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Paper 2, Section I
3A Methods
Expand f(z) = 2% — 7%z as a Fourier series on —7 < x < 7.

Use the series and Parseval’s theorem for Fourier series (which you may quote without
proof) to show that

Paper 3, Section I
5A Methods
Calculate the Green’s function G(x;&) given by the solution to

2
%—G:Maﬁ—f); G(0;¢) =0 and G(z;¢) — 0 as * — oo,

where £ € (0,00), x € (0,00) and §(z) is the Dirac d-function.

Use this Green’s function to calculate an explicit solution y(x) to the boundary value
problem

d%y _
a2 v=e

where z € (0,00), y(0) =0 and y(x) — 0 as x — oo.
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Paper 1, Section II
13A Methods
(a) Let yo(x) be a non-trivial solution of the Sturm-Liouville problem

L(yo; Ao) = 0; yo(0) = yo(1) =0,
where
L) = g [p@) 3] + lato) + Aol

Show that, if y(z) and f(x) are related by

L(y; M) = [,

with y(x) satisfying the same boundary conditions as yo(x), then
1
/ yof dx = 0. (%)
0

(b) Now assume that yg is normalised so that

1
/ wyd dr =1,
0
and consider the problem
L(y; A) = y™ 5 y(0) = y(1) =0,
where m is a positive integer. By choosing f appropriately in (x) deduce that, if
A= o = ey and y(x) = eyo(x) + €2y (2),

where 0 < e < 1 and p = O(1), then

1
" =/ yo " dx + O(e).
0
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Paper 2, Section II
14A Methods
(a) Laplace’s equation in plane polar coordinates has the form

10 0 1 02
2
=|-—|r=— — == 0)=0.
Ve L&(%J+ﬂ%4m“)
Using separation of variables, show that the general solution is:

o(r,0) = ap + colnr + Z (anr" + cnr_”) cosnbf + Z (bnr" + dnr_”) sinnd,

n=1 n=1
for arbitrary real constants a;, b;, ¢; and d;.

Which (if any) constants must be zero for the solution to be regular in:
(i) the interior of a disc centred at the origin?

(ii) the exterior of a disc centred at the origin?

(iii) an annular region centred at the origin?

(b) Consider 2m-periodic functions f(#) such that

f() = Z Ay, cosnb,
n=1

for some coefficients A,,.

(i) Solve Laplace’s equation V2¢ = 0 in the annulus 1 < r < €? with boundary

conditions: )
-1, r=1
#(r.0) = { fO)+1, r=e%

for general f(0).
(ii) Calculate the explicit solution for the specific choice:

T_9 0<f<nm
f(0) =

—37”4—9, T <0< 2.

Part IB, Paper 1
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Paper 3, Section II
14A Methods

(a) You are given that f(z), g(z) and h(x) are all absolutely integrable functions
with absolutely integrable Fourier transforms f(k), §(k) and h(k) such that

h(k) = [f(K)][a(k)],

i.e. that h(k) is the product of f(k) and §(k). Express h(z) in terms of an integral
expression involving f(z) and g(z).

(b) If p/(x) = g(x), express p(k) in terms of g(k). [You may assume that the
transforms are well-defined.]

(c) Express the inverse transforms of cos ka and sin ka in terms of the d-function,
where a is a positive constant.

(d) Consider the following wave problem for u(z,t):

Pu O%u 0
52 = a2 W@ 0) = f(2), Su(@,0) = g().

Use parts (a)-(c) to construct d’Alembert’s solution:

x+t
(i t) = = [f(@+0) + fla— 1) + = / 9(€) dt. )

2 Jat

N |

[No credit will be given for using any other approach to derive (x). You may assume the
expression derived in part (a) applies.]

(e) Consider the specific case

x for |z| <1

f(@) =0; g(z) = { 0 otherwise.

For ¢ > 1, identify a region of the z-t plane including the line x = 0 where u(z,t) = 0.
Briefly interpret this result physically. [Hint: You may find it useful to consider the lines
r=1—tandx =—1+1]

[The following convention is used in this question:

/f Ye R dx and  f(x) 27T/ f(k)e* dk.]

Part IB, Paper 1 [TURN OVER]
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Paper 4, Section II
14A Methods
(a) Using Fourier transforms with respect to x, express in integral form the general
solution 6(x,t) to the (unforced) heat equation with initial data ©(x) and diffusivity
D >0: )
00 0°0
n D8 55 0(7,0) = O(z).
[You may quote the convolution theorem for Fourier transforms without proof.]
(b) By constructing an appropriate Green’s function, express in integral form the

general solution 0 (z,t) to the forced heat equation with homogeneous initial data:

00 %0

for some function f(x,t).

(¢) Now consider the combined problem:

0. 9%,
ot Oz?

=—Af (93 + 2\/5) 0(t—1); :(x,0) =0 (:c - 2@) ,

where A is a positive real constant. Determine 6.(x,t), and hence deduce that 6.(0,2) = 0
if
A==
2

[The following convention is used in this question:

/ f(@)e ™ dz and f(z 2/ F(k)e*™ dk.
™

You may also quote the transform pair

1 2 _
o, t) = Fmexp( 4Dt) 3k, 1) = DR,

as well as any relevant properties of the d-function without proof.]

Part IB, Paper 1
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Paper 2, Section I
3B Methods

The function u(z,y) satisfies

x@ 0 0
oy Yor
with boundary data u(z,0) = f(2?). Find and sketch the characteristic curves. Hence
determine u(x,y) .

Paper 3, Section I
5A Methods

The Legendre polynomial P, (x) satisfies
(1—a2*)P! —2zP, +n(n+1)P, =0, n=0,1,..., for —1<x<1.

Show that Q,(z) = P)(z) satisfies an equation which can be recast in self-adjoint form
with eigenvalue (n — 1)(n + 2). Write down the orthogonality relation for Q,(x), Q. ()
for n # m.

Part IB, Paper 1
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Paper 1, Section II
13B Methods

A uniform string of length [ and mass per unit length p is stretched horizontally
under tension T' = uc? and fixed at both ends. The string is subject to the gravitational
force pg per unit length and a resistive force with value

0
—2kua—‘:{

per unit length, where y(z,t) is the transverse, vertical displacement of the string and k
is a positive constant.

(a) Derive the equation of motion of the string assuming that y(z,¢) remains small.
[In the remaining parts of the question you should assume that gravity is negligible.]

(b) Find y(z,t) for t > 0, given that

y(z,0) =0, g‘?(x,()) = Asin (7r7x> (%)

with A constant, and k = we/l.

(c¢) An extra transverse force

. 3rx
apsin (l) cos kt

per unit length is applied to the string, where « is a constant. With the initial conditions
(%), find y(z,t) for t > 0 and comment on the behaviour of the string as t — oc.

Compute the total energy E of the string as ¢t — oo.

Part IB, Paper 1 [TURN OVER]
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Paper 2, Section II
14A Methods

(a) Verify that y = e™7 is a solution of the differential equation
(x+ X+ 1Dy +(x+ Ny —y=0,
where A is a constant. Find a second solution of the form y = ax + b.
(b) Let £ be the operator

(x+XA) 1

W=+ sy " wrat

Y
)
acting on functions y(z) satisfying

y(0) = \y/(0) and lim y(z) = 0. (%)

T—00

The Green’s function G(z;§) for L satisfies

LIG] =d(z =€),
with & > 0. Show that ( )
P G
Gle:8) = E+A+1)

for 0 < z < &, and find G(z;§) for x > &.

(c¢) Hence or otherwise find the solution when A\ = 2 for the problem
Llyl = —(z +3)e™",

for x > 0 and y(z) satisfying the boundary conditions given in (x).

Part IB, Paper 1
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Paper 3, Section II
14A Methods

(a) Prove Green’s third identity for functions u(r) satisfying Laplace’s equation in
a volume V' with surface S, namely

0Gyps  Ou
u(ro)—/5<u o —antS> ds,

where G ¢4(r;7r9) = —1/(47|r — 1rg|) is the free space Green’s function.

(b) A solution is sought to the Neumann problem for V2u = 0 in the half-space
z > 0 with boundary condition

ou

5 = p(x,y),

z=0

where both u and its spatial derivatives decay sufficiently rapidly as |r| — oc.

(i) Explain why it is necessary to assume that

/ / p(z,y)dxdy = 0.

(ii) Using the method of images or otherwise, construct an appropriate Green’s function
G(7; 7o) satisfying 0G/0z =0 at z = 0.

(iii) Hence find the solution in the form

U(.TO,Z/O,ZO) = / / p(x7y)f(x_:UO)y_yOaZO)d‘Tdya

where f is to be determined.

(iv) Now let

(z.1) sin(z)  for |z|,|y| < 7,
:I/‘, - .
PAy 0 otherwise.

By expanding f in inverse powers of zy, determine the leading order term for u
(proportional to z5?) as zg — co.

Part IB, Paper 1 [TURN OVER]
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Paper 4, Section II
14B Methods

(a) Let h(z) = m/(x). Express the Fourier transform h(k) of h(x) in terms of the
Fourier transform m(k) of m(z), given that m — 0 as |z| — co. [You need to show an
explicit calculation.]

(b) Calculate the inverse Fourier transform of
m(k) = —imsgn(k)e ¥l

with Rea > 0.

(¢) The function u(z,y) obeys Laplace’s equation V2u = 0 in the region defined by
—o0 <z < oo and 0 <y < a, with real positive a, where u(z,0) = f(x), u(z,a) = g(z)
and u — 0 as |z| — oo.

(i) By performing a suitable Fourier transform of Laplace’s equation, determine the
ordinary differential equation satisfied by u(k,y). Hence express i(k,y) in terms of
the Fourier transforms f(k), (k) of f(z) and g(x).

(ii) Find a(k,y) for
r
z2+a? 2?2+ 9a%

f) =0, g(x) =

Hence, determine u(z,y).

[The following convention is used in this question:

/ f(x)e *dg and f(x =5 / f(k)e*edk .
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Paper 2, Section 1
3C Methods
Consider the differential operator

2
d*y 2@

Ly == 20,

acting on real functions y(z) with 0 < z < 1.

(i) Recast the eigenvalue equation Ly = —Ay in Sturm-Liouville form Ly = —Awy,
identifying £ and w.

(ii) If boundary conditions y(0) = y(1) = 0 are imposed, show that the eigenvalues
form an infinite discrete set A\; < A2 < ... and find the corresponding eigenfunctions y,, ()
forn =1,2,.... If f(z) =2 —2% on 0 < 2 < 1 is expanded in terms of your eigenfunctions
Le. f(z) = Y070, Apyn(z), give an expression for A,. The expression can be given in
terms of integrals that you need not evaluate.

Paper 3, Section I
5A Methods
Let f(6) be a 2m-periodic function with Fourier expansion

1 > .
f(6) = 540 + Z (ancosnf + bysinnd) .

n=1
Find the Fourier coefficients a,, and b,, for

1, 0<fO<mw
1, 7<6<2rm.

o ={_

Hence, or otherwise, find the Fourier coefficients A,, and B,, for the 2w-periodic function

F defined by
0, 0<f<m

2r—0, w<60<27m.

F(9) = {

Use your answers to evaluate

o o0
(=" 1
d S
;27"—1-1 o §(2r+1)2

Part IB, 2021 List of Questions [TURN OVER]
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Paper 1, Section II
13C Methods

(a) By introducing the variables £ = = + ¢t and n = x — ¢t (where c is a constant),
derive d’Alembert’s solution of the initial value problem for the wave equation:

Ut — gy = 0, u(z,0) = o(z), u(z,0) =v(x)

where —oco < z < 00, t > 0 and ¢ and v are given functions (and subscripts denote partial
derivatives).

(b) Consider the forced wave equation with homogeneous initial conditions:
Ug — Cgy = f(x,t),  w(z,0)=0, w(z,0)=0

where —oo < x < 00, t 2 0 and f is a given function. You may assume that the solution

is given by t )
1 TTcC(l—S
wet) =5 [ [ fwsdys
2c 0 T )

—c(t—s

For the forced wave equation uy — c?ug, = f(z,t), now in the half space z > 0 (and
with ¢ > 0 as before), find (in terms of f) the solution for wu(z,t) that satisfies the
(inhomogeneous) initial conditions

u(z,0) =sinz, w(x,0) =0, forz >0

and the boundary condition u(0,¢) = 0 for ¢ > 0.

Part IB, 2021 List of Questions
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Paper 2, Section II
14A Methods }
The Fourier transform f(k) of a function f(x) and its inverse are given by

f(k) = /_oo f(w)e_ikxdx, flz) = 217T/_OO f(k)eikxdk,

(a) Calculate the Fourier transform of the function f(z) defined by:

1 for0<z<1,
flz)=9-1 for-1<x<0,

0 otherwise.

(b) Show that the inverse Fourier transform of j(k) = e **| for X a positive real
constant, is given by

A

g(x) = m

(c) Consider the problem in the quarter plane 0 < z, 0 < y:

u  O%u
—t— = 0
or? = 0y
1 for0<ax<l1
u(z,0) = o a; ’
0  otherwise;
u(0,y) = lim u(z,y) = lim u(z,y) = 0.

Use the answers from parts (a) and (b) to show that

4xiy 1 vdv
™ Jo [(x—v)?+¢?(z +v)2+y?

u(aj,y) =

(d) Hence solve the problem in the quarter plane 0 < z, 0 < y:

Pw 0w
— + == = 0
0x2  Oy?
1 for0< 1
w(r,0) = { o
0  otherwise;
1 forO0<y<l,
w(0,y) = { :
0  otherwise;
0.

lim w(z,y) = lim w(z,y) =
T—00 Y—r00

[You may quote without proof any property of Fourier transforms.]
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Paper 3, Section II
14A Methods
Let P(z) be a solution of Legendre’s equation with eigenvalue A,

d?p dp
1-2%)—— —20— 4+ AP =0
(1=27%) dx? Tl + ’
such that P and its derivatives P*)(z) = d*P/dz*, k = 0,1, 2, ..., are regular at all

points z with —1 < z < 1.
(a) Show by induction that

(1-a)L

da2 [P(k)} - 2(147—1-1):cali [P(k)} 4+ A.P® = ¢

X

for some constant A;. Find Ap explicitly and show that its value is negative when k is
sufficiently large, for a fixed value of \.

(b) Write the equation for P*)(z) in part (a) in self-adjoint form. Hence deduce
that if P(*)(z) is not identically zero, then A > 0.

int:  Establish a relation between wntegrals of the form [~ x T)dr an
Hint: Establish lation b j Is of the f L P (@) f(2) da and
f_ll[P(k) (2))%g(x) dz for certain functions f(x) and g(x).]

(c) Use the results of parts (a) and (b) to show that if P(z) is a non-zero, regular
solution of Legendre’s equation on —1 < = < 1, then P(x) is a polynomial of degree n and
A =n(n+ 1) for some integer n =0, 1, 2, ....

Part IB, 2021 List of Questions
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Paper 4, Section II
14C Methods
The function 6(z,t) obeys the diffusion equation

90 520
o Do ()
Verify that

Q(w,t) — ;{f efx2/4Dt

is a solution of (x), and by considering [*_6(x,t)dz, find the solution having the initial
form 0(z,0) = §(x) at t = 0.

Find, in terms of the error function, the solution of () having the initial form

z,0) =
0, |z| > 1.

Sketch a graph of this solution at various times t > 0.

[The error function is

Erf(z) = \2f /033 eV dy ]

™
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Paper 2, Section I

4B Methods
Find the Fourier transform of the function

f(e) = {A’ =l <1

0, |z| > 1.

Determine the convolution of the function f(x) with itself.

State the convolution theorem for Fourier transforms. Using it, or otherwise,
determine the Fourier transform of the function

B2 —|z[), |z[<2
€Tr) =
9() {0, 2] > 2.

Paper 1, Section II

14B Methods
Consider the equation

V26 = 6(x)g(y) (%)

on the two-dimensional strip —oco < z < 00, 0 < y
and g¢(y) is a smooth function satisfying ¢(0) = g(a) = 0. ¢(zx,y) satisfies the boundary
conditions ¢(x,0) = ¢(z,a) = 0 and lim,—, 1o ¢(z,y) = 0. By using solutions of Laplace’s
equation for z < 0 and x > 0, matched suitably at z = 0, find the solution of (%) in terms
of Fourier coefficients of g(y).

N

a, where 0(x) is the delta function

— =

Find the solution of (*) in the limiting case g(y) = 6(y — ¢), where 0 < ¢ < a, and
hence determine the Green’s function ¢(x,y) in the strip, satisfying

V3¢ = 6(x — b)d(y — c)

and the same boundary conditions as before.

Part IB, 2020 List of Questions



2020

NIVERSITY OF
AMBRIDGE 15

P
S

Paper 2, Section II

13A Methods
(i) The solution to the equation

%(m%) + a®zF =0

that is regular at the origin is F(x) = CJy(ax), where « is a real, positive parameter,
Jo is a Bessel function, and C is an arbitrary constant. The Bessel function has infinitely
many zeros: Jo(yx) = 0 with v > 0, for k =1, 2, ... . Show that

BJo(a) Jo(B) — aJo(B) Sy (@)

a2 — B2 ’

1
/0 Jo(ax) Jo(Bz) xdr = a# B,

(where av and 3 are real and positive) and deduce that

1

1
[ dowa) sy vde = 0. k26 [ Ghtna)Pade = S50
0 0

[Hint: For the second identity, consider o =y and = v + € with € small.]

(ii) The displacement z(r,t) of the membrane of a circular drum of unit radius obeys
10/ 0z 0%z
——|r=) = — 1,t) =
rar(rar> ot2 7 2(11) =0,

where 7 is the radial coordinate on the membrane surface, ¢ is time (in certain units), and
the displacement is assumed to have no angular dependence. At t = 0 the drum is struck,

so that 5 U ;
z , r<
2(7’70)—07 E(no)_ {07 r>b
where U and b < 1 are constants. Show that the subsequent motion is given by

- : Jo(7xb)
z(r,t) = C Jo(yer) sin(ygt where Cj = —20U—"0C 2
(r,t) gl % Jo(vkr) sin(yxt) k R

Part IB, 2020 List of Questions [TURN OVER]
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Paper 2, Section 1
5B Methods

Let r, 6, ¢ be spherical polar coordinates, and let P, denote the nth Legendre
polynomial. Write down the most general solution for 7 > 0 of Laplace’s equation V2® = 0
that takes the form ®(r,0,¢) = f(r)P,(cosf).

Solve Laplace’s equation in the spherical shell 1 < r < 2 subject to the boundary
conditions

® = 3cos20 at r=1,
d = 0 at r=2.

[The first three Legendre polynomials are

3 1
Py(r) =1, Pi(x)=x and Pg(q:):gq;?_i.]

Paper 4, Section 1
5D Methods

Let

—2ex
(€2 + x2)2"

ge(x) =

By considering the integral ffooo &(x) ge(x) dx, where ¢ is a smooth, bounded function that
vanishes sufficiently rapidly as |x| — oo, identify lim._,ogc(x) in terms of a generalized
function.

Paper 3, Section I
7D Methods

Define the discrete Fourier transform of a sequence {xg, z1,...,xn—1} of N complex
numbers.

Compute the discrete Fourier transform of the sequence
1
N

Tn = — (1 + 2™/N)N-1 for n=0,...,N—1.
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Paper 1, Section II
14B Methods
The Bessel functions J,(r) (n > 0) can be defined by the expansion

eiTCOSQ _ J()(T) _}_221'”!]”(7”) cosnb. (*)
n=1

By using Cartesian coordinates x = rcos @, y = rsinf, or otherwise, show that
(VQ + 1)eirc059 —0.

Deduce that J,(r) satisfies Bessel’s equation
d? d
207 4 2 2 _
<r = —|—7“dr (n®—r )) Jn(r) =0.

By expanding the left-hand side of (%) up to cubic order in r, derive the series
expansions of Jy(r), Ji(r), Jo(r) and J3(r) up to this order.
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Paper 3, Section II
15D Methods

By differentiating the expression ¥ (t) = H(t) sin(at)/a, where « is a constant and
H(t) is the Heaviside step function, show that

d*y
W + OZQQJZ) = 5(t) )

where 4(t) is the Dirac J-function.

Hence, by taking a Fourier transform with respect to the spatial variables only,
derive the retarded Green’s function for the wave operator 9?2 — ¢*V? in three spatial
dimensions.

[You may use that

i/ ik (x—y) sin(kct) Phe b /Oo Y gin(ket) di
21 Jgrs kc clx -yl J_w

without proof.]

Thus show that the solution to the homogeneous wave equation 0?u — c2V?u = 0,
subject to the initial conditions u(x,0) = 0 and d,u(x,0) = f(x), may be expressed as

u(x,t) = (f)t,

where (f) is the average value of f on a sphere of radius ¢t centred on x. Interpret this
result.

Part IB, 2019 List of Questions
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Paper 2, Section II
16D Methods

2019

For n =0,1,2,..., the degree n polynomial C%(x) satisfies the differential equation

(1—22)y" — 2a + Dy +n(n+2a)y =0

where « is a real, positive parameter. Show that, when m # n,

b
/ €O (2) C2 () w(a) da = 0

for a weight function w(z) and values a < b that you should determine.

Suppose that the roots of C&(x) that lie inside the domain (a, b) are {x1, z2, . ..

with & < n. By considering the integral

=1

b k
/Cg‘(x) H(:C — ;) w(x)dr,

show that in fact all n roots of C%(z) lie in (a,b).
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Paper 4, Section 11
17B Methods
(a) Show that the operator
L
— — —+r
det " Pa2 T ’

where p(z), ¢(x) and r(z) are real functions, is self-adjoint (for suitable boundary
conditions which you need not state) if and only if

dp

q:dx'

(b) Consider the eigenvalue problem

dy Py vy

D _
dxt dez?  dxdz y (+)

on the interval [a, b] with boundary conditions

dy dy
y(a) = ) = y) = L) =0
Assuming that p(z) is everywhere negative, show that all eigenvalues A are positive.

(c) Assume now that p = 0 and that the eigenvalue problem (%) is on the interval
[—¢, c] with ¢ > 0. Show that A = 1 is an eigenvalue provided that

cosc sinhe £ sine coshe =0

and show graphically that this condition has just one solution in the range 0 < ¢ < 7.

[You may assume that all eigenfunctions are either symmetric or antisymmetric
about x = 0.]
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Paper 2, Section 1
5C Methods
Show that

dy 2 dx dy dz\ 2

along a characteristic curve (z(s),y(s)) of the 2"d-order pde

a(2, y) tag + 20(2, ) Uay + (2, y) uyy = f(2,y).

Paper 4, Section 1
5A Methods
By using separation of variables, solve Laplace’s equation

u  0u

— +=—=5=0 O<ax<l, O<y<l,

Ox? + Oy? v 4

subject to

u(0,y) =0 0<y<l,
u(l,y) =0 0<y<l,
u(z,0) =0 0<z <1,
u(z,1) = 2sin(37rz) 0<z<1.

Paper 3, Section I
7A Methods

(a) Determine the Green’s function G(z;¢&) satisfying

G — 4G + 4G = §(z — €),

with G(0;€) = G(1;€) = 0. Here ' denotes differentiation with respect to .

(b) Using the Green’s function, solve
y// _4y/ + 4y = 62:[:’

with y(0) = y(1) = 0.
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Paper 1, Section II
14C Methods
Define the convolution fx*g of two functions f and g. Defining the Fourier transform
fof f by
oo
f = [~ e gy da,

—00

show that

—_—~—

Frg(k)=f(k)gk).

Given that the Fourier transform of f(z) =1/x is

f(k) = —imsgn(k),

find the Fourier transform of sin(z)/z2.
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Paper 3, Section II
15A Methods
Consider the Dirac delta function, é(x), defined by the sampling property

/ F(@)8(x — x0) dz = f(xo),
for any suitable function f(x) and real constant x.

(a) Show that d(ax) = |a|~1§(x) for any non-zero a € R.
(b) Show that xd'(x) = —d(x), where ’ denotes differentiation with respect to x.
(¢) Calculate

| @

where 6(™)(z) is the m'" derivative of the delta function.
(d) For
(z) = 1_n
R - (nx)?2 +1’
show that 1i_>m Tn(x) = ().

(e) Find expressions in terms of the delta function and its derivatives for

(i)
3 x2n? )

lim n°xe”

n—oo
(i)
1 n
lim —/ cos(kx) dk.
0

n—oo T
(f) Hence deduce that
/M,
lim — / ek dk = §(x).

n—oo 21 J_,

[You may assume that

/ eV’ dy = /7 and / Slryly dy = .

—00 —00
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Paper 2, Section II
16A Methods

(a) Let f(z) be a 2m-periodic function (i.e. f(x) = f(x+2m) for all x) defined on [—7, 7]

by
f(x)—{ x x € [0,7]

-z x € [—m,0]

Find the Fourier series of f(x) in the form

f(x) = %ao + i a, cos(nzx) + i b, sin(nz).

n=1 n=1
(b) Find the general solution to
V' '+ +y = f(x)

where f(x) is as given in part (a) and y(x) is 2w-periodic.
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Paper 4, Section 11
17C Methods

Let  be a bounded region in the plane, with smooth boundary 92. Green’s second
identity states that for any smooth functions u, v on §2

/ (u V20 — v V) dxdy:jg u(n-Vv)—v(m-Vu) ds,
Q o0

where n is the outward pointing normal to 0f2. Using this identity with v replaced by
Go(x;%0) = 5—In([x = x0[)) = —— In ((z — z0)” + (¥ — %0)")
27 4

and taking care of the singular point (x,y) = (zo,¥o), show that if u solves the Poisson
equation V?u = —p then

) = = [ Golxsxa) poa) dao i
+ jém <u(x0) n- VGy(x;x9) — Go(x;X0)n - Vu(x0)> ds

at any x = (z,y) € Q, where all derivatives are taken with respect to xg = (xg,yo)-
In the case that € is the unit disc ||x|| < 1, use the method of images to show that
the solution to Laplace’s equation V2u = 0 inside €2, subject to the boundary condition
u(1,0) =6(0 — a),
is
1 1—r?
21472 —2rcos(f —a)’

u(r, 0)

where (r,0) are polar coordinates in the disc and « is a constant.

[Hint: The image of a point X € §) is the point yo = xo/||%0||?, and then

[x — %ol = [[xol| [|x = yoll

for all x € 0]
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Paper 2, Section 1
5B Methods
Expand f(z) = x as a Fourier series on —7w < x < 7.

By integrating the series show that 22 on —7 < o < 7 can be written as
a o
0
z? = > —I—z:lancosnx ,
n=

where a,, n =1,2,..., should be determined and

= (!
a0 =8 —z
n=1

By evaluating ag another way show that

2

n2 127

n=1

Paper 4, Section 1
5A Methods

The Legendre polynomials, P,(x) for integers n > 0, satisfy the Sturm-Liouville
equation

d d
- (1—2?) %Pn(x) +n(n+1)P,(x) =0

and the recursion formula

(n+1)Pyyi(x) = (2n+1)x Py(x) — n Py_1(x), Py(x)=1, Pi(z)=u=.

(i) For all n > 0, show that P,(z) is a polynomial of degree n with P,(1) = 1.

(ii) For all m,n > 0, show that P,(x) and P,,(z) are orthogonal over the range
x € [—1,1] when m # n.

(iii) For each n > 0 let

Raw) = - [(@? ~1)"].

Assume that for each n there is a constant ay, such that P,(z) = a, R, (x) for
all z. Determine «,, for each n.
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Paper 3, Section 1
7A  Methods
Using the substitution u(z,y) = v(z,y)e™*", find u(z,y) that satisfies

2
Uy +TUuy +22Uu=¢€""

with boundary data u(0,y) = ye‘yg.

Paper 1, Section 11
14B Methods

(a)

(i) Compute the Fourier transform h(k) of h(x) = e=%*|, where a is a real positive
constant.

(ii) Consider the boundary value problem

d2u

= ||
dx?

—|—w2u:e* on —oco < xr < o0

with real constant w # +1 and boundary condition u(z) — 0 as |z| = co.

Find the Fourier transform a(k) of u(z) and hence solve the boundary value
problem. You should clearly state any properties of the Fourier transform that
you use.

(b) Consider the wave equation
Vg = Vg oOn —00<zx<o0oandt>0

with initial conditions
U(I‘,O) :f(‘/l:) Ut(al‘,O) :g(x)

Show that the Fourier transform o(k,t) of the solution v(x,t) with respect to the variable
x is given by

o(k,t) = f(k) cos kt + g(kk) sin kt

where f(k) and §(k) are the Fourier transforms of the initial conditions.
Starting from o(k,t) derive d’Alembert’s solution for the wave equation:

T+t
o) =g (o4 farn) v [ st

You should state clearly any properties of the Fourier transform that you use.
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Paper 3, Section II
15A Methods
Let £ be the linear differential operator

Ly = y/// _ y// _ 2y/

where ’ denotes differentiation with respect to x.

Find the Green’s function, G(z;§), for L satisfying the homogeneous boundary
conditions G(0;¢&) =0, G'(0;£) = 0, G"(0;&) = 0.

Using the Green’s function, solve
Ly=¢e"O(x—1)

with boundary conditions y(0) = 1, '(0) = —1, ¥”(0) = 0. Here O(z) is the Heaviside
step function having value 0 for x < 0 and 1 for > 0.

Paper 2, Section 11

16A Methods
Laplace’s equation for ¢ in cylindrical coordinates (r, 6, z), is

10 (08 1829 ¢
W(W>+ﬁw+w—0

Use separation of variables to find an expression for the general solution to Laplace’s
equation in cylindrical coordinates that is 27-periodic in 6.

Find the bounded solution ¢(r, 0, z) that satisfies

V=0 2>0 0<r<l,
#(1,6,2) = e **(cos @ +sin260) + 2 e~ sin 26.
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Paper 4, Section 11
17B Methods

(a)
(i) For the diffusion equation

(0] 0%¢

— —K—=0 on-oo<z<ooandt>=0,

ot 0x? -
with diffusion constant K, state the properties (in terms of the Dirac delta
function) that define the fundamental solution F(x,t) and the Green’s function
G(z,t;y, 7).
You are not required to give expressions for these functions.

(ii) Consider the initial value problem for the homogeneous equation:

0¢ 0%
E—Kﬁzo, d(z,t0) = a(z) on —oo <z < oo andt >, (A)

and the forced equation with homogeneous initial condition (and given forcing
term h(x,t)):

¢ 0?%¢
- _ _ B >0
ot Ké?a:Q h(z,t), ¢(x,00=0 on —oo<x<ooandt=>0 (B)

Given that F' and G in part (i) are related by
G(.’E,t;y,T) - @(t - T)F(x -yt — T)

(where O(t) is the Heaviside step function having value 0 for ¢ < 0 and 1 for
t > 0), show how the solution of (B) can be expressed in terms of solutions of
(A) with suitable initial conditions. Briefly interpret your expression.

(b) A semi-infinite conducting plate lies in the (z1,z2) plane in the region z; > 0. The
boundary along the z, axis is perfectly insulated. Let (r,6) denote standard polar co-
ordinates on the plane. At time t = 0 the entire plate is at temperature zero except
for the region defined by —7/4 < # < w/4 and 1 < r < 2 which has constant initial
temperature Ty > 0. Subsequently the temperature of the plate obeys the two-dimensional
heat equation with diffusion constant K. Given that the fundamental solution of the two-
dimensional heat equation on R? is

1
F(IEl, To, t) = 47TKte_($%+$%)/(4Kt)

)

show that the origin (0,0) on the plate reaches its maximum temperature at time
t =3/(8K log?2).

Part IB, 2017 List of Questions [TURN OVER



2016

BB UNIVERSITY OF
¥¥ CAMBRIDGE 29

Paper 2, Section 1
5A Methods

Use the method of characteristics to find u(z,y) in the first quadrant = > 0, y > 0,
where u(z,y) satisfies

ou ou
— — 2r— = cosuz,

Ox oy

with boundary data u(z,0) = cos z.

Paper 4, Section 1
5A Methods
Consider the function f(x) defined by

f(z)=2?% for —m<z<m.

Calculate the Fourier series representation for the 27-periodic extension of this function.
Hence establish that

3

and that

n+1

Paper 3, Section 1
7A Methods
Calculate the Green’s function G(x; &) given by the solution to

d*G
e =da—&); 006 =T (1:6) =

where £ € (0,1), z € (0,1) and §(z) is the Dirac d-function. Use this Green’s function to
calculate an explicit solution y(x) to the boundary value problem

d2
d—z =ze ”,
x

where z € (0,1), and y(0) =¢'(1) = 0.
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Paper 1, Section II
14A Methods
(a) Consider the general self-adjoint problem for y(x) on [a, b]:
o) Ly| +ale)y = M)y yla) = y(b) = 0
dxpxd:zy qQ\r)y = Aw\x)y; yla)=ywv)="~u,

where A is the eigenvalue, and w(z) > 0. Prove that eigenfunctions associated with distinct

eigenvalues are orthogonal with respect to a particular inner product which you should
define carefully.

(b) Consider the problem for y(z) given by

1+
zy” + 3y + (—m )y =0; y(1) =yle)=0.

(i) Recast this problem into self-adjoint form.

(ii) Calculate the complete set of eigenfunctions and associated eigenvalues for
this problem. [Hint: You may find it useful to make the substitution x = e®.]

(iii) Verify that the eigenfunctions associated with distinct eigenvalues are indeed
orthogonal.
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Paper 3, Section II
15B Methods
(a) Show that the Fourier transform of f(z) = e=**%", for a > 0, is

fli) = YT e

a

)

stating clearly any properties of the Fourier transform that you use.
[Hint: You may assume that [;° e Pdt = \/7/2]

(b) Consider now the Cauchy problem for the diffusion equation in one space

dimension, i.e. solving for 6(x,t) satisfying:

00 020 .

5= DW with 0(z,0) = g(z),
where D is a positive constant and g(x) is specified. Consider the following property of a
solution:
Property P: If the initial data g(x) is positive and it is non-zero only within a bounded
region (i.e. there is a constant « such that 6(x,0) = 0 for all |x| > «), then for any
€ > 0 (however small) and 5 (however large) the solution 6(f, €) can be non-zero, i.e. the
solution can become non-zero arbitrarily far away after an arbitrarily short time.

Does Property P hold for solutions of the diffusion equation? Justify your answer
(deriving any expression for the solution é(x,t) that you use).

(c) Consider now the wave equation in one space dimension:

0u L0

o2~ 922’

with given initial data u(x,0) = ¢(z) and %(m, 0) =0 (and c is a constant).
Does Property P (with g(x) and 6(5,¢) now replaced by ¢(x) and u(f3,€) respectively)
hold for solutions of the wave equation? Justify your answer again as above.
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Paper 2, Section II
16A Methods

Consider a bar of length m with free ends, subject to longitudinal vibrations. You
may assume that the longitudinal displacement y(z, t) of the bar satisfies the wave equation
with some wave speed c:

Py _ 42
o2 022’
for x € (0,7) and ¢ > 0 with boundary conditions:

% 0,1) = % (1) =
S2(0,8) = 52(m 1) = 0,

for ¢ > 0. The bar is initially at rest so that

oy B

for x € (0,7), with a spatially varying initial longitudinal displacement given by
y(x,0) = bz

for x € (0,7), where b is a real constant.

(a) Using separation of variables, show that

b 4b o= cos[(2n — 1)z] cos[(2n — 1)ct

n=1
(b) Determine a periodic function P(z) such that this solution may be expressed as

y(x,t) = %[P(m +ct) + P(x — ct)].
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Paper 4, Section 11

17B Methods
Let D be a 2-dimensional region in R? with boundary oD.
In this question you may assume Green’s second identity:

2 > _ 99 _ Of
/D(fV g—gV f)dA = ap(fan 98n> di,

where % denotes the outward normal derivative on 0D, and f and g are suitably regular
functions that include the free space Green’s function in two dimensions. You may also
assume that the free space Green’s function for the Laplace equation in two dimensions is
given by

1
Go(r,ro) = 7 log |r — rg.

(a) State the conditions required on a function G(r,7g) for it to be a Dirichlet
Green’s function for the Laplace operator on D. Suppose that V24 = 0 on D. Show that
if G is a Dirichlet Green’s function for D then

w(TO) = (T)%G(T‘,To) dl for To € D.

oD v
(b) Consider the Laplace equation V¢ = 0 in the quarter space
D = {(z,y) : x> 0and y > 0},
with boundary conditions
d(z,0) = e, $(0,y) =e ¥ and d(z,y) — 0 as /22 + y% — oo.
Using the method of images, show that the solution is given by

¢(w0,y0) = F(z0,y0) + F(yo, z0),

where

4010 /OO te=t?
F(xo, = dt.
(ro.w0) = = | (= moP + 4] [t - 20)® + 8]
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Paper 4, Section 1
5C Methods

(a) The convolution f*g of two functions f, g : R — C is related to their Fourier transforms

fi g by | e .
o [ Fwawerar = [ fugle - wdu.
Derive Parseval’s theorem for Fourier transforms from this relation.
(b) Let a > 0 and
cos T for = € [—a,d
0 elsewhere.
(i) Calculate the Fourier transform f(k) of f(x).

(ii) Determine how the behaviour of f(k) in the limit |k| — oo depends on the value of a.
Briefly interpret the result.

Paper 2, Section I
5C Methods

(i) Write down the trigonometric form for the Fourier series and its coefficients for
a function f : [—L,L) — R extended to a 2L-periodic function on R.

(ii) Calculate the Fourier series on [—m,7) of the function f(z) = sin(Az) where A
is a real constant. Take the limit A — k with k € Z in the coefficients of this series and
briefly interpret the resulting expression.
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7C Methods
(a) From the defining property of the ¢ function,

[%&meszﬂm,

for any function f, prove that

(i) §(—2) = 6(a),
(ii) d(az) = |a|~*(z) for a € R, a # 0,

(iii) If g : R - R,  — g(x) is smooth and has isolated zeros x; where the derivative
g (z;) # 0, then

dlg(a)) = 3 2 —20).

T g (@)

(b) Show that the function v(x) defined by

( ) . ex/s
r)=1lim ———
v 5—0 ¢ (1 + 6a:/s)2

is the d(x) function.
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Paper 1, Section II
14C Methods

(i) Briefly describe the Sturm-Liouville form of an eigenfunction equation for
real valued functions with a linear, second-order ordinary differential operator. Briefly
summarize the properties of the solutions.

(ii) Derive the condition for self-adjointness of the differential operator in (i) in terms
of the boundary conditions of solutions y1, ys to the Sturm-Liouville equation. Give at
least three types of boundary conditions for which the condition for self-adjointness is
satisfied.

(iii) Consider the inhomogeneous Sturm-Liouville equation with weighted linear

1 d dy q(z)
S _— _ —_ A pu—
i () = Dy = ).
on the interval a < x < b, where p and ¢ are real functions on [a,b] and w is the weighting
function. Let G(z,&) be a Green’s function satisfying

term

d dG
il ) - G =d0(x—-¢).
& (M0 ) ~ 40 6.9 =0t -
Let solutions y and the Green’s function G satisfy the same boundary conditions of the
form oy’ + By =0 at x = a, py’ + vy =0 at x = b (o, B are not both zero and p, v are
not both zero) and likewise for G for the same constants «, 5, u and v. Show that the
Sturm—Liouville equation can be written as a so-called Fredholm integral equation of the
form

b
BE) = U(€) + A / K (. €)()dr.

where K(z,€) = yJw(§) w(z)G(z,§), ¥ = Jwy and U depends on K, w and the forcing

term f. Write down U in terms of an integral involving f, K and w.

(iv) Derive the Fredholm integral equation for the Sturm-Liouville equation on the
interval [0, 1]
d?y
— —Ay=0
d:I:Z y )

with y(0) = y(1) = 0.
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15C Methods

(i) Consider the Poisson equation V21 (r) = f(r) with forcing term f on the infinite
domain R? with limy_,o,¢ = 0. Derive the Green’s function G(r,r’) = —1/(4n|r —r'|)
for this equation using the divergence theorem. [You may assume without proof that the
divergence theorem is valid for the Green’s function.]

(ii) Consider the Helmholtz equation

V2 (r) + k*y(r) = f(r), ()

where k is a real constant. A Green’s function g(r,r’) for this equation can be constructed
from G(r,r’) of (i) by assuming g(r,r’) = U(r)G(r,r’) where r = |[r —r/| and U(r) is a
regular function. Show that lim,_,o U(r) = 1 and that U satisfies the equation

d?U

s k*U(r) =0. (1)

(iii) Take the Green’s function with the specific solution U(r) = e**" to Eq. (1) and
consider the Helmholtz equation (t) on the semi-infinite domain z > 0, z,y € R. Use
the method of images to construct a Green’s function for this problem that satisfies the
boundary conditions

15)
99 _0on #=0 and lim g(r,r') =0.

0z |r]—o0

(iv) A solution to the Helmholtz equation on a bounded domain can be constructed
in complete analogy to that of the Poisson equation using the Green’s function in Green’s
3rd identity

vt = [ o) 25 < gt 258 s+ [ f@ateyav,

where V' denotes the volume of the domain, 9V its boundary and 9/9n’ the outgoing
normal derivative on the boundary. Now consider the homogeneous Helmholtz equation
V24(r) + k?(r) = 0 on the domain z > 0, x, € R with boundary conditions 1 (r) = 0

at |r| — oo and
40 for p > a
220 A for p<a

where p = /22 + 92 and A and a are real constants. Construct a solution in integral form
to this equation using cylindrical coordinates (z, p, p) with & = pcos p, y = psin g.

i
0z
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16C Methods
(i) The Laplace operator in spherical coordinates is

62_i2 7”22 + 1 2 Sjneg +#8_2
- r20r or r2sin 6 90 00 r2sin 0 0¢?

Show that general, regular axisymmetric solutions 1 (r,6) to the equation ﬁ%ﬂ = 0 are
given by

[e.e]
$(r,0) = (Apr™ + Bur~ ") Py (cos0) ,
n=0
where A,,, B, are constants and P, are the Legendre polynomials. [You may use without
proof that regular solutions to Legendre’s equation —% [(1— xQ)%y(x)] = \y(z) are given

by P, (z) with A = n(n + 1) and non-negative integer n.]

(ii) Consider a uniformly charged wire in the
form of a ring of infinitesimal width with radius
ro = 1 and a constant charge per unit length o.
By Coulomb’s law, the electric potential due to
a point charge ¢ at a point a distance d from the

charge is
q

= Tred”
where € is a constant. Let the z-axis be perpen-
dicular to the circle and pass through the circle’s
centre (see figure). Show that the potential due
to the charged ring at a point on the z-axis at
location z is given by

o
V=——-—/—.
2e0V1 + 22

(iii) The potential V' generated by the charged ring of (ii) at arbitrary points (excluding
points directly on the ring which can be ignored for this question) is determined by
Laplace’s equation V2V = 0. Calculate this potential with the boundary condition
lim V =0, where r = \/22 + 32 + 22. [You may use without proof that

7—00

1 o m (2m)!
T L

for |x| < 1. Furthermore, the Legendre polynomials are normalized such that P,(1) = 1.]
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17C Methods

Describe the method of characteristics to construct solutions for 1st-order, homogeneous,
linear partial differential equations

ou ou
Oé(l‘,y)% +B(x7y)8_y = 07

with initial data prescribed on a curve zo(o), yo(o): u(zo(o),yo(0)) = h(o).

Consider the partial differential equation (here the two independent variables are time ¢

and spatial direction x)
ou ou 0

o "or
with initial data u(t = 0,2) = e~ *".

(i) Calculate the characteristic curves of this equation and show that u remains constant
along these curves. Qualitatively sketch the characteristics in the (z,t) diagram, i.e. the
x axis is the horizontal and the ¢ axis is the vertical axis.

(ii) Let Zp denote the x value of a characteristic at time ¢ = 0 and thus label the
characteristic curves. Let & denote the z value at time ¢ of a characteristic with given
Zo. Show that 0%/0%Zp becomes a non-monotonic function of Zy (at fixed ¢) at times
t > \/e/2, i.e. Z(Zp) has a local minimum or maximum. Qualitatively sketch snapshots of
the solution u(t,x) for a few fixed values of t € [0,+/e/2] and briefly interpret the onset
of the non-monotonic behaviour of Z(Zg) at t = \/e/2.
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Paper 4, Section 1
5D Methods
Consider the ordinary differential equation

d*p 15k2
dz? 4(k|z| + 1)2

—3ké(2)| v =0, (t)

where k is a positive constant and ¢ denotes the Dirac delta function. Physically relevant
solutions for v are bounded over the entire range z € R.

(i) Find piecewise bounded solutions to this differential equations in the ranges z > 0 and

z < 0, respectively. [Hint: The equation ;%/ — -2y = 0 for a constant ¢ may be solved

using the Ansatz y = x“.]

(ii) Derive a matching condition at z = 0 by integrating (f) over the interval (—e, €) with
€ — 0 and use this condition together with the requirement that i) be continuous at z = 0
to determine the solution over the entire range z € R.

Paper 2, Section 1
5D Methods
(i) Calculate the Fourier series for the periodic extension on R of the function

f(z) = 2(l-x),

defined on the interval [0, 1).

(ii) Explain why the Fourier series for the periodic extension of f/(x) can be obtained by
term-by-term differentiation of the series for f(x).

(iii) Let G(z) be the Fourier series for the periodic extension of f’(x). Determine the value
of G(0) and explain briefly how it is related to the values of f’.

Paper 3, Section I
7D Methods
Using the method of characteristics, solve the differential equation

ou ou

e Y0
y8x+$8y ’

where z, y € R and u = cosy? on . = 0, y > 0.
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14D Methods
(a) Legendre’s differential equation may be written

d’y ) dy
(1—m2)w—2x@+n(n+l)y:0, y(l)=1.

Show that for non-negative integer n, this equation has a solution P,(z) that is a
polynomial of degree n. Find Py, P; and P, explicitly.

(b) Laplace’s equation in spherical coordinates for an axisymmetric function U(r, 8) (i.e. no
¢ dependence) is given by

L0 (L0UN, 10 (. aUY

r2 Or ar r2 sin 6 00 o0 )
Use separation of variables to find the general solution for U(r, ).
Find the solution U(r,#) that satisfies the boundary conditions

U(r,0) — vor cos asr — oo,

oU

— =0 atr=r
or 0>

where vy and rg are constants.
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15D Methods

Let £ be a linear second-order differential operator on the interval [0, 7/2]. Consider the
problem

Ly(z) = f(z);  y(0) =y(r/2) =0,
with f(x) bounded in [0, 7/2].
(i) How is a Green’s function for this problem defined?
(ii) How is a solution y(x) for this problem constructed from the Green’s function?

(iii) Describe the continuity and jump conditions used in the construction of the Green’s
function.

(iv) Use the continuity and jump conditions to construct the Green’s function for the

differential equation
>y dy 5

i T U

on the interval [0, 7/2] with the boundary conditions y(0) = 0, y(7/2)=0 and an arbitrary
bounded function f(x). Use the Green’s function to construct a solution y(x) for the
particular case f(z) = e*/2,
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16D Methods R
The Fourier transform f of a function f is defined as

/ f(z)e~™*2dg . so that f(x / f k)etRdk .
A Green’s function G(t, ', z,z") for the diffusion equation in one spatial dimension satisfies
oG 0%G
—D—— =06t —t)d(x —a').
O DT ()i )

(a) By applying a Fourier transform, show that the Fourier transform G of this Green’s
function and the Green’s function G are

Gt k') = H(t—t)e e o= DRE=E)
i / (x—:c’)Q
G(t,t,z,2)) Me—m ’
ArD(t —t')
where H is the Heaviside function. [Hint: The Fourier transform F of a Gaussian
1 .2 §
F(z) = € 4a, a = const, is given by F (k) = o~k ]
4ma

(b) The analogous result for the Green’s function for the diffusion equation in two spatial
dimensions is

H(t—t) e—m[(ac—x')g-ﬁ-(y—y/)ﬂ )

Use this Green’s function to construct a solution for ¢ > 0 to the diffusion equation

oV 02U 9%
ET D (W + 8—y2> =p(t)o(x)6(y),

with the initial condition ¥(0,x,y) = 0.

Now set
pg = const for 0<t <ty
p(t) =
0 for t >ty

Find the solution W (¢, z,y) for t > ty in terms of the exponential integral defined by
00 67/\
m@m:—/ i,
n A

Use the approximation Ei(—n) ~ Inn + C, valid for n < 1, to simplify this solution
U(t,z,y). Here C' ~ 0.577 is Euler’s constant.
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Let f(z) be a complex-valued function defined on the interval [—L, L] and periodically
extended to z € R.

(i) Express f(z) as a complex Fourier series with coefficients ¢,,, n € Z. How are the
coefficients ¢, obtained from f(x)?

(ii) State Parseval’s theorem for complex Fourier series.

(iii) Consider the function f(x) = cos(ax) on the interval [—m, 7] and periodically extended
to x € R for a complex but non-integer constant «. Calculate the complex Fourier series

of f(x).

(iv) Prove the formula

n?—a? 222 2atan(am)’

n=1

(v) Now consider the case where « is a real, non-integer constant. Use Parseval’s theorem

to obtain a formula for -

1
Zm-

n=—oo

What value do you obtain for this series for a = 5/27
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Paper 2, Section 1
5B Methods
Consider the equation

Uy + (T 4+ y)uy =1

2013

subject to the Cauchy data u(1l,y) = y. Using the method of characteristics, obtain a

solution to this equation.

Paper 4, Section 1
5C Methods
Show that the general solution of the wave equation

can be written in the form
y(z,t) = f(ct —x) + g(ct + x).
For the boundary conditions

y(0,t) = y(L,t) =0, t>0,

find the relation between f and g and show that they are 2L-periodic. Hence show that

-1 ((2) " ()

is independent of t.
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7C Methods
The solution to the Dirichlet problem on the half-space D = {x = (z,y,2) : z > 0}:

Viu(x) =0, x€D, u(x) =0 as |x| — oo, u(z,y,0) = h(z,y),

is given by the formula

o0 (o] 8
u(xg) = u(xo, Yo, 20) =/ / h(x,y)%G(x,xo)dxdy,

where n is the outward normal to 0D.
State the boundary conditions on G and explain how G is related to G3, where

1 1

4m [x — X

Gs(x,x0) =

is the fundamental solution to the Laplace equation in three dimensions.

Using the method of images find an explicit expression for the function %G(x, Xp)
in the formula.

Paper 1, Section 11
14B Methods

(i) Let f(z) =z, 0 <z < w. Obtain the Fourier sine series and sketch the odd and
even periodic extensions of f(z) over the interval —27 < x < 27. Deduce that

[e.9]

1 2
P

n=1
(ii) Consider the eigenvalue problem

d? d
£y:——y—2—y:)\y

AeER
dx? dx ’ <

with boundary conditions y(0) = y(m) = 0. Find the eigenvalues and corresponding
eigenfunctions. Recast £ in Sturm-Liouville form and give the orthogonality condition for
the eigenfunctions. Using the Fourier sine series obtained in part (i), or otherwise, and
assuming completeness of the eigenfunctions, find a series for y that satisfies

Ly =ze™

for the given boundary conditions.
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The Laplace equation in plane polar coordinates has the form

2, _ [1O (O 19 _
vgﬁ_[r@r "o ) V2 e ¢(r,0) =0.

Using separation of variables, derive the general solution to the equation that is single-
valued in the domain 1 < r < 2.

For -
f0) =" Aysinng,
n=1

solve the Laplace equation in the annulus with the boundary conditions:

f@0), r=1

Paper 2, Section II
16B Methods

The steady-state temperature distribution u(z) in a uniform rod of finite length
satisfies the boundary value problem

d2
—D@u(x) = f(z), 0<z<l
u(0) =0, u(l) =0

where D > 0 is the (constant) diffusion coefficient. Determine the Green’s function G(z, §)
for this problem. Now replace the above homogeneous boundary conditions with the
inhomogeneous boundary conditions u(0) = «, u(l) = and give a solution to the new
boundary value problem. Hence, obtain the steady-state solution for the following problem
with the specified boundary conditions:

2 0
—D@u(:r,t)—i— gu(x,t) =z, O<z<l1,

w0,t)=1/D,  w(l,t)=2/D, t>0.

[You may assume that a steady-state solution exists.]
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17C Methods
Find the inverse Fourier transform G(x) of the function

g(k) = ekl a >0, —o0 <k <o0.

Assuming that appropriate Fourier transforms exist, determine the solution ¢ (x,y) of
V2 =0, —00 < x < 00, 0<y<l,

with the following boundary conditions

1 1
Tx24+1"

¢($,0) = 6(‘17)’ 1/}(:E, 1) =

Here §(x) is the Dirac delta-function.
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5C Methods
Using the method of characteristics, obtain a solution to the equation

Uy + 20Uy =y

subject to the Cauchy data u(0,y) =1+ y? for -4 <y < 3.

Sketch the characteristics and specify the greatest region of the plane in which a
unique solution exists.

Paper 4, Section 1
5D Methods
Show that the general solution of the wave equation

19 &y _
2ot a2

can be written in the form
y(x,t) = f(xr —ct) + g(z +ct).
Hence derive the solution y(x,t) subject to the initial conditions

dy
y(a:,O) =0, a(mvo) :¢(x)

Part IB, 2012 List of Questions



2012

% UNIVERSITY OF
¥ CAMBRIDGE 29

Paper 3, Section 1
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For the step-function

Fla) = {1, |z < 1/2

0, otherwise,

its convolution with itself is the hat-function

11—z, |z|<1

0, otherwise.

G(z) = [F * F)(z) = {

Find the Fourier transforms of F' and G, and hence find the values of the integrals

 sin?y < ginty
Ilz/ D) dy, .[2:/ dy

4
—00 —00 Y

Paper 1, Section 11
14C Methods
Consider the regular Sturm-Liouville (S-L) system

(Ly)(z) — Aw(z)y(z) =0, a<z<b,
where
(Ly)(z) == —[p(z)y (2)]" + g(2)y(z)

with w(z) > 0 and p(z) > 0 for all x in [a, b], and the boundary conditions on y are

Ary(a) + A2y'(a) =0
By y(b) + By y/(b) =0.

Show that with these boundary conditions, £ is self-adjoint. By considering yLy, or
otherwise, show that the eigenvalue A can be written as

\— Jo 0y + ay?) da — [pyy;
f; wy? dx ‘
Now suppose that a = 0 and b = ¢, that p(z) = 1, ¢(x) > 0 and w(z) = 1 for all
x € [0,/], and that A; =1, A, =0, By =k € RT and By = 1. Show that the eigenvalues
of this regular S-L system are strictly positive. Assuming further that ¢(z) = 0, solve
the system explicitly, and with the aid of a graph, show that there exist infinitely many
eigenvalues A\; < A9 < -++ < A\, < ---. Describe the behaviour of A\, as n — oo.
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Consider Legendre’s equation

(1—2%)y" —2zy + My =0.

Show that if A = n(n + 1), with n a non-negative integer, this equation has a solution
y = P,(x), a polynomial of degree n. Find Py, P and P» explicitly, subject to the
condition P,(1) = 1.

The general solution of Laplace’s equation V21 = 0 in spherical polar coordinates,
in the axisymmetric case, has the form

P(r,0) = Z(Anrn + Bpr~ Y P, (cos 0) .

n=0

Hence, find the solution of Laplace’s equation in the region a < r < b satisfying the
boundary conditions

P(r,0) =1, r=a

Y(r,0) =3cos?0, r=».

Paper 2, Section II
16C Methods
Consider the linear differential operator £ defined by

d%y

Ly =——2
Y dx?

+y

on the interval 0 < z < co. Given the boundary conditions y(0) = 0 and lim,_,~ y(z) = 0,
find the Green’s function G(z,{) for £ with these boundary conditions. Hence, or
otherwise, obtain the solution of

1, 0z
Ly =
0, p<z<oo

subject to the above boundary conditions, where p is a positive constant. Show that your
piecewise solution is continuous at x = p and has the value

1 _ _
y) = 51+ e = 2e70),
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17D Methods
Let D C R? be a two-dimensional domain with boundary S = 9D, and let

1
Go = Ga(r,rp) = o log |r — o],

where rg is a point in the interior of D. From Green’s second identity,
0 0
[ (o5e-v52) ar= [ ov2 - vvropaa,
g n on D

derive Green’s third identity

oG ou
_ 2 2 _
u(ro)—/DGQV uda—i—/s<u o G28n> de.

[Here % denotes the normal derivative on S.]
Consider the Dirichlet problem on the unit disc D1 = {r € R? : |r| < 1}:

V2U:0, rebD,
u(r) = f(r), re S =0D;.

Show that, with an appropriate function G(r,rp), the solution can be obtained by the
formula

0
= —G(r,rg)dl.
uro) = [0 5Ge w0
State the boundary conditions on G and explain how G is related to Gs.
For r,rg € R?, prove the identity
0
— x|

r
|ro ’

r
-
x|

and deduce that if the point r lies on the unit circle, then

To
r — ro| = |rp||r — rj|, where rj = —— .
‘ ‘ ’ H 0‘7 0 |I'0|2

Hence, using the method of images, or otherwise, find an expression for the function
G(r,rp). [An expression for %G is not required.]
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The Legendre equation is

dy ) dy

2 _
(1—= )d:r2 _Qxdx +n(n+1)y=0
for —1 < z < 1 and non-negative integers n.

Write the Legendre equation as an eigenvalue equation for an operator L in Sturm-
Liouville form. Show that L is self-adjoint and find the orthogonality relation between the
eigenfunctions.

Paper 3, Section 1
7A  Methods B
The Fourier transform h(k) of the function h(z) is defined by

[e.e]

h(k) = / h(z)e *dx.

—0o0

(i) State the inverse Fourier transform formula expressing h(z) in terms of h(k).
(ii) State the convolution theorem for Fourier transforms.

(iii) Find the Fourier transform of the function f(z) = e~|*l. Hence show that the
convolution of the function f(z) = e~|*l with itself is given by the integral expression

[e.o]

) eikx
— [ ——==dk.
T / (1+ k)2

—00

Paper 4, Section 1
5A Methods
Use the method of characteristics to find a continuous solution u(z, y) of the equation

ou ou

2o
y8w+x8y ’

subject to the condition u(0,y) = y*.

In which region of the plane is the solution uniquely determined?
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14A Methods
Let f(t) be a real function defined on an interval (—7',7) with Fourier series

o0
a nrt . nmt
f(t) = 50 + nél <an co8 + by, sin T) )

State and prove Parseval’s theorem for f(¢) and its Fourier series. Write down the formulae

nmt nmt
for ag, a, and b, in terms of f(t), cos Tﬂ and sin Tﬂ

Find the Fourier series of the square wave function defined on (—m, ) by

0 —7m<t<0
g(t) =
1 O<t<m.

Hence evaluate

o~ (D"
kzzo (2k+1)

Using some of the above results evaluate

= 1
Z:: (2k +1)%

k=0

What is the sum of the Fourier series for g(t) at ¢t = 07 Comment on your answer.

Paper 2, Section II
16A Methods
Use a Green’s function to find an integral expression for the solution of the equation
d*0 de

Tt 1290 = f(1)

for ¢ > 0 subject to the initial conditions

do
0(0) =0 and 5(0) = 0.
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A uniform stretched string of length L, density per unit length z and tension T = pc?
is fixed at both ends. Its transverse displacement is given by y(z,t) for 0 < z < L . The
motion of the string is resisted by the surrounding medium with a resistive force per unit

9y
length of —2kp—.
ength o W
(i) Show that the equation of motion of the string is

%y oy 0%
Iy optd 279
oz T2k ~ a2 =0

provided that the transverse motion can be regarded as small.

(ii) Suppose now that k = 7%0 Find the displacement of the string for ¢ > 0 given

the initial conditions
. (T oy B
y(z,0) = Asin ( 7 ) and Y (x,0) =0.

L
(iii) Sketch the transverse displacement at x = — as a function of time for ¢ > 0.
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Let D be a two dimensional domain with boundary dD. Establish Green’s second

identity
/<¢v b YV G)dA = / (¢— —w‘%)

1o}
where I denotes the outward normal derivative on 0D.
n

State the differential equation and boundary conditions which are satisfied by a

Dirichlet Green’s function G(r,rg) for the Laplace operator on the domain D, where r is
a fixed point in the interior of D.

Suppose that V21 =0 on D. Show that

YP(ro) = zb(r)a—iG(r, ro)ds.

oD
Consider Laplace’s equation in the upper half plane,
V3(z,y) =0, —oo<z<oo and y >0,

with boundary conditions ¢ (x,0) = f(x) where f(z) — 0 as |z| — oo, and (z,y) — 0 as
V22 4+ y2 — co. Show that the solution is given by the integral formula

PRy i . R,

T oo (x = 20)* + 15

[ Hint: It might be useful to consider

1 ~
G(r,rg) = %(log |r — ro| — log |r — Tp|)

for suitable To. You may assume V?log |r — ro| = 275(r — rp). |
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Consider the initial value problem

where £ is a second-order linear operator involving differentiation with respect to t.
Explain briefly how to solve this by using a Green’s function.

Now consider

.. a 0<t<T,
i(t) =

0 T<t<oo,

where a is a constant, subject to the same initial conditions. Solve this using the Green’s
function, and explain how your answer is related to a problem in Newtonian dynamics.

Paper 3, Section I
7B Methods

Show that Laplace’s equation V2¢ = 0 in polar coordinates (r,#) has solutions
proportional to 7+ sin af, r+% cos af for any constant a.

Find the function ¢ satisfying Laplace’s equation in the regiona < r < b, 0 < 8 < 7,
where ¢(a,8) = sin® 0, ¢(b,0) = é(r,0) = ¢(r,7) = 0.

[The Laplacian V? in polar coordinates is

10 (0 18
ror r@r r2 962"
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5A Methods
(a) By considering strictly monotonic differentiable functions ¢(z), such that the

zeros satisfy ¢(c) = 0 but ¢'(¢) # 0, establish the formula

f(e)
o' ()]

/_ " f(@)8(o())da =

Hence show that for a general differentiable function with only such zeros, labelled by c,

RGO S

' (e)]
(b) Hence by changing to plane polar coordinates, or otherwise, evaluate,

[— / / (o8 + y22)5(2> + v2 — 1) dyd.
0 0

Paper 1, Section 11
14A Methods

(a) A function f(t) is periodic with period 27 and has continuous derivatives up to
and including the kth derivative. Show by integrating by parts that the Fourier coefficients

of f(t)

1 2m

ap, = —/ f(t) cosntdt,
T Jo
1 27

by, = —/ f(t)sinnt dt,
T Jo

decay at least as fast as 1/n* as n — oo.
(b) Calculate the Fourier series of f(t) = |sint| on [0, 27].

(c) Comment on the decay rate of your Fourier series.
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Explain briefly the use of the method of characteristics to solve linear first-order
partial differential equations.

Use the method to solve the problem

du
dy

ou
T—Y)—- + @+ =au
(@ —y)g- +(z+y) ,
where « is a constant, with initial condition u(x,0) = 2%, z > 0.
By considering your solution explain:

(i) why initial conditions cannot be specified on the whole z-axis;

(i) why a single-valued solution in the entire plane is not possible if « # 2.
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(a) Put the equation

d>u  du
xw—i-%—i—)\xu:o, 0<z<1,

into Sturm-Liouville form.

(b) Suppose uy,(x) are eigenfunctions such that wu,(z) are bounded as z tends to

zero and )
d“u du
a:dx;—{—d—;—i—)\nxunzo, 0<z <1

Identify the weight function w(x) and the most general boundary conditions on wu,(x)
which give the orthogonality relation

1
o — An) /0 o ()02t () dz = 0.

(¢) The equation

d’y | dy
— 4+ = =0, > 0,
T 02 + I + xy T
has a solution Jy(x) and a second solution which is not bounded at the origin. The zeros
of Jo(z) arranged in ascending order are j,,n = 1,2,.... Given that u,(1) = 0, show that
the eigenvalues of the Sturm-Liouville problem in (b) are A = j,2,n =1,2,....

(d) Using the differential equations for Jo(ax) and Jy(Bx) and integration by parts,
show that

1 a)J! —« "
/0 Jo(ax)Jo(ﬁx)xd:c:ﬁJO( )Jo(jg_ﬁio(ﬁ)%( ) (a # B).
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Defining the function Gy, (r;r9) = —1/(4m|r — rg|), prove Green’s third identity for
functions u(r) satisfying Laplace’s equation in a volume V with surface S, namely

B 0Gy,  Ou
u(ro)—/S<u 5 —%GJ%) ds.

A solution is sought to the Neumann problem for V24 = 0 in the half plane z > 0:

—a ou o ou
w= O™, 2= O as x5 o0, O () on = =0,

where a > 0. It is assumed that [*°_ [* p(x,y)dzdy = 0. Explain why this condition is
necessary.

Construct an appropriate Green’s function G(r;r¢) satisfying 0G/0z = 0 at z = 0,
using the method of images or otherwise. Hence find the solution in the form

U(IanO)ZO) = / / p(x)y)f(x_‘ro’y_y()uz()) d$dy)
where f is to be determined.

Now let

oy {7 <
’ 0 otherwise.

By expanding f in inverse powers of zy, show that

—2az

as 2zp— 00 .
3
3z
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Expand f(z) =z, 0 < x <, as a half-range sine series.

By integrating the series show that a Fourier cosine series for 22, 0 < x < , can be
written as

[e.9]

2 _ A

T :7—1—5 Qyp COSNT
n=1

where a,, n =1,2,..., should be determined and

)nfl

ag =8 —

0 Z n2
n=1

By evaluating ag another way show that

i (_1)7171 B 7T2
n2 127

n=1

Paper 4, Section I
5B Mathematical Methods

Describe briefly the method of Lagrange multipliers for finding the stationary points
of a function f(z,y) subject to the constraint g(z,y) = 0.

Show that at a stationary point (a,b)

af 0g
%(L%b) a_x(avb)
= 0.
af 0g
a_y(a7b) a_y(avb)

Find the maximum distance from the origin to the curve

4y’ +ay—4=0.
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Find a power series solution about = = 0 of the equation

vy’ + (1 —2)y + Iy =0,

with y(0) = 1, and show that y is a polynomial if and only if A is a non-negative integer
n. Let y, be the solution for A = n. Establish an orthogonality relation between y,, and

Show that y,,y, is a polynomial of degree m + n, and hence that

m—+n

YmYn = Z apYp
p=0

for appropriate choices of the coefficients a, and with a,, 4, # 0.

For given n > 0, show that the functions
{Ym, Ymyn :m=0,1,2,...,n—1}
are linearly independent.
Let f(z) be a polynomial of degree 3. Explain why the expansion
f(@) = aoyo(z) + a1y1(x) + azyz(x) + asyi(z)y2(2)

holds for appropriate choices of a,, p =0,1,2,3. Hence show that

AMKW@NHZwJWﬁ+wﬂ%%

where
7 ?/1((12) . —yl(al)
wy = 9 w2 = )
yl(az) - 3/1(041) U1 (042) - yl(al)
and a1,y are the zeros of yo. You need not construct the polynomials yi(z),y2(z)

explicitly.
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A string of uniform density p is stretched under tension along the z-axis and
undergoes small transverse oscillations in the (z,y) plane with amplitude y(z,t). Given
that waves in the string travel at velocity ¢, write down the equation of motion satisfied
by y(x,t).

The string is now fixed at * = 0 and « = L. Derive the general separable solution
for the amplitude y(z,t).

For ¢t < 0 the string is at rest. At time ¢ = 0 the string is struck by a hammer in the
interval [l —a/2,l+4a/2], distance being measured from one end. The effect of the hammer
is to impart a constant velocity v to the string inside the interval and zero velocity outside
it. Calculate the proportion of the total energy given to the string in each mode.

If | = L/3 and @ = L/10, find all the modes of the string which are not excited in
the motion.
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6A Methods

The Fourier transform f(w) of a suitable function f(¢) is defined as f(w) =

J75 f(t)e ™'dt. Consider the function h(t) = e for t > 0, and zero otherwise. Show
that

provided R(a) < 0.
The angle 6(t) of a forced, damped pendulum satisfies
0+ 20+ 50 = e ¥,
with initial conditions 6(0) = #(0) = 0. Show that the transfer function for this system is

~ 1 1 1
R =g lori2 Goriz2)
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Paper 3, Section II
15A Methods
A function ¢(r) is chosen to make the integral

b
/ f(r,g,q")dr

stationary, subject to given values of g(a) and g(b). Find the Euler-Lagrange equation for
g(r).

In a certain three-dimensional electrostatics problem the potential ¢ depends only
on the radial coordinate r, and the energy functional of ¢ is

B2 |1 rdp\? 1
g[(ﬁ]—Qﬂ/Rl [5 (d_(f> +W¢2] 7“2d7“,

where A is a parameter. Show that the Euler-Lagrange equation associated with
minimizing the energy £ is equivalent to

1d*(r¢) 1,
Far et (1)

Find the general solution of this equation, and the solution for the region R; < r < Rp
which satisfies ¢(R;) = ¢1 and ¢(Rg) = 0.

Consider an annular region in two dimensions, where the potential is a function
of the radial coordinate r only. Write down the equivalent expression for the energy
functional £ above, in cylindrical polar coordinates, and derive the equivalent of (1).
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Paper 4, Section II

16A Methods
Suppose that y;1(x) and ya(z) are linearly independent solutions of

d?y dy
@ + b(x)% + c(:r)y =0 s

with y1(0) = 0 and ya(

1) = 0. Show that the Green’s function G(z,¢) for the interval
0 < z,€ <1 and with G(0,¢) =

G(1,€) = 0 can be written in the form

y1(2)y2(§)/W(E); 0<z <§,
ya(m)y1(§)/W(E); & <o <1,

where W (x) = Wyi(x), y2(z)] is the Wronskian of y;(x) and ya(x).
Use this result to find the Green’s function G(x,&) that satisfies

d*G dG
W"‘?)E—I-QG—(S(.’L‘—f),

in the interval 0 < z,£ < 1 and with G(0,£) = G(1,£) = 0. Hence obtain an integral
expression for the solution of

d? 0; 0<x<xg,
—‘Z+3—y+2y: 0
dx dx 2, xp<ax<l1,

for the case x < xg.

Part IB, 2009 List of Questions [TURN OVER
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1/11/14D Methods

Write down the Euler-Lagrange equation for the variational problem for y(z) that
extremizes the integral I defined as

T3
I:/ [y, y)dz,
xp

with boundary conditions y(z1) = y1,y(z2) = y2, where y; and yo are positive constants
such that ya > y1, with o > 2. Find a first integral of the equation when f is independent

of y, ie. f= f(x,y).

A light ray moves in the (z,y) plane from (z1, y1) to (x2, y2) with speed ¢(z) taking
a time T. Show that the equation of the path that makes T an extremum satisfies

dy _ =)

dz k2 —c2(z)
where k is a constant and write down an integral relating k, z1, x2,y1 and ys.
When ¢(x) = ax where a is a constant and k = axo, show that the path is given by

(ya — y)2 = x% — 22

2/1/5D Methods

Describe briefly the method of Lagrange multipliers for finding the stationary values
of a function f(x,y) subject to a constraint g(x,y) = 0.

Use the method to find the largest possible volume of a circular cylinder that has
surface area A (including both ends).

Part IB 2008
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2/11/15D  Methods

(a) Legendre’s equation may be written in the form

d 2,4y _

Show that there is a series solution for y of the form

%)
E k

Y= agx,
k=0

where the a; satisfy the recurrence relation

aky2 _ (A—k(k+1))

ak (k+1)(k+2)

Hence deduce that there are solutions for y(x) = P,(x) that are polynomials of degree
n, provided that A = n(n + 1). Given that ag is then chosen so that P, (1) = 1, find the
explicit form for Py(x).

(b) Laplace’s equation for ®(r,60) in spherical polar coordinates (r,6,¢) may be
written in the axisymmetric case as

02® 20 1 0 9, 0P
a7 Trar Tras (“‘"’”)ax)—ov
where x = cos@.

Write down without proof the general form of the solution obtained by the method
of separation of variables. Use it to find the form of ® exterior to the sphere r = a that
satisfies the boundary conditions, ®(a,z) = 1+ 22, and lim, o, ®(r,z) = 0.

Part IB 2008
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3/1/6D Methods

Let £ be the operator
_ 2y
 da?

on functions y(z) satisfying lim,_, o, y(z) =0 and lim,_,, y(x)=0.

Ly — K2y

Given that the Green’s function G(x;¢) for L satisfies
LG =6(z—¢),

show that a solution of
Ly = S(x),

for a given function S(x), is given by

Indicate why this solution is unique.

Show further that the Green’s function is given by

1

G(z;8) = 3] exp(—|kl[lz — ).

Part IB 2008
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3/11/15D Methods
Let Ay < X2 < ...A,... and y1(x), y2(x), ... yn(x) ... be the eigenvalues and
corresponding eigenfunctions for the Sturm-Liouville system

where p g
= Y (_ %Y
ty= 4 (s ) +atom

with p(z) > 0 and w(z) > 0. The boundary conditions on y are that y(0) = y(1) = 0.

Show that two distinct eigenfunctions are orthogonal in the sense that

1 1
/ WYnYm dT = 5nm/ wyi dx.
0 0

Show also that if y has the form
Yy = Z AnYn,
n=1

with a, being independent of x, then

1
Lydx

Jo yLydz > A

Jo wy?d

o Wy dx
Assuming that the eigenfunctions are complete, deduce that a solution of the diffusion
equation,

dy 1

o= Wt

that satisfies the boundary conditions given above is such that

li /1w2dx <=\ /lw 2 dx
2at \ J, Y =T ey

4/1/5A Methods

Find the half-range Fourier cosine series for f(z) = 2%, 0 < z < 1. Hence show

that
2

<1 s
22
n=1

Part IB 2008
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4/11/16A Methods
Assume F'(z) satisfies

| P < o,

— 00

and that the series

g(1) = Z F(2nm + 1)

n=-—oo
converges uniformly in [0 < 7 < 27).

If F is the Fourier transform of F, prove that

g(T)ziﬂ > F(n)e™ .

n=—oo

[Hint: prove that g is periodic and express its Fourier erpansion coefficients in terms of

In the case that F(z) = e~ 1*l, evaluate the sum
o0

1
2 i

n=—oo

Part IB 2008
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1/11/14D Methods

Define the Fourier transform f(k) of a function f(z) that tends to zero as |z| — oo,
and state the inversion theorem. State and prove the convolution theorem.

Calculate the Fourier transforms of

(@) flz) =e i,
(1, e <
10, |z >0.

Hence show that

S ik -
/ sin (bk) e dk — 7 sinh (ab) o—az

L k@) T T e for @>b,

and evaluate this integral for all other (real) values of x.

2/1/5D Methods

Show that a smooth function y(z) that satisfies y(0) = ¢’(1) = 0 can be written as
a Fourier series of the form

oo
y(z) = Zansin)\nx, 0<zr <1,
n=0

where the A\, should be specified. Write down an integral expression for a,,.
Hence solve the following differential equation
y" —a’y = xcosmx,

with boundary conditions y(0) = 3/(1) = 0, in the form of an infinite series.

Part IB 2007
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2/11/15D  Methods

Let yo(z) be a non-zero solution of the Sturm-Liouville equation

Ll o) = g1 (P0) 22 ) + (ale) + Aow(a)) 1o =0

with boundary conditions yo(0) = yo(1) = 0. Show that, if y(z) and f(x) are related by

with y(x) satisfying the same boundary conditions as yo(z), then
1
/ yofdr =0. (%)
0

Suppose that gy is normalised so that

1
/ wyddr =1,
0

L(y:\) =y*; y(0)=y(1) =0.

and consider the problem

By choosing f appropriately in (x) deduce that, if
A=Xo=€p [p=001),e<1], and y(z)=eyo(r) + €y (x)

then .
= / yodr + O(e) .
0

3/1/6E Methods

Describe the method of Lagrange multipliers for finding extrema of a function
f(x,y, z) subject to the constraint that g(x,y,z) = c.

Illustrate the method by finding the maximum and minimum values of xy for points
(z,y, z) lying on the ellipsoid

with a,b and c all positive.
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3/1I/15E  Methods

Legendre’s equation may be written

(1—2*)y" =22y +n(n+1)y=0 with y(1)=1.

Show that if n is a positive integer, this equation has a solution y = P,(x) that is a

polynomial of degree n. Find Py, P, and P» explicitly.

Write down a general separable solution of Laplace’s equation, V2¢ = 0, in spherical

polar coordinates (r, ). (A derivation of this result is not required.)

Hence or otherwise find ¢ when
Vip=0, a<r<b,

with ¢ = sin? § both when r = @ and when r = b.

4/1/5B Methods

Show that the general solution of the wave equation

Oy 0%

=c
ot2 0x?’

where c is a constant, is
y=flz+ct)+g(z—ct),

where f and g are twice differentiable functions. Briefly discuss the physical interpretation

of this solution.

Calculate y(z,t) subject to the initial conditions

Jy
y(xz,0) =0 and E(x,O) =(x).

Part IB 2007
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4/11/16E  Methods

Write down the Euler-Lagrange equation for extrema of the functional
b
I:/ F(y,y)dx.

Show that a first integral of this equation is given by

OF
Py =

A road is built between two points A and B in the plane z = 0 whose polar
coordinates are 7 = a, § = 0 and r = a, § = 7/2 respectively. Owing to congestion, the
traffic speed at points along the road is kr? with k a positive constant. If the equation
describing the road is 7 = r(6), obtain an integral expression for the total travel time T
from A to B.

[Arc length in polar coordinates is given by ds®> = dr? + r2d6*.]
Calculate T for the circular road r = a.

Find the equation for the road that minimises 7" and determine this minimum value.

Part IB 2007
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1/11/14A  Methods

Define a second rank tensor. Show from your definition that if M;; is a second rank
tensor then M;; is a scalar.

A rigid body consists of a thin flat plate of material having density p(x) per unit
area, where x is the position vector. The body occupies a region D of the (x,y)-plane;
its thickness in the z-direction is negligible. The moment of inertia tensor of the body is
given as

D
Show that the z-direction is an eigenvector of M;; and write down an integral expression
for the corresponding eigenvalue M | .

Hence or otherwise show that if the remaining eigenvalues of M;; are M; and M,
then
M, = My + M.

Find M;; for a circular disc of radius a and uniform density having its centre at
the origin.

2/1/5A Methods

Describe briefly the method of Lagrange multipliers for finding the stationary values
of a function f(x,y) subject to a constraint g(x,y) = 0.

Use the method to find the smallest possible surface area (including both ends) of
a circular cylinder that has volume V.
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2/11/15G ~ Methods

T

Verify that y = e~
(+2)y" + (@ + 1)y —y =0,

and find a second solution of the form ax + b.

Let L be the operator

The Green’s function G(z,§) for L satisfies

LIG) = b(z - ©),
with £ > 0. Show that ( )
_ ) ey

for x > &, and find G(z, &) for z < &.

Hence or otherwise find the solution of

Llyl = —(z +2)e77,

for > 0, with y(x) satisfying the boundary conditions above.

Part IB 2006
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3/1/6A Methods

If T;; is a second rank tensor such that b;T;;c; = 0 for every vector b and every
vector ¢, show that Tj; = 0.

Let S be a closed surface with outward normal n that encloses a three-dimensional
region having volume V. The position vector is x. Use the divergence theorem to find

/S(b-x)(on)dS

for constant vectors b and c¢. Hence find

/ TiTvy dS,
S

and deduce the values of

/x~ndS and /XxndS.
S S

3/11/15G  Methods

(a) Find the Fourier sine series of the function

flz)=2
for0<z<1.

(b) The differential operator L acting on y is given by
Lyl =y" +v"
Show that the eigenvalues X in the eigenvalue problem

Lly] = Ay, y(0) =y(1) =0,

are given by A = —n?n? — %7 n = 1,2,..., and find the corresponding eigenfunctions
Yn (7).
By expressing the equation L[y] = My in Sturm-Liouville form or otherwise,

write down the orthogonality relation for the y,. Assuming the completeness of the
eigenfunctions and using the result of part (a), find, in the form of a series, a function
y(x) which satisfies

Liy] = we ™/

and y(0) =y(1) = 0.

Part IB 2006
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4/1/5G Methods

A finite-valued function f(r,0,¢), where r,0,¢ are spherical polar coordinates,
satisfies Laplace’s equation in the regions r < 1 and r > 1, and f — 0 as r — oo.
At r =1, f is continuous and its derivative with respect to r is discontinuous by Asin? 6,
where A is a constant. Write down the general axisymmetric solution for f in the two
regions and use the boundary conditions to find f.

Hint : Ps(cosf) = % (3cos®f —1) ]

4/11/16B  Methods
The integral

b
I= / Fly(e),y/ (2))dz,

where F' is some functional, is defined for the class of functions y(x) for which y(a) = yo,
with the value y(b) at the upper endpoint unconstrained. Suppose that y(z) extremises
the integral among the functions in this class. By considering perturbed paths of the form
y(x) + en(x), with € < 1, show that

d /OF oF
7 (5) 3y =0
and that
o _,
8:1/ :c:b_ ’
Show further that OF
F—y— =k

for some constant k.

A bead slides along a frictionless wire under gravity. The wire lies in a vertical
plane with coordinates (z,y) and connects the point A with coordinates (0, 0) to the point
B with coordinates (xg,y(zg)), where zq is given and y(xo) can take any value less than
zero. The bead is released from rest at A and slides to B in a time T'. For a prescribed x(
find both the shape of the wire, and the value of y(zq), for which T is as small as possible.
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1/II/14E  Methods

Find the Fourier Series of the function

1 0<0<m,
f<9)_{—1 <6 <2m.

Find the solution ¢(r, 8) of the Poisson equation in two dimensions inside the unit
disk r <1 )
10 [ 0¢ 1 0%
—_— —_ P 9
ror (T8r> 32 902 16),
subject to the boundary condition ¢(1,6) = 0.
[Hint: The general solution of T?R" +rR' —n?R=1%is R=ar" +br " —r?/(n? —4). ]

Vi =

From the solution, show that

4 1
A=—— _.

2/1/5E Methods

Consider the differential equation for z(¢) in ¢t > 0
i —k2x = f(t),

subject to boundary conditions z(0) = 0, and 4(0) = 0. Find the Green function G(¢,t’)
such that the solution for z(¢) is given by

z(t) :/O Gt t") () dt'.
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2/11/15E  Methods

Write down the Euler-Lagrange equation for the variational problem for r(z)

h
5/ F(z,r,r")dz =0,

—h

with boundary conditions r(—h) = r(h) = R, where R is a given positive constant. Show
that if F' does not depend explicitly on z, i.e. F = F(r,r'), then the equation has a first

integral
OF 1
F—r— ==
"o Tk
where k is a constant.

An axisymmetric soap film r(z) is formed between two circular rings r = R at
z = +H. Find the equation governing the shape which minimizes the surface area. Show
that the shape takes the form
r(z) = k! cosh kz.

Show that there exist no solution if R/H < sinh A, where A is the unique positive solution
of A = coth A.

3/1/6E Methods
Describe briefly the method of Lagrangian multipliers for finding the stationary

points of a function f(z,y) subject to a constraint g(z,y) = 0.

Use the method to find the stationary values of xy subject to the constraint
2 2

- Y
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3/11/156H Methods
Obtain the power series solution about ¢ = 0 of
2

d d

and show that regular solutions y(t) = P,(t), which are polynomials of degree n, are
obtained only if A =n(n+1),n=0,1,2,.... Show that the polynomial must be even or
odd according to the value of n.

Show that L
/ Po(t) Po(t) dt = kG »

-1
for some k,, > 0.

Using the identity

02 0 0 1
- el IS S e —
(max2x+at( t)at)(l—%vt—l—x?)i 0,

and considering an expansion ), an(x)P,(t) show that

1

o
_ = "P(t), O<z<l1,
(1—2xt+x2)% T;)l" (t) T

if we assume P, (1) = 1.

By considering

! 1
/ B S—T
11— 2xt+ a2

determine the coefficient k,,.
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4/1/5H Methods

Show how the general solution of the wave equation for y(x,t),

1 0? 0?
2 ae?(®t) = v i) =0,

can be expressed as
y(x,t) = flct —x) + glet + x).

Show that the boundary conditions y(0,t) = y(L,t) = 0 relate the functions f and g and
require them to be periodic with period 2L.

Show that, with these boundary conditions,

[ (G (3)ae= [ opan

and that this is a constant independent of ¢.

4/11/16H Methods
Define an isotropic tensor and show that d;;, €;;% are isotropic tensors.

For x a unit vector and dS(x) the area element on the unit sphere show that
/ AS(%) &, ... s,
is an isotropic tensor for any n. Hence show that
/ AS(R) #:d; = ady | / AS(R) #4d i = 0,
/dS(f{) T8 @p® = b(6:50m + indji + 0adjk) »

for some a, b which should be determined.

Explain why
/d3x(x1+\/—1x2)"f(\x|)20, n=2734,
v

where V' is the region inside the unit sphere.

[The general isotropic tensor of rank 4 has the form ad;;0r; + b ;10 + ¢ 0:10;1.]

Part IB 2005
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1/1/6B Methods
Write down the general isotropic tensors of rank 2 and 3.

According to a theory of magnetostriction, the mechanical stress described by a
second-rank symmetric tensor o;; is induced by the magnetic field vector B;. The stress
is linear in the magnetic field,

0 = AijiBr,

where A; ;i is a third-rank tensor which depends only on the material. Show that o;; can
be non-zero only in anisotropic materials.

1/11/17B  Methods

The equation governing small amplitude waves on a string can be written as
0%y B 0%y
otz ox2’

The end points z = 0 and = = 1 are fixed at y = 0. At ¢t = 0, the string is held stationary
in the waveform,
y(x,0) = z(1 — x) in 0<z<L

The string is then released. Find y(x,t) in the subsequent motion.

LG (@) ]

Given that the energy

is constant in time, show that

2/1/6B Methods

Write down the general form of the solution in polar coordinates (r, #) to Laplace’s
equation in two dimensions.

Solve Laplace’s equation for ¢(r,0) in 0 < r < 1 and in 1 < r < oo, subject to the
conditions
¢ —0 as 7 — 0andr — oo,

9| _ %

Ee o = cos 260 + cos 40.

r=1—

¢|r:1+ = ¢|r:1— and

r=14
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2/11/17B  Methods

Let I;;(P) be the moment-of-inertia tensor of a rigid body relative to the point P.
If G is the centre of mass of the body and the vector GP has components X;, show that

I;;(P) = Ii;(G) + M (X Xd:; — X, X;),

where M is the mass of the body.

Consider a cube of uniform density and side 2a, with centre at the origin. Find the
inertia tensor about the centre of mass, and thence about the corner P = (a, a, a).

Find the eigenvectors and eigenvalues of I;;(P).

3/1/6D Methods
Let
T
Sl = [ 3@ -t ) =0, (D)=,
0

For any variation dz(t) with 62(0) = 6z(T') = 0, show that 65 = 0 when x = x. with

1
z.(t) = g [a sinw(T —t)+b Sinwt] .

By using integration by parts, show that

Slze] = [3zedc] T

— 2 2 _
0 = FsmuT [(a + b%) coswT 2ab} .
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3/11/18D Methods

Starting from the Euler-Lagrange equations, show that the condition for the
variation of the integral [ I(y,y’)dz to be stationary is

ol tant
— 1y —— = constant.
y@y’

In a medium with speed of light ¢(y) the ray path taken by a light signal between
two points satisfies the condition that the time taken is stationary. Consider the region
0 < y < oo and suppose c(y) = e*. Derive the equation for the light ray path y(z).
Obtain the solution of this equation and show that the light ray between (—a,0) and
(a,0) is given by

Sy _ Cos Az

cos \a’
if Aa < 3.

us

Sketch the path for Aa close to 7 and evaluate the time taken for a light signal
between these points.

[The substitution u = ke Y, for some constant k, should prove useful in solving the
differential equation.]

4/1/6C Methods
Chebyshev polynomials T, (x) satisfy the differential equation

(1 _xQ)yN —xy/+n2y:0 on [_]-al]v (T)

where n is an integer.

Recast this equation into Sturm-Liouville form and hence write down the orthog-
onality relationship between T,,(x) and T, (z) for n # m.

By writing = cos#f, or otherwise, show that the polynomial solutions of (}) are
proportional to cos (n cos™! x)

Part IB 2004
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4/11/16C  Methods
Obtain the Green function G(z, §) satisfying

2
G" + ;G’ + kG = §(z — ©),
where k is real, subject to the boundary conditions

G is finite at =0,
G=0 at r=1

[Hint: You may find the substitution G = H/x helpful.]

Use the Green function to determine that the solution of the differential equation

2
y// + 7y/ + k2y _ 1’
x
subject to the boundary conditions

y is finite at =0,
y=20 at =1,

is

1 sin kx
Y= 2 1 .

rsink
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1/1/2D Methods

Fermat’s principle of optics states that the path of a light ray connecting two points
will be such that the travel time ¢ is a minimum. If the speed of light varies continuously
in a medium and is a function ¢(y) of the distance from the boundary y = 0, show that
the path of a light ray is given by the solution to

cy)y” +< (Y1 +y?) =0,
where ¢y = %7 etc. Show that the path of a light ray in a medium where the speed of

light ¢ is a constant is a straight line. Also find the path from (0,0) to (1,0) if c(y) = v,
and sketch it.

1/11/11D Methods

(a) Determine the Green’s function G(z, §) for the operator % + k% on [0, 7] with
Dirichlet boundary conditions by solving the boundary value problem

7+k2G:5(x—£), G(0) =0, G(r) =0

when k is not an integer.

(b) Use the method of Green’s functions to solve the boundary value problem

2
LY Ky =f@), y(0)=a, yr) =

when k is not an integer.
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2/1/2C Methods

Explain briefly why the second-rank tensor

/Sxixj dS(x)

is isotropic, where S is the surface of the unit sphere centred on the origin.

A second-rank tensor is defined by
T(3) = [ (0 =200 — ;) dS(),
where S is the surface of the unit sphere centred on the origin. Calculate T'(y) in the form
Tij = Nij + 1yiy; »

where A and p are to be determined.

By considering the action of 7' on y and on vectors perpendicular to y, determine
the eigenvalues and associated eigenvectors of T

2/11/11C  Methods
State the transformation law for an nth-rank tensor Tj;...x.

Show that the fourth-rank tensor
Cijkl = 045 01 + B ik 651 + 7 Oit O

is isotropic for arbitrary scalars o, 8 and 7.

The stress o;; and strain e;; in a linear elastic medium are related by
Oij = Cijkl €kl-

Given that e;; is symmetric and that the medium is isotropic, show that the stress-strain
relationship can be written in the form

Oij = )\ekk (5”' + 2# €ij-

Show that e;; can be written in the form e;; = pd;; + d;;, where d;; is a traceless
tensor and p is a scalar to be determined. Show also that necessary and sufficient conditions
for the stored elastic energy density £ = %aij €;; to be non-negative for any deformation
of the solid are that

w=>0 and A > —%M-
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3/1/2D Methods

Consider the path between two arbitrary points on a cone of interior angle 2a.
Show that the arc-length of the path () is given by

/(r2 + r%cosec? a)' /2 df |

where r’ = %. By minimizing the total arc-length between the points, determine the

equation for the shortest path connecting them.

3/I1/12D Methods

The transverse displacement y(x, t) of a stretched string clamped at its ends x = 0,1
satisfies the equation

Py _ Ly . Oy
ﬁ—c @72]’6'5, y(I,O)—O,

Jy

3¢ (@, 0) =6z —a),

where ¢ > 0 is the wave velocity, and k£ > 0 is the damping coefficient. The initial
conditions correspond to a sharp blow at x = a at time ¢ = 0.
(a) Show that the subsequent motion of the string is given by

1 “kt . OnQ . QpT 53
W;Q@ SIHT SIH7SIH/( Oénfk t)

y(xat) -

where «,, = wen/l.

(b) Describe what happens in the limits of small and large damping. What critical
parameter separates the two cases?

4/1/2D Methods
Consider the wave equation in a spherically symmetric coordinate system

0?u(r,t)

T = C2AU(T, t) 5

1

where Au =

83—:2(7%) is the spherically symmetric Laplacian operator.

(a) Show that the general solution to the equation above is
u(r,t) = Hf(r + ct) + glr — ct)],

where f(z),g(x) are arbitrary functions.

(b) Using separation of variables, determine the wave field u(r,t) in response to a
pulsating source at the origin u(0,t) = A sinwt.

Part IB 2003



BB UNIVERSITY OF
¥ CAMBRIDGE 21

4/11/11D  Methods

The velocity potential ¢(r, #) for inviscid flow in two dimensions satisfies the Laplace
equation

10 0 1 02

(a) Using separation of variables, derive the general solution to the equation above
that is single-valued and finite in each of the domains (i) 0 < r < a; (i) a < r < 0.

(b) Assuming ¢ is single-valued, solve the Laplace equation subject to the boundary
conditions g—‘f =0at r =a, and % — U cosf as r — oo. Sketch the lines of constant

potential.
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1/1/2A Methods

Find the Fourier sine series for f(z) = x, on 0 < < L. To which value does the
series converge at x = %L?

Now consider the corresponding cosine series for f(x) = x, on 0 < x < L. Sketch
the cosine series between x = —2L and x = 2L. To which value does the series converge
at x = %L? [You do not need to determine the cosine series explicitly.)

1/11/11A  Methods

The potential ®(r, ), satisfies Laplace’s equation everywhere except on a sphere of
unit radius and ® — 0 as » — oco. The potential is continuous at » = 1, but the derivative
of the potential satisfies

P i3}
lim 8— — lim a— =V cos? ¥,
r—1+ Or r—1- Or

where V is a constant. Use the method of separation of variables to find ® for both r > 1
and r < 1.

[The Laplacian in spherical polar coordinates for axisymmetric systems is

1 /0 50 1 0 0
2_ + (0 20 R A O
V= r? (8rr 87“) MY (819 Smﬁ@ﬁ) '
You may assume that the equation
(1- x2)y’)/ +Ay=0

has polynomial solutions of degree m, which are regular at x = =+1, if and only if
A=n(n+1).]

2/1/2C Methods

Write down the transformation law for the components of a second-rank tensor A;;
explaining the meaning of the symbols that you use.

A tensor is said to have cubic symmetry if its components are unchanged by
rotations of 7/2 about each of the three co-ordinate axes. Find the most general second-
rank tensor having cubic symmetry.
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2/11/11C  Methods

If B is a vector, and
Tij = aB;B; + BBy Byd;; ,

show for arbitrary scalars o and § that Tj; is a symmetric second-rank tensor.
Find the eigenvalues and eigenvectors of Tj;.

Suppose now that B depends upon position x and that V-B = 0. Find constants

« and S such that
0

T%ﬂj =[(VxB)xB]J .

Hence or otherwise show that if B vanishes everywhere on a surface S that encloses
a volume V then

/(VxB)deV:O.
|4

3/1/2A Methods

Write down the wave equation for the displacement y(x,t) of a stretched string
with constant mass density and tension. Obtain the general solution in the form

y(z,t) = f(x + ct) + g(xz — ct),

where c is the wave velocity. For a solution in the region 0 < z < oo, with y(0,¢) = 0 and
y — 0 as x — oo, show that

[ |1 [0y 2 1, /[0y 2

is constant in time. Express E in terms of the general solution in this case.
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3/11/12A  Methods

Consider the real Sturm-Liouville problem
Ly(z) = —(p(x)y") + q(z)y = Ar(z)y,

with the boundary conditions y(a) = y(b) = 0, where p,q and r are continuous and
positive on [a,b]. Show that, with suitable choices of inner product and normalisation, the
eigenfunctions y,(x), n=1,2,3..., form an orthonormal set.

Hence show that the corresponding Green’s function G(x, &) satisfying

(£ — pr(2))G (2, €) = 6(x - £),

where g is not an eigenvalue, is

o0
x

£) = ; yn}(\n)gn/ig)7

where A, is the eigenvalue corresponding to y,.
Find the Green’s function in the case where
Ly=y",
with boundary conditions y(0) = y(7) = 0, and deduce, by suitable choice of u, that
2

P
(2n+1)2 8

n=0

4/1/2A Methods

Use the method of Lagrange multipliers to find the largest volume of a rectangular
parallelepiped that can be inscribed in the ellipsoid

LL’2 y2 Z2

StEts=1

4/11/11A Methods

A function y(z) is chosen to make the integral

/fwyyw

stationary, subject to given values of y(a),y(a),y(b) and y'(b). Derive an analogue of the
Euler-Lagrange equation for y(z).

Solve this equation for the case where
f _ £C4y//2 +4y2y/

in the interval [0,1] and

as x — 0, whilst
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1/1/2H Methods

The even function f(x) has the Fourier cosine series

1 oo
flz) = 50 + Zan COS NT

n=1
in the interval —7m < 2 < 7. Show that
L[ 2 L, — 2
— | (f@)de= a5+ ai.

™
- n=1

Find the Fourier cosine series of 2 in the same interval, and show that

4

> 1 T
201" 0
n=1

1/II/11H  Methods

Use the substitution y = 2P to find the general solution of

Find the Green’s function G(z,£), 0 < £ < oo, which satisfies

L,G(x, &) =d(x — &)

for x > 0, subject to the boundary conditions G(z,£) — 0 as x — 0 and as z — oo, for
each fixed €.

Hence, find the solution of the equation

fa_{L 0<z<l,
=0, z>1,

subject to the same boundary conditions.

Verify that both forms of your solution satisfy the appropriate equation and
boundary conditions, and match at x = 1.
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2/1/2G Methods

Show that the symmetric and antisymmetric parts of a second-rank tensor are them-
selves tensors, and that the decomposition of a tensor into symmetric and antisymmetric
parts is unique.

For the tensor A having components

A:

— s
[N N
w o W

find the scalar a, vector p and symmetric traceless tensor B such that
Ax =ax+pAx+ Bx

for every vector x.

2/11/11G  Methods
Explain what is meant by an isotropic tensor.

Show that the fourth-rank tensor
Ajjrr = 065081 + Bk + Il (%)

is isotropic for arbitrary scalars «, 8 and ~.

Assuming that the most general isotropic tensor of rank 4 has the form (x), or

otherwise, evaluate
b o ()
ikl = TiTjma—F | = )
* rea 7 0xR0z) \ 1

where x is the position vector and r = |x]|.
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3/1/2G Methods

Laplace’s equation in the plane is given in terms of plane polar coordinates r and

0 in the form 5 96 5
1 1
2 = —_— _——
Vo= <T ar) 2o =Y

In each of the cases
(i) 0<r<1, and (ii) 1<7r < oo,

find the general solution of Laplace’s equation which is single-valued and finite.

Solve also Laplace’s equation in the annulus a < r < b with the boundary conditions
¢=1 on r=a for all 6,

¢=2 on r=>b for all 6.

3/11/12H Methods

Find the Fourier sine series representation on the interval 0 < x < [ of the function

0, 0<z<a,
f(a:){l, a<xz<b,
0, b<z<<l

The motion of a struck string is governed by the equation

0%y 0%y
w:CQ@, for nggl and t}O,
subject to boundary conditions y = 0 at x = 0 and x = [ for ¢ > 0, and to the initial

dy 1
diti = d—==0(x—-l)att=0.
conditions y = 0 an 9t (x 1 ) a 0

Obtain the solution y(x, ) for this motion. Evaluate y(z,t) for t = £1/c, and sketch
it clearly.

4/1/2H Methods
The Legendre polynomial P, (x) satisfies

(1—2*)P” —22P, +n(n+1)P, =0, n=0,1,..., -1 <z <1
Show that R, (x) = P/ (z) obeys an equation which can be recast in Sturm-Liouville form

and has the eigenvalue (n—1)(n+2). What is the orthogonality relation for R, (z), Ry, (x)
for n # m?
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4/11/11H Methods

A curve y(z) in the xy-plane connects the points (+a,0) and has a fixed length
I, 2a <l < 7a. Find an expression for the area A of the surface of the revolution obtained
by rotating y(z) about the z-axis.

Show that the area A has a stationary value for
1
y = E(cosh kx — cosh ka),

where k is a constant such that
lk = 2sinh ka.

Show that the latter equation admits a unique positive solution for k.
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