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2/I/4E Further Analysis

Let τ be the topology on N consisting of the empty set and all sets X ⊂ N such
that N \ X is finite. Let σ be the usual topology on R, and let ρ be the topology on R
consisting of the empty set and all sets of the form (x,∞) for some real x.

(i) Prove that all continuous functions f : (N, τ)→ (R, σ) are constant.

(ii) Give an example with proof of a non-constant function f : (N, τ)→ (R, ρ) that
is continuous.

2/II/15E Further Analysis

(i) Let X be the set of all infinite sequences (ε1, ε2, . . .) such that εi ∈ {0, 1} for
all i. Let τ be the collection of all subsets Y ⊂ X such that, for every (ε1, ε2, . . .) ∈ Y
there exists n such that (η1, η2, . . .) ∈ Y whenever η1 = ε1, η2 = ε2, . . . , ηn = εn. Prove
that τ is a topology on X.

(ii) Let a distance d be defined on X by

d
(

(ε1, ε2, . . .), (η1, η2, . . .)
)

=

∞∑

n=1

2−n|εn − ηn| .

Prove that d is a metric and that the topology arising from d is the same as τ .

3/I/5E Further Analysis

Let C be the contour that goes once round the boundary of the square

{z : −1 6 Re z 6 1,−1 6 Im z 6 1}

in an anticlockwise direction. What is

∫

C

dz

z
? Briefly justify your answer.

Explain why the integrals along each of the four edges of the square are equal.

Deduce that

∫ 1

−1

dt

1 + t2
=
π

2
.
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3/II/17E Further Analysis

(i) Explain why the formula

f(z) =

∞∑

n=−∞

1

(z − n)2

defines a function that is analytic on the domain C \ Z. [You need not give full details,
but should indicate what results are used.]

Show also that f(z + 1) = f(z) for every z such that f(z) is defined.

(ii) Write log z for log r + iθ whenever z = reiθ with r > 0 and −π < θ 6 π. Let g
be defined by the formula

g(z) = f

(
1

2πi
log z

)
.

Prove that g is analytic on C \ {0, 1}.
[Hint: What would be the effect of redefining log z to be log r + iθ when z = reiθ,

r > 0 and 0 6 θ < 2π ?]

(iii) Determine the nature of the singularity of g at z = 1.

4/I/4E Further Analysis

(i) Let D be the open unit disc of radius 1 about the point 3 + 3i. Prove that there is
an analytic function f : D → C such that f(z)2 = z for every z ∈ D.

(ii) Let D′ = C \ {z ∈ C : Im z = 0,Re z 6 0}. Explain briefly why there is at most
one extension of f to a function that is analytic on D ′.

(iii) Deduce that f cannot be extended to an analytic function on C \ {0}.

4/II/14E Further Analysis

(i) State and prove Rouché’s theorem.

[You may assume the principle of the argument.]

(ii) Let 0 < c < 1. Prove that the polynomial p(z) = z3 + icz + 8 has three roots
with modulus less than 3. Prove that one root α satisfies Re α > 0, Im α > 0; another, β,
satisfies Re β > 0, Im β < 0; and the third, γ, has Re γ < 0.

(iii) For sufficiently small c, prove that Im γ > 0.

[You may use results from the course if you state them precisely.]
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2/I/4E Further Analysis

Let τ1 be the collection of all subsets A ⊂ N such that A = ∅ or N \A is finite. Let
τ2 be the collection of all subsets of N of the form In = {n, n+1, n+2, . . .}, together with
the empty set. Prove that τ1 and τ2 are both topologies on N.

Show that a function f from the topological space (N, τ1) to the topological space
(N, τ2) is continuous if and only if one of the following alternatives holds:

(i) f(n) → ∞ as n→ ∞;

(ii) there exists N ∈ N such that f(n) = N for all but finitely many n and f(n) 6 N
for all n.

2/II/13E Further Analysis

(a) Let f : [1,∞) → C be defined by f(t) = t−1e2πit and let X be the image of f .
Prove that X ∪ {0} is compact and path-connected. [Hint: you may find it helpful to set
s = t−1.]

(b) Let g : [1,∞) → C be defined by g(t) = (1 + t−1)e2πit, let Y be the image of
g and let D be the closed unit disc {z ∈ C : |z| ≤ 1}. Prove that Y ∪ D is connected.
Explain briefly why it is not path-connected.

3/I/3E Further Analysis

(a) Let f : C → C be an analytic function such that |f(z)| 6 1 + |z|1/2 for every z.
Prove that f is constant.

(b) Let f : C → C be an analytic function such that Re (f(z)) > 0 for every z.
Prove that f is constant.

3/II/13E Further Analysis

(a) State Taylor’s Theorem.

(b) Let f(z) =
∑∞

n=0 an(z−z0)n and g(z) =
∑∞

n=0 bn(z−z0)n be defined whenever
|z−z0| < r. Suppose that zk → z0 as k → ∞, that no zk equals z0 and that f(zk) = g(zk)
for every k. Prove that an = bn for every n > 0.

(c) Let D be a domain, let z0 ∈ D and let (zk) be a sequence of points in D that
converges to z0, but such that no zk equals z0. Let f : D → C and g : D → C be analytic
functions such that f(zk) = g(zk) for every k. Prove that f(z) = g(z) for every z ∈ D.

(d) Let D be the domain C\{0}. Give an example of an analytic function f : D → C
such that f(n−1) = 0 for every positive integer n but f is not identically 0.

(e) Show that any function with the property described in (d) must have an essential
singularity at the origin.

Part IB 2003

2003



13

4/I/4E Further Analysis

(a) State and prove Morera’s Theorem.

(b) Let D be a domain and for each n ∈ N let fn : D → C be an analytic function.
Suppose that f : D → C is another function and that fn → f uniformly on D. Prove that
f is analytic.

4/II/13E Further Analysis

(a) State the residue theorem and use it to deduce the principle of the argument,
in a form that involves winding numbers.

(b) Let p(z) = z5 + z. Find all z such that |z| = 1 and Im (p(z)) = 0. Calculate
Re (p(z)) for each such z. [It will be helpful to set z = eiθ. You may use the addition
formulae sinα+ sinβ = 2 sin( α+β

2 ) cos(α−β
2 ) and cosα+ cos β = 2 cos(α+β

2 ) cos(α−β
2 ).]

(c) Let γ : [0, 2π] → C be the closed path θ 7→ eiθ. Use your answer to (b) to give
a rough sketch of the path p ◦ γ, paying particular attention to where it crosses the real
axis.

(d) Hence, or otherwise, determine for every real t the number of z (counted with
multiplicity) such that |z| < 1 and p(z) = t. (You need not give rigorous justifications for
your calculations.)
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2/I/4G Further Analysis

Let the function f = u+iv be analytic in the complex plane C with u,v real-valued.
Prove that, if uv is bounded above everywhere on C, then f is constant.

2/II/13G Further Analysis

(a) Given a topology T on X, a collection B ⊆ T is called a basis for T if every
non-empty set in T is a union of sets in B. Prove that a collection B is a basis for some
topology if it satisfies:

(i) the union of all sets in B is X;

(ii) if x ∈ B1 ∩ B2 for two sets B1 and B2 in B, then there is a set B ∈ B with
x ∈ B ⊂ B1 ∩B2.

(b) On R2 = R× R consider the dictionary order given by

(a1, b1) < (a2, b2)

if a1 < a2 or if a1 = a2 and b1 < b2. Given points x and y in R2 let

〈x,y〉 = {z ∈ R2 : x < z < y}.

Show that the sets 〈x,y〉 for x and y in R2 form a basis of a topology.

(c) Show that this topology on R2 does not have a countable basis.

3/I/3G Further Analysis

Let f : X → Y be a continuous map between topological spaces. Let

Gf = {(x, f(x)) : x ∈ X}.

(a) Show that if Y is Hausdorff, then Gf is closed in X × Y .

(b) Show that if X is compact, then Gf is also compact.
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3/II/13G Further Analysis

(a) Let f and g be two analytic functions on a domain D and let γ ⊂ D be a simple
closed curve homotopic in D to a point. If |g(z)| < |f(z)| for every z in γ, prove that γ
encloses the same number of zeros of f as of f + g.

(b) Let g be an analytic function on the disk |z| < 1 + ε, for some ε > 0. Suppose
that g maps the closed unit disk into the open unit disk (both centred at 0). Prove that
g has exactly one fixed point in the open unit disk.

(c) Prove that, if |a| < 1, then

zm
( z − a

1 − āz

)n

− a

has m+ n zeros in |z| < 1.

4/I/4G Further Analysis

(a) Let X be a topological space and suppose X = C ∪ D, where C and D are
disjoint nonempty open subsets of X. Show that, if Y is a connected subset of X, then Y
is entirely contained in either C or D.

(b) Let X be a topological space and let {An} be a sequence of connected subsets
of X such that An ∩An+1 6= ∅, for n = 1, 2, 3, . . .. Show that

⋃
n>1An is connected.

4/II/13G Further Analysis

A function f is said to be analytic at ∞ if there exists a real number r > 0 such
that f is analytic for |z| > r and limz→0 f(1/z) is finite (i.e. f(1/z) has a removable
singularity at z = 0). f is said to have a pole at ∞ if f(1/z) has a pole at z = 0. Suppose
that f is a meromorphic function on the extended plane C∞, that is, f is analytic at each
point of C∞ except for poles.

(a) Show that if f has a pole at z = ∞, then there exists r > 0 such that f(z) has
no poles for r < |z| <∞.

(b) Show that the number of poles of f is finite.

(c) By considering the Laurent expansions around the poles show that f is in fact
a rational function, i.e. of the form p/q, where p and q are polynomials.

(d) Deduce that the only bijective meromorphic maps of C∞ onto itself are the
Möbius maps.
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2/I/4B Further Analysis

Define the terms connected and path connected for a topological space. If a
topological space X is path connected, prove that it is connected.

Consider the following subsets of R2:

I = {(x, 0) : 0 ≤ x ≤ 1}, A = {(0, y) : 1
2 ≤ y ≤ 1}, and

Jn = {(n−1, y) : 0 ≤ y ≤ 1} for n ≥ 1.

Let
X = A ∪ I ∪

⋃

n≥1

Jn

with the subspace (metric) topology. Prove that X is connected.

[You may assume that any interval in R (with the usual topology) is connected.]

2/II/13A Further Analysis

State Liouville’s Theorem. Prove it by considering

∫

|z|=R

f(z) dz

(z − a)(z − b)

and letting R→ ∞.

Prove that, if g(z) is a function analytic on all of C with real and imaginary parts
u(z) and v(z), then either of the conditions:

(i) u+ v > 0 for all z; or (ii) uv > 0 for all z,

implies that g(z) is constant.

3/I/3B Further Analysis

State a version of Rouché’s Theorem. Find the number of solutions (counted with
multiplicity) of the equation

z4 = a(z − 1)(z2 − 1) + 1
2

inside the open disc {z : |z| <
√

2}, for the cases a = 1
3
, 12 and 5.

[Hint: For the case a = 5, you may find it helpful to consider the function (z2 − 1)(z −
2)(z − 3).]
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3/II/13B Further Analysis

If X and Y are topological spaces, describe the open sets in the product topology
on X × Y . If the topologies on X and Y are induced from metrics, prove that the same
is true for the product.

What does it mean to say that a topological space is compact? If the topologies on
X and Y are compact, prove that the same is true for the product.

4/I/4A Further Analysis

Let f(z) be analytic in the disc |z| < R. Assume the formula

f ′(z0) =
1

2πi

∫

|z|=r

f(z) dz

(z − z0)2
, 0 6 |z0| < r < R.

By combining this formula with a complex conjugate version of Cauchy’s Theorem, namely

0 =

∫

|z|=r

f(z) dz̄,

prove that

f ′(0) =
1

πr

∫ 2π

0

u(θ)e−iθdθ,

where u(θ) is the real part of f(reiθ).

4/II/13B Further Analysis

Let ∆∗ = {z : 0 < |z| < r} be a punctured disc, and f an analytic function on ∆∗.
What does it mean to say that f has the origin as (i) a removable singularity, (ii) a pole,
and (iii) an essential singularity? State criteria for (i), (ii), (iii) to occur, in terms of the
Laurent series for f at 0.

Suppose now that the origin is an essential singularity for f . Given any w ∈ C, show
that there exists a sequence (zn) of points in ∆∗ such that zn → 0 and f(zn) → w. [You
may assume the fact that an isolated singularity is removable if the function is bounded in
some open neighbourhood of the singularity.]

State the Open Mapping Theorem. Prove that if f is analytic and injective on ∆∗,
then the origin cannot be an essential singularity. By applying this to the function g(1/z),
or otherwise, deduce that if g is an injective analytic function on C, then g is linear of the
form az+ b, for some non-zero complex number a. [Here, you may assume that g injective
implies that its derivative g′ is nowhere vanishing.]
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