Part IB

Further Analysis

Year
2004
2003
2002

2/I/4E Further Analysis

Let τ be the topology on \mathbb{N} consisting of the empty set and all sets $X \subset \mathbb{N}$ such that $\mathbb{N} \backslash X$ is finite. Let σ be the usual topology on \mathbb{R}, and let ρ be the topology on \mathbb{R} consisting of the empty set and all sets of the form (x, ∞) for some real x.
(i) Prove that all continuous functions $f:(\mathbb{N}, \tau) \rightarrow(\mathbb{R}, \sigma)$ are constant.
(ii) Give an example with proof of a non-constant function $f:(\mathbb{N}, \tau) \rightarrow(\mathbb{R}, \rho)$ that is continuous.

2/II/15E Further Analysis

(i) Let X be the set of all infinite sequences $\left(\epsilon_{1}, \epsilon_{2}, \ldots\right)$ such that $\epsilon_{i} \in\{0,1\}$ for all i. Let τ be the collection of all subsets $Y \subset X$ such that, for every $\left(\epsilon_{1}, \epsilon_{2}, \ldots\right) \in Y$ there exists n such that $\left(\eta_{1}, \eta_{2}, \ldots\right) \in Y$ whenever $\eta_{1}=\epsilon_{1}, \eta_{2}=\epsilon_{2}, \ldots, \eta_{n}=\epsilon_{n}$. Prove that τ is a topology on X.
(ii) Let a distance d be defined on X by

$$
d\left(\left(\epsilon_{1}, \epsilon_{2}, \ldots\right),\left(\eta_{1}, \eta_{2}, \ldots\right)\right)=\sum_{n=1}^{\infty} 2^{-n}\left|\epsilon_{n}-\eta_{n}\right|
$$

Prove that d is a metric and that the topology arising from d is the same as τ.

3/I/5E Further Analysis

Let C be the contour that goes once round the boundary of the square

$$
\{z:-1 \leqslant \operatorname{Re} z \leqslant 1,-1 \leqslant \operatorname{Im} z \leqslant 1\}
$$

in an anticlockwise direction. What is $\int_{C} \frac{d z}{z}$? Briefly justify your answer.
Explain why the integrals along each of the four edges of the square are equal. Deduce that $\int_{-1}^{1} \frac{d t}{1+t^{2}}=\frac{\pi}{2}$.

3/II/17E Further Analysis

(i) Explain why the formula

$$
f(z)=\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^{2}}
$$

defines a function that is analytic on the domain $\mathbb{C} \backslash \mathbb{Z}$. [You need not give full details, but should indicate what results are used.]

Show also that $f(z+1)=f(z)$ for every z such that $f(z)$ is defined.
(ii) Write $\log z$ for $\log r+i \theta$ whenever $z=r e^{i \theta}$ with $r>0$ and $-\pi<\theta \leqslant \pi$. Let g be defined by the formula

$$
g(z)=f\left(\frac{1}{2 \pi i} \log z\right)
$$

Prove that g is analytic on $\mathbb{C} \backslash\{0,1\}$.
[Hint: What would be the effect of redefining $\log z$ to be $\log r+i \theta$ when $z=r e^{i \theta}$, $r>0$ and $0 \leqslant \theta<2 \pi$?]
(iii) Determine the nature of the singularity of g at $z=1$.

4/I/4E Further Analysis

(i) Let D be the open unit disc of radius 1 about the point $3+3 i$. Prove that there is an analytic function $f: D \rightarrow \mathbb{C}$ such that $f(z)^{2}=z$ for every $z \in D$.
(ii) Let $D^{\prime}=\mathbb{C} \backslash\{z \in \mathbb{C}: \operatorname{Im} z=0, \operatorname{Re} z \leqslant 0\}$. Explain briefly why there is at most one extension of f to a function that is analytic on D^{\prime}.
(iii) Deduce that f cannot be extended to an analytic function on $\mathbb{C} \backslash\{0\}$.

4/II/14E Further Analysis

(i) State and prove Rouché's theorem.
[You may assume the principle of the argument.]
(ii) Let $0<c<1$. Prove that the polynomial $p(z)=z^{3}+i c z+8$ has three roots with modulus less than 3 . Prove that one root α satisfies $\operatorname{Re} \alpha>0$, $\operatorname{Im} \alpha>0$; another, β, satisfies $\operatorname{Re} \beta>0, \operatorname{Im} \beta<0$; and the third, γ, has $\operatorname{Re} \gamma<0$.
(iii) For sufficiently small c, prove that $\operatorname{Im} \gamma>0$.
[You may use results from the course if you state them precisely.]

2/I/4E Further Analysis

Let τ_{1} be the collection of all subsets $A \subset \mathbb{N}$ such that $A=\emptyset$ or $\mathbb{N} \backslash A$ is finite. Let τ_{2} be the collection of all subsets of \mathbb{N} of the form $I_{n}=\{n, n+1, n+2, \ldots\}$, together with the empty set. Prove that τ_{1} and τ_{2} are both topologies on \mathbb{N}.

Show that a function f from the topological space $\left(\mathbb{N}, \tau_{1}\right)$ to the topological space $\left(\mathbb{N}, \tau_{2}\right)$ is continuous if and only if one of the following alternatives holds:
(i) $f(n) \rightarrow \infty$ as $n \rightarrow \infty$;
(ii) there exists $N \in \mathbb{N}$ such that $f(n)=N$ for all but finitely many n and $f(n) \leqslant N$ for all n.

2/II/13E Further Analysis

(a) Let $f:[1, \infty) \rightarrow \mathbb{C}$ be defined by $f(t)=t^{-1} e^{2 \pi i t}$ and let X be the image of f. Prove that $X \cup\{0\}$ is compact and path-connected. [Hint: you may find it helpful to set $s=t^{-1}$.]
(b) Let $g:[1, \infty) \rightarrow \mathbb{C}$ be defined by $g(t)=\left(1+t^{-1}\right) e^{2 \pi i t}$, let Y be the image of g and let \bar{D} be the closed unit disc $\{z \in \mathbb{C}:|z| \leq 1\}$. Prove that $Y \cup \bar{D}$ is connected. Explain briefly why it is not path-connected.

3/I/3E Further Analysis

(a) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function such that $|f(z)| \leqslant 1+|z|^{1 / 2}$ for every z. Prove that f is constant.
(b) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function such that $\operatorname{Re}(f(z)) \geqslant 0$ for every z. Prove that f is constant.

3/II/13E Further Analysis

(a) State Taylor's Theorem.
(b) Let $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ be defined whenever $\left|z-z_{0}\right|<r$. Suppose that $z_{k} \rightarrow z_{0}$ as $k \rightarrow \infty$, that no z_{k} equals z_{0} and that $f\left(z_{k}\right)=g\left(z_{k}\right)$ for every k. Prove that $a_{n}=b_{n}$ for every $n \geqslant 0$.
(c) Let D be a domain, let $z_{0} \in D$ and let $\left(z_{k}\right)$ be a sequence of points in D that converges to z_{0}, but such that no z_{k} equals z_{0}. Let $f: D \rightarrow \mathbb{C}$ and $g: D \rightarrow \mathbb{C}$ be analytic functions such that $f\left(z_{k}\right)=g\left(z_{k}\right)$ for every k. Prove that $f(z)=g(z)$ for every $z \in D$.
(d) Let D be the domain $\mathbb{C} \backslash\{0\}$. Give an example of an analytic function $f: D \rightarrow \mathbb{C}$ such that $f\left(n^{-1}\right)=0$ for every positive integer n but f is not identically 0 .
(e) Show that any function with the property described in (d) must have an essential singularity at the origin.

4/I/4E Further Analysis

(a) State and prove Morera's Theorem.
(b) Let D be a domain and for each $n \in \mathbb{N}$ let $f_{n}: D \rightarrow \mathbb{C}$ be an analytic function. Suppose that $f: D \rightarrow \mathbb{C}$ is another function and that $f_{n} \rightarrow f$ uniformly on D. Prove that f is analytic.

4/II/13E Further Analysis

(a) State the residue theorem and use it to deduce the principle of the argument, in a form that involves winding numbers.
(b) Let $p(z)=z^{5}+z$. Find all z such that $|z|=1$ and $\operatorname{Im}(p(z))=0$. Calculate $\operatorname{Re}(p(z))$ for each such z. [It will be helpful to set $z=e^{i \theta}$. You may use the addition formulae $\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$ and $\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$.]
(c) Let $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ be the closed path $\theta \mapsto e^{i \theta}$. Use your answer to (b) to give a rough sketch of the path $p \circ \gamma$, paying particular attention to where it crosses the real axis.
(d) Hence, or otherwise, determine for every real t the number of z (counted with multiplicity) such that $|z|<1$ and $p(z)=t$. (You need not give rigorous justifications for your calculations.)

2/I/4G Further Analysis

Let the function $f=u+i v$ be analytic in the complex plane \mathbb{C} with u, v real-valued. Prove that, if $u v$ is bounded above everywhere on \mathbb{C}, then f is constant.

2/II/13G Further Analysis

(a) Given a topology \mathcal{T} on X, a collection $\mathcal{B} \subseteq \mathcal{T}$ is called a basis for \mathcal{T} if every non-empty set in \mathcal{T} is a union of sets in \mathcal{B}. Prove that a collection \mathcal{B} is a basis for some topology if it satisfies:
(i) the union of all sets in \mathcal{B} is X;
(ii) if $x \in B_{1} \cap B_{2}$ for two sets B_{1} and B_{2} in \mathcal{B}, then there is a set $B \in \mathcal{B}$ with $x \in B \subset B_{1} \cap B_{2}$.
(b) On $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ consider the dictionary order given by

$$
\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)
$$

if $a_{1}<a_{2}$ or if $a_{1}=a_{2}$ and $b_{1}<b_{2}$. Given points \mathbf{x} and \mathbf{y} in \mathbb{R}^{2} let

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\{\mathbf{z} \in \mathbb{R}^{2}: \mathbf{x}<\mathbf{z}<\mathbf{y}\right\} .
$$

Show that the sets $\langle\mathbf{x}, \mathbf{y}\rangle$ for \mathbf{x} and \mathbf{y} in \mathbb{R}^{2} form a basis of a topology.
(c) Show that this topology on \mathbb{R}^{2} does not have a countable basis.

3/I/3G Further Analysis

Let $f: X \rightarrow Y$ be a continuous map between topological spaces. Let

$$
G_{f}=\{(x, f(x)): x \in X\} .
$$

(a) Show that if Y is Hausdorff, then G_{f} is closed in $X \times Y$.
(b) Show that if X is compact, then G_{f} is also compact.

3/II/13G Further Analysis

(a) Let f and g be two analytic functions on a domain D and let $\gamma \subset D$ be a simple closed curve homotopic in D to a point. If $|g(z)|<|f(z)|$ for every z in γ, prove that γ encloses the same number of zeros of f as of $f+g$.
(b) Let g be an analytic function on the disk $|z|<1+\epsilon$, for some $\epsilon>0$. Suppose that g maps the closed unit disk into the open unit disk (both centred at 0). Prove that g has exactly one fixed point in the open unit disk.
(c) Prove that, if $|a|<1$, then

$$
z^{m}\left(\frac{z-a}{1-\bar{a} z}\right)^{n}-a
$$

has $m+n$ zeros in $|z|<1$.

4/I/4G Further Analysis

(a) Let X be a topological space and suppose $X=C \cup D$, where C and D are disjoint nonempty open subsets of X. Show that, if Y is a connected subset of X, then Y is entirely contained in either C or D.
(b) Let X be a topological space and let $\left\{A_{n}\right\}$ be a sequence of connected subsets of X such that $A_{n} \cap A_{n+1} \neq \emptyset$, for $n=1,2,3, \ldots$. Show that $\bigcup_{n \geqslant 1} A_{n}$ is connected.

4/II/13G Further Analysis

A function f is said to be analytic at ∞ if there exists a real number $r>0$ such that f is analytic for $|z|>r$ and $\lim _{z \rightarrow 0} f(1 / z)$ is finite (i.e. $f(1 / z)$ has a removable singularity at $z=0$). f is said to have a pole at ∞ if $f(1 / z)$ has a pole at $z=0$. Suppose that f is a meromorphic function on the extended plane \mathbb{C}_{∞}, that is, f is analytic at each point of \mathbb{C}_{∞} except for poles.
(a) Show that if f has a pole at $z=\infty$, then there exists $r>0$ such that $f(z)$ has no poles for $r<|z|<\infty$.
(b) Show that the number of poles of f is finite.
(c) By considering the Laurent expansions around the poles show that f is in fact a rational function, i.e. of the form p / q, where p and q are polynomials.
(d) Deduce that the only bijective meromorphic maps of \mathbb{C}_{∞} onto itself are the Möbius maps.

2/I/4B Further Analysis

Define the terms connected and path connected for a topological space. If a topological space X is path connected, prove that it is connected.

Consider the following subsets of \mathbb{R}^{2} :

$$
\begin{gathered}
I=\{(x, 0): 0 \leq x \leq 1\}, \quad A=\left\{(0, y): \quad \frac{1}{2} \leq y \leq 1\right\}, \text { and } \\
J_{n}=\left\{\left(n^{-1}, y\right): 0 \leq y \leq 1\right\} \quad \text { for } n \geq 1 .
\end{gathered}
$$

Let

$$
X=A \cup I \cup \bigcup_{n \geq 1} J_{n}
$$

with the subspace (metric) topology. Prove that X is connected.
[You may assume that any interval in \mathbb{R} (with the usual topology) is connected.]

2/II/13A Further Analysis

State Liouville's Theorem. Prove it by considering

$$
\int_{|z|=R} \frac{f(z) d z}{(z-a)(z-b)}
$$

and letting $R \rightarrow \infty$.
Prove that, if $g(z)$ is a function analytic on all of \mathbb{C} with real and imaginary parts $u(z)$ and $v(z)$, then either of the conditions:

$$
\text { (i) } u+v \geqslant 0 \text { for all } z ; \quad \text { or } \quad \text { (ii) } u v \geqslant 0 \text { for all } z
$$

implies that $g(z)$ is constant.

3/I/3B Further Analysis

State a version of Rouché's Theorem. Find the number of solutions (counted with multiplicity) of the equation

$$
z^{4}=a(z-1)\left(z^{2}-1\right)+\frac{1}{2}
$$

inside the open disc $\{z:|z|<\sqrt{2}\}$, for the cases $a=\frac{1}{3}, 12$ and 5 .
[Hint: For the case $a=5$, you may find it helpful to consider the function $\left(z^{2}-1\right)(z-$ $2)(z-3)$.]

3/II/13B Further Analysis

If X and Y are topological spaces, describe the open sets in the product topology on $X \times Y$. If the topologies on X and Y are induced from metrics, prove that the same is true for the product.

What does it mean to say that a topological space is compact? If the topologies on X and Y are compact, prove that the same is true for the product.

4/I/4A Further Analysis

Let $f(z)$ be analytic in the disc $|z|<R$. Assume the formula

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{|z|=r} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}, \quad 0 \leqslant\left|z_{0}\right|<r<R .
$$

By combining this formula with a complex conjugate version of Cauchy's Theorem, namely

$$
0=\int_{|z|=r} \overline{f(z)} d \bar{z}
$$

prove that

$$
f^{\prime}(0)=\frac{1}{\pi r} \int_{0}^{2 \pi} u(\theta) e^{-i \theta} d \theta,
$$

where $u(\theta)$ is the real part of $f\left(r e^{i \theta}\right)$.

4/II/13B Further Analysis

Let $\Delta^{*}=\{z: 0<|z|<r\}$ be a punctured disc, and f an analytic function on Δ^{*}. What does it mean to say that f has the origin as (i) a removable singularity, (ii) a pole, and (iii) an essential singularity? State criteria for (i), (ii), (iii) to occur, in terms of the Laurent series for f at 0 .

Suppose now that the origin is an essential singularity for f. Given any $w \in \mathbb{C}$, show that there exists a sequence $\left(z_{n}\right)$ of points in Δ^{*} such that $z_{n} \rightarrow 0$ and $f\left(z_{n}\right) \rightarrow w$. [You may assume the fact that an isolated singularity is removable if the function is bounded in some open neighbourhood of the singularity.]

State the Open Mapping Theorem. Prove that if f is analytic and injective on Δ^{*}, then the origin cannot be an essential singularity. By applying this to the function $g(1 / z)$, or otherwise, deduce that if g is an injective analytic function on \mathbb{C}, then g is linear of the form $a z+b$, for some non-zero complex number a. [Here, you may assume that g injective implies that its derivative g^{\prime} is nowhere vanishing.]

