Part IB

Further Analysis

Year

2004

2003

2002

2001

2/I/4E Further Analysis

Let τ be the topology on $\mathbb N$ consisting of the empty set and all sets $X \subset \mathbb N$ such that $\mathbb N \setminus X$ is finite. Let σ be the usual topology on $\mathbb R$, and let ρ be the topology on $\mathbb R$ consisting of the empty set and all sets of the form (x,∞) for some real x.

- (i) Prove that all continuous functions $f:(\mathbb{N},\tau)\to(\mathbb{R},\sigma)$ are constant.
- (ii) Give an example with proof of a non-constant function $f:(\mathbb{N},\tau)\to(\mathbb{R},\rho)$ that is continuous.

2/II/15E Further Analysis

- (i) Let X be the set of all infinite sequences $(\epsilon_1, \epsilon_2, ...)$ such that $\epsilon_i \in \{0, 1\}$ for all i. Let τ be the collection of all subsets $Y \subset X$ such that, for every $(\epsilon_1, \epsilon_2, ...) \in Y$ there exists n such that $(\eta_1, \eta_2, ...) \in Y$ whenever $\eta_1 = \epsilon_1, \eta_2 = \epsilon_2, ..., \eta_n = \epsilon_n$. Prove that τ is a topology on X.
 - (ii) Let a distance d be defined on X by

$$d\Big((\epsilon_1, \epsilon_2, \ldots), (\eta_1, \eta_2, \ldots)\Big) = \sum_{n=1}^{\infty} 2^{-n} |\epsilon_n - \eta_n|.$$

Prove that d is a metric and that the topology arising from d is the same as τ .

3/I/5E Further Analysis

Let C be the contour that goes once round the boundary of the square

$$\{z: -1 \leqslant \operatorname{Re} z \leqslant 1, -1 \leqslant \operatorname{Im} z \leqslant 1\}$$

in an anticlockwise direction. What is $\int_C \frac{dz}{z}$? Briefly justify your answer.

Explain why the integrals along each of the four edges of the square are equal. Deduce that $\int_{-1}^{1} \frac{dt}{1+t^2} = \frac{\pi}{2}$.

3/II/17E Further Analysis

(i) Explain why the formula

$$f(z) = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$$

defines a function that is analytic on the domain $\mathbb{C} \setminus \mathbb{Z}$. [You need not give full details, but should indicate what results are used.]

Show also that f(z+1) = f(z) for every z such that f(z) is defined.

(ii) Write $\log z$ for $\log r + i\theta$ whenever $z = re^{i\theta}$ with r > 0 and $-\pi < \theta \leqslant \pi$. Let g be defined by the formula

$$g(z) = f\left(\frac{1}{2\pi i}\log z\right).$$

Prove that g is analytic on $\mathbb{C} \setminus \{0, 1\}$.

[Hint: What would be the effect of redefining $\log z$ to be $\log r + i\theta$ when $z = re^{i\theta}$, r > 0 and $0 \le \theta < 2\pi$?]

(iii) Determine the nature of the singularity of g at z = 1.

4/I/4E Further Analysis

- (i) Let D be the open unit disc of radius 1 about the point 3+3i. Prove that there is an analytic function $f: D \to \mathbb{C}$ such that $f(z)^2 = z$ for every $z \in D$.
- (ii) Let $D' = \mathbb{C} \setminus \{z \in \mathbb{C} : \text{Im } z = 0, \text{Re } z \leq 0\}$. Explain briefly why there is at most one extension of f to a function that is analytic on D'.
- (iii) Deduce that f cannot be extended to an analytic function on $\mathbb{C} \setminus \{0\}$.

4/II/14E Further Analysis

(i) State and prove Rouché's theorem.

[You may assume the principle of the argument.]

- (ii) Let 0 < c < 1. Prove that the polynomial $p(z) = z^3 + icz + 8$ has three roots with modulus less than 3. Prove that one root α satisfies Re $\alpha > 0$, Im $\alpha > 0$; another, β , satisfies Re $\beta > 0$, Im $\beta < 0$; and the third, γ , has Re $\gamma < 0$.
 - (iii) For sufficiently small c, prove that Im $\gamma > 0$.

You may use results from the course if you state them precisely.

2/I/4E Further Analysis

Let τ_1 be the collection of all subsets $A \subset \mathbb{N}$ such that $A = \emptyset$ or $\mathbb{N} \setminus A$ is finite. Let τ_2 be the collection of all subsets of \mathbb{N} of the form $I_n = \{n, n+1, n+2, \ldots\}$, together with the empty set. Prove that τ_1 and τ_2 are both topologies on \mathbb{N} .

Show that a function f from the topological space (\mathbb{N}, τ_1) to the topological space (\mathbb{N}, τ_2) is continuous if and only if one of the following alternatives holds:

- (i) $f(n) \to \infty$ as $n \to \infty$;
- (ii) there exists $N \in \mathbb{N}$ such that f(n) = N for all but finitely many n and $f(n) \leq N$ for all n.

2/II/13E Further Analysis

- (a) Let $f: [1, \infty) \to \mathbb{C}$ be defined by $f(t) = t^{-1}e^{2\pi it}$ and let X be the image of f. Prove that $X \cup \{0\}$ is compact and path-connected. [Hint: you may find it helpful to set $s = t^{-1}$.]
- (b) Let $g: [1, \infty) \to \mathbb{C}$ be defined by $g(t) = (1 + t^{-1})e^{2\pi it}$, let Y be the image of g and let \overline{D} be the closed unit disc $\{z \in \mathbb{C} : |z| \le 1\}$. Prove that $Y \cup \overline{D}$ is connected. Explain briefly why it is not path-connected.

3/I/3E Further Analysis

- (a) Let $f: \mathbb{C} \to \mathbb{C}$ be an analytic function such that $|f(z)| \leq 1 + |z|^{1/2}$ for every z. Prove that f is constant.
- (b) Let $f: \mathbb{C} \to \mathbb{C}$ be an analytic function such that $\text{Re}(f(z)) \geq 0$ for every z. Prove that f is constant.

3/II/13E Further Analysis

- (a) State Taylor's Theorem.
- (b) Let $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ and $g(z) = \sum_{n=0}^{\infty} b_n (z-z_0)^n$ be defined whenever $|z-z_0| < r$. Suppose that $z_k \to z_0$ as $k \to \infty$, that no z_k equals z_0 and that $f(z_k) = g(z_k)$ for every k. Prove that $a_n = b_n$ for every $n \ge 0$.
- (c) Let D be a domain, let $z_0 \in D$ and let (z_k) be a sequence of points in D that converges to z_0 , but such that no z_k equals z_0 . Let $f: D \to \mathbb{C}$ and $g: D \to \mathbb{C}$ be analytic functions such that $f(z_k) = g(z_k)$ for every k. Prove that f(z) = g(z) for every $z \in D$.
- (d) Let D be the domain $\mathbb{C}\setminus\{0\}$. Give an example of an analytic function $f:D\to\mathbb{C}$ such that $f(n^{-1})=0$ for every positive integer n but f is not identically 0.
- (e) Show that any function with the property described in (d) must have an essential singularity at the origin.

4/I/4E Further Analysis

- (a) State and prove Morera's Theorem.
- (b) Let D be a domain and for each $n \in \mathbb{N}$ let $f_n : D \to \mathbb{C}$ be an analytic function. Suppose that $f : D \to \mathbb{C}$ is another function and that $f_n \to f$ uniformly on D. Prove that f is analytic.

4/II/13E Further Analysis

- (a) State the residue theorem and use it to deduce the principle of the argument, in a form that involves winding numbers.
- (b) Let $p(z)=z^5+z$. Find all z such that |z|=1 and $\mathrm{Im}\,(p(z))=0$. Calculate $\mathrm{Re}\,(p(z))$ for each such z. [It will be helpful to set $z=e^{i\theta}$. You may use the addition formulae $\sin\alpha+\sin\beta=2\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$ and $\cos\alpha+\cos\beta=2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$.]
- (c) Let $\gamma:[0,2\pi]\to\mathbb{C}$ be the closed path $\theta\mapsto e^{i\theta}$. Use your answer to (b) to give a rough sketch of the path $p\circ\gamma$, paying particular attention to where it crosses the real axis.
- (d) Hence, or otherwise, determine for every real t the number of z (counted with multiplicity) such that |z| < 1 and p(z) = t. (You need not give rigorous justifications for your calculations.)

2/I/4G Further Analysis

Let the function f = u + iv be analytic in the complex plane \mathbb{C} with u,v real-valued. Prove that, if uv is bounded above everywhere on \mathbb{C} , then f is constant.

2/II/13G Further Analysis

- (a) Given a topology \mathcal{T} on X, a collection $\mathcal{B} \subseteq \mathcal{T}$ is called a *basis* for \mathcal{T} if every non-empty set in \mathcal{T} is a union of sets in \mathcal{B} . Prove that a collection \mathcal{B} is a basis for some topology if it satisfies:
- (i) the union of all sets in \mathcal{B} is X;
- (ii) if $x \in B_1 \cap B_2$ for two sets B_1 and B_2 in \mathcal{B} , then there is a set $B \in \mathcal{B}$ with $x \in B \subset B_1 \cap B_2$.
 - (b) On $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ consider the dictionary order given by

$$(a_1, b_1) < (a_2, b_2)$$

if $a_1 < a_2$ or if $a_1 = a_2$ and $b_1 < b_2$. Given points \mathbf{x} and \mathbf{y} in \mathbb{R}^2 let

$$\langle \mathbf{x}, \mathbf{y} \rangle = \{ \mathbf{z} \in \mathbb{R}^2 : \ \mathbf{x} < \mathbf{z} < \mathbf{y} \}.$$

Show that the sets $\langle \mathbf{x}, \mathbf{y} \rangle$ for \mathbf{x} and \mathbf{y} in \mathbb{R}^2 form a basis of a topology.

(c) Show that this topology on \mathbb{R}^2 does not have a countable basis.

3/I/3G Further Analysis

Let $f: X \to Y$ be a continuous map between topological spaces. Let

$$G_f = \{(x, f(x)) : x \in X\}.$$

- (a) Show that if Y is Hausdorff, then G_f is closed in $X \times Y$.
- (b) Show that if X is compact, then G_f is also compact.

3/II/13G Further Analysis

- (a) Let f and g be two analytic functions on a domain D and let $\gamma \subset D$ be a simple closed curve homotopic in D to a point. If |g(z)| < |f(z)| for every z in γ , prove that γ encloses the same number of zeros of f as of f + g.
- (b) Let g be an analytic function on the disk $|z| < 1 + \epsilon$, for some $\epsilon > 0$. Suppose that g maps the closed unit disk into the open unit disk (both centred at 0). Prove that g has exactly one fixed point in the open unit disk.
 - (c) Prove that, if |a| < 1, then

$$z^m \left(\frac{z-a}{1-\bar{a}z}\right)^n - a$$

has m + n zeros in |z| < 1.

4/I/4G Further Analysis

- (a) Let X be a topological space and suppose $X = C \cup D$, where C and D are disjoint nonempty open subsets of X. Show that, if Y is a connected subset of X, then Y is entirely contained in either C or D.
- (b) Let X be a topological space and let $\{A_n\}$ be a sequence of connected subsets of X such that $A_n \cap A_{n+1} \neq \emptyset$, for $n = 1, 2, 3, \ldots$ Show that $\bigcup_{n \geqslant 1} A_n$ is connected.

4/II/13G Further Analysis

A function f is said to be analytic at ∞ if there exists a real number r > 0 such that f is analytic for |z| > r and $\lim_{z \to 0} f(1/z)$ is finite (i.e. f(1/z) has a removable singularity at z = 0). f is said to have a pole at ∞ if f(1/z) has a pole at z = 0. Suppose that f is a meromorphic function on the extended plane \mathbb{C}_{∞} , that is, f is analytic at each point of \mathbb{C}_{∞} except for poles.

- (a) Show that if f has a pole at $z = \infty$, then there exists r > 0 such that f(z) has no poles for $r < |z| < \infty$.
 - (b) Show that the number of poles of f is finite.
- (c) By considering the Laurent expansions around the poles show that f is in fact a rational function, i.e. of the form p/q, where p and q are polynomials.
- (d) Deduce that the only bijective meromorphic maps of \mathbb{C}_{∞} onto itself are the Möbius maps.

2/I/4B Further Analysis

Define the terms connected and path connected for a topological space. If a topological space X is path connected, prove that it is connected.

Consider the following subsets of \mathbb{R}^2 :

$$I = \{(x,0): 0 \le x \le 1\}, A = \{(0,y): \frac{1}{2} \le y \le 1\}, \text{ and}$$

$$J_n = \{(n^{-1}, y): 0 \le y \le 1\} \text{ for } n \ge 1.$$

Let

$$X = A \cup I \cup \bigcup_{n \ge 1} J_n$$

with the subspace (metric) topology. Prove that X is connected.

[You may assume that any interval in \mathbb{R} (with the usual topology) is connected.]

2/II/13A Further Analysis

State Liouville's Theorem. Prove it by considering

$$\int_{|z|=R} \frac{f(z) dz}{(z-a)(z-b)}$$

and letting $R \to \infty$.

Prove that, if g(z) is a function analytic on all of $\mathbb C$ with real and imaginary parts u(z) and v(z), then either of the conditions:

(i)
$$u + v \ge 0$$
 for all z; or (ii) $uv \ge 0$ for all z,

implies that g(z) is constant.

3/I/3B Further Analysis

State a version of Rouché's Theorem. Find the number of solutions (counted with multiplicity) of the equation

$$z^4 = a(z-1)(z^2-1) + \frac{1}{2}$$

inside the open disc $\{z: |z| < \sqrt{2}\}$, for the cases $a = \frac{1}{3}, 12$ and 5.

[Hint: For the case a = 5, you may find it helpful to consider the function $(z^2 - 1)(z - 2)(z - 3)$.]

3/II/13B Further Analysis

If X and Y are topological spaces, describe the open sets in the *product topology* on $X \times Y$. If the topologies on X and Y are induced from metrics, prove that the same is true for the product.

What does it mean to say that a topological space is *compact*? If the topologies on X and Y are compact, prove that the same is true for the product.

4/I/4A Further Analysis

Let f(z) be analytic in the disc |z| < R. Assume the formula

$$f'(z_0) = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z) dz}{(z-z_0)^2}, \quad 0 \le |z_0| < r < R.$$

By combining this formula with a complex conjugate version of Cauchy's Theorem, namely

$$0 = \int_{|z|=r} \overline{f(z)} \, d\bar{z},$$

prove that

$$f'(0) = \frac{1}{\pi r} \int_0^{2\pi} u(\theta) e^{-i\theta} d\theta,$$

where $u(\theta)$ is the real part of $f(re^{i\theta})$.

4/II/13B Further Analysis

Let $\Delta^* = \{z : 0 < |z| < r\}$ be a punctured disc, and f an analytic function on Δ^* . What does it mean to say that f has the origin as (i) a removable singularity, (ii) a pole, and (iii) an essential singularity? State criteria for (i), (ii), (iii) to occur, in terms of the Laurent series for f at 0.

Suppose now that the origin is an essential singularity for f. Given any $w \in \mathbb{C}$, show that there exists a sequence (z_n) of points in Δ^* such that $z_n \to 0$ and $f(z_n) \to w$. [You may assume the fact that an isolated singularity is removable if the function is bounded in some open neighbourhood of the singularity.]

State the Open Mapping Theorem. Prove that if f is analytic and injective on Δ^* , then the origin cannot be an essential singularity. By applying this to the function g(1/z), or otherwise, deduce that if g is an injective analytic function on \mathbb{C} , then g is linear of the form az + b, for some non-zero complex number a. [Here, you may assume that g injective implies that its derivative g' is nowhere vanishing.]