 ,

stating clearly any properties of the Fourier transform that you use.
[Hint: You may assume that

∫∞
0 e−t2dt =

√
π/2.]

(b) Consider now the Cauchy problem for the diffusion equation in one space
dimension, i.e. solving for θ(x, t) satisfying:

∂θ

∂t
= D

∂2θ

∂x2
with θ(x, 0) = g(x),

where D is a positive constant and g(x) is specified. Consider the following property of a
solution:
Property P: If the initial data g(x) is positive and it is non-zero only within a bounded
region (i.e. there is a constant α such that θ(x, 0) = 0 for all |x| > α), then for any
ǫ > 0 (however small) and β (however large) the solution θ(β, ǫ) can be non-zero, i.e. the
solution can become non-zero arbitrarily far away after an arbitrarily short time.

Does Property P hold for solutions of the diffusion equation? Justify your answer
(deriving any expression for the solution θ(x, t) that you use).

(c) Consider now the wave equation in one space dimension:

∂2u

∂t2
= c2

∂2u

∂x2
,

with given initial data u(x, 0) = φ(x) and ∂u
∂t (x, 0) = 0 (and c is a constant).

Does Property P (with g(x) and θ(β, ǫ) now replaced by φ(x) and u(β, ǫ) respectively)
hold for solutions of the wave equation? Justify your answer again as above.
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Paper 2, Section II

16A Methods
Consider a bar of length π with free ends, subject to longitudinal vibrations. You

may assume that the longitudinal displacement y(x, t) of the bar satisfies the wave equation
with some wave speed c:

∂2y

∂t2
= c2

∂2y

∂x2
,

for x ∈ (0, π) and t > 0 with boundary conditions:

∂y

∂x
(0, t) =

∂y

∂x
(π, t) = 0,

for t > 0. The bar is initially at rest so that

∂y

∂t
(x, 0) = 0

for x ∈ (0, π), with a spatially varying initial longitudinal displacement given by

y(x, 0) = bx

for x ∈ (0, π), where b is a real constant.

(a) Using separation of variables, show that

y(x, t) =
bπ

2
− 4b

π

∞∑

n=1

cos[(2n − 1)x] cos[(2n − 1)ct]

(2n− 1)2
.

(b) Determine a periodic function P (x) such that this solution may be expressed as

y(x, t) =
1

2
[P (x+ ct) + P (x− ct)].
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Paper 4, Section II

17B Methods
Let D be a 2-dimensional region in R2 with boundary ∂D.

In this question you may assume Green’s second identity:

∫

D
(f ∇2g − g∇2f) dA =

∫

∂D

(
f
∂g

∂n
− g

∂f

∂n

)
dl,

where ∂
∂n denotes the outward normal derivative on ∂D, and f and g are suitably regular

functions that include the free space Green’s function in two dimensions. You may also
assume that the free space Green’s function for the Laplace equation in two dimensions is
given by

G0(r, r0) =
1

2π
log |r − r0|.

(a) State the conditions required on a function G(r, r0) for it to be a Dirichlet
Green’s function for the Laplace operator on D. Suppose that ∇2ψ = 0 on D. Show that
if G is a Dirichlet Green’s function for D then

ψ(r0) =

∫

∂D
ψ(r)

∂

∂n
G(r, r0) dl for r0 ∈ D.

(b) Consider the Laplace equation ∇2φ = 0 in the quarter space

D = {(x, y) : x > 0 and y > 0},

with boundary conditions

φ(x, 0) = e−x2
, φ(0, y) = e−y2 and φ(x, y) → 0 as

√
x2 + y2 → ∞.

Using the method of images, show that the solution is given by

φ(x0, y0) = F (x0, y0) + F (y0, x0),

where

F (x0, y0) =
4x0y0
π

∫ ∞

0

t e−t2

[
(t− x0)2 + y20

] [
(t+ x0)2 + y20

] dt.
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Paper 4, Section I

5C Methods
(a) The convolution f∗g of two functions f, g : R → C is related to their Fourier transforms
f̃ , g̃ by

1

2π

∫ ∞

−∞
f̃(k)g̃(k)eikx dk =

∫ ∞

−∞
f(u)g(x− u) du .

Derive Parseval’s theorem for Fourier transforms from this relation.

(b) Let a > 0 and

f(x) =

{
cos x for x ∈ [−a, a]

0 elsewhere.

(i) Calculate the Fourier transform f̃(k) of f(x).

(ii) Determine how the behaviour of f̃(k) in the limit |k| → ∞ depends on the value of a.
Briefly interpret the result.

Paper 2, Section I

5C Methods
(i) Write down the trigonometric form for the Fourier series and its coefficients for

a function f : [−L,L) → R extended to a 2L-periodic function on R.

(ii) Calculate the Fourier series on [−π, π) of the function f(x) = sin(λx) where λ
is a real constant. Take the limit λ → k with k ∈ Z in the coefficients of this series and
briefly interpret the resulting expression.
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Paper 3, Section I

7C Methods
(a) From the defining property of the δ function,

∫ ∞

−∞
δ(x) f(x) dx = f(0) ,

for any function f , prove that

(i) δ(−x) = δ(x),

(ii) δ(ax) = |a|−1δ(x) for a ∈ R, a 6= 0,

(iii) If g : R → R, x 7→ g(x) is smooth and has isolated zeros xi where the derivative
g′(xi) 6= 0, then

δ[g(x)] =
∑

i

δ(x− xi)

|g′(xi)|
.

(b) Show that the function γ(x) defined by

γ(x) = lim
s→0

ex/s

s
(
1 + ex/s

)2 ,

is the δ(x) function.
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Paper 1, Section II

14C Methods
(i) Briefly describe the Sturm–Liouville form of an eigenfunction equation for

real valued functions with a linear, second-order ordinary differential operator. Briefly
summarize the properties of the solutions.

(ii) Derive the condition for self-adjointness of the differential operator in (i) in terms
of the boundary conditions of solutions y1, y2 to the Sturm–Liouville equation. Give at
least three types of boundary conditions for which the condition for self-adjointness is
satisfied.

(iii) Consider the inhomogeneous Sturm–Liouville equation with weighted linear
term

1

w(x)

d

dx

(
p(x)

dy

dx

)
− q(x)

w(x)
y − λy = f(x) ,

on the interval a 6 x 6 b, where p and q are real functions on [a, b] and w is the weighting
function. Let G(x, ξ) be a Green’s function satisfying

d

dx

(
p(x)

dG

dx

)
− q(x)G(x, ξ) = δ(x− ξ) .

Let solutions y and the Green’s function G satisfy the same boundary conditions of the
form αy′ + βy = 0 at x = a, µy′ + νy = 0 at x = b (α, β are not both zero and µ, ν are
not both zero) and likewise for G for the same constants α, β, µ and ν. Show that the
Sturm–Liouville equation can be written as a so-called Fredholm integral equation of the
form

ψ(ξ) = U(ξ) + λ

∫ b

a
K(x, ξ)ψ(x)dx ,

where K(x, ξ) =
√
w(ξ)w(x)G(x, ξ), ψ =

√
wy and U depends on K, w and the forcing

term f . Write down U in terms of an integral involving f , K and w.

(iv) Derive the Fredholm integral equation for the Sturm–Liouville equation on the
interval [0, 1]

d2y

dx2
− λy = 0 ,

with y(0) = y(1) = 0.
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Paper 3, Section II

15C Methods
(i) Consider the Poisson equation ∇2ψ(r) = f(r) with forcing term f on the infinite

domain R3 with lim|r|→∞ψ = 0. Derive the Green’s function G(r, r′) = −1/(4π|r − r′|)
for this equation using the divergence theorem. [You may assume without proof that the
divergence theorem is valid for the Green’s function.]

(ii) Consider the Helmholtz equation

∇2ψ(r) + k2ψ(r) = f(r) , (†)

where k is a real constant. A Green’s function g(r, r′) for this equation can be constructed
from G(r, r′) of (i) by assuming g(r, r′) = U(r)G(r, r′) where r = |r − r′| and U(r) is a
regular function. Show that limr→0 U(r) = 1 and that U satisfies the equation

d2U

dr2
+ k2U(r) = 0 . (‡)

(iii) Take the Green’s function with the specific solution U(r) = eikr to Eq. (‡) and
consider the Helmholtz equation (†) on the semi-infinite domain z > 0, x, y ∈ R. Use
the method of images to construct a Green’s function for this problem that satisfies the
boundary conditions

∂g

∂z′
= 0 on z′ = 0 and lim

|r|→∞
g(r, r′) = 0 .

(iv) A solution to the Helmholtz equation on a bounded domain can be constructed
in complete analogy to that of the Poisson equation using the Green’s function in Green’s
3rd identity

ψ(r) =

∫

∂V

[
ψ(r′)

∂g(r, r′)
∂n′

− g(r, r′)
∂ψ(r′)
∂n′

]
dS′ +

∫

V
f(r′)g(r, r′)dV ′ ,

where V denotes the volume of the domain, ∂V its boundary and ∂/∂n′ the outgoing
normal derivative on the boundary. Now consider the homogeneous Helmholtz equation
∇2ψ(r) + k2ψ(r) = 0 on the domain z > 0, x, y ∈ R with boundary conditions ψ(r) = 0
at |r| → ∞ and

∂ψ

∂z

∣∣∣∣
z=0

=

{
0 for ρ > a

A for ρ 6 a

where ρ =
√
x2 + y2 and A and a are real constants. Construct a solution in integral form

to this equation using cylindrical coordinates (z, ρ, ϕ) with x = ρ cosϕ, y = ρ sinϕ.
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Paper 2, Section II

16C Methods
(i) The Laplace operator in spherical coordinates is

~∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.

Show that general, regular axisymmetric solutions ψ(r, θ) to the equation ~∇2ψ = 0 are
given by

ψ(r, θ) =

∞∑

n=0

(
Anr

n +Bnr
−(n+1)

)
Pn(cos θ) ,

where An, Bn are constants and Pn are the Legendre polynomials. [You may use without
proof that regular solutions to Legendre’s equation − d

dx [(1− x2) d
dxy(x)] = λ y(x) are given

by Pn(x) with λ = n(n+ 1) and non-negative integer n.]

(ii) Consider a uniformly charged wire in the
form of a ring of infinitesimal width with radius
r0 = 1 and a constant charge per unit length σ.
By Coulomb’s law, the electric potential due to
a point charge q at a point a distance d from the
charge is

U =
q

4πǫ0d
,

where ǫ0 is a constant. Let the z-axis be perpen-
dicular to the circle and pass through the circle’s
centre (see figure). Show that the potential due
to the charged ring at a point on the z-axis at
location z is given by

V =
σ

2ǫ0
√
1 + z2

.

z x

y

φ

(iii) The potential V generated by the charged ring of (ii) at arbitrary points (excluding
points directly on the ring which can be ignored for this question) is determined by
Laplace’s equation ~∇2V = 0. Calculate this potential with the boundary condition
lim
r→∞

V = 0, where r =
√
x2 + y2 + z2. [You may use without proof that

1√
1 + x2

=

∞∑

m=0

x2m (−1)m
(2m)!

22m (m!)2
,

for |x| < 1. Furthermore, the Legendre polynomials are normalized such that Pn(1) = 1.]
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Paper 4, Section II

17C Methods
Describe the method of characteristics to construct solutions for 1st-order, homogeneous,
linear partial differential equations

α(x, y)
∂u

∂x
+ β(x, y)

∂u

∂y
= 0 ,

with initial data prescribed on a curve x0(σ), y0(σ): u(x0(σ), y0(σ)) = h(σ).

Consider the partial differential equation (here the two independent variables are time t
and spatial direction x)

∂u

∂t
+ u

∂u

∂x
= 0 ,

with initial data u(t = 0, x) = e−x2
.

(i) Calculate the characteristic curves of this equation and show that u remains constant
along these curves. Qualitatively sketch the characteristics in the (x, t) diagram, i.e. the
x axis is the horizontal and the t axis is the vertical axis.

(ii) Let x̃0 denote the x value of a characteristic at time t = 0 and thus label the
characteristic curves. Let x̃ denote the x value at time t of a characteristic with given
x̃0. Show that ∂x̃/∂x̃0 becomes a non-monotonic function of x̃0 (at fixed t) at times
t >

√
e/2, i.e. x̃(x̃0) has a local minimum or maximum. Qualitatively sketch snapshots of

the solution u(t, x) for a few fixed values of t ∈ [0,
√

e/2] and briefly interpret the onset
of the non-monotonic behaviour of x̃(x̃0) at t =

√
e/2.
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Paper 4, Section I

5D Methods
Consider the ordinary differential equation

d2ψ

dz2
−

[
15k2

4(k|z| + 1)2
− 3kδ(z)

]
ψ = 0 , (†)

where k is a positive constant and δ denotes the Dirac delta function. Physically relevant
solutions for ψ are bounded over the entire range z ∈ R.

(i) Find piecewise bounded solutions to this differential equations in the ranges z > 0 and

z < 0, respectively. [Hint: The equation d2y
dx2 − c

x2 y = 0 for a constant c may be solved
using the Ansatz y = xα.]

(ii) Derive a matching condition at z = 0 by integrating (†) over the interval (−ǫ, ǫ) with
ǫ→ 0 and use this condition together with the requirement that ψ be continuous at z = 0
to determine the solution over the entire range z ∈ R.

Paper 2, Section I

5D Methods
(i) Calculate the Fourier series for the periodic extension on R of the function

f(x) = x(1− x) ,

defined on the interval [0, 1).

(ii) Explain why the Fourier series for the periodic extension of f ′(x) can be obtained by
term-by-term differentiation of the series for f(x).

(iii) Let G(x) be the Fourier series for the periodic extension of f ′(x). Determine the value
of G(0) and explain briefly how it is related to the values of f ′.

Paper 3, Section I

7D Methods
Using the method of characteristics, solve the differential equation

−y
∂u

∂x
+ x

∂u

∂y
= 0 ,

where x, y ∈ R and u = cos y2 on x = 0, y > 0.
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Paper 1, Section II

14D Methods
(a) Legendre’s differential equation may be written

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1) y = 0 , y(1) = 1 .

Show that for non-negative integer n, this equation has a solution Pn(x) that is a
polynomial of degree n. Find P0, P1 and P2 explicitly.

(b) Laplace’s equation in spherical coordinates for an axisymmetric function U(r, θ) (i.e. no
φ dependence) is given by

1

r2
∂

∂r

(
r2

∂U

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
= 0 .

Use separation of variables to find the general solution for U(r, θ).

Find the solution U(r, θ) that satisfies the boundary conditions

U(r, θ) → v0 r cos θ as r → ∞ ,

∂U

∂r
= 0 at r = r0 ,

where v0 and r0 are constants.
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Paper 3, Section II

15D Methods
Let L be a linear second-order differential operator on the interval [0, π/2]. Consider the
problem

Ly(x) = f(x) ; y(0) = y(π/2) = 0 ,

with f(x) bounded in [0, π/2].

(i) How is a Green’s function for this problem defined?

(ii) How is a solution y(x) for this problem constructed from the Green’s function?

(iii) Describe the continuity and jump conditions used in the construction of the Green’s
function.

(iv) Use the continuity and jump conditions to construct the Green’s function for the
differential equation

d2y

dx2
− dy

dx
+

5

4
y = f(x)

on the interval [0, π/2] with the boundary conditions y(0) = 0, y(π/2)=0 and an arbitrary
bounded function f(x). Use the Green’s function to construct a solution y(x) for the
particular case f(x) = ex/2.
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Paper 2, Section II

16D Methods
The Fourier transform f̃ of a function f is defined as

f̃(k) =

∫ ∞

−∞
f(x)e−ikxdx , so that f(x) =

1

2π

∫ ∞

−∞
f̃(k)eikxdk .

A Green’s function G(t, t′, x, x′) for the diffusion equation in one spatial dimension satisfies

∂G

∂t
−D

∂2G

∂x2
= δ(t− t′) δ(x − x′) .

(a) By applying a Fourier transform, show that the Fourier transform G̃ of this Green’s
function and the Green’s function G are

G̃(t, t′, k, x′) = H(t− t′) e−ikx′
e−Dk2(t−t′) ,

G(t, t′, x, x′) =
H(t− t′)√
4πD(t− t′)

e
− (x−x′)2

4D(t−t′) ,

where H is the Heaviside function. [Hint: The Fourier transform F̃ of a Gaussian

F (x) =
1√
4πa

e−
x2

4a , a = const, is given by F̃ (k) = e−ak2 .]

(b) The analogous result for the Green’s function for the diffusion equation in two spatial
dimensions is

G(t, t′, x, x′, y, y′) =
H(t− t′)

4πD(t− t′)
e
− 1

4D(t−t′) [(x−x′)2+(y−y′)2]
.

Use this Green’s function to construct a solution for t > 0 to the diffusion equation

∂Ψ

∂t
−D

(
∂2Ψ

∂x2
+

∂2Ψ

∂y2

)
= p(t) δ(x) δ(y) ,

with the initial condition Ψ(0, x, y) = 0.

Now set

p(t) =

{
p0 = const for 0 6 t 6 t0

0 for t > t0

Find the solution Ψ(t, x, y) for t > t0 in terms of the exponential integral defined by

Ei(−η) = −
∫ ∞

η

e−λ

λ
dλ .

Use the approximation Ei(−η) ≈ ln η + C, valid for η ≪ 1, to simplify this solution
Ψ(t, x, y). Here C ≈ 0.577 is Euler’s constant.
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Paper 4, Section II

17D Methods
Let f(x) be a complex-valued function defined on the interval [−L,L] and periodically
extended to x ∈ R.

(i) Express f(x) as a complex Fourier series with coefficients cn, n ∈ Z. How are the
coefficients cn obtained from f(x)?

(ii) State Parseval’s theorem for complex Fourier series.

(iii) Consider the function f(x) = cos(αx) on the interval [−π, π] and periodically extended
to x ∈ R for a complex but non-integer constant α. Calculate the complex Fourier series
of f(x).

(iv) Prove the formula
∞∑

n=1

1

n2 − α2
=

1

2α2
− π

2α tan(απ)
.

(v) Now consider the case where α is a real, non-integer constant. Use Parseval’s theorem
to obtain a formula for ∞∑

n=−∞

1

(n2 − α2)2
.

What value do you obtain for this series for α = 5/2?
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Paper 2, Section I

5B Methods
Consider the equation

xux + (x+ y)uy = 1

subject to the Cauchy data u(1, y) = y. Using the method of characteristics, obtain a
solution to this equation.

Paper 4, Section I

5C Methods
Show that the general solution of the wave equation

1

c2
∂2y

∂t2
− ∂2y

∂x2
= 0

can be written in the form

y(x, t) = f(ct− x) + g(ct + x) .

For the boundary conditions

y(0, t) = y(L, t) = 0, t > 0 ,

find the relation between f and g and show that they are 2L-periodic. Hence show that

E(t) =
1

2

∫ L

0

(
1

c2

(
∂y

∂t

)2

+

(
∂y

∂x

)2
)
dx

is independent of t.
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Paper 3, Section I

7C Methods
The solution to the Dirichlet problem on the half-space D = {x = (x, y, z) : z > 0}:

∇2u(x) = 0, x ∈ D , u(x) → 0 as |x| → ∞, u(x, y, 0) = h(x, y),

is given by the formula

u(x0) = u(x0, y0, z0) =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)

∂

∂n
G(x,x0) dx dy ,

where n is the outward normal to ∂D.

State the boundary conditions on G and explain how G is related to G3, where

G3(x,x0) = − 1

4π

1

|x− x0|

is the fundamental solution to the Laplace equation in three dimensions.

Using the method of images find an explicit expression for the function ∂
∂nG(x,x0)

in the formula.

Paper 1, Section II

14B Methods
(i) Let f(x) = x, 0 < x 6 π. Obtain the Fourier sine series and sketch the odd and

even periodic extensions of f(x) over the interval −2π 6 x 6 2π. Deduce that

∞∑

n=1

1

n2
=

π2

6
.

(ii) Consider the eigenvalue problem

Ly = −d2y

dx2
− 2

dy

dx
= λy, λ ∈ R

with boundary conditions y(0) = y(π) = 0. Find the eigenvalues and corresponding
eigenfunctions. Recast L in Sturm-Liouville form and give the orthogonality condition for
the eigenfunctions. Using the Fourier sine series obtained in part (i), or otherwise, and
assuming completeness of the eigenfunctions, find a series for y that satisfies

Ly = xe−x

for the given boundary conditions.
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Paper 3, Section II

15C Methods
The Laplace equation in plane polar coordinates has the form

∇2φ =

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

]
φ(r, θ) = 0 .

Using separation of variables, derive the general solution to the equation that is single-
valued in the domain 1 < r < 2.

For

f(θ) =

∞∑

n=1

An sinnθ ,

solve the Laplace equation in the annulus with the boundary conditions:

∇2φ = 0, 1 < r < 2, φ(r, θ) =

{
f(θ), r = 1

f(θ) + 1, r = 2.

Paper 2, Section II

16B Methods
The steady-state temperature distribution u(x) in a uniform rod of finite length

satisfies the boundary value problem

−D
d2

dx2
u(x) = f(x) , 0 < x < l

u(0) = 0 , u(l) = 0

where D > 0 is the (constant) diffusion coefficient. Determine the Green’s function G(x, ξ)
for this problem. Now replace the above homogeneous boundary conditions with the
inhomogeneous boundary conditions u(0) = α, u(l) = β and give a solution to the new
boundary value problem. Hence, obtain the steady-state solution for the following problem
with the specified boundary conditions:

−D
∂2

∂x2
u(x, t) +

∂

∂t
u(x, t) = x , 0 < x < 1 ,

u(0, t) = 1/D , u(1, t) = 2/D , t > 0 .

[You may assume that a steady-state solution exists.]
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Paper 4, Section II

17C Methods
Find the inverse Fourier transform G(x) of the function

g(k) = e−a|k|, a > 0, −∞ < k <∞ .

Assuming that appropriate Fourier transforms exist, determine the solution ψ(x, y) of

∇2ψ = 0, −∞ < x <∞, 0 < y < 1,

with the following boundary conditions

ψ(x, 0) = δ(x), ψ(x, 1) =
1

π

1

x2 + 1
.

Here δ(x) is the Dirac delta-function.
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Paper 2, Section I

5C Methods
Using the method of characteristics, obtain a solution to the equation

ux + 2xuy = y

subject to the Cauchy data u(0, y) = 1 + y2 for −1
2 < y < 1

2 .

Sketch the characteristics and specify the greatest region of the plane in which a
unique solution exists.

Paper 4, Section I

5D Methods
Show that the general solution of the wave equation

1

c2
∂2y

∂t2
− ∂2y

∂x2
= 0

can be written in the form

y(x, t) = f(x− ct) + g(x+ ct) .

Hence derive the solution y(x, t) subject to the initial conditions

y(x, 0) = 0,
∂y

∂t
(x, 0) = ψ(x) .
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Paper 3, Section I

7D Methods
For the step-function

F (x) =

{
1 , |x| 6 1/2

0 , otherwise,

its convolution with itself is the hat-function

G(x) = [F ∗ F ](x) =

{
1− |x| , |x| 6 1

0 , otherwise.

Find the Fourier transforms of F and G, and hence find the values of the integrals

I1 =

∫ ∞

−∞

sin2 y

y2
dy , I2 =

∫ ∞

−∞

sin4 y

y4
dy .

Paper 1, Section II

14C Methods
Consider the regular Sturm-Liouville (S-L) system

(Ly)(x)− λω(x)y(x) = 0 , a 6 x 6 b ,

where

(Ly)(x) := −[p(x)y′(x)]′ + q(x)y(x)

with ω(x) > 0 and p(x) > 0 for all x in [a, b], and the boundary conditions on y are

{
A1 y(a) +A2 y

′(a) = 0

B1 y(b) +B2 y
′(b) = 0 .

Show that with these boundary conditions, L is self-adjoint. By considering yLy, or
otherwise, show that the eigenvalue λ can be written as

λ =

∫ b
a (py

′2 + qy2) dx− [pyy′]ba∫ b
a ωy2 dx

.

Now suppose that a = 0 and b = ℓ, that p(x) = 1, q(x) > 0 and ω(x) = 1 for all
x ∈ [0, ℓ], and that A1 = 1, A2 = 0, B1 = k ∈ R+ and B2 = 1. Show that the eigenvalues
of this regular S-L system are strictly positive. Assuming further that q(x) = 0, solve
the system explicitly, and with the aid of a graph, show that there exist infinitely many
eigenvalues λ1 < λ2 < · · · < λn < · · · . Describe the behaviour of λn as n → ∞.
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Paper 3, Section II

15D Methods
Consider Legendre’s equation

(1− x2)y′′ − 2xy′ + λy = 0 .

Show that if λ = n(n + 1), with n a non-negative integer, this equation has a solution
y = Pn(x), a polynomial of degree n. Find P0, P1 and P2 explicitly, subject to the
condition Pn(1) = 1.

The general solution of Laplace’s equation ∇2ψ = 0 in spherical polar coordinates,
in the axisymmetric case, has the form

ψ(r, θ) =
∞∑

n=0

(Anr
n +Bnr

−(n+1))Pn(cos θ) .

Hence, find the solution of Laplace’s equation in the region a 6 r 6 b satisfying the
boundary conditions {

ψ(r, θ) = 1 , r = a

ψ(r, θ) = 3 cos2 θ , r = b .

Paper 2, Section II

16C Methods
Consider the linear differential operator L defined by

Ly := −d2y

dx2
+ y

on the interval 0 6 x < ∞. Given the boundary conditions y(0) = 0 and limx→∞ y(x) = 0,
find the Green’s function G(x, ξ) for L with these boundary conditions. Hence, or
otherwise, obtain the solution of

Ly =

{
1, 0 6 x 6 µ

0, µ < x < ∞

subject to the above boundary conditions, where µ is a positive constant. Show that your
piecewise solution is continuous at x = µ and has the value

y(µ) =
1

2
(1 + e−2µ − 2e−µ) .
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Paper 4, Section II

17D Methods
Let D ⊂ R2 be a two-dimensional domain with boundary S = ∂D, and let

G2 = G2(r, r0) =
1

2π
log |r− r0| ,

where r0 is a point in the interior of D. From Green’s second identity,

∫

S

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
dℓ =

∫

D
(φ∇2ψ − ψ∇2φ) da ,

derive Green’s third identity

u(r0) =

∫

D
G2∇2u da+

∫

S

(
u
∂G2

∂n
−G2

∂u

∂n

)
dℓ .

[Here ∂
∂n denotes the normal derivative on S.]

Consider the Dirichlet problem on the unit disc D1 = {r ∈ R2 : |r| 6 1}:

∇2u = 0, r ∈ D1 ,
u(r) = f(r), r ∈ S1 = ∂D1 .

Show that, with an appropriate function G(r, r0), the solution can be obtained by the
formula

u(r0) =

∫

S1

f(r)
∂

∂n
G(r , r0) dℓ .

State the boundary conditions on G and explain how G is related to G2.

For r, r0 ∈ R2, prove the identity

∣∣∣∣
r

|r| − r0|r|
∣∣∣∣ =

∣∣∣∣
r0
|r0|

− r|r0|
∣∣∣∣ ,

and deduce that if the point r lies on the unit circle, then

|r− r0| = |r0||r− r∗0| , where r∗0 =
r0
|r0|2

.

Hence, using the method of images, or otherwise, find an expression for the function
G(r , r0). [An expression for ∂

∂nG is not required.]
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Paper 2, Section I

5A Methods
The Legendre equation is

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0

for −1 6 x 6 1 and non-negative integers n.

Write the Legendre equation as an eigenvalue equation for an operator L in Sturm-
Liouville form. Show that L is self-adjoint and find the orthogonality relation between the
eigenfunctions.

Paper 3, Section I

7A Methods
The Fourier transform h̃(k) of the function h(x) is defined by

h̃(k) =

∞∫

−∞

h(x)e−ikxdx.

(i) State the inverse Fourier transform formula expressing h(x) in terms of h̃(k).

(ii) State the convolution theorem for Fourier transforms.

(iii) Find the Fourier transform of the function f(x) = e−|x|. Hence show that the
convolution of the function f(x) = e−|x| with itself is given by the integral expression

2

π

∞∫

−∞

eikx

(1 + k2)2
dk.

Paper 4, Section I

5A Methods
Use the method of characteristics to find a continuous solution u(x, y) of the equation

y
∂u

∂x
+ x

∂u

∂y
= 0,

subject to the condition u(0, y) = y4.

In which region of the plane is the solution uniquely determined?
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Paper 1, Section II

14A Methods
Let f(t) be a real function defined on an interval (−T, T ) with Fourier series

f(t) =
a0
2

+
∞∑

n=1

(
an cos

nπt

T
+ bn sin

nπt

T

)
.

State and prove Parseval’s theorem for f(t) and its Fourier series. Write down the formulae

for a0, an and bn in terms of f(t), cos
nπt

T
and sin

nπt

T
.

Find the Fourier series of the square wave function defined on (−π, π) by

g(t) =

{
0 − π < t 6 0

1 0 < t < π.

Hence evaluate ∞∑

k=0

(−1)k

(2k + 1)
.

Using some of the above results evaluate

∞∑

k=0

1

(2k + 1)2
.

What is the sum of the Fourier series for g(t) at t = 0? Comment on your answer.

Paper 2, Section II

16A Methods
Use a Green’s function to find an integral expression for the solution of the equation

d2θ

dt2
+ 4

dθ

dt
+ 29 θ = f(t)

for t > 0 subject to the initial conditions

θ(0) = 0 and
dθ

dt
(0) = 0.
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Paper 3, Section II

15A Methods
A uniform stretched string of length L, density per unit length µ and tension T = µc2

is fixed at both ends. Its transverse displacement is given by y(x, t) for 0 6 x 6 L . The
motion of the string is resisted by the surrounding medium with a resistive force per unit

length of −2kµ
∂y

∂t
.

(i) Show that the equation of motion of the string is

∂2y

∂t2
+ 2k

∂y

∂t
− c2

∂2y

∂x2
= 0

provided that the transverse motion can be regarded as small.

(ii) Suppose now that k =
πc

L
. Find the displacement of the string for t > 0 given

the initial conditions

y(x, 0) = A sin
(πx
L

)
and

∂y

∂t
(x, 0) = 0.

(iii) Sketch the transverse displacement at x =
L

2
as a function of time for t > 0.
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Paper 4, Section II

17A Methods
Let D be a two dimensional domain with boundary ∂D. Establish Green’s second

identity ∫

D
(φ∇2ψ − ψ∇2φ)dA =

∫

∂D

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
ds

where
∂

∂n
denotes the outward normal derivative on ∂D.

State the differential equation and boundary conditions which are satisfied by a
Dirichlet Green’s function G(r, r0) for the Laplace operator on the domain D, where r0 is
a fixed point in the interior of D.

Suppose that ∇2ψ = 0 on D. Show that

ψ(r0) =

∫

∂D
ψ(r)

∂

∂n
G(r, r0)ds.

Consider Laplace’s equation in the upper half plane,

∇2ψ(x, y) = 0, −∞ < x <∞ and y > 0,

with boundary conditions ψ(x, 0) = f(x) where f(x) → 0 as |x| → ∞, and ψ(x, y) → 0 as√
x2 + y2 → ∞. Show that the solution is given by the integral formula

ψ(x0, y0) =
y0
π

∫ ∞

−∞

f(x)

(x− x0)2 + y20
dx.

[ Hint: It might be useful to consider

G(r, r0) =
1

2π
(log |r− r0| − log |r− r̃0|)

for suitable r̃0. You may assume ∇2 log |r− r0| = 2πδ(r − r0). ]
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Paper 2, Section I

5A Methods
Consider the initial value problem

Lx(t) = f(t), x(0) = 0, ẋ(0) = 0, t > 0,

where L is a second-order linear operator involving differentiation with respect to t.
Explain briefly how to solve this by using a Green’s function.

Now consider

ẍ(t) =

{
a 0 6 t 6 T,

0 T < t < ∞,

where a is a constant, subject to the same initial conditions. Solve this using the Green’s
function, and explain how your answer is related to a problem in Newtonian dynamics.

Paper 3, Section I

7B Methods
Show that Laplace’s equation ∇2φ = 0 in polar coordinates (r, θ) has solutions

proportional to r±α sinαθ, r±α cosαθ for any constant α.

Find the function φ satisfying Laplace’s equation in the region a < r < b, 0 < θ < π,
where φ(a, θ) = sin3 θ, φ(b, θ) = φ(r, 0) = φ(r, π) = 0.

[The Laplacian ∇2 in polar coordinates is

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
.

]
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Paper 4, Section I

5A Methods
(a) By considering strictly monotonic differentiable functions ϕ(x), such that the

zeros satisfy ϕ(c) = 0 but ϕ′(c) 6= 0, establish the formula

∫ ∞

−∞
f(x)δ(ϕ(x))dx =

f(c)

|ϕ′(c)| .

Hence show that for a general differentiable function with only such zeros, labelled by c,

∫ ∞

−∞
f(x)δ(ϕ(x)) dx =

∑

c

f(c)

|ϕ′(c)| .

(b) Hence by changing to plane polar coordinates, or otherwise, evaluate,

I =

∫ ∞

0

∫ ∞

0
(x3 + y2x)δ(x2 + y2 − 1) dydx.

Paper 1, Section II

14A Methods
(a) A function f(t) is periodic with period 2π and has continuous derivatives up to

and including the kth derivative. Show by integrating by parts that the Fourier coefficients
of f(t)

an =
1

π

∫ 2π

0
f(t) cosnt dt,

bn =
1

π

∫ 2π

0
f(t) sinnt dt,

decay at least as fast as 1/nk as n → ∞.

(b) Calculate the Fourier series of f(t) = | sin t| on [0, 2π].

(c) Comment on the decay rate of your Fourier series.
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Paper 2, Section II

16B Methods
Explain briefly the use of the method of characteristics to solve linear first-order

partial differential equations.

Use the method to solve the problem

(x− y)
∂u

∂x
+ (x+ y)

∂u

∂y
= αu,

where α is a constant, with initial condition u(x, 0) = x2, x > 0.

By considering your solution explain:

(i) why initial conditions cannot be specified on the whole x-axis;

(ii) why a single-valued solution in the entire plane is not possible if α 6= 2.
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Paper 3, Section II

15A Methods
(a) Put the equation

x
d2u

dx2
+

du

dx
+ λxu = 0, 0 6 x 6 1,

into Sturm–Liouville form.

(b) Suppose un(x) are eigenfunctions such that un(x) are bounded as x tends to
zero and

x
d2un
dx2

+
dun
dx

+ λnxun = 0, 0 6 x 6 1.

Identify the weight function w(x) and the most general boundary conditions on un(x)
which give the orthogonality relation

(λm − λn)

∫ 1

0
um(x)w(x)un(x) dx = 0.

(c) The equation

x
d2y

dx2
+

dy

dx
+ xy = 0, x > 0,

has a solution J0(x) and a second solution which is not bounded at the origin. The zeros
of J0(x) arranged in ascending order are jn, n = 1, 2, .... Given that un(1) = 0, show that
the eigenvalues of the Sturm–Liouville problem in (b) are λ = jn

2, n = 1, 2, ....

(d) Using the differential equations for J0(αx) and J0(βx) and integration by parts,
show that

∫ 1

0
J0(αx)J0(βx)x dx =

βJ0(α)J
′
0(β)− αJ0(β)J

′
0(α)

α2 − β2
(α 6= β).
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Paper 4, Section II

17B Methods
Defining the function Gf3(r; r0) = −1/(4π|r − r0|), prove Green’s third identity for

functions u(r) satisfying Laplace’s equation in a volume V with surface S, namely

u(r0) =

∫

S

(
u
∂Gf3

∂n
− ∂u

∂n
Gf3

)
dS.

A solution is sought to the Neumann problem for ∇2u = 0 in the half plane z > 0:

u = O(|x|−a),
∂u

∂r
= O(|x|−a−1) as |x| → ∞,

∂u

∂z
= p(x, y) on z = 0,

where a > 0. It is assumed that
∫∞
−∞

∫∞
−∞ p(x, y) dx dy = 0. Explain why this condition is

necessary.

Construct an appropriate Green’s function G(r; r0) satisfying ∂G/∂z = 0 at z = 0,
using the method of images or otherwise. Hence find the solution in the form

u(x0, y0, z0) =

∫ ∞

−∞

∫ ∞

−∞
p(x, y)f(x− x0, y − y0, z0) dx dy,

where f is to be determined.

Now let

p(x, y) =

{
x |x|, |y| < a,

0 otherwise.

By expanding f in inverse powers of z0, show that

u → −2a4x0
3πz30

as z0 → ∞ .
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Paper 2, Section I

5B Mathematical Methods
Expand f(x) = x, 0 < x < π, as a half-range sine series.

By integrating the series show that a Fourier cosine series for x2, 0 < x < π, can be
written as

x2 =
a0
2

+

∞∑

n=1

an cosnx ,

where an, n = 1, 2, . . . , should be determined and

a0 = 8

∞∑

n=1

(−1)n−1

n2
.

By evaluating a0 another way show that

∞∑

n=1

(−1)n−1

n2
=

π2

12
.

Paper 4, Section I

5B Mathematical Methods
Describe briefly the method of Lagrange multipliers for finding the stationary points

of a function f(x, y) subject to the constraint g(x, y) = 0.

Show that at a stationary point (a, b)

∣∣∣∣∣∣∣∣∣

∂f

∂x
(a, b)

∂g

∂x
(a, b)

∂f

∂y
(a, b)

∂g

∂y
(a, b)

∣∣∣∣∣∣∣∣∣
= 0 .

Find the maximum distance from the origin to the curve

x2 + y2 + xy − 4 = 0 .
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Paper 1, Section II

14B Mathematical Methods
Find a power series solution about x = 0 of the equation

xy′′ + (1− x)y′ + λy = 0,

with y(0) = 1, and show that y is a polynomial if and only if λ is a non-negative integer
n. Let yn be the solution for λ = n. Establish an orthogonality relation between ym and
yn (m 6= n).

Show that ymyn is a polynomial of degree m+ n, and hence that

ymyn =

m+n∑

p=0

apyp

for appropriate choices of the coefficients ap and with am+n 6= 0.

For given n > 0, show that the functions

{ym, ymyn : m = 0, 1, 2, . . . , n − 1}

are linearly independent.

Let f(x) be a polynomial of degree 3. Explain why the expansion

f(x) = a0y0(x) + a1y1(x) + a2y2(x) + a3y1(x)y2(x)

holds for appropriate choices of ap, p = 0, 1, 2, 3. Hence show that

∫ ∞

0
e−xf(x) dx = w1f(α1) + w2f(α2) ,

where

w1 =
y1(α2)

y1(α2)− y1(α1)
, w2 =

−y1(α1)

y1(α2)− y1(α1)
,

and α1, α2 are the zeros of y2. You need not construct the polynomials y1(x), y2(x)
explicitly.
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Paper 2, Section II

15B Mathematical Methods
A string of uniform density ρ is stretched under tension along the x-axis and

undergoes small transverse oscillations in the (x, y) plane with amplitude y(x, t). Given
that waves in the string travel at velocity c, write down the equation of motion satisfied
by y(x, t).

The string is now fixed at x = 0 and x = L. Derive the general separable solution
for the amplitude y(x, t).

For t < 0 the string is at rest. At time t = 0 the string is struck by a hammer in the
interval [l−a/2, l+a/2], distance being measured from one end. The effect of the hammer
is to impart a constant velocity v to the string inside the interval and zero velocity outside
it. Calculate the proportion of the total energy given to the string in each mode.

If l = L/3 and a = L/10, find all the modes of the string which are not excited in
the motion.
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Paper 3, Section I

6A Methods
The Fourier transform f̃(ω) of a suitable function f(t) is defined as f̃(ω) =∫∞

−∞ f(t)e−iωtdt. Consider the function h(t) = eαt for t > 0, and zero otherwise. Show
that

h̃(ω) =
1

iω − α
,

provided ℜ(α) < 0.

The angle θ(t) of a forced, damped pendulum satisfies

θ̈ + 2θ̇ + 5θ = e−4t,

with initial conditions θ(0) = θ̇(0) = 0. Show that the transfer function for this system is

R̃(ω) =
1

4i

[
1

(iω + 1− 2i)
− 1

(iω + 1 + 2i)

]
.
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Paper 3, Section II

15A Methods
A function g(r) is chosen to make the integral

∫ b

a
f(r, g, g′)dr

stationary, subject to given values of g(a) and g(b). Find the Euler–Lagrange equation for
g(r).

In a certain three-dimensional electrostatics problem the potential φ depends only
on the radial coordinate r, and the energy functional of φ is

E [φ] = 2π

∫ R2

R1

[
1

2

(
dφ

dr

)2

+
1

2λ2
φ2

]
r2dr ,

where λ is a parameter. Show that the Euler–Lagrange equation associated with
minimizing the energy E is equivalent to

1

r

d2 (rφ)

dr2
− 1

λ2
φ = 0 . (1)

Find the general solution of this equation, and the solution for the region R1 6 r 6 R2

which satisfies φ(R1) = φ1 and φ(R2) = 0.

Consider an annular region in two dimensions, where the potential is a function
of the radial coordinate r only. Write down the equivalent expression for the energy
functional E above, in cylindrical polar coordinates, and derive the equivalent of (1).
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Paper 4, Section II

16A Methods
Suppose that y1(x) and y2(x) are linearly independent solutions of

d2y

dx2
+ b(x)

dy

dx
+ c(x)y = 0 ,

with y1(0) = 0 and y2(1) = 0. Show that the Green’s function G(x, ξ) for the interval
0 6 x, ξ 6 1 and with G(0, ξ) = G(1, ξ) = 0 can be written in the form

G(x, ξ) =

{
y1(x)y2(ξ)/W (ξ); 0 < x < ξ,

y2(x)y1(ξ)/W (ξ); ξ < x < 1,

where W (x) = W [y1(x), y2(x)] is the Wronskian of y1(x) and y2(x).

Use this result to find the Green’s function G(x, ξ) that satisfies

d2G

dx2
+ 3

dG

dx
+ 2G = δ(x − ξ) ,

in the interval 0 6 x, ξ 6 1 and with G(0, ξ) = G(1, ξ) = 0. Hence obtain an integral
expression for the solution of

d2y

dx2
+ 3

dy

dx
+ 2y =

{
0; 0 < x < x0,

2; x0 < x < 1,

for the case x < x0.
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1/II/14D Methods

Write down the Euler–Lagrange equation for the variational problem for y(x) that
extremizes the integral I defined as

I =

∫ x2

x1

f(x, y, y′)dx,

with boundary conditions y(x1) = y1, y(x2) = y2, where y1 and y2 are positive constants
such that y2 > y1, with x2 > x1. Find a first integral of the equation when f is independent
of y, i.e. f = f(x, y′).

A light ray moves in the (x, y) plane from (x1, y1) to (x2, y2) with speed c(x) taking
a time T. Show that the equation of the path that makes T an extremum satisfies

dy

dx
=

c(x)√
k2 − c2(x)

,

where k is a constant and write down an integral relating k, x1, x2, y1 and y2.

When c(x) = ax where a is a constant and k = ax2, show that the path is given by

(y2 − y)2 = x22 − x2.

2/I/5D Methods

Describe briefly the method of Lagrange multipliers for finding the stationary values
of a function f(x, y) subject to a constraint g(x, y) = 0.

Use the method to find the largest possible volume of a circular cylinder that has
surface area A (including both ends).
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2/II/15D Methods

(a) Legendre’s equation may be written in the form

d

dx

(
(1− x2)

dy

dx

)
+ λy = 0.

Show that there is a series solution for y of the form

y =
∞∑

k=0

akx
k,

where the ak satisfy the recurrence relation

ak+2

ak
= − (λ− k(k + 1))

(k + 1)(k + 2)
.

Hence deduce that there are solutions for y(x) = Pn(x) that are polynomials of degree
n, provided that λ = n(n + 1). Given that a0 is then chosen so that Pn(1) = 1, find the
explicit form for P2(x).

(b) Laplace’s equation for Φ(r, θ) in spherical polar coordinates (r, θ, φ) may be
written in the axisymmetric case as

∂2Φ

∂r2
+

2

r

∂Φ

∂r
+

1

r2
∂

∂x

(
(1− x2)

∂Φ

∂x

)
= 0,

where x = cos θ.

Write down without proof the general form of the solution obtained by the method
of separation of variables. Use it to find the form of Φ exterior to the sphere r = a that
satisfies the boundary conditions, Φ(a, x) = 1 + x2, and limr→∞ Φ(r, x) = 0.
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3/I/6D Methods

Let L be the operator

Ly =
d2y

dx2
− k2y

on functions y(x) satisfying limx→−∞ y(x) = 0 and limx→∞ y(x) = 0.

Given that the Green’s function G(x; ξ) for L satisfies

LG = δ(x− ξ),

show that a solution of
Ly = S(x),

for a given function S(x), is given by

y(x) =

∫ ∞

−∞
G(x; ξ)S(ξ)dξ.

Indicate why this solution is unique.

Show further that the Green’s function is given by

G(x; ξ) = − 1

2|k| exp(−|k||x− ξ|).
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3/II/15D Methods

Let λ1 < λ2 < . . . λn . . . and y1(x), y2(x), . . . yn(x) . . . be the eigenvalues and
corresponding eigenfunctions for the Sturm–Liouville system

Lyn = λnw(x)yn,

where

Ly ≡ d

dx

(
−p(x)

dy

dx

)
+ q(x)y,

with p(x) > 0 and w(x) > 0. The boundary conditions on y are that y(0) = y(1) = 0.

Show that two distinct eigenfunctions are orthogonal in the sense that

∫ 1

0

wynym dx = δnm

∫ 1

0

wy2n dx.

Show also that if y has the form

y =

∞∑

n=1

anyn,

with an being independent of x, then

∫ 1

0
yLy dx

∫ 1

0
wy2 dx

≥ λ1.

Assuming that the eigenfunctions are complete, deduce that a solution of the diffusion
equation,

∂y

∂t
= − 1

w
Ly,

that satisfies the boundary conditions given above is such that

1

2

d

dt

(∫ 1

0

wy2 dx

)
≤ −λ1

∫ 1

0

wy2 dx.

4/I/5A Methods

Find the half-range Fourier cosine series for f(x) = x2, 0 < x < 1. Hence show
that ∞∑

n=1

1

n2
=
π2

6
.
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4/II/16A Methods

Assume F (x) satisfies ∫ ∞

−∞
|F (x)|dx <∞ ,

and that the series

g(τ) =

∞∑

n=−∞
F (2nπ + τ)

converges uniformly in [0 6 τ 6 2π].

If F̃ is the Fourier transform of F , prove that

g(τ) =
1

2π

∞∑

n=−∞
F̃ (n)einτ .

[Hint: prove that g is periodic and express its Fourier expansion coefficients in terms of
F̃ ].

In the case that F (x) = e−|x|, evaluate the sum

∞∑

n=−∞

1

1 + n2
.
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1/II/14D Methods

Define the Fourier transform f̃(k) of a function f(x) that tends to zero as |x| → ∞,
and state the inversion theorem. State and prove the convolution theorem.

Calculate the Fourier transforms of

(i) f(x) = e−a|x|,

and (ii) g(x) =

{
1 , |x| 6 b
0 , |x| > b .

Hence show that

∫ ∞

−∞

sin (bk) eikx

k (a2 + k2)
dk =

π sinh (ab)

a2
e−ax for x > b ,

and evaluate this integral for all other (real) values of x.

2/I/5D Methods

Show that a smooth function y(x) that satisfies y(0) = y′(1) = 0 can be written as
a Fourier series of the form

y(x) =
∞∑

n=0

an sinλnx, 0 6 x 6 1 ,

where the λn should be specified. Write down an integral expression for an.

Hence solve the following differential equation

y′′ − α2y = x cosπx ,

with boundary conditions y(0) = y′(1) = 0, in the form of an infinite series.
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2/II/15D Methods

Let y0(x) be a non-zero solution of the Sturm-Liouville equation

L(y0;λ0) ≡
d

dx

(
p(x)

dy0
dx

)
+ (q(x) + λ0w(x)) y0 = 0

with boundary conditions y0(0) = y0(1) = 0. Show that, if y(x) and f(x) are related by

L(y;λ0) = f ,

with y(x) satisfying the same boundary conditions as y0(x), then

∫ 1

0

y0fdx = 0 . (∗)

Suppose that y0 is normalised so that

∫ 1

0

wy20dx = 1 ,

and consider the problem

L(y;λ) = y3 ; y(0) = y(1) = 0 .

By choosing f appropriately in (∗) deduce that, if

λ− λ0 = ε2µ [µ = O(1), ε� 1 ] , and y(x) = εy0(x) + ε2y1(x)

then

µ =

∫ 1

0

y40dx+O(ε) .

3/I/6E Methods

Describe the method of Lagrange multipliers for finding extrema of a function
f(x, y, z) subject to the constraint that g(x, y, z) = c.

Illustrate the method by finding the maximum and minimum values of xy for points
(x, y, z) lying on the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1 ,

with a, b and c all positive.
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3/II/15E Methods

Legendre’s equation may be written

(
1− x2

)
y′′ − 2xy′ + n(n+ 1)y = 0 with y(1) = 1 .

Show that if n is a positive integer, this equation has a solution y = Pn(x) that is a
polynomial of degree n. Find P0, P1 and P2 explicitly.

Write down a general separable solution of Laplace’s equation, ∇2φ = 0, in spherical
polar coordinates (r, θ). (A derivation of this result is not required.)

Hence or otherwise find φ when

∇2φ = 0, a < r < b ,

with φ = sin2 θ both when r = a and when r = b.

4/I/5B Methods

Show that the general solution of the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
,

where c is a constant, is
y = f(x+ ct) + g(x− ct) ,

where f and g are twice differentiable functions. Briefly discuss the physical interpretation
of this solution.

Calculate y(x, t) subject to the initial conditions

y(x, 0) = 0 and
∂y

∂t
(x, 0) = ψ(x) .
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4/II/16E Methods

Write down the Euler-Lagrange equation for extrema of the functional

I =

∫ b

a

F (y, y′) dx .

Show that a first integral of this equation is given by

F − y′
∂F

∂y′
= C .

A road is built between two points A and B in the plane z = 0 whose polar
coordinates are r = a, θ = 0 and r = a, θ = π/2 respectively. Owing to congestion, the
traffic speed at points along the road is kr2 with k a positive constant. If the equation
describing the road is r = r(θ), obtain an integral expression for the total travel time T
from A to B.

[Arc length in polar coordinates is given by ds2 = dr2 + r2dθ2.]

Calculate T for the circular road r = a.

Find the equation for the road that minimises T and determine this minimum value.
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1/II/14A Methods

Define a second rank tensor. Show from your definition that ifMij is a second rank
tensor then Mii is a scalar.

A rigid body consists of a thin flat plate of material having density ρ(x) per unit
area, where x is the position vector. The body occupies a region D of the (x, y)-plane;
its thickness in the z-direction is negligible. The moment of inertia tensor of the body is
given as

Mij =

∫

D

(xkxkδij − xixj)ρ dS.

Show that the z-direction is an eigenvector of Mij and write down an integral expression
for the corresponding eigenvalue M⊥.

Hence or otherwise show that if the remaining eigenvalues of Mij are M1 and M2

then
M⊥ =M1 +M2.

Find Mij for a circular disc of radius a and uniform density having its centre at
the origin.

2/I/5A Methods

Describe briefly the method of Lagrange multipliers for finding the stationary values
of a function f(x, y) subject to a constraint g(x, y) = 0.

Use the method to find the smallest possible surface area (including both ends) of
a circular cylinder that has volume V .
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2/II/15G Methods

Verify that y = e−x is a solution of the differential equation

(x+ 2)y′′ + (x+ 1)y′ − y = 0,

and find a second solution of the form ax+ b.

Let L be the operator

L[y] = y′′ +
(x+ 1)

(x+ 2)
y′ − 1

(x+ 2)
y

on functions y(x) satisfying

y′(0) = y(0) and lim
x→∞

y(x) = 0.

The Green’s function G(x, ξ) for L satisfies

L[G] = δ(x− ξ),

with ξ > 0. Show that

G(x, ξ) = − (ξ + 1)

(ξ + 2)
eξ−x

for x > ξ, and find G(x, ξ) for x < ξ.

Hence or otherwise find the solution of

L[y] = −(x+ 2)e−x,

for x > 0, with y(x) satisfying the boundary conditions above.
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3/I/6A Methods

If Tij is a second rank tensor such that biTijcj = 0 for every vector b and every
vector c, show that Tij = 0.

Let S be a closed surface with outward normal n that encloses a three-dimensional
region having volume V . The position vector is x. Use the divergence theorem to find

∫

S

(b ·x)(c ·n) dS

for constant vectors b and c. Hence find

∫

S

xinj dS,

and deduce the values of

∫

S

x ·n dS and

∫

S

x× n dS.

3/II/15G Methods

(a) Find the Fourier sine series of the function

f(x) = x

for 0 6 x 6 1.

(b) The differential operator L acting on y is given by

L[y] = y′′ + y′.

Show that the eigenvalues λ in the eigenvalue problem

L[y] = λy, y(0) = y(1) = 0,

are given by λ = −n2π2 − 1
4 , n = 1, 2, . . ., and find the corresponding eigenfunctions

yn(x).

By expressing the equation L[y] = λy in Sturm-Liouville form or otherwise,
write down the orthogonality relation for the yn. Assuming the completeness of the
eigenfunctions and using the result of part (a), find, in the form of a series, a function
y(x) which satisfies

L[y] = xe−x/2

and y(0) = y(1) = 0.
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4/I/5G Methods

A finite-valued function f(r, θ, φ), where r, θ, φ are spherical polar coordinates,
satisfies Laplace’s equation in the regions r < 1 and r > 1, and f → 0 as r → ∞.
At r = 1, f is continuous and its derivative with respect to r is discontinuous by A sin2 θ,
where A is a constant. Write down the general axisymmetric solution for f in the two
regions and use the boundary conditions to find f .

[
Hint : P2(cos θ) =

1

2

(
3 cos2 θ − 1

)
.

]

4/II/16B Methods

The integral

I =

∫ b

a

F (y(x), y′(x))dx ,

where F is some functional, is defined for the class of functions y(x) for which y(a) = y0,
with the value y(b) at the upper endpoint unconstrained. Suppose that y(x) extremises
the integral among the functions in this class. By considering perturbed paths of the form
y(x) + εη(x), with ε� 1, show that

d

dx

(∂F
∂y′

)
− ∂F

∂y
= 0

and that
∂F

∂y′

∣∣∣
x=b

= 0 .

Show further that

F − y′
∂F

∂y′
= k

for some constant k.

A bead slides along a frictionless wire under gravity. The wire lies in a vertical
plane with coordinates (x, y) and connects the point A with coordinates (0, 0) to the point
B with coordinates (x0, y(x0)), where x0 is given and y(x0) can take any value less than
zero. The bead is released from rest at A and slides to B in a time T . For a prescribed x0
find both the shape of the wire, and the value of y(x0), for which T is as small as possible.
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1/II/14E Methods

Find the Fourier Series of the function

f(θ) =

{
1 0 ≤ θ < π,
−1 π ≤ θ < 2π.

Find the solution φ(r, θ) of the Poisson equation in two dimensions inside the unit
disk r ≤ 1

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2
= f(θ),

subject to the boundary condition φ(1, θ) = 0.

[Hint: The general solution of r2R′′ + rR′ − n2R = r2 is R = arn + br−n − r2/(n2 − 4). ]

From the solution, show that

∫

r≤1

fφ dA = − 4

π

∑

n odd

1

n2(n+ 2)2
.

2/I/5E Methods

Consider the differential equation for x(t) in t > 0

ẍ− k2x = f(t),

subject to boundary conditions x(0) = 0, and ẋ(0) = 0. Find the Green function G(t, t′)
such that the solution for x(t) is given by

x(t) =

∫ t

0

G(t, t′)f(t′) dt′.
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2/II/15E Methods

Write down the Euler–Lagrange equation for the variational problem for r(z)

δ

∫ h

−h
F (z, r, r′) dz = 0,

with boundary conditions r(−h) = r(h) = R, where R is a given positive constant. Show
that if F does not depend explicitly on z, i.e. F = F (r, r′), then the equation has a first
integral

F − r′
∂F

∂r′
=

1

k
,

where k is a constant.

An axisymmetric soap film r(z) is formed between two circular rings r = R at
z = ±H. Find the equation governing the shape which minimizes the surface area. Show
that the shape takes the form

r(z) = k−1 cosh kz.

Show that there exist no solution if R/H < sinhA, where A is the unique positive solution
of A = cothA.

3/I/6E Methods

Describe briefly the method of Lagrangian multipliers for finding the stationary
points of a function f(x, y) subject to a constraint g(x, y) = 0.

Use the method to find the stationary values of xy subject to the constraint
x2

a2
+
y2

b2
= 1.
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3/II/15H Methods

Obtain the power series solution about t = 0 of

(1− t2)
d2

dt2
y − 2t

d

dt
y + λ y = 0 ,

and show that regular solutions y(t) = Pn(t), which are polynomials of degree n, are
obtained only if λ = n(n+ 1), n = 0, 1, 2, . . .. Show that the polynomial must be even or
odd according to the value of n.

Show that ∫ 1

−1

Pn(t)Pm(t) dt = knδnm ,

for some kn > 0.

Using the identity

(
x
∂2

∂x2
x+

∂

∂t
(1− t2)

∂

∂t

)
1

(1− 2xt+ x2)
1
2

= 0 ,

and considering an expansion
∑
n an(x)Pn(t) show that

1

(1− 2xt+ x2)
1
2

=
∞∑

n=0

xnPn(t) , 0 < x < 1 ,

if we assume Pn(1) = 1.

By considering ∫ 1

−1

1

1− 2xt+ x2
dt ,

determine the coefficient kn.
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4/I/5H Methods

Show how the general solution of the wave equation for y(x, t),

1

c2
∂2

∂t2
y(x, t)− ∂2

∂x2
y(x, t) = 0 ,

can be expressed as
y(x, t) = f(ct− x) + g(ct+ x) .

Show that the boundary conditions y(0, t) = y(L, t) = 0 relate the functions f and g and
require them to be periodic with period 2L.

Show that, with these boundary conditions,

1

2

∫ L

0

(
1

c2

(∂y
∂t

)2
+
(∂y
∂x

)2)
dx =

∫ L

−L
g′(ct+ x)2 dx ,

and that this is a constant independent of t.

4/II/16H Methods

Define an isotropic tensor and show that δij , εijk are isotropic tensors.

For x̂ a unit vector and dS(x̂) the area element on the unit sphere show that

∫
dS(x̂) x̂i1 . . . x̂in

is an isotropic tensor for any n. Hence show that

∫
dS(x̂) x̂ix̂j = aδij ,

∫
dS(x̂) x̂ix̂j x̂k = 0 ,

∫
dS(x̂) x̂ix̂j x̂kx̂l = b

(
δijδkl + δikδjl + δilδjk

)
,

for some a, b which should be determined.

Explain why

∫

V

d3x
(
x1 +

√
−1x2

)n
f(|x|) = 0 , n = 2, 3, 4 ,

where V is the region inside the unit sphere.

[The general isotropic tensor of rank 4 has the form a δijδkl + b δikδjl + c δilδjk.]
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1/I/6B Methods

Write down the general isotropic tensors of rank 2 and 3.

According to a theory of magnetostriction, the mechanical stress described by a
second-rank symmetric tensor σij is induced by the magnetic field vector Bi. The stress
is linear in the magnetic field,

σij = AijkBk,

where Aijk is a third-rank tensor which depends only on the material. Show that σij can
be non-zero only in anisotropic materials.

1/II/17B Methods

The equation governing small amplitude waves on a string can be written as

∂2y

∂t2
=
∂2y

∂x2
.

The end points x = 0 and x = 1 are fixed at y = 0. At t = 0, the string is held stationary
in the waveform,

y(x, 0) = x(1− x) in 0 ≤ x ≤ 1.

The string is then released. Find y(x, t) in the subsequent motion.

Given that the energy

∫ 1

0

[(
∂y

∂t

)2

+

(
∂y

∂x

)2
]
dx

is constant in time, show that
∑

n odd
n>1

1

n4
=
π4

96
.

2/I/6B Methods

Write down the general form of the solution in polar coordinates (r, θ) to Laplace’s
equation in two dimensions.

Solve Laplace’s equation for φ(r, θ) in 0 < r < 1 and in 1 < r < ∞, subject to the
conditions

φ→ 0 as r → 0 and r → ∞,

φ|r=1+ = φ|r=1− and
∂φ

∂r

∣∣∣∣
r=1+

− ∂φ

∂r

∣∣∣∣
r=1−

= cos 2θ + cos 4θ.

Part IB 2004

20042004



14

2/II/17B Methods

Let Iij(P ) be the moment-of-inertia tensor of a rigid body relative to the point P .
If G is the centre of mass of the body and the vector GP has components Xi, show that

Iij(P ) = Iij(G) +M (XkXkδij −XiXj) ,

where M is the mass of the body.

Consider a cube of uniform density and side 2a, with centre at the origin. Find the
inertia tensor about the centre of mass, and thence about the corner P = (a, a, a).

Find the eigenvectors and eigenvalues of Iij(P ).

3/I/6D Methods

Let

S[x] =

∫ T

0

1
2

(
ẋ2 − ω2x2

)
dt , x(0) = a , x(T ) = b .

For any variation δx(t) with δx(0) = δx(T ) = 0, show that δS = 0 when x = xc with

xc(t) =
1

sinωT

[
a sinω(T − t) + b sinωt

]
.

By using integration by parts, show that

S[xc] =
[
1
2xcẋc

]T
0
=

ω

2 sinωT

[
(a2 + b2) cosωT − 2ab

]
.
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3/II/18D Methods

Starting from the Euler–Lagrange equations, show that the condition for the
variation of the integral

∫
I(y, y′) dx to be stationary is

I − y′
∂I

∂y′
= constant .

In a medium with speed of light c(y) the ray path taken by a light signal between
two points satisfies the condition that the time taken is stationary. Consider the region
0 < y < ∞ and suppose c(y) = eλy. Derive the equation for the light ray path y(x).
Obtain the solution of this equation and show that the light ray between (−a, 0) and
(a, 0) is given by

eλy =
cosλx

cosλa
,

if λa < π
2 .

Sketch the path for λa close to π
2 and evaluate the time taken for a light signal

between these points.

[The substitution u = k eλy, for some constant k, should prove useful in solving the
differential equation.]

4/I/6C Methods

Chebyshev polynomials Tn(x) satisfy the differential equation

(1− x2)y′′ − xy′ + n2y = 0 on [−1, 1], (†)

where n is an integer.

Recast this equation into Sturm–Liouville form and hence write down the orthog-
onality relationship between Tn(x) and Tm(x) for n 6= m.

By writing x = cos θ, or otherwise, show that the polynomial solutions of (†) are
proportional to cos

(
n cos−1 x

)
.
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4/II/16C Methods

Obtain the Green function G(x, ξ) satisfying

G′′ +
2

x
G′ + k2G = δ(x− ξ),

where k is real, subject to the boundary conditions

G is finite at x = 0,

G = 0 at x = 1.

[Hint: You may find the substitution G = H/x helpful.]

Use the Green function to determine that the solution of the differential equation

y′′ +
2

x
y′ + k2y = 1,

subject to the boundary conditions

y is finite at x = 0,

y = 0 at x = 1,

is

y =
1

k2

[
1− sin kx

x sin k

]
.
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1/I/2D Methods

Fermat’s principle of optics states that the path of a light ray connecting two points
will be such that the travel time t is a minimum. If the speed of light varies continuously
in a medium and is a function c(y) of the distance from the boundary y = 0, show that
the path of a light ray is given by the solution to

c(y)y′′ + c′(y)(1 + y′2) = 0 ,

where y′ = dy
dx , etc. Show that the path of a light ray in a medium where the speed of

light c is a constant is a straight line. Also find the path from (0, 0) to (1, 0) if c(y) = y,
and sketch it.

1/II/11D Methods

(a) Determine the Green’s function G(x, ξ) for the operator d2

dx2 + k2 on [0, π] with
Dirichlet boundary conditions by solving the boundary value problem

d2G

dx2
+ k2G = δ(x− ξ) , G(0) = 0, G(π) = 0

when k is not an integer.

(b) Use the method of Green’s functions to solve the boundary value problem

d2y

dx2
+ k2y = f(x) , y(0) = a, y(π) = b

when k is not an integer.
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2/I/2C Methods

Explain briefly why the second-rank tensor

∫

S

xixj dS(x)

is isotropic, where S is the surface of the unit sphere centred on the origin.

A second-rank tensor is defined by

Tij(y) =

∫

S

(yi − xi)(yj − xj) dS(x) ,

where S is the surface of the unit sphere centred on the origin. Calculate T (y) in the form

Tij = λδij + µyiyj ,

where λ and µ are to be determined.

By considering the action of T on y and on vectors perpendicular to y, determine
the eigenvalues and associated eigenvectors of T .

2/II/11C Methods

State the transformation law for an nth-rank tensor Tij···k.

Show that the fourth-rank tensor

cijkl = α δij δkl + β δik δjl + γ δil δjk

is isotropic for arbitrary scalars α, β and γ.

The stress σij and strain eij in a linear elastic medium are related by

σij = cijkl ekl.

Given that eij is symmetric and that the medium is isotropic, show that the stress-strain
relationship can be written in the form

σij = λ ekk δij + 2µ eij .

Show that eij can be written in the form eij = pδij + dij , where dij is a traceless
tensor and p is a scalar to be determined. Show also that necessary and sufficient conditions
for the stored elastic energy density E = 1

2σij eij to be non-negative for any deformation
of the solid are that

µ ≥ 0 and λ ≥ −2
3µ.
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3/I/2D Methods

Consider the path between two arbitrary points on a cone of interior angle 2α.
Show that the arc-length of the path r(θ) is given by

∫
(r2 + r′2cosec2 α)1/2 dθ ,

where r′ = dr
dθ . By minimizing the total arc-length between the points, determine the

equation for the shortest path connecting them.

3/II/12D Methods

The transverse displacement y(x, t) of a stretched string clamped at its ends x = 0, l
satisfies the equation

∂2y

∂t2
= c2

∂2y

∂x2
− 2k

∂y

∂t
, y(x, 0) = 0,

∂y

∂t
(x, 0) = δ(x− a) ,

where c > 0 is the wave velocity, and k > 0 is the damping coefficient. The initial
conditions correspond to a sharp blow at x = a at time t = 0.

(a) Show that the subsequent motion of the string is given by

y(x, t) =
1√

α2
n − k2

∑

n

2e−kt sin
αna

c
sin

αnx

c
sin /(

√
α2
n − k2 t)

where αn = πcn/l.

(b) Describe what happens in the limits of small and large damping. What critical
parameter separates the two cases?

4/I/2D Methods

Consider the wave equation in a spherically symmetric coordinate system

∂2u(r, t)

∂t2
= c2∆u(r, t) ,

where ∆u = 1
r
∂2

∂r2 (ru) is the spherically symmetric Laplacian operator.

(a) Show that the general solution to the equation above is

u(r, t) = 1
r [f(r + ct) + g(r − ct)] ,

where f(x), g(x) are arbitrary functions.

(b) Using separation of variables, determine the wave field u(r, t) in response to a
pulsating source at the origin u(0, t) = A sinωt.
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4/II/11D Methods

The velocity potential φ(r, θ) for inviscid flow in two dimensions satisfies the Laplace
equation

∆φ =

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

]
φ(r, θ) = 0 .

(a) Using separation of variables, derive the general solution to the equation above
that is single-valued and finite in each of the domains (i) 0 6 r 6 a; (ii) a 6 r <∞.

(b) Assuming φ is single-valued, solve the Laplace equation subject to the boundary
conditions ∂φ

∂r = 0 at r = a, and ∂φ
∂r → U cos θ as r → ∞. Sketch the lines of constant

potential.
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1/I/2A Methods

Find the Fourier sine series for f(x) = x, on 0 6 x < L. To which value does the
series converge at x = 3

2L?

Now consider the corresponding cosine series for f(x) = x, on 0 6 x < L. Sketch
the cosine series between x = −2L and x = 2L. To which value does the series converge
at x = 3

2L? [You do not need to determine the cosine series explicitly.]

1/II/11A Methods

The potential Φ(r, ϑ), satisfies Laplace’s equation everywhere except on a sphere of
unit radius and Φ → 0 as r → ∞. The potential is continuous at r = 1, but the derivative
of the potential satisfies

lim
r→1+

∂Φ

∂r
− lim

r→1−

∂Φ

∂r
= V cos2 ϑ,

where V is a constant. Use the method of separation of variables to find Φ for both r > 1
and r < 1.

[The Laplacian in spherical polar coordinates for axisymmetric systems is

∇2 ≡ 1

r2

(
∂

∂r
r2
∂

∂r

)
+

1

r2 sinϑ

(
∂

∂ϑ
sinϑ

∂

∂ϑ

)
.

You may assume that the equation

(
(1− x2)y′

)′
+ λy = 0

has polynomial solutions of degree n, which are regular at x = ±1, if and only if
λ = n(n+ 1). ]

2/I/2C Methods

Write down the transformation law for the components of a second-rank tensor Aij
explaining the meaning of the symbols that you use.

A tensor is said to have cubic symmetry if its components are unchanged by
rotations of π/2 about each of the three co-ordinate axes. Find the most general second-
rank tensor having cubic symmetry.
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2/II/11C Methods

If B is a vector, and

Tij = αBiBj + βBkBkδij ,

show for arbitrary scalars α and β that Tij is a symmetric second-rank tensor.

Find the eigenvalues and eigenvectors of Tij .

Suppose now that B depends upon position x and that ∇·B = 0. Find constants
α and β such that

∂

∂xj
Tij = [(∇×B)×B]i .

Hence or otherwise show that if B vanishes everywhere on a surface S that encloses
a volume V then ∫

V

(∇×B)×B dV = 0 .

3/I/2A Methods

Write down the wave equation for the displacement y(x, t) of a stretched string
with constant mass density and tension. Obtain the general solution in the form

y(x, t) = f(x+ ct) + g(x− ct),

where c is the wave velocity. For a solution in the region 0 6 x <∞, with y(0, t) = 0 and
y → 0 as x→ ∞, show that

E =

∫ ∞

0

[
1

2

(
∂y

∂t

)2

+
1

2
c2
(
∂y

∂x

)2
]
dx,

is constant in time. Express E in terms of the general solution in this case.
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3/II/12A Methods

Consider the real Sturm-Liouville problem

Ly(x) = −(p(x)y′)′ + q(x)y = λr(x)y,

with the boundary conditions y(a) = y(b) = 0, where p, q and r are continuous and
positive on [a, b]. Show that, with suitable choices of inner product and normalisation, the
eigenfunctions yn(x), n = 1, 2, 3 . . . , form an orthonormal set.

Hence show that the corresponding Green’s function G(x, ξ) satisfying

(L − µr(x))G(x, ξ) = δ(x− ξ),

where µ is not an eigenvalue, is

G(x, ξ) =
∞∑

n=1

yn(x)yn(ξ)

λn − µ
,

where λn is the eigenvalue corresponding to yn.

Find the Green’s function in the case where

Ly ≡ y′′,

with boundary conditions y(0) = y(π) = 0, and deduce, by suitable choice of µ, that
∞∑

n=0

1

(2n+ 1)2
=
π2

8
.

4/I/2A Methods

Use the method of Lagrange multipliers to find the largest volume of a rectangular
parallelepiped that can be inscribed in the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1.

4/II/11A Methods

A function y(x) is chosen to make the integral

I =

∫ b

a

f (x, y, y′, y′′) dx

stationary, subject to given values of y(a), y′(a), y(b) and y′(b). Derive an analogue of the
Euler–Lagrange equation for y(x).

Solve this equation for the case where

f = x4y′′2 + 4y2y′,

in the interval [0, 1] and
x2y(x) → 0, xy(x) → 1

as x→ 0, whilst
y(1) = 2, y′(1) = 0.
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1/I/2H Methods

The even function f(x) has the Fourier cosine series

f(x) =
1

2
a0 +

∞∑

n=1

an cosnx

in the interval −π 6 x 6 π. Show that

1

π

∫ π

−π
(f(x))2dx =

1

2
a20 +

∞∑

n=1

a2n.

Find the Fourier cosine series of x2 in the same interval, and show that

∞∑

n=1

1

n4
=
π4

90
.

1/II/11H Methods

Use the substitution y = xp to find the general solution of

Lxy ≡ d2y

dx2
− 2

x2
y = 0.

Find the Green’s function G(x, ξ), 0 < ξ <∞, which satisfies

LxG(x, ξ) = δ(x− ξ)

for x > 0, subject to the boundary conditions G(x, ξ) → 0 as x → 0 and as x → ∞, for
each fixed ξ.

Hence, find the solution of the equation

Lxy =

{
1, 0 6 x < 1,
0, x > 1,

subject to the same boundary conditions.

Verify that both forms of your solution satisfy the appropriate equation and
boundary conditions, and match at x = 1.
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2/I/2G Methods

Show that the symmetric and antisymmetric parts of a second-rank tensor are them-
selves tensors, and that the decomposition of a tensor into symmetric and antisymmetric
parts is unique.

For the tensor A having components

A =




1 2 3
4 5 6
1 2 3


 ,

find the scalar a, vector p and symmetric traceless tensor B such that

Ax = ax+ p ∧ x+Bx

for every vector x.

2/II/11G Methods

Explain what is meant by an isotropic tensor.

Show that the fourth-rank tensor

Aijkl = αδijδkl + βδikδjl + γδilδjk (∗)

is isotropic for arbitrary scalars α, β and γ.

Assuming that the most general isotropic tensor of rank 4 has the form (∗), or
otherwise, evaluate

Bijkl =

∫

r<a

xixj
∂2

∂xk∂xl

(
1

r

)
dV,

where x is the position vector and r = |x|.
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3/I/2G Methods

Laplace’s equation in the plane is given in terms of plane polar coordinates r and
θ in the form

∇2φ ≡ 1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2
= 0.

In each of the cases

(i) 0 6 r 6 1, and (ii) 1 6 r <∞,

find the general solution of Laplace’s equation which is single-valued and finite.

Solve also Laplace’s equation in the annulus a 6 r 6 b with the boundary conditions

φ = 1 on r = a for all θ,

φ = 2 on r = b for all θ.

3/II/12H Methods

Find the Fourier sine series representation on the interval 0 6 x 6 l of the function

f(x) =

{ 0, 0 6 x < a,
1, a 6 x 6 b,
0, b < x 6 l.

The motion of a struck string is governed by the equation

∂2y

∂t2
= c2

∂2y

∂x2
, for 0 6 x 6 l and t > 0,

subject to boundary conditions y = 0 at x = 0 and x = l for t > 0, and to the initial

conditions y = 0 and
∂y

∂t
= δ(x− 1

4
l) at t = 0.

Obtain the solution y(x, t) for this motion. Evaluate y(x, t) for t = 1
2 l/c, and sketch

it clearly.

4/I/2H Methods

The Legendre polynomial Pn(x) satisfies

(1− x2)P ′′
n − 2xP ′

n + n(n+ 1)Pn = 0, n = 0, 1, . . . , −1 6 x 6 1.

Show that Rn(x) = P ′
n(x) obeys an equation which can be recast in Sturm–Liouville form

and has the eigenvalue (n−1)(n+2). What is the orthogonality relation for Rn(x), Rm(x)
for n 6= m?
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4/II/11H Methods

A curve y(x) in the xy-plane connects the points (±a, 0) and has a fixed length
l, 2a < l < πa. Find an expression for the area A of the surface of the revolution obtained
by rotating y(x) about the x-axis.

Show that the area A has a stationary value for

y =
1

k
(cosh kx− cosh ka),

where k is a constant such that
lk = 2 sinh ka.

Show that the latter equation admits a unique positive solution for k.
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