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Paper 1, Section I

2F Geometry
What is a topological surface?

Consider
S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},

which you may assume is a topological surface. For the equivalence relation ∼ on S2

generated by (x, y, z) ∼ (−x,−y,−z), show that S2/ ∼ is a topological surface. For the
equivalence relation ≈ on S2 generated by (x, y, z) ≈ (−x,−y, z), show that S2/ ≈ is
homeomorphic to S2.

Paper 3, Section I

2E Geometry
Let H be the hyperbolic upper half plane. Explain how the Riemannian metric

dx2+dy2

y2
on H can be used to compute lengths, angles and areas.

Consider the triangle in H with vertices at eiα, eiβ and ∞, where 0 < α < β < π.
Compute its area, and deduce the Gauss–Bonnet theorem for a hyperbolic polygon.

Paper 1, Section II

11F Geometry
Define in terms of allowable parametrisations what it means to say that a subset

S ⊂ R3 is a smooth surface.

Let φ : R→ (0,∞) be a smooth function. Show that

Σ = {(x, y, z) ∈ R3 : x2 + y2 = φ(z)2}

is a smooth surface in R3.

Suppose a < b and r > 0 are such that for all a 6 a′ < b′ 6 b we have

Area({(x, y, z) ∈ Σ : a′ 6 z 6 b′}) = 2πr · (b′ − a′).

Show that φ must satisfy r2 = φ(t)2 + φ(t)2φ′(t)2 for a 6 t 6 b. Assuming that φ(t) < r
for a 6 t 6 b, show that the graph of the function φ|[a,b] lies on a circle of radius r.

Part IB, Paper 1 [TURN OVER]
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Paper 2, Section II

11F Geometry
Let U ⊂ R2 and f : U → R be a smooth function. Derive a formula for the first

and second fundamental forms of the surface in R3 parametrised by

σ : U −→ R3

(u, v) 7−→ (u, v, f(u, v))

in terms of f . State a formula for the Gaussian curvature in terms of the first and second
fundamental forms, and hence give a formula for the Gaussian curvature of this surface.

Let Σ ⊂ R3 be a smooth surface and P ⊂ R3 be a plane. Supposing that Σ is
tangent to P along a smooth curve γ ⊂ R3 and otherwise lies on one side of P , show that
the Gaussian curvature of Σ is zero at all points on γ.

Paper 3, Section II

12E Geometry
Let σ : V → Σ be a smooth parametrisation of an embedded surface Σ ⊂ R3, and

let γ : (a, b)→ Σ; t 7→ σ(u(t), v(t)) be a smooth curve. Show by differentiating σu · γ′ and
σv · γ′ that γ satisfies the geodesic equations if and only if γ′′(t) is normal to the surface.
Deduce that geodesics are parametrised at constant speed.

Now assume in addition that Σ is a surface of revolution. Let ρ(t) be the distance
from γ(t) to the axis of revolution, and let θ(t) be the angle between γ and the parallel at
γ(t). Prove that if γ is a geodesic then it satisfies the Clairaut relation

ρ(t) cos θ(t) = constant.

On the hyperboloid Σ = {x2 + y2 = z2 + 1} give examples of

(i) a curve parametrised at constant speed, which satisfies the Clairaut rela-
tion, but is not a geodesic,

(ii) a plane that meets Σ in a pair of disjoint geodesics,

(iii) a plane that meets Σ in a pair of geodesics that intersect at right angles.

Are there any geodesics entirely contained in the region z > 0? Are there any geodesics
γ ⊂ Σ with φ(γ) = γ for every isometry φ : Σ→ Σ? Justify your answers.

Part IB, Paper 1
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Paper 4, Section II

11E Geometry
(a) Show that the Möbius maps commuting with z 7→ 1/z are of the form

z 7→ az + b

bz + a

where a, b ∈ C with |a|2 − |b|2 6= 0. Which of these maps preserve the unit disc?

(b) Write down the Riemannian metric on the disc model D of the hyperbolic
plane. Describe the geodesics passing through O and prove that they are length
minimising curves. Deduce that every geodesic is part of a circle or line preserved by
the transformation z 7→ 1/z. [You may assume that the maps in part (a) that preserve
the unit disc are isometries.]

(c) Let P ∈ D be a point at a hyperbolic distance ρ > 0 from O. Let ` be the
hyperbolic line passing through P at right angles to OP . Show that ` has Euclidean
radius 1/ sinh ρ and centre at a distance 1/ tanh ρ from O.

(d) Consider a hyperbolic quadrilateral with three right angles, and angle θ at the
remaining vertex v. Show that

cos θ = tanh a tanh b

where a and b are the hyperbolic lengths of the sides incident with v.

Part IB, Paper 1 [TURN OVER]

2023
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Paper 1, Section I
2E Geometry

Give a characterisation of the geodesics on a smooth embedded surface in R3.

Write down all the geodesics on the cylinder x2 + y2 = 1 passing through the point
(x, y, z) = (1, 0, 0). Verify that these satisfy your characterisation of a geodesic. Which of
these geodesics are closed?

Can R2 \ {(0, 0)} be equipped with an abstract Riemannian metric such that every
point lies on a unique closed geodesic? Briefly justify your answer.

Paper 3, Section I
2F Geometry

Consider the space Sa,b ⊂ R3 defined by

x2 + y2 + z3 + az + b = 0

for unknown real constants a, b with (a, b) 6= (0, 0).

(a) Stating any result you use, show that Sa,b is a smooth surface in R3 whenever
4a3 + 27b2 6= 0.

(b) What about the cases where 4a3 + 27b2 = 0? Briefly justify your answer.

Paper 1, Section II
11E Geometry

(a) Let H be the upper half plane model of the hyperbolic plane. Let G be the group
of orientation preserving isometries of H. Write down the general form of an element of
G. Show that G acts transitively on (i) the points in H, (ii) the boundary R ∪ {∞} of H,
and (iii) the set of hyperbolic lines in H.

(b) Show that if P ∈ H then {g ∈ G | g(P ) = P} is isomorphic to SO(2).

(c) Show that for any two distinct points P,Q ∈ H there exists a unique g ∈ G with
g(P ) = Q and g(Q) = P .

(d) Show that if `,m are hyperbolic lines meeting at P ∈ H with angle θ then the
points of intersection of `,m with the boundary of H, when taken in a suitable order, have
cross ratio cos2(θ/2).

Part IB, Paper 1 [TURN OVER]
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Paper 2, Section II
11F Geometry

Consider the surface S ⊂ R3 given by

(sinhu cos v, sinhu sin v, v) for u, v > 0.

Sketch S. Calculate its first fundamental form.

(a) Find a surface of revolution S′ such that there is a local isometry between S and
S′. Do they have the same Gauss curvature?

(b) Given an oriented surface R ⊂ R3, define the Gauss map of R. Describe the image
of the Gauss map for S′ equipped with the orientation associated to the outward-
pointing normal. Use this to calculate the total Gaussian curvature of S′.

(c) By considering the total Gaussian curvature of S, or otherwise, show that there
does not exist a global isometry between S and S′.

You should carefully state any result(s) you use.

Part IB, Paper 1

2022
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Paper 3, Section II
12F Geometry

(a) Define a topological surface. Consider the topological spaces S1 and S2 given by
identifying the sides of a square as drawn. Show that S1 is a topological surface.
[Hint: It may help to find a finite group G acting on the 2-sphere S2 such that S2/G
is homeomorphic to S1.]

Is S2 a topological surface? Briefly justify your answer.

(b) By cutting each along a suitable diagonal, show that the two topological surfaces
S3 and S4 defined by gluing edges of polygons as shown are homeomorphic.

If you delete an open disc from S4, can the resulting surface be embedded in R3?
Briefly justify your answer. Can S4 itself be embedded in R3? State any result you
use.

Part IB, Paper 1 [TURN OVER]
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Paper 4, Section II
11E Geometry

(a) Write down the metric on the unit disc model D of the hyperbolic plane. Let C
be the Euclidean circle centred at the origin with Euclidean radius r. Show that C is a
hyperbolic circle and compute its hyperbolic radius.

(b) Let ∆ be a hyperbolic triangle with angles α, β, γ, and side lengths (opposite
the corresponding angles) a, b, c. State the hyperbolic sine formula. The hyperbolic cosine
formula is cosh a = cosh b cosh c− sinh b sinh c cosα. Show that if γ = π/2 then

tanα =
sinh a

cosh a sinh b
and tanα tanβ cosh c = 1.

(c) Write down the Gauss–Bonnet formula for a hyperbolic triangle. Show that the
hyperbolic polygon in D with vertices at re2πik/n for k = 0, 1, 2, . . . , n− 1 has hyperbolic
area

An(r) = 2n

[
cot−1

(
1 − r2

1 + r2
cot

(π
n

))
− π

n

]
.

(d) Show that there exists a hyperbolic hexagon with all interior angles a right
angle. Draw pictures illustrating how such hexagons may be used to construct a closed
hyperbolic surface of any genus at least 2.

Part IB, Paper 1
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Paper 1, Section I

2F Geometry
Let f : R3 → R be a smooth function and let Σ = f−1(0) (assumed not empty).

Show that if the differential Dfp 6= 0 for all p ∈ Σ, then Σ is a smooth surface in R3.

Is {(x, y, z) ∈ R3 : x2 + y2 = cosh(z2)} a smooth surface? Is every surface Σ ⊂ R3

of the form f−1(0) for some smooth f : R3 → R? Justify your answers.

Paper 3, Section I

2E Geometry
State the local Gauss–Bonnet theorem for geodesic triangles on a surface. Deduce

the Gauss–Bonnet theorem for closed surfaces. [Existence of a geodesic triangulation can
be assumed.]

Let Sr ⊂ R3 denote the sphere with radius r centred at the origin. Show that the
Gauss curvature of Sr is 1/r

2. An octant is any of the eight regions in Sr bounded by arcs
of great circles arising from the planes x = 0, y = 0, z = 0. Verify directly that the local
Gauss–Bonnet theorem holds for an octant. [You may assume that the great circles on Sr
are geodesics.]

Paper 1, Section II

11F Geometry
Let S ⊂ R3 be an oriented surface. Define the Gauss map N and show that the

differential DNp of the Gauss map at any point p ∈ S is a self-adjoint linear map. Define
the Gauss curvature κ and compute κ in a given parametrisation.

A point p ∈ S is called umbilic if DNp has a repeated eigenvalue. Let S ⊂ R3 be a
surface such that every point is umbilic and there is a parametrisation φ : R2 → S such
that S = φ(R2). Prove that S is part of a plane or part of a sphere. [Hint: consider
the symmetry of the mixed partial derivatives nuv = nvu, where n(u, v) = N(φ(u, v)) for
(u, v) ∈ R2.]

Paper 2, Section II

11E Geometry
Define H, the upper half plane model for the hyperbolic plane, and show that

PSL2(R) acts on H by isometries, and that these isometries preserve the orientation
of H.

Show that every orientation preserving isometry of H is in PSL2(R), and hence the
full group of isometries of H is G = PSL2(R) ∪ PSL2(R)τ , where τz = −z̄.

Let ` be a hyperbolic line. Define the reflection σ` in `. Now let `, `′ be two
hyperbolic lines which meet at a point A ∈ H at an angle θ. What are the possibilities for
the group G generated by σ` and σ`′? Carefully justify your answer.

Part IB, 2021 List of Questions

2021
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Paper 3, Section II

12E Geometry
Let S ⊂ R3 be an embedded smooth surface and γ : [0, 1] → S a parameterised

smooth curve on S. What is the energy of γ? By applying the Euler–Lagrange equations
for stationary curves to the energy function, determine the differential equations for
geodesics on S explicitly in terms of a parameterisation of S.

If S contains a straight line `, prove from first principles that each segment [P,Q] ⊂ `
(with some parameterisation) is a geodesic on S.

Let H ⊂ R3 be the hyperboloid defined by the equation x2 + y2 − z2 = 1 and
let P = (x0, y0, z0) ∈ H. By considering appropriate isometries, or otherwise, display
explicitly three distinct (as subsets of H) geodesics γ : R → H through P in the case
when z0 6= 0 and four distinct geodesics through P in the case when z0 = 0. Justify your
answer.

Let γ : R → H be a geodesic, with coordinates γ(t) = (x(t), y(t), z(t)). Clairaut’s
relation asserts ρ(t) sinψ(t) is constant, where ρ(t) =

√
x(t)2 + y(t)2 and ψ(t) is the angle

between γ̇(t) and the plane through the point γ(t) and the z-axis. Deduce from Clairaut’s
relation that there exist infinitely many geodesics γ(t) on H which stay in the half-space
{z > 0} for all t ∈ R.

[You may assume that if γ(t) satisfies the geodesic equations on H then γ is defined
for all t ∈ R and the Euclidean norm ‖γ̇(t)‖ is constant. If you use a version of the
geodesic equations for a surface of revolution, then that should be proved.]

Paper 4, Section II

11F Geometry
Define an abstract smooth surface and explain what it means for the surface to be

orientable. Given two smooth surfaces S1 and S2 and a map f : S1 → S2, explain what it
means for f to be smooth.

For the cylinder
C = {(x, y, z) ∈ R3 : x2 + y2 = 1},

let a : C → C be the orientation reversing diffeomorphism a(x, y, z) = (−x,−y,−z). Let
S be the quotient of C by the equivalence relation p ∼ a(p) and let π : C → S be the
canonical projection map. Show that S can be made into an abstract smooth surface so
that π is smooth. Is S orientable? Justify your answer.

Part IB, 2021 List of Questions [TURN OVER]

2021



9

Paper 1, Section I

2E Geometry
Define the Gauss map of a smooth embedded surface. Consider the surface of

revolution S with points 


(2 + cos v) cosu

(2 + cos v) sinu

sin v


 ∈ R3

for u, v ∈ [0, 2π]. Let f be the Gauss map of S. Describe f on the {y = 0} cross-section
of S, and use this to write down an explicit formula for f .

Let U be the upper hemisphere of the 2-sphere S2, and K the Gauss curvature of
S. Calculate

∫
f−1(U)K dA.

Paper 1, Section II

11E Geometry
Let C be the curve in the (x, z)-plane defined by the equation

(x2 − 1)2 + (z2 − 1)2 = 5 .

Sketch C, taking care with inflection points.

Let S be the surface of revolution in R3 given by spinning C about the z-axis.
Write down an equation defining S. Stating any result you use, show that S is a smooth
embedded surface.

Let r be the radial coordinate on the (x, y)-plane. Show that the Gauss curvature
of S vanishes when r = 1. Are these the only points at which the Gauss curvature of S
vanishes? Briefly justify your answer.

Part IB, 2020 List of Questions [TURN OVER]
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Paper 2, Section II

11F Geometry
Let H = {z = x + iy ∈ C : y > 0} be the hyperbolic half-plane with the metric

gH = (dx2 + dy2)/y2. Define the length of a continuously differentiable curve in H with
respect to gH .

What are the hyperbolic lines in H? Show that for any two distinct points z, w in H,
the infimum ρ(z, w) of the lengths (with respect to gH) of curves from z to w is attained
by the segment [z, w] of the hyperbolic line with an appropriate parameterisation.

The ‘hyperbolic Pythagoras theorem’ asserts that if a hyperbolic triangle ABC has
angle π/2 at C then

cosh c = cosh a cosh b ,

where a, b, c are the lengths of the sides BC, AC, AB, respectively.

Let l and m be two hyperbolic lines in H such that

inf{ρ(z, w) : z ∈ l, w ∈ m} = d > 0.

Prove that the distance d is attained by the points of intersection with a hyperbolic line
h that meets each of l, m orthogonally. Give an example of two hyperbolic lines l and m
such that the infimum of ρ(z, w) is not attained by any z ∈ l, w ∈ m.

[You may assume that every Möbius transformation that maps H onto itself is an
isometry of gH .]

Part IB, 2020 List of Questions

2020
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Paper 1, Section I

3E Geometry
Describe the Poincaré disc model D for the hyperbolic plane by giving the appro-

priate Riemannian metric.

Calculate the distance between two points z1, z2 ∈ D. You should carefully state
any results about isometries of D that you use.

Paper 3, Section I

5E Geometry
State a formula for the area of a spherical triangle with angles α, β, γ.

Let n > 3. What is the area of a convex spherical n-gon with interior angles
α1, . . . , αn? Justify your answer.

Find the range of possible values for the interior angle of a regular convex spherical
n-gon.

Part IB, 2019 List of Questions

2019
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Paper 3, Section II

14E Geometry
Define a geodesic triangulation of an abstract closed smooth surface. Define the

Euler number of a triangulation, and state the Gauss–Bonnet theorem for closed smooth
surfaces. Given a vertex in a triangulation, its valency is defined to be the number of
edges incident at that vertex.

(a) Given a triangulation of the torus, show that the average valency of a vertex of
the triangulation is 6.

(b) Consider a triangulation of the sphere.

(i) Show that the average valency of a vertex is strictly less than 6.

(ii) A triangulation can be subdivided by replacing one triangle ∆ with three
sub-triangles, each one with vertices two of the original ones, and a fixed
interior point of ∆.

Using this, or otherwise, show that there exist triangulations of the sphere
with average vertex valency arbitrarily close to 6.

(c) Suppose S is a closed abstract smooth surface of everywhere negative curvature.
Show that the average vertex valency of a triangulation of S is bounded above and below.

Part IB, 2019 List of Questions [TURN OVER

2019



18

Paper 2, Section II

14E Geometry
Define a smooth embedded surface in R3. Sketch the surface C given by

(√
2x2 + 2y2 − 4

)2
+ 2z2 = 2

and find a smooth parametrisation for it. Use this to calculate the Gaussian curvature of
C at every point.

Hence or otherwise, determine which points of the embedded surface

(√
x2 + 2xz + z2 + 2y2 − 4

)2
+ (z − x)2 = 2

have Gaussian curvature zero. [Hint: consider a transformation of R3.]

[You should carefully state any result that you use.]

Paper 4, Section II

15E Geometry
Let H = {x + iy |x, y ∈ R, y > 0} be the upper-half plane with hyperbolic metric

dx2+dy2

y2
. Define the group PSL(2,R), and show that it acts by isometries on H. [If you

use a generation statement you must carefully state it.]

(a) Prove that PSL(2,R) acts transitively on the collection of pairs (l, P ), where l
is a hyperbolic line in H and P ∈ l.

(b) Let l+ ⊂ H be the imaginary half-axis. Find the isometries of H which fix l+

pointwise. Hence or otherwise find all isometries of H.

(c) Describe without proof the collection of all hyperbolic lines which meet l+ with
(signed) angle α, 0 < α < π. Explain why there exists a hyperbolic triangle with angles
α, β and γ whenever α+ β + γ < π.

(d) Is this triangle unique up to isometry? Justify your answer. [You may use
without proof the fact that Möbius maps preserve angles.]

Part IB, 2019 List of Questions

2019
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Paper 1, Section I

3G Geometry

(a) State the Gauss–Bonnet theorem for spherical triangles.

(b) Prove that any geodesic triangulation of the sphere has Euler number equal to 2.

(c) Prove that there is no geodesic triangulation of the sphere in which every vertex is
adjacent to exactly 6 triangles.

Paper 3, Section I

5G Geometry
Consider a quadrilateral ABCD in the hyperbolic plane whose sides are hyperbolic

line segments. Suppose angles ABC, BCD and CDA are right-angles. Prove that AD is
longer than BC.

[You may use without proof the distance formula in the upper-half-plane model

ρ(z1, z2) = 2 tanh−1

∣∣∣∣
z1 − z2
z1 − z̄2

∣∣∣∣ .]

Paper 3, Section II

14G Geometry
Let U be an open subset of the plane R2, and let σ : U → S be a smooth

parametrization of a surface S. A coordinate curve is an arc either of the form

αv0(t) = σ(t, v0)

for some constant v0 and t ∈ [u1, u2], or of the form

βu0(t) = σ(u0, t)

for some constant u0 and t ∈ [v1, v2]. A coordinate rectangle is a rectangle in S whose
sides are coordinate curves.

Prove that all coordinate rectangles in S have opposite sides of the same length if
and only if ∂E

∂v = ∂G
∂u = 0 at all points of S, where E and G are the usual components of

the first fundamental form, and (u, v) are coordinates in U .

Part IB, 2018 List of Questions [TURN OVER
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Paper 2, Section II

14G Geometry
For any matrix

A =

(
a b
c d

)
∈ SL(2,R),

the corresponding Möbius transformation is

z 7→ Az =
az + b

cz + d
,

which acts on the upper half-plane H, equipped with the hyperbolic metric ρ.

(a) Assuming that |tr A| > 2, prove that A is conjugate in SL(2,R) to a diagonal matrix
B. Determine the relationship between |tr A| and ρ(i, Bi).

(b) For a diagonal matrix B with |tr B| > 2, prove that

ρ(x,Bx) > ρ(i, Bi)

for all x ∈ H not on the imaginary axis.

(c) Assume now that |tr A| < 2. Prove that A fixes a point in H.

(d) Give an example of a matrix A in SL(2,R) that does not preserve any point or
hyperbolic line in H. Justify your answer.

Paper 4, Section II

15G Geometry
A Möbius strip in R3 is parametrized by

σ(u, v) =
(
Q(u, v) sin u,Q(u, v) cos u, v cos(u/2)

)

for (u, v) ∈ U = (0, 2π)×R, where Q ≡ Q(u, v) = 2− v sin(u/2). Show that the Gaussian
curvature is

K =
−1

(v2/4 +Q2)2

at (u, v) ∈ U .

Part IB, 2018 List of Questions

2018
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Paper 1, Section I

3G Geometry
Give the definition for the area of a hyperbolic triangle with interior angles α, β, γ.

Let n > 3. Show that the area of a convex hyperbolic n-gon with interior angles
α1, . . . , αn is (n − 2)π −∑

αi.

Show that for every n > 3 and for every A with 0 < A < (n−2)π there exists a regu-
lar hyperbolic n-gon with area A.

Paper 3, Section I

5G Geometry
Let

π(x, y, z) =
x+ iy

1− z

be stereographic projection from the unit sphere S2 in R3 to the Riemann sphere C∞.
Show that if r is a rotation of S2, then πrπ−1 is a Möbius transformation of C∞ which
can be represented by an element of SU(2). (You may assume without proof any result
about generation of SO(3) by a particular set of rotations, but should state it carefully.)

Paper 2, Section II

14G Geometry
Let H = {x ∈ Rn | u · x = c } be a hyperplane in Rn, where u is a unit vector and

c is a constant. Show that the reflection map

x 7→ x− 2(u · x− c)u

is an isometry of Rn which fixes H pointwise.

Let p, q be distinct points in Rn. Show that there is a unique reflection R mapping
p to q, and that R ∈ O(n) if and only if p and q are equidistant from the origin.

Show that every isometry of Rn can be written as a product of at most n+1 reflec-
tions. Give an example of an isometry of R2 which cannot be written as a product of fewer
than 3 reflections.

Part IB, 2017 List of Questions [TURN OVER

2017
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Paper 3, Section II

14G Geometry
Let σ : U → R3 be a parametrised surface, where U ⊂ R2 is an open set.

(a) Explain what are the first and second fundamental forms of the surface, and
what is its Gaussian curvature. Compute the Gaussian curvature of the hyperboloid
σ(x, y) = (x, y, xy).

(b) Let a(x) and b(x) be parametrised curves in R3, and assume that

σ(x, y) = a(x) + yb(x).

Find a formula for the first fundamental form, and show that the Gaussian curvature
vanishes if and only if

a′ · (b× b′) = 0 .

Paper 4, Section II

15G Geometry
What is a hyperbolic line in (a) the disc model (b) the upper half-plane model of the

hyperbolic plane? What is the hyperbolic distance d(P,Q) between two points P , Q in the
hyperbolic plane? Show that if γ is any continuously differentiable curve with endpoints
P and Q then its length is at least d(P,Q), with equality if and only if γ is a monotonic
reparametrisation of the hyperbolic line segment joining P and Q.

What does it mean to say that two hyperbolic lines L, L′ are (a) parallel (b)
ultraparallel? Show that L and L′ are ultraparallel if and only if they have a common
perpendicular, and if so, then it is unique.

A horocycle is a curve in the hyperbolic plane which in the disc model is a Euclidean
circle with exactly one point on the boundary of the disc. Describe the horocycles in the
upper half-plane model. Show that for any pair of horocycles there exists a hyperbolic
line which meets both orthogonally. For which pairs of horocycles is this line unique?

Part IB, 2017 List of Questions

2017
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Paper 1, Section I

3F Geometry
(a) Describe the Poincaré disc model D for the hyperbolic plane by giving the

appropriate Riemannian metric.

(b) Let a ∈ D be some point. Write down an isometry f : D → D with f(a) = 0.

(c) Using the Poincaré disc model, calculate the distance from 0 to reiθ with
0 6 r < 1.

(d) Using the Poincaré disc model, calculate the area of a disc centred at a point
a ∈ D and of hyperbolic radius ρ > 0.

Paper 3, Section I

5F Geometry
(a) State Euler’s formula for a triangulation of a sphere.

(b) A sphere is decomposed into hexagons and pentagons with precisely three edges
at each vertex. Determine the number of pentagons.

Part IB, 2016 List of Questions [TURN OVER
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Paper 3, Section II

14F Geometry
(a) Define the cross-ratio [z1, z2, z3, z4] of four distinct points z1, z2, z3, z4 ∈ C∪{∞}.

Show that the cross-ratio is invariant under Möbius transformations. Express [z2, z1, z3, z4]
in terms of [z1, z2, z3, z4].

(b) Show that [z1, z2, z3, z4] is real if and only if z1, z2, z3, z4 lie on a line or circle in
C ∪ {∞}.

(c) Let z1, z2, z3, z4 lie on a circle in C, given in anti-clockwise order as depicted.

z1

z4
z3

z2

Show that [z1, z2, z3, z4] is a negative real number, and that [z2, z1, z3, z4] is a positive real
number greater than 1. Show that |[z1, z2, z3, z4]|+1 = |[z2, z1, z3, z4]|. Use this to deduce
Ptolemy’s relation on lengths of edges and diagonals of the inscribed 4-gon:

|z1 − z3||z2 − z4| = |z1 − z2||z3 − z4|+ |z2 − z3||z4 − z1|.

Part IB, 2016 List of Questions
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Paper 2, Section II

14F Geometry
(a) Let ABC be a hyperbolic triangle, with the angle at A at least π/2. Show that

the side BC has maximal length amongst the three sides of ABC.
[You may use the hyperbolic cosine formula without proof. This states that if a, b and c
are the lengths of BC, AC, and AB respectively, and α, β and γ are the angles of the
triangle at A,B and C respectively, then

cosh a = cosh b cosh c− sinh b sinh c cosα.]

(b) Given points z1, z2 in the hyperbolic plane, let w be any point on the hyperbolic
line segment joining z1 to z2, and let w′ be any point not on the hyperbolic line passing
through z1, z2, w. Show that

ρ(w′, w) 6 max{ρ(w′, z1), ρ(w
′, z2)},

where ρ denotes hyperbolic distance.

(c) The diameter of a hyperbolic triangle ∆ is defined to be

sup{ρ(P,Q) |P,Q ∈ ∆}.

Show that the diameter of ∆ is equal to the length of its longest side.

Paper 4, Section II

15F Geometry
Let α(s) = (f(s), g(s)) be a simple curve in R2 parameterised by arc length

with f(s) > 0 for all s, and consider the surface of revolution S in R3 defined by the
parameterisation

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

(a) Calculate the first and second fundamental forms for S. Show that the Gaussian
curvature of S is given by

K = −f
′′(u)
f(u)

.

(b) Now take f(s) = cos s+ 2, g(s) = sin s, 0 6 s < 2π. What is the integral of the
Gaussian curvature over the surface of revolution S determined by f and g?
[You may use the Gauss-Bonnet theorem without proof.]

(c) Now suppose S has constant curvature K ≡ 1, and suppose there are two points
P1, P2 ∈ R3 such that S ∪ {P1, P2} is a smooth closed embedded surface. Show that S is
a unit sphere, minus two antipodal points.

[Do not attempt to integrate an expression of the form
√

1−C2 sin2 u when C 6= 1. Study
the behaviour of the surface at the largest and smallest possible values of u.]
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Paper 1, Section I

3F Geometry
(i) Give a model for the hyperbolic plane. In this choice of model, describe

hyperbolic lines.

Show that if ℓ1, ℓ2 are two hyperbolic lines and p1 ∈ ℓ1, p2 ∈ ℓ2 are points, then
there exists an isometry g of the hyperbolic plane such that g(ℓ1) = ℓ2 and g(p1) = p2.

(ii) Let T be a triangle in the hyperbolic plane with angles 30◦, 30◦ and 45◦. What
is the area of T ?

Paper 3, Section I

5F Geometry
State the sine rule for spherical triangles.

Let ∆ be a spherical triangle with vertices A, B, and C, with angles α, β and γ
at the respective vertices. Let a, b, and c be the lengths of the edges BC, AC and AB
respectively. Show that b = c if and only if β = γ. [You may use the cosine rule for
spherical triangles.] Show that this holds if and only if there exists a reflection M such
that M(A) = A, M(B) = C and M(C) = B.

Are there equilateral triangles on the sphere? Justify your answer.

Paper 3, Section II

14F Geometry
Let T : C∞ → C∞ be a Möbius transformation on the Riemann sphere C∞.

(i) Show that T has either one or two fixed points.

(ii) Show that if T is a Möbius transformation corresponding to (under stereographic
projection) a rotation of S2 through some fixed non-zero angle, then T has two fixed points,
z1, z2, with z2 = −1/z̄1.

(iii) Suppose T has two fixed points z1, z2 with z2 = −1/z̄1. Show that either T
corresponds to a rotation as in (ii), or one of the fixed points, say z1, is attractive, i.e.
T nz → z1 as n → ∞ for any z 6= z2.
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Paper 2, Section II

14F Geometry
(a) For each of the following subsets of R3, explain briefly why it is a smooth

embedded surface or why it is not.

S1 = {(x, y, z) |x = y, z = 3} ∪ {(2, 3, 0)}
S2 = {(x, y, z) |x2 + y2 − z2 = 1}
S3 = {(x, y, z) |x2 + y2 − z2 = 0}

(b) Let f : U = {(u, v)|v > 0} → R3 be given by

f(u, v) = (u2, uv, v),

and let S = f(U) ⊆ R3. You may assume that S is a smooth embedded surface.

Find the first fundamental form of this surface.

Find the second fundamental form of this surface.

Compute the Gaussian curvature of this surface.

Paper 4, Section II

15F Geometry
Let α(s) =

(
f(s), g(s)

)
be a curve in R2 parameterized by arc length, and consider

the surface of revolution S in R3 defined by the parameterization

σ(u, v) =
(
f(u) cos v, f(u) sin v, g(u)

)
.

In what follows, you may use that a curve σ ◦γ in S, with γ(t) =
(
u(t), v(t)

)
, is a geodesic

if and only if

ü = f(u)
df

du
v̇2,

d

dt

(
f(u)2v̇

)
= 0.

(i) Write down the first fundamental form for S, and use this to write down a
formula which is equivalent to σ ◦ γ being a unit speed curve.

(ii) Show that for a given u0, the circle on S determined by u = u0 is a geodesic if
and only if df

du(u0) = 0.

(iii) Let γ(t) =
(
u(t), v(t)

)
be a curve in R2 such that σ ◦ γ parameterizes a unit

speed curve that is a geodesic in S. For a given time t0, let θ(t0) denote the angle between
the curve σ ◦ γ and the circle on S determined by u = u(t0). Derive Clairault’s relation
that

f
(
u(t)

)
cos

(
θ(t)

)

is independent of t.
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Paper 1, Section I

3F Geometry
Determine the second fundamental form of a surface in R3 defined by the parametri-

sation
σ(u, v) =

(
(a+ b cos u) cos v, (a+ b cos u) sin v, b sinu

)
,

for 0 < u < 2π, 0 < v < 2π, with some fixed a > b > 0. Show that the Gaussian curvature
K(u, v) of this surface takes both positive and negative values.

Paper 3, Section I

5F Geometry
Let f(x) = Ax+b be an isometry Rn → Rn, where A is an n×n matrix and b ∈ Rn.

What are the possible values of detA?

Let I denote the n × n identity matrix. Show that if n = 2 and detA > 0, but
A 6= I, then f has a fixed point. Must f have a fixed point if n = 3 and detA > 0, but
A 6= I? Justify your answer.

Paper 3, Section II

14F Geometry
Let T be a decomposition of the two-dimensional sphere into polygonal domains,

with every polygon having at least three edges. Let V , E, and F denote the numbers of
vertices, edges and faces of T , respectively. State Euler’s formula. Prove that 2E > 3F .

Suppose that at least three edges meet at every vertex of T . Let Fn be the number
of faces of T that have exactly n edges (n > 3) and let Vm be the number of vertices at
which exactly m edges meet (m > 3). Is it possible for T to have V3 = F3 = 0? Justify
your answer.

By expressing 6F − ∑
n nFn in terms of the Vj, or otherwise, show that T has at

least four faces that are triangles, quadrilaterals and/or pentagons.
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Paper 2, Section II

14F Geometry
Let H = {x + iy : x, y ∈ R, y > 0} ⊂ C be the upper half-plane with a hyperbolic

metric g = dx2+dy2

y2
. Prove that every hyperbolic circle C in H is also a Euclidean circle.

Is the centre of C as a hyperbolic circle always the same point as the centre of C as a
Euclidean circle? Give a proof or counterexample as appropriate.

Let ABC and A′B′C ′ be two hyperbolic triangles and denote the hyperbolic lengths
of their sides by a, b, c and a′, b′, c′, respectively. Show that if a = a′, b = b′ and c = c′, then
there is a hyperbolic isometry taking ABC to A′B′C ′. Is there always such an isometry if
instead the triangles have one angle the same and a = a′, b = b′? Justify your answer.

[Standard results on hyperbolic isometries may be assumed, provided they are
clearly stated.]

Paper 4, Section II

15F Geometry
Define an embedded parametrised surface in R3. What is the Riemannian metric

induced by a parametrisation? State, in terms of the Riemannian metric, the equations
defining a geodesic curve γ : (0, 1) → S, assuming that γ is parametrised by arc-length.

Let S be a conical surface

S = {(x, y, z) ∈ R3 : 3(x2 + y2) = z2, z > 0}.

Using an appropriate smooth parametrisation, or otherwise, prove that S is locally
isometric to the Euclidean plane. Show that any two points on S can be joined by a
geodesic. Is this geodesic always unique (up to a reparametrisation)? Justify your answer.

[The expression for the Euclidean metric in polar coordinates on R2 may be used
without proof.]
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Paper 1, Section I

3F Geometry
Let l1 and l2 be ultraparallel geodesics in the hyperbolic plane. Prove that the li

have a unique common perpendicular.

Suppose now l1, l2, l3 are pairwise ultraparallel geodesics in the hyperbolic plane.
Can the three common perpendiculars be pairwise disjoint? Must they be pairwise
disjoint? Briefly justify your answers.

Paper 3, Section I

5F Geometry
Let S be a surface with Riemannian metric having first fundamental form

du2 +G(u, v)dv2. State a formula for the Gauss curvature K of S.

Suppose that S is flat, so K vanishes identically, and that u = 0 is a geodesic on S
when parametrised by arc-length. Using the geodesic equations, or otherwise, prove that
G(u, v) ≡ 1, i.e. S is locally isometric to a plane.

Paper 2, Section II

14F Geometry
Let A and B be disjoint circles in C. Prove that there is a Möbius transformation

which takes A and B to two concentric circles.

A collection of circles Xi ⊂ C, 0 6 i 6 n− 1, for which

1. Xi is tangent to A, B and Xi+1, where indices are mod n;

2. the circles are disjoint away from tangency points;

is called a constellation on (A,B). Prove that for any n > 2 there is some pair (A,B) and
a constellation on (A,B) made up of precisely n circles. Draw a picture illustrating your
answer.

Given a constellation on (A,B), prove that the tangency points Xi ∩ Xi+1 for
0 6 i 6 n − 1 all lie on a circle. Moreover, prove that if we take any other circle Y0

tangent to A and B, and then construct Yi for i > 1 inductively so that Yi is tangent to
A, B and Yi−1, then we will have Yn = Y0, i.e. the chain of circles will again close up to
form a constellation.
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Paper 3, Section II

14F Geometry
Show that the set of all straight lines in R2 admits the structure of an abstract

smooth surface S. Show that S is an open Möbius band (i.e. the Möbius band without its
boundary circle), and deduce that S admits a Riemannian metric with vanishing Gauss
curvature.

Show that there is no metric d : S × S → R>0, in the sense of metric spaces, which

1. induces the locally Euclidean topology on S constructed above;

2. is invariant under the natural action on S of the group of translations of R2.

Show that the set of great circles on the two-dimensional sphere admits the structure
of a smooth surface S′. Is S′ homeomorphic to S ? Does S′ admit a Riemannian metric
with vanishing Gauss curvature? Briefly justify your answers.

Paper 4, Section II

15F Geometry
Let η be a smooth curve in the xz-plane η(s) = (f(s), 0, g(s)), with f(s) > 0 for

every s ∈ R and f ′(s)2 + g′(s)2 = 1. Let S be the surface obtained by rotating η around
the z-axis. Find the first fundamental form of S.

State the equations for a curve γ : (a, b) → S parametrised by arc-length to be a
geodesic.

A parallel on S is the closed circle swept out by rotating a single point of η. Prove
that for every n ∈ Z>0 there is some η for which exactly n parallels are geodesics. Sketch
possible such surfaces S in the cases n = 1 and n = 2.

If every parallel is a geodesic, what can you deduce about S ? Briefly justify your
answer.
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Paper 1, Section I

3G Geometry
Describe a collection of charts which cover a circular cylinder of radius R. Compute

the first fundamental form, and deduce that the cylinder is locally isometric to the plane.

Paper 3, Section I

5G Geometry
State a formula for the area of a hyperbolic triangle.

Hence, or otherwise, prove that if l1 and l2 are disjoint geodesics in the hyperbolic
plane, there is at most one geodesic which is perpendicular to both l1 and l2.

Paper 2, Section II

14G Geometry
Let S be a closed surface, equipped with a triangulation. Define the Euler

characteristic χ(S) of S. How does χ(S) depend on the triangulation?

Let V , E and F denote the number of vertices, edges and faces of the triangulation.
Show that 2E = 3F .

Suppose now the triangulation is tidy, meaning that it has the property that no two
vertices are joined by more than one edge. Deduce that V satisfies

V > 7 +
√

49− 24χ(S)

2
.

Hence compute the minimal number of vertices of a tidy triangulation of the real projective
plane. [Hint: it may be helpful to consider the icosahedron as a triangulation of the sphere
S2.]
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Paper 3, Section II

14G Geometry
Define the first and second fundamental forms of a smooth surface Σ ⊂ R3, and

explain their geometrical significance.

Write down the geodesic equations for a smooth curve γ : [0, 1] → Σ. Prove that γ
is a geodesic if and only if the derivative of the tangent vector to γ is always orthogonal
to Σ.

A plane Π ⊂ R3 cuts Σ in a smooth curve C ⊂ Σ, in such a way that reflection in
the plane Π is an isometry of Σ (in particular, preserves Σ). Prove that C is a geodesic.

Paper 4, Section II

15G Geometry
Let Σ ⊂ R3 be a smooth closed surface. Define the principal curvatures κmax and

κmin at a point p ∈ Σ. Prove that the Gauss curvature at p is the product of the two
principal curvatures.

A point p ∈ Σ is called a parabolic point if at least one of the two principal curvatures
vanishes. Suppose Π ⊂ R3 is a plane and Σ is tangent to Π along a smooth closed curve
C = Π ∩ Σ ⊂ Σ. Show that C is composed of parabolic points.

Can both principal curvatures vanish at a point of C? Briefly justify your answer.
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Paper 1, Section I

3F Geometry
Suppose that H ⊆ C is the upper half-plane, H = {x+ iy

∣∣x, y ∈ R, y > 0}. Using

the Riemannian metric ds2 =
dx2 + dy2

y2
, define the length of a curve γ and the area of a

region Ω in H.

Find the area of

Ω = {x+ iy
∣∣ |x| 6 1

2
, x2 + y2 > 1} .

Paper 3, Section I

5F Geometry
Let R(x, θ) denote anti-clockwise rotation of the Euclidean plane R2 through an

angle θ about a point x.

Show that R(x, θ) is a composite of two reflexions.

Assume θ, φ ∈ (0, π). Show that the composite R(y, φ) · R(x, θ) is also a rotation
R(z, ψ). Find z and ψ.

Paper 2, Section II

14F Geometry
Suppose that π : S2 → C∞ is stereographic projection. Show that, via π, every

rotation of S2 corresponds to a Möbius transformation in PSU(2).

Paper 3, Section II

14F Geometry
Suppose that η(u) = (f(u), 0, g(u)) is a unit speed curve in R3. Show that the

corresponding surface of revolution S obtained by rotating this curve about the z-axis has
Gaussian curvature K = −(d2f/du2)/f .
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Paper 4, Section II

15F Geometry
Suppose that P is a point on a Riemannian surface S. Explain the notion of geodesic

polar co-ordinates on S in a neighbourhood of P , and prove that if C is a geodesic circle
centred at P of small positive radius, then the geodesics through P meet C at right angles.
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Paper 1, Section I

3F Geometry
(i) Define the notion of curvature for surfaces embedded in R3.

(ii) Prove that the unit sphere in R3 has curvature +1 at all points.

Paper 3, Section I

5F Geometry
(i) Write down the Poincaré metric on the unit disc model D of the hyperbolic

plane. Compute the hyperbolic distance ρ from (0, 0) to (r, 0), with 0 < r < 1.

(ii) Given a point P in D and a hyperbolic line L in D with P not on L, describe
how the minimum distance from P to L is calculated. Justify your answer.

Paper 2, Section II

14F Geometry
Suppose that a > 0 and that S ⊂ R3 is the half-cone defined by z2 = a(x2 + y2),

z > 0 . By using an explicit smooth parametrization of S, calculate the curvature of S.

Describe the geodesics on S. Show that for a = 3, no geodesic intersects itself, while
for a > 3 some geodesic does so.

Paper 3, Section II

14F Geometry
Describe the hyperbolic metric on the upper half-plane H. Show that any Möbius

transformation that preserves H is an isometry of this metric.

Suppose that z1, z2 ∈ H are distinct and that the hyperbolic line through z1 and z2
meets the real axis at w1, w2 . Show that the hyperbolic distance ρ(z1, z2) between z1 and
z2 is given by ρ(z1, z2) = log r, where r is the cross-ratio of the four points z1, z2, w1, w2,
taken in an appropriate order.

Part IB, 2010 List of Questions [TURN OVER

2010



16

Paper 4, Section II

15F Geometry
Suppose that D is the unit disc, with Riemannian metric

ds2 =
dx2 + dy2

1− (x2 + y2)
.

[Note that this is not a multiple of the Poincaré metric.] Show that the diameters of D
are, with appropriate parametrization, geodesics.

Show that distances between points in D are bounded, but areas of regions in D
are unbounded.
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Paper 1, Section I

2G Geometry
What is an ideal hyperbolic triangle? State a formula for its area.

Compute the area of a hyperbolic disk of hyperbolic radius ρ. Hence, or otherwise,
show that no hyperbolic triangle completely contains a hyperbolic circle of hyperbolic ra-
dius 2.

Paper 3, Section I

2G Geometry
Write down the equations for geodesic curves on a surface. Use these to describe

all the geodesics on a circular cylinder, and draw a picture illustrating your answer.

Paper 2, Section II

12G Geometry
What is meant by stereographic projection from the unit sphere in R3 to the complex

plane? Briefly explain why a spherical triangle cannot map to a Euclidean triangle under
stereographic projection.

Derive an explicit formula for stereographic projection. Hence, or otherwise, prove
that if a Möbius map corresponds via stereographic projection to a rotation of the sphere,
it has two fixed points p and q which satisfy pq̄ = −1. Give, with justification:

(i) a Möbius transformation which fixes a pair of points p, q ∈ C satisfying pq̄ = −1
but which does not arise from a rotation of the sphere;

(ii) an isometry of the sphere (for the spherical metric) which does not correspond to
any Möbius transformation under stereographic projection.
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Paper 3, Section II

12G Geometry
Consider a tessellation of the two-dimensional sphere, that is to say a decomposition

of the sphere into polygons each of which has at least three sides. Let E, V and F denote
the numbers of edges, vertices and faces in the tessellation, respectively. State Euler’s
formula. Prove that 2E > 3F . Deduce that not all the vertices of the tessellation have
valence > 6.

By considering the plane {z = 1} ⊂ R3, or otherwise, deduce the following: if Σ
is a finite set of straight lines in the plane R2 with the property that every intersection
point of two lines is an intersection point of at least three, then all the lines in Σ meet at
a single point.

Paper 4, Section II

12G Geometry
Let U ⊂ R2 be an open set. Let Σ ⊂ R3 be a surface locally given as the graph of

an infinitely-differentiable function f : U → R. Compute the Gaussian curvature of Σ in
terms of f .

Deduce that if Σ̂ ⊂ R3 is a compact surface without boundary, its Gaussian
curvature is not everywhere negative.

Give, with brief justification, a compact surface Σ̂ ⊂ R3 without boundary whose
Gaussian curvature must change sign.
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1/I/2G Geometry

Show that any element of SO(3,R) is a rotation, and that it can be written as the
product of two reflections.

2/II/12G Geometry

Show that the area of a spherical triangle with angles α, β, γ is α + β + γ − π.
Hence derive the formula for the area of a convex spherical n-gon.

Deduce Euler’s formula F − E + V = 2 for a decomposition of a sphere into F
convex polygons with a total of E edges and V vertices.

A sphere is decomposed into convex polygons, comprising m quadrilaterals, n
pentagons and p hexagons, in such a way that at each vertex precisely three edges meet.
Show that there are at most 7 possibilities for the pair (m,n), and that at least 3 of these
do occur.

3/I/2G Geometry

A smooth surface in R3 has parametrization

σ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)
.

Show that a unit normal vector at the point σ(u, v) is

( −2u

1 + u2 + v2
,

2v

1 + u2 + v2
,

1− u2 − v2
1 + u2 + v2

)

and that the curvature is
−4

(1 + u2 + v2)4
.
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3/II/12G Geometry

Let D be the unit disc model of the hyperbolic plane, with metric

4 |dζ|2

(1− |ζ|2)2
.

(i) Show that the group of Möbius transformations mapping D to itself is the group
of transformations

ζ 7→ ω
ζ − λ
λ̄ζ − 1

,

where |λ| < 1 and |ω| = 1.

(ii) Assuming that the transformations in (i) are isometries of D, show that any
hyperbolic circle in D is a Euclidean circle.

(iii) Let P and Q be points on the unit circle with ∠POQ = 2α. Show that the
hyperbolic distance from O to the hyperbolic line PQ is given by

2 tanh−1
(

1− sinα

cosα

)
.

(iv) Deduce that if a > 2 tanh−1(2−
√

3) then no hyperbolic open disc of radius a
is contained in a hyperbolic triangle.

4/II/12G Geometry

Let γ: [a, b] → S be a curve on a smoothly embedded surface S ⊂ R3. Define the
energy of γ. Show that if γ is a stationary point for the energy for proper variations of γ,
then γ satisfies the geodesic equations

d

dt
(Eγ̇1 + F γ̇2) =

1

2
(Euγ̇

2
1 + 2Fuγ̇1γ̇2 +Guγ̇

2
2)

d

dt
(F γ̇1 +Gγ̇2) =

1

2
(Evγ̇

2
1 + 2Fvγ̇1γ̇2 +Gvγ̇

2
2)

where γ = (γ1, γ2) in terms of a smooth parametrization (u, v) for S, with first fundamental
form E du2 + 2F du dv +Gdv2.

Now suppose that for every c, d the curves u = c, v = d are geodesics.

(i) Show that (F/
√
G)v = (

√
G)u and (F/

√
E)u = (

√
E)v.

(ii) Suppose moreover that the angle between the curves u = c, v = d is independent
of c and d. Show that Ev = 0 = Gu.
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1/I/2A Geometry

State the Gauss–Bonnet theorem for spherical triangles, and deduce from it that
for each convex polyhedron with F faces, E edges, and V vertices, F − E + V = 2.

2/II/12A Geometry

(i) The spherical circle with centre P ∈ S2 and radius r, 0 < r < π, is the set of
all points on the unit sphere S2 at spherical distance r from P . Find the circumference
of a spherical circle with spherical radius r. Compare, for small r, with the formula for a
Euclidean circle and comment on the result.

(ii) The cross ratio of four distinct points zi in C is

(z4 − z1)(z2 − z3)

(z4 − z3)(z2 − z1)
.

Show that the cross-ratio is a real number if and only if z1, z2, z3, z4 lie on a circle or a
line.

[You may assume that Möbius transformations preserve the cross-ratio.]

3/I/2A Geometry

Let l be a line in the Euclidean plane R2 and P a point on l. Denote by ρ the
reflection in l and by τ the rotation through an angle α about P . Describe, in terms of
l, P , and α, a line fixed by the composition τρ and show that τρ is a reflection.

3/II/12A Geometry

For a parameterized smooth embedded surface σ : V → U ⊂ R3, where V is an
open domain in R2, define the first fundamental form, the second fundamental form, and
the Gaussian curvature K. State the Gauss–Bonnet formula for a compact embedded
surface S ⊂ R3 having Euler number e(S).

Let S denote a surface defined by rotating a curve

η(u) = (r + a sinu, 0, b cosu) 0 ≤ u ≤ 2π ,

about the z-axis. Here a, b, r are positive constants, such that a2 + b2 = 1 and a < r. By
considering a smooth parameterization, find the first fundamental form and the second
fundamental form of S.
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4/II/12A Geometry

Write down the Riemannian metric for the upper half-plane model H of the
hyperbolic plane. Describe, without proof, the group of isometries of H and the hyperbolic
lines (i.e. the geodesics) on H.

Show that for any two hyperbolic lines `1, `2, there is an isometry of H which maps
`1 onto `2.

Suppose that g is a composition of two reflections in hyperbolic lines which are
ultraparallel (i.e. do not meet either in the hyperbolic plane or at its boundary). Show
that g cannot be an element of finite order in the group of isometries of H.

[Existence of a common perpendicular to two ultraparallel hyperbolic lines may be assumed.
You might like to choose carefully which hyperbolic line to consider as a common
perpendicular.]

Part IB 2007

2007



7

1/I/2H Geometry

Define the hyperbolic metric in the upper half-plane model H of the hyperbolic
plane. How does one define the hyperbolic area of a region in H? State the Gauss–Bonnet
theorem for hyperbolic triangles.

Let R be the region in H defined by

0 < x <
1

2
,
√

1− x2 < y < 1.

Calculate the hyperbolic area of R.

2/II/12H Geometry

Let σ : V → U ⊂ R3 denote a parametrized smooth embedded surface, where V is
an open ball in R2 with coordinates (u, v). Explain briefly the geometric meaning of the
second fundamental form

Ldu2 + 2M dudv +N dv2,

where L = σuu ·N, M = σuv ·N, N = σvv ·N, with N denoting the unit normal vector
to the surface U .

Prove that if the second fundamental form is identically zero, then Nu = 0 = Nv

as vector-valued functions on V , and hence that N is a constant vector. Deduce that U is
then contained in a plane given by x ·N = constant.

3/I/2H Geometry

Show that the Gaussian curvature K at an arbitrary point (x, y, z) of the hyper-
boloid z = xy, as an embedded surface in R3, is given by the formula

K = −1/(1 + x2 + y2)2.
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3/II/12H Geometry

Describe the stereographic projection map from the sphere S2 to the extended
complex planeC∞, positioned equatorially. Prove that w, z ∈ C∞ correspond to antipodal
points on S2 if and only if w = −1/z̄. State, without proof, a result which relates the
rotations of S2 to a certain group of Möbius transformations on C∞.

Show that any circle in the complex plane corresponds, under stereographic
projection, to a circle on S2. Let C denote any circle in the complex plane other than the
unit circle; show that C corresponds to a great circle on S2 if and only if its intersection
with the unit circle consists of two points, one of which is the negative of the other.

[You may assume the result that a Möbius transformation on the complex plane sends
circles and straight lines to circles and straight lines.]

4/II/12H Geometry

Describe the hyperbolic lines in both the disc and upper half-plane models of the
hyperbolic plane. Given a hyperbolic line l and a point P 6∈ l, we define

d(P, l) := inf
Q∈l

ρ(P,Q),

where ρ denotes the hyperbolic distance. Show that d(P, l) = ρ(P,Q′), where Q′ is the
unique point of l for which the hyperbolic line segment PQ′ is perpendicular to l.

Suppose now that L1 is the positive imaginary axis in the upper half-plane model
of the hyperbolic plane, and L2 is the semicircle with centre a > 0 on the real line, and
radius r, where 0 < r < a. For any P ∈ L2, show that the hyperbolic line through P
which is perpendicular to L1 is a semicircle centred on the origin of radius 6 a + r, and
prove that

d(P,L1) >
a− r

a+ r
.

For arbitrary hyperbolic lines L1, L2 in the hyperbolic plane, we define

d(L1, L2) := inf
P∈L1,Q∈L2

ρ(P,Q).

If L1 and L2 are ultraparallel (i.e. hyperbolic lines which do not meet, either inside the
hyperbolic plane or at its boundary), prove that d(L1, L2) is strictly positive.

[The equivalence of the disc and upper half-plane models of the hyperbolic plane,
and standard facts about the metric and isometries of these models, may be quoted without
proof.]
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1/I/2A Geometry

Let σ : R2 → R3 be the map defined by

σ(u, v) = ((a+ b cosu) cos v, (a+ b cosu) sin v, b sinu),

where 0 < b < a. Describe briefly the image T = σ(R2) ⊂ R3. Let V denote the open
subset of R2 given by 0 < u < 2π, 0 < v < 2π; prove that the restriction σ|V defines a
smooth parametrization of a certain open subset (which you should specify) of T . Hence,
or otherwise, prove that T is a smooth embedded surface in R3.

[You may assume that the image under σ of any open set B ⊂ R2 is open in T .]

2/II/12A Geometry

Let U be an open subset of R2 equipped with a Riemannian metric. For
γ : [0, 1] → U a smooth curve, define what is meant by its length and energy. Prove
that length(γ)2 ≤ energy(γ), with equality if and only if γ̇ has constant norm with respect
to the metric.

Suppose now U is the upper half plane model of the hyperbolic plane, and P,Q
are points on the positive imaginary axis. Show that a smooth curve γ joining P and Q
represents an absolute minimum of the length of such curves if and only if γ(t) = i v(t),
with v a smooth monotonic real function.

Suppose that a smooth curve γ joining the above points P and Q represents a
stationary point for the energy under proper variations; deduce from an appropriate form
of the Euler–Lagrange equations that γ must be of the above form, with v̇/v constant.

3/I/2A Geometry

Write down the Riemannian metric on the disc model ∆ of the hyperbolic plane.
Given that the length minimizing curves passing through the origin correspond to
diameters, show that the hyperbolic circle of radius ρ centred on the origin is just the
Euclidean circle centred on the origin with Euclidean radius tanh(ρ/2). Prove that the
hyperbolic area is 2π(cosh ρ− 1).

State the Gauss–Bonnet theorem for the area of a hyperbolic triangle. Given a
hyperbolic triangle and an interior point P , show that the distance from P to the nearest
side is at most cosh−1(3/2).
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3/II/12A Geometry

Describe geometrically the stereographic projection map π from the unit sphere S2

to the extended complex plane C∞ = C∪{∞}, positioned equatorially, and find a formula
for π.

Show that any Möbius transformation T 6= 1 on C∞ has one or two fixed points.
Show that the Möbius transformation corresponding (under the stereographic projection
map) to a rotation of S2 through a non-zero angle has exactly two fixed points z1 and z2,
where z2 = −1/z̄1. If now T is a Möbius transformation with two fixed points z1 and z2
satisfying z2 = −1/z̄1, prove that either T corresponds to a rotation of S2, or one of the
fixed points, say z1, is an attractive fixed point, i.e. for z 6= z2, T

nz → z1 as n→ ∞.

[You may assume the fact that any rotation of S2 corresponds to some Möbius transfor-
mation of C∞ under the stereographic projection map.]

4/II/12A Geometry

Given a parametrized smooth embedded surface σ : V → U ⊂ R3, where V is an
open subset of R2 with coordinates (u, v), and a point P ∈ U , define what is meant by
the tangent space at P , the unit normal N at P , and the first fundamental form

Edu2 + 2Fdu dv +Gdv2.

[You need not show that your definitions are independent of the parametrization.]

The second fundamental form is defined to be

Ldu2 + 2Mdudv +Ndv2,

where L = σuu · N, M = σuv · N and N = σvv · N. Prove that the partial derivatives
of N (considered as a vector-valued function of u, v) are of the form Nu = aσu + bσv,
Nv = cσu + dσv, where

−
(
L M
M N

)
=

(
a b
c d

)(
E F
F G

)
.

Explain briefly the significance of the determinant ad− bc.
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1/I/3G Geometry

Using the Riemannian metric

ds2 =
dx2 + dy2

y2
,

define the length of a curve and the area of a region in the upper half-plane
H = {x+ iy : y > 0}.

Find the hyperbolic area of the region {(x, y) ∈ H : 0 < x < 1, y > 1}.

1/II/14G Geometry

Show that for every hyperbolic line L in the hyperbolic plane H there is an isometry
of H which is the identity on L but not on all of H. Call it the reflection RL.

Show that every isometry of H is a composition of reflections.

3/I/3G Geometry

State Euler’s formula for a convex polyhedron with F faces, E edges, and V vertices.

Show that any regular polyhedron whose faces are pentagons has the same number
of vertices, edges and faces as the dodecahedron.

3/II/15G Geometry

Let a, b, c be the lengths of a right-angled triangle in spherical geometry, where c is
the hypotenuse. Prove the Pythagorean theorem for spherical geometry in the form

cos c = cos a cos b .

Now consider such a spherical triangle with the sides a, b replaced by λa, λb for
a positive number λ. Show that the above formula approaches the usual Pythagorean
theorem as λ approaches zero.
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1/I/4F Geometry

Describe the geodesics (that is, hyperbolic straight lines) in either the disc model
or the half-plane model of the hyperbolic plane. Explain what is meant by the statements
that two hyperbolic lines are parallel, and that they are ultraparallel.

Show that two hyperbolic lines l and l′ have a unique common perpendicular if and
only if they are ultraparallel.

[You may assume standard results about the group of isometries of whichever model
of the hyperbolic plane you use.]

1/II/13F Geometry

Write down the Riemannian metric in the half-plane model of the hyperbolic plane.
Show that Möbius transformations mapping the upper half-plane to itself are isometries
of this model.

Calculate the hyperbolic distance from ib to ic, where b and c are positive real
numbers. Assuming that the hyperbolic circle with centre ib and radius r is a Euclidean
circle, find its Euclidean centre and radius.

Suppose that a and b are positive real numbers for which the points ib and a+ ib
of the upper half-plane are such that the hyperbolic distance between them coincides with
the Euclidean distance. Obtain an expression for b as a function of a. Hence show that,
for any b with 0 < b < 1, there is a unique positive value of a such that the hyperbolic
distance between ib and a+ ib coincides with the Euclidean distance.

3/I/4F Geometry

Show that any isometry of Euclidean 3-space which fixes the origin can be written
as a composite of at most three reflections in planes through the origin, and give (with
justification) an example of an isometry for which three reflections are necessary.

3/II/14F Geometry

State and prove the Gauss–Bonnet formula for the area of a spherical triangle.
Deduce a formula for the area of a spherical n-gon with angles α1, α2, . . . , αn. For what
range of values of α does there exist a (convex) regular spherical n-gon with angle α?

Let ∆ be a spherical triangle with angles π/p, π/q and π/r where p, q, r are integers,
and let G be the group of isometries of the sphere generated by reflections in the three
sides of ∆. List the possible values of (p, q, r), and in each case calculate the order
of the corresponding group G. If (p, q, r) = (2, 3, 5), show how to construct a regular
dodecahedron whose group of symmetries is G.

[You may assume that the images of ∆ under the elements of G form a tessellation
of the sphere.]
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1/I/4E Geometry

Show that any finite group of orientation-preserving isometries of the Euclidean
plane is cyclic.

Show that any finite group of orientation-preserving isometries of the hyperbolic
plane is cyclic.

[You may assume that given any non-empty finite set E in the hyperbolic plane, or
the Euclidean plane, there is a unique smallest closed disc that contains E. You may also
use any general fact about the hyperbolic plane without proof providing that it is stated
carefully.]

1/II/13E Geometry

Let H = {x + iy ∈ C : y > 0}, and let H have the hyperbolic metric ρ
derived from the line element |dz|/y. Let Γ be the group of Möbius maps of the form
z 7→ (az + b)/(cz + d), where a, b, c and d are real and ad− bc = 1. Show that every g in
Γ is an isometry of the metric space (H, ρ). For z and w in H, let

h(z, w) =
|z − w|2

Im(z)Im(w)
.

Show that for every g in Γ, h
(
g(z), g(w)

)
= h(z, w). By considering z = iy, where y > 1,

and w = i, or otherwise, show that for all z and w in H,

cosh ρ(z, w) = 1 +
|z − w|2

2 Im(z)Im(w)
.

By considering points i, iy, where y > 1 and s+ it, where s2+ t2 = 1, or otherwise,
derive Pythagoras’ Theorem for hyperbolic geometry in the form cosh a cosh b = cosh c,
where a, b and c are the lengths of sides of a right-angled triangle whose hypotenuse has
length c.

3/I/4E Geometry

State Euler’s formula for a graph G with F faces, E edges and V vertices on the
surface of a sphere.

Suppose that every face in G has at least three edges, and that at least three
edges meet at every vertex of G. Let Fn be the number of faces of G that have exactly
n edges (n > 3), and let Vm be the number of vertices at which exactly m edges meet
(m > 3). By expressing 6F −∑n nFn in terms of the Vj , or otherwise, show that every
convex polyhedron has at least four faces each of which is a triangle, a quadrilateral or a
pentagon.
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3/II/14E Geometry

Show that every isometry of Euclidean space R3 is a composition of reflections in
planes.

What is the smallest integer N such that every isometry f of R3 with f(0) = 0 can
be expressed as the composition of at most N reflections? Give an example of an isometry
that needs this number of reflections and justify your answer.

Describe (geometrically) all twelve orientation-reversing isometries of a regular
tetrahedron.
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1/I/4B Geometry

Write down the Riemannian metric on the disc model ∆ of the hyperbolic plane.
What are the geodesics passing through the origin? Show that the hyperbolic circle of
radius ρ centred on the origin is just the Euclidean circle centred on the origin with
Euclidean radius tanh(ρ/2).

Write down an isometry between the upper half-plane model H of the hyperbolic
plane and the disc model ∆, under which i ∈ H corresponds to 0 ∈ ∆. Show that the
hyperbolic circle of radius ρ centred on i in H is a Euclidean circle with centre i cosh ρ
and of radius sinh ρ.

1/II/13B Geometry

Describe geometrically the stereographic projection map φ from the unit sphere S2

to the extended complex plane C∞ = C ∪ ∞, and find a formula for φ. Show that any
rotation of S2 about the z-axis corresponds to a Möbius transformation of C∞. You are
given that the rotation of S2 defined by the matrix




0 0 1
0 1 0

−1 0 0




corresponds under φ to a Möbius transformation of C∞; deduce that any rotation of S2

about the x-axis also corresponds to a Möbius transformation.

Suppose now that u, v ∈ C correspond under φ to distinct points P,Q ∈ S2, and let
d denote the angular distance from P to Q on S2. Show that − tan2(d/2) is the cross-ratio
of the points u, v,−1/ū,−1/v̄, taken in some order (which you should specify). [You may
assume that the cross-ratio is invariant under Möbius transformations.]

3/I/4B Geometry

State and prove the Gauss–Bonnet theorem for the area of a spherical triangle.

Suppose D is a regular dodecahedron, with centre the origin. Explain how each
face of D gives rise to a spherical pentagon on the 2-sphere S2. For each such spherical
pentagon, calculate its angles and area.
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3/II/14B Geometry

Describe the hyperbolic lines in the upper half-plane model H of the hyperbolic
plane. The group G = SL(2,R)/{±I} acts on H via Möbius transformations, which you
may assume are isometries of H. Show that G acts transitively on the hyperbolic lines.
Find explicit formulae for the reflection in the hyperbolic line L in the cases (i) L is a
vertical line x = a, and (ii) L is the unit semi-circle with centre the origin. Verify that the
composite T of a reflection of type (ii) followed afterwards by one of type (i) is given by
T (z) = −z−1 + 2a.

Suppose now that L1 and L2 are distinct hyperbolic lines in the hyperbolic plane,
with R1, R2 denoting the corresponding reflections. By considering different models of the
hyperbolic plane, or otherwise, show that

(a) R1R2 has infinite order if L1 and L2 are parallel or ultraparallel, and

(b) R1R2 has finite order if and only if L1 and L2 meet at an angle which is a rational
multiple of π.
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