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Paper 2, Section I

5C Fluid Dynamics

A three-dimensional flow has a velocity field u(x) = Γ·x+U0, where Γ is a constant
second-rank tensor and U0 is a constant vector, with components

Γ =




A B C
D E F
G H I


 , U0 =




P
Q
R


 .

(a) What are the conditions on the components of Γ and U0 for the flow to be:

(i) incompressible?

(ii) irrotational?

(b) In the case where

Γ =




0 α 0
−α 0 0
0 0 0


 , U0 =




0
0
β


 , (α 6= 0),

compute the streamline passing through the point (1, 0, 0).

Paper 3, Section I

7C Fluid Dynamics

A two-dimensional cylinder of radius a is stationary in a uniform flow of velocity
Uex. The flow is assumed to be steady, inviscid, two-dimensional and irrotational. There
is no circulation around the cylinder.

Using a velocity potential, solve for the flow u(r, θ) around the cylinder. Use
Bernoulli’s equation to compute the pressure on its surface as a function of the polar
angle θ.

Part IB, Paper 1 [TURN OVER]

2023
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Paper 1, Section II

16C Fluid Dynamics

An incompressible viscous fluid of constant uniform viscosity µ and density ρ
undergoes unidirectional flow of the form u = u(y, t)ex in two dimensions. Gravity is
negligible.

(a) Use a small control fluid volume of size δx× δy,

(i) to show that this flow satisfies mass conservation;

(ii) to derive the momentum conservation equation satisfied by u(y, t) and the
pressure p(x).

(b) The flow is steady, is subject to a uniform pressure gradient G = dp/dx and
occurs between two rigid surfaces at y = 0 and y = h. The surface at y = 0 is stationary
while the surface at y = h translates with velocity Uex, where U is a constant parameter.

(i) Solve for the flow u(y) in terms of G and U .

(ii) Compute the value G0 of the applied pressure gradient G for which the
shear stress at y = 0 is zero.

(iii) For G = G0, deduce the volume flux in the x direction.

(iv) For G = G0, use u(y) to compute the shear stress exerted by the flow on
the top plate. Show that it can also be obtained by using a force balance
on a small control fluid volume of size δx× h.

Part IB, Paper 1

2023
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Paper 3, Section II

16C Fluid Dynamics

(a) Starting from the Euler equation for an inviscid fluid with no body force, derive
the unsteady Bernoulli equation relating the pressure and the velocity potential in a time-
dependent irrotational, incompressible flow.

(b) A liquid occupies the two-dimensional annular region a(t) < r < b(t) between
a gas bubble occupying 0 6 r < a(t) and an infinite gas in r > b(t). The flow is
incompressible, irrotational and radially symmetric.

(i) If the radius of the gas bubble is prescribed (i.e. the function a(t) is known),
solve for the potential flow in the liquid. Deduce the time-variation of b(t)
and interpret your result physically.

(ii) The pressure in the gas in r > b is a constant p∞. Compute the time-
varying pressure p(r, t) in the liquid at r = a(t).

(iii) Assuming small perturbations for the bubble radius a(t) = a0[1 + ε(t)]
with |ε| � 1, deduce the linearised variation of the radius b(t). Find the
linearised variation of the pressure p(a, t).

(iv) The pressure p0(t) in the bubble is uniform in space and satisfies p0V =
const, where V (t) is the volume of the bubble. Deduce the relationship
between ε and p(a, t)− p∞.

(v) Show that the bubble undergoes oscillations and compute its frequency ω.

Part IB, Paper 1 [TURN OVER]

2023
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Paper 4, Section II

16C Fluid Dynamics

(a) A body of fluid has a free surface given by z = η(x, y, t) in Cartesian coordinates
and the fluid velocity is denoted by u = (u, v, w). Applying the kinematic boundary
condition at the free surface, derive the relationship between the value of w at the free
surface and Dη/Dt.

(b) An inviscid fluid is confined in a box with sides at x = 0, L and y = 0, L.
The fluid is semi-infinite in the −z direction and is bounded above by a free surface at
z = η(x, y, t). The fluid is forced to oscillate by applying a prescribed variation in the air
pressure just above the free surface,

p(x, y, t) = p0 cos (πx/L) cos (2πy/L) cos(ωt),

with ω a prescribed constant frequency.

(i) Assuming irrotational flow and small-amplitude motion of the interface,
state the equation satisfied by the velocity potential φ in the fluid and
state all the boundary conditions.

(ii) Show that a separable solution for φ of the form

φ = Z(z) cos (πx/L) cos (2πy/L)F (t)

is consistent with the dynamic boundary condition and that it satisfies the
boundary conditions at x = 0, L and y = 0, L.

(iii) Solve for the function Z(z).

(iv) Using the kinematic boundary condition, show that the shape of the
interface is of the form

η(x, y, t) = cos (πx/L) cos (2πy/L)H(t),

and derive the relationship between H(t) and F (t).

(v) Use the dynamic boundary condition to solve for H(t) and F (t).

(vi) Deduce that the amplitudes H and F do not remain bounded for a specific
value of the frequency ω which you should determine, and briefly interpret
this phenomenon physically.

Part IB, Paper 1

2023
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Paper 2, Section I
5C Fluid Dynamics

An unsteady fluid flow has velocity field given in cartesian coordinates (x, y, z) by
u = (2t, xt, 0), where t > 0 denotes time. Dye is continuously released into the fluid from
the origin.

(a) Determine if this fluid flow is incompressible.

(b) Find the distance from the origin at time t of the dye particle that was released
at time s, where s < t.

(c) Determine the equation of the curve formed by the dye streak in the (x, y)-plane.

Paper 3, Section I
7C Fluid Dynamics

A two-dimensional flow has velocity given by

u(x) = 2
x(d · x)

r4
− d

r2

as a function of the position vector x, with r = |x|, where d is a fixed vector.

(a) Show that this flow is incompressible for r 6= 0.

(b) Compute the stream function ψ for this flow in polar coordinates (r, θ) with
θ = 0 aligned with the vector d.

[Hint: in polar coordinates

∇ · F =
1

r

∂

∂r
(rFr) +

1

r

∂Fθ
∂θ

for a vector F = (Fr, Fθ).]

Part IB, Paper 1

2022
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Paper 1, Section II
16C Fluid Dynamics

Consider a steady viscous flow (with viscosity µ) of constant density ρ through a
long pipe of circular cross-section with radius R. The flow is driven by a constant pressure
gradient ∂p/∂z along the pipe (z is the coordinate along the pipe).

The Navier-Stokes equation describing this flow is

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u.

(a) Using cylindrical coordinates (r, θ, z) aligned with the pipe, determine the
velocity u = (0, 0, w(r)) of the flow.

[Hint: in cylindrical coordinates

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2
.]

(b) The viscous stress exerted on the flow by the pipe boundaries is equal to

µ

(
∂w

∂r

)∣∣∣∣
r=R

.

Demonstrate the overall force balance for the (cylindrical) volume of the fluid enclosed
within the section of the pipe z0 6 z 6 z0 + L.

(c) Compute the mass flux through the pipe.

Part IB, Paper 1 [TURN OVER]

2022



12

Paper 3, Section II
16C Fluid Dynamics

Consider an axisymmetric, two-dimensional, incompressible flow u(r) = (ur, uθ) in
polar coordinates (r, θ).

(a) Determine the behaviour of ur if it is finite everywhere in space.

(b) Representing uθ = Ω(r)r, express the vorticity of the flow ω in terms of Ω.

(c) Starting from the Navier-Stokes equation

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u

derive the vorticity evolution equation

Dω

Dt
= (ω · ∇)u + ν∇2ω

for a general incompressible flow with kinematic viscosity ν = µ/ρ.

(d) Deduce the form of the evolution equation for the scalar vorticity ω = |ω| for
the axisymmetric two-dimensional flow of part (a).

(e) Show that the equation derived in part (d) adopts a self-similar form ω(r, t) =
ω(ξ), where ξ = r/

√
νt is the similarity variable.

[You may use the fact that, in polar coordinates,

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

and

∇× F =
1

r

[
∂

∂r
(rFθ)−

∂Fr
∂θ

]
ez

for a vector F = (Fr, Fθ), where ez is a unit vector normal to the flow plane.]

Paper 4, Section II
16C Fluid Dynamics

A fluid of density ρ1 occupies the region z > 0 and a second fluid of density ρ2
occupies the region z < 0. The system is perturbed so that the subsequent motion
is irrotational and the interface is at z = ζ(x, t). State the equations and nonlinear
boundary conditions that are satisfied by the corresponding velocity potentials φ1 and φ2
and pressures p1 and p2.

Obtain a set of linearised equations and boundary conditions when the perturbations
are small and proportional to ei(kx−ωt). Hence derive the dispersion relation

ω2 = gk F

(
ρ1
ρ2

)
,

where g is the gravitational acceleration and F is a function to be determined.

Part IB, Paper 1

2022
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Paper 2, Section I

5A Fluid Dynamics
Consider an axisymmetric container, initially filled with water to a depth hI . A

small circular hole of radius r0 is opened in the base of the container at z = 0.

(a) Determine how the radius r of the container should vary with z < hI so that
the depth of the water will decrease at a constant rate.

(b) For such a container, determine how the cross-sectional area A of the free
surface should decrease with time.

[You may assume that the flow rate through the opening is sufficiently small that
Bernoulli’s theorem for steady flows can be applied.]

Paper 3, Section I

7A Fluid Dynamics
A two-dimensional flow u = (u, v) has a velocity field given by

u =
x2 − y2

(x2 + y2)2
and v =

2xy

(x2 + y2)2
.

(a) Show explicitly that this flow is incompressible and irrotational away from the
origin.

(b) Find the stream function for this flow.

(c) Find the velocity potential for this flow.

Part IB, 2021 List of Questions

2021
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Paper 1, Section II

16A Fluid Dynamics
A two-dimensional flow is given by a velocity potential

φ(x, y, t) = εy sin(x− t),

where ε is a constant.

(a) Find the corresponding velocity field u(x, y, t). Determine ∇ · u.

(b) The time-average 〈ψ〉(x, y) of a quantity ψ(x, y, t) is defined as

〈ψ〉(x, y) =
1

2π

∫ 2π

0
ψ(x, y, t)dt.

Show that the time-average of this velocity field is zero everywhere. Write down an
expression for the acceleration of fluid particles, and find the time-average of this
expression at a fixed point (x, y).

(c) Now assume that |ε| � 1. The material particle at (0, 0) at t = 0 is marked with
dye. Write down equations for its subsequent motion. Verify that its position (x, y) for
t > 0 is given (correct to terms of order ε2) by

x = ε2
(

1

4
sin 2t+

t

2
− sin t

)
,

y = ε(cos t− 1).

Deduce the time-average velocity of the dyed particle correct to this order.

Part IB, 2021 List of Questions [TURN OVER]

2021
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Paper 3, Section II

16A Fluid Dynamics
A two-dimensional layer of viscous fluid lies between two rigid boundaries at

y = ±L0. The boundary at y = L0 oscillates in its own plane with velocity (U0 cosωt, 0),
while the boundary at y = −L0 oscillates in its own plane with velocity (−U0 cosωt, 0).
Assume that there is no pressure gradient and that the fluid flows parallel to the boundary
with velocity (u(y, t), 0), where u(y, t) can be written as u(y, t) = Re[U0f(y) exp(iωt)].

(a) By exploiting the symmetry of the system or otherwise, show that

f(y) =
sinh[(1 + i)∆ŷ]

sinh[(1 + i)∆]
, where ŷ =

y

L0
and ∆ =

(
ωL2

0

2ν

)1/2

.

(b) Hence or otherwise, show that

u(y, t)

U0
=

cosωt [cosh ∆+ cos ∆− − cosh ∆− cos ∆+]

(cosh 2∆− cos 2∆)

+
sinωt [sinh ∆+ sin ∆− − sinh ∆− sin ∆+]

(cosh 2∆− cos 2∆)
,

where ∆± = ∆(1± ŷ).

(c) Show that, for ∆� 1,

u(y, t) ' U0y

L0
cosωt,

and briefly interpret this result physically.

Part IB, 2021 List of Questions

2021
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Paper 4, Section II

16A Fluid Dynamics
Consider the spherically symmetric motion induced by the collapse of a spherical

cavity of radius a(t), centred on the origin. For r < a, there is a vacuum, while for r > a,
there is an inviscid incompressible fluid with constant density ρ. At time t = 0, a = a0,
and the fluid is at rest and at constant pressure p0.

(a) Consider the radial volume transport in the fluid Q(R, t), defined as

Q(R, t) =

∫

r=R
udS,

where u is the radial velocity, and dS is an infinitesimal element of the surface of a sphere
of radius R > a. Use the incompressibility condition to establish that Q is a function of
time alone.

(b) Using the expression for pressure in potential flow or otherwise, establish that

1

4πa

dQ

dt
− (ȧ)2

2
= −p0

ρ
,

where ȧ(t) is the radial velocity of the cavity boundary.

(c) By expressing Q(t) in terms of a and ȧ, show that

ȧ = −
√

2p0
3ρ

(
a30
a3
− 1

)
.

[Hint: You may find it useful to assume ȧ(t) is an explicit function of a from the outset.]

(d) Hence write down an integral expression for the implosion time τ , i.e. the time
for the radius of the cavity a→ 0. [Do not attempt to evaluate the integral.]

Part IB, 2021 List of Questions [TURN OVER]

2021
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Paper 2, Section I

6C Fluid Dynamics
Incompressible fluid of constant viscosity µ is confined to the region 0 < y < h

between two parallel rigid plates. Consider two parallel viscous flows: flow A is driven by
the motion of one plate in the x-direction with the other plate at rest; flow B is driven
by a constant pressure gradient in the x-direction with both plates at rest. The velocity
mid-way between the plates is the same for both flows.

The viscous friction in these flows is known to produce heat locally at a rate

Q = µ

(
∂u

∂y

)2

per unit volume, where u is the x-component of the velocity. Determine the ratio of the
total rate of heat production in flow A to that in flow B.

Paper 1, Section II

17C Fluid Dynamics
Steady two-dimensional potential flow of an incompressible fluid is confined to the

wedge 0 < θ < α, where (r, θ) are polar coordinates centred on the vertex of the wedge
and 0 < α < π.

(a) Show that a velocity potential φ of the form

φ(r, θ) = Arγ cos (λθ) ,

where A, γ and λ are positive constants, satisfies the condition of incompressible flow,
provided that γ and λ satisfy a certain relation to be determined.

Assuming that uθ, the θ-component of velocity, does not change sign within the
wedge, determine the values of γ and λ by using the boundary conditions.

(b) Calculate the shape of the streamlines of this flow, labelling them by the distance
rmin of closest approach to the vertex. Sketch the streamlines.

(c) Show that the speed |u| and pressure p are independent of θ. Assuming that at
some radius r = r0 the speed and pressure are u0 and p0, respectively, find the pressure
difference in the flow between the vertex of the wedge and r0.

[Hint: In polar coordinates (r, θ),

∇f =

(
∂f

∂r
,

1

r

∂f

∂θ

)
and ∇ · F =

1

r

∂

∂r
(rFr) +

1

r

∂Fθ
∂θ

for a scalar f and a vector F = (Fr, Fθ).]

Part IB, 2020 List of Questions [TURN OVER]

2020
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Paper 2, Section II

16C Fluid Dynamics
A vertical cylindrical container of radius R is partly filled with fluid of constant

density to depth h. The free surface is perturbed so that the fluid occupies the region

0 < r < R, −h < z < ζ(r, θ, t),

where (r, θ, z) are cylindrical coordinates and ζ is the perturbed height of the free surface.
For small perturbations, a linearised description of surface waves in the cylinder yields the
following system of equations for ζ and the velocity potential φ:

∇2φ = 0 , 0 < r < R , −h < z < 0 , (1)

∂φ

∂t
+ gζ = 0 on z = 0 , (2)

∂ζ

∂t
− ∂φ

∂z
= 0 on z = 0 , (3)

∂φ

∂z
= 0 on z = −h , (4)

∂φ

∂r
= 0 on r = R . (5)

(a) Describe briefly the physical meaning of each equation.

(b) Consider axisymmetric normal modes of the form

φ = Re
(
φ̂(r, z)e−iσt

)
, ζ = Re

(
ζ̂(r)e−iσt

)
.

Show that the system of equations (1)–(5) admits a solution for φ̂ of the form

φ̂(r, z) = AJ0(knr)Z(z) ,

where A is an arbitrary amplitude, J0(x) satisfies the equation

d2J0
dx2

+
1

x

dJ0
dx

+ J0 = 0 ,

the wavenumber kn, n = 1, 2, . . . is such that xn = knR is one of the zeros of the function
dJ0/dx, and the function Z(z) should be determined explicitly.

(c) Show that the frequency σn of the n-th mode is given by

σ2n =
g

h
Ψ(knh) ,

where the function Ψ(x) is to be determined.

[Hint: In cylindrical coordinates (r, θ, z),

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2
.]

Part IB, 2020 List of Questions

2020
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Paper 1, Section I

5C Fluid Dynamics
A viscous fluid flows steadily down a plane that is inclined at an angle α to the

horizontal. The fluid layer is of uniform thickness and has a free upper surface. Determine
the velocity profile in the direction perpendicular to the plane and also the volume flux
(per unit width), in terms of the gravitational acceleration g, the angle α, the kinematic
viscosity ν and the thickness h of the fluid layer.

Show that the volume flux is reduced if the free upper surface is replaced by a
stationary plane boundary, and give a physical explanation for this.

Paper 2, Section I

7C Fluid Dynamics
Consider the steady flow

ux = sinx cos y , uy = − cos x sin y , uz = 0 ,

where (x, y, z) are Cartesian coordinates. Show that ∇ · u = 0 and determine the
streamfunction. Calculate the vorticity and verify that the vorticity equation is satisfied
in the absence of viscosity. Sketch the streamlines in the region 0 < x < 2π, 0 < y < 2π.

Part IB, 2019 List of Questions

2019
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Paper 1, Section II

17C Fluid Dynamics
Explain why the irrotational flow of an incompressible fluid can be expressed in

terms of a velocity potential φ that satisfies Laplace’s equation.

The axis of a stationary cylinder of radius a coincides with the z-axis of a Cartesian
coordinate system (x, y, z) with unit vectors (ex, ey, ez). A fluid of density ρ flows steadily
past the cylinder such that the velocity field u is independent of z and has no component
in the z-direction. The flow is irrotational but there is a constant non-zero circulation

∮
u · dr = κ

around every closed curve that encloses the cylinder once in a positive sense. Far from
the cylinder, the velocity field tends towards the uniform flow u = U ex, where U is a
constant.

State the boundary conditions on the velocity potential, in terms of polar coordi-
nates (r, θ) in the (x, y)-plane. Explain why the velocity potential is not required to be a
single-valued function of position. Hence obtain the appropriate solution φ(r, θ), in terms
of a, U and κ.

Neglecting gravity, show that the net force on the cylinder, per unit length in the
z-direction, is

−ρκU ey .

Determine the number and location of stagnation points in the flow as a function
of the dimensionless parameter

λ =
κ

4πUa
.

Part IB, 2019 List of Questions [TURN OVER

2019
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Paper 4, Section II

18C Fluid Dynamics
The linear shallow-water equations governing the motion of a fluid layer in the

neighbourhood of a point on the Earth’s surface in the northern hemisphere are

∂u

∂t
− fv = −g ∂η

∂x
,

∂v

∂t
+ fu = −g∂η

∂y
,

∂η

∂t
= −h

(
∂u

∂x
+
∂v

∂y

)
,

where u(x, y, t) and v(x, y, t) are the horizontal velocity components and η(x, y, t) is the
perturbation of the height of the free surface.

(a) Explain the meaning of the three positive constants f , g and h appearing in the
equations above and outline the assumptions made in deriving these equations.

(b) Show that ζ, the z-component of vorticity, satisfies

∂ζ

∂t
= −f

(
∂u

∂x
+
∂v

∂y

)
,

and deduce that the potential vorticity

q = ζ − f

h
η

satisfies
∂q

∂t
= 0 .

(c) Consider a steady geostrophic flow that is uniform in the latitudinal (y) direction.
Show that

d2η

dx2
− f2

gh
η =

f

g
q .

Given that the potential vorticity has the piecewise constant profile

q =

{
q1 , x < 0 ,

q2 , x > 0 ,

where q1 and q2 are constants, and that v → 0 as x → ±∞, solve for η(x) and v(x) in
terms of the Rossby radius R =

√
gh/f . Sketch the functions η(x) and v(x) in the case

q1 > q2.

Part IB, 2019 List of Questions

2019
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Paper 3, Section II

18C Fluid Dynamics
A cubic box of side 2h, enclosing the region 0 < x < 2h, 0 < y < 2h, −h < z < h,

contains equal volumes of two incompressible fluids that remain distinct. The system is
initially at rest, with the fluid of density ρ1 occupying the region 0 < z < h and the
fluid of density ρ2 occupying the region −h < z < 0, and with gravity (0, 0,−g). The
interface between the fluids is then slightly perturbed. Derive the linearized equations
and boundary conditions governing small disturbances to the initial state.

In the case ρ2 > ρ1, show that the angular frequencies ω of the normal modes are
given by

ω2 =

(
ρ2 − ρ1
ρ1 + ρ2

)
gk tanh(kh)

and express the allowable values of the wavenumber k in terms of h. Identify the lowest-
frequency non-trivial mode(s). Comment on the limit ρ1 ≪ ρ2. What physical behaviour
is expected in the case ρ1 > ρ2?

Part IB, 2019 List of Questions [TURN OVER

2019
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Paper 1, Section I

5D Fluid Dynamics
Show that the flow with velocity potential

φ =
q

2π
ln r

in two-dimensional, plane-polar coordinates (r, θ) is incompressible in r > 0. Determine
the flux of fluid across a closed contour C that encloses the origin. What does this flow
represent?

Show that the flow with velocity potential

φ =
q

4π
ln

(
x2 + (y − a)2

)
+

q

4π
ln
(
x2 + (y + a)2

)

has no normal flow across the line y = 0. What fluid flow does this represent in the
unbounded plane? What flow does it represent for fluid occupying the domain y > 0?

Paper 2, Section I

7D Fluid Dynamics
The Euler equations for steady fluid flow u in a rapidly rotating system can be

written
ρf × u = −∇p+ ρg,

where ρ is the density of the fluid, p is its pressure, g is the acceleration due to gravity and
f = (0, 0, f) is the constant Coriolis parameter in a Cartesian frame of reference (x, y, z),
with z pointing vertically upwards.

Fluid occupies a layer of slowly-varying height h(x, y). Given that the pressure
p = p0 is constant at z = h and that the flow is approximately horizontal with components
u = (u, v, 0), show that the contours of h are streamlines of the horizontal flow. What is
the leading-order horizontal volume flux of fluid between two locations at which h = h0
and h = h0 +∆h, where ∆h≪ h0?

Identify the dimensions of all the quantities involved in your expression for the
volume flux and show that your expression is dimensionally consistent.

Part IB, 2018 List of Questions

2018
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Paper 1, Section II

17D Fluid Dynamics
A layer of fluid of dynamic viscosity µ, density ρ and uniform thickness h flows down

a rigid vertical plane. The adjacent air has uniform pressure p0 and exerts a tangential
stress on the fluid that is proportional to the surface velocity and opposes the flow, with
constant of proportionality k. The acceleration due to gravity is g.

(a) Draw a diagram of this situation, including indications of the applied stresses and
body forces, a suitable coordinate system and a representation of the expected
velocity profile.

(b) Write down the equations and boundary conditions governing the flow, with a brief
description of each, paying careful attention to signs. Solve these equations to
determine the pressure and velocity fields in terms of the parameters given above.

(c) Show that the surface velocity of the fluid layer is
ρgh2

2µ

(
1 +

kh

µ

)−1

.

(d) Determine the volume flux per unit width of the plane for general values of k and
its limiting values when k → 0 and k → ∞.

Paper 4, Section II

18D Fluid Dynamics
A deep layer of inviscid fluid is initially confined to the region 0 < x < a, 0 < y < a,

z < 0 in Cartesian coordinates, with z directed vertically upwards. An irrotational
disturbance is caused to the fluid so that its upper surface takes position z = η(x, y, t).
Determine the linear normal modes of the system and the dispersion relation between the
frequencies of the normal modes and their wavenumbers.

If the interface is initially displaced to position z = ǫ cos
3πx

a
cos

4πy

a
and released

from rest, where ǫ is a small constant, determine its position for subsequent times. How
far below the surface will the velocity have decayed to 1/e times its surface value?

Part IB, 2018 List of Questions [TURN OVER

2018
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Paper 3, Section II

18D Fluid Dynamics
A soap bubble of radius a(t) is attached to the end of a long, narrow straw of internal

radius ǫ and length L, the other end of which is open to the atmosphere. The pressure
difference between the inside and outside of the bubble is 2γ/a, where γ is the surface
tension of the soap bubble. At time t = 0, a = a0 and the air in the straw is at rest.
Assume that the flow of air through the straw is irrotational and consider the pressure
drop along the straw to show that subsequently

a3ä+ 2a2ȧ2 = − γǫ2

2ρL
,

where ρ is the density of air.

By multiplying the equation by 2aȧ and integrating, or otherwise, determine an
implicit equation for a(t) and show that the bubble disappears in a time

t =
π

2

a20
ǫ

(
ρL

2γ

)1/2

.

[Hint: The substitution a = a0 sin θ can be used.]
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Paper 1, Section I

5D Fluid Dynamics
For each of the flows

(i) u = (2xy, x2 + y2)

(ii) u = (−2y,−2x)

determine whether or not the flow is incompressible and/or irrotational. Find the
associated velocity potential and/or stream function when appropriate. For either one of
the flows, sketch the streamlines of the flow, indicating the direction of the flow.

Paper 2, Section I

7D Fluid Dynamics
From Euler’s equations describing steady inviscid fluid flow under the action of a

conservative force, derive Bernoulli’s equation for the pressure along a streamline of the
flow, defining all variables that you introduce.

Water fills an inverted, open, circular cone (radius increasing upwards) of half angle
π/4 to a height h0 above its apex. At time t = 0, the tip of the cone is removed to leave
a small hole of radius ǫ ≪ h0. Assuming that the flow is approximately steady while the
depth of water h(t) is much larger than ǫ, show that the time taken for the water to drain
is approximately (

2

25

h50
ǫ4g

)1/2

.
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Paper 1, Section II

17D Fluid Dynamics
A layer of thickness h of fluid of density ρ and dynamic viscosity µ flows steadily

down and parallel to a rigid plane inclined at angle α to the horizontal. Wind blows over
the surface of the fluid and exerts a stress S on the surface of the fluid in the upslope
direction.

(a) Draw a diagram of this situation, including indications of the applied stresses
and body forces, a suitable coordinate system and a representation of the expected velocity
profile.

(b) Write down the equations and boundary conditions governing the flow, with
a brief description of each, paying careful attention to signs. Solve these equations to
determine the pressure and velocity fields.

(c) Determine the volume flux and show that there is no net flux if

S =
2

3
ρgh sinα.

Draw a sketch of the corresponding velocity profile.

(d) Determine the value of S for which the shear stress on the rigid plane is zero
and draw a sketch of the corresponding velocity profile.
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Paper 4, Section II

18D Fluid Dynamics
The linearised equations governing the horizontal components of flow u(x, y, t) in a

rapidly rotating shallow layer of depth h = h0 + η(x, y, t), where η ≪ h0, are

∂u

∂t
+ f × u = −g∇η,

∂η

∂t
+ h0∇ · u = 0,

where f = fez is the constant Coriolis parameter, and ez is the unit vector in the vertical
direction.

Use these equations, either in vector form or using Cartesian components, to show
that the potential vorticity

Q = ζζζ − η

h0
f

is independent of time, where ζζζ = ∇× u is the relative vorticity.

Derive the equation

∂2η

∂t2
− gh0∇2η + f2η = −h0f ·Q.

In the case that Q ≡ 0, determine and sketch the dispersion relation ω(k) for plane waves
with η = Aei(kx+ωt), where A is constant. Discuss the nature of the waves qualitatively:
do long waves propagate faster or slower than short waves; how does the phase speed
depend on wavelength; does rotation have more effect on long waves or short waves; how
dispersive are the waves?

Paper 3, Section II

18D Fluid Dynamics
Use Euler’s equations to derive the vorticity equation

Dωωω

Dt
= ωωω · ∇u,

where u is the fluid velocity and ωωω is the vorticity.

Consider axisymmetric, incompressible, inviscid flow between two rigid plates at
z = h(t) and z = −h(t) in cylindrical polar coordinates (r, θ, z), where t is time. Using
mass conservation, or otherwise, find the complete flow field whose radial component is
independent of z.

Now suppose that the flow has angular velocity Ω = Ω(t)ez and that Ω = Ω0 when
h = h0. Use the vorticity equation to determine the angular velocity for subsequent times
as a function of h. What physical principle does your result illustrate?
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Paper 1, Section I

5C Fluid Dynamics
Consider the flow field in cartesian coordinates (x, y, z) given by

u =

(
− Ay

x2 + y2
,

Ax

x2 + y2
, U(z)

)
,

where A is a constant. Let D denote the whole of R3 excluding the z axis.

(a) Determine the conditions on A and U(z) for the flow to be both incompressible
and irrotational in D.

(b) Calculate the circulation along any closed curve enclosing the z axis.

Paper 2, Section I

7C Fluid Dynamics
A steady, two-dimensional unidirectional flow of a fluid with dynamic viscosity µ

is set up between two plates at y = 0 and y = h. The plate at y = 0 is stationary
while the plate at y = h moves with constant speed Uex. The fluid is also subject to a
constant pressure gradient −Gex. You may assume that the fluid velocity u has the form
u = u(y)ex.

(a) State the equation satisfied by u(y) and its boundary conditions.

(b) Calculate u(y).

(c) Show that the value of U may be chosen to lead to zero viscous shear stress acting
on the bottom plate and calculate the resulting flow rate.
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Paper 1, Section II

17C Fluid Dynamics
(a) For a velocity field u, show that u ·∇u = ∇ (

1
2u

2
)
−u×ω, where ω is the flow

vorticity.

(b) For a scalar field H(r), show that if u ·∇H = 0, then H is constant along the
flow streamlines.

(c) State the Euler equations satisfied by an inviscid fluid of constant density subject
to conservative body forces.

(i) If the flow is irrotational, show that an exact first integral of the Euler
equations may be obtained.

(ii) If the flow is not irrotational, show that although an exact first integral
of the Euler equations may not be obtained, a similar quantity is constant
along the flow streamlines provided the flow is steady.

(iii) If the flow is now in a frame rotating with steady angular velocity Ωez,
establish that a similar quantity is constant along the flow streamlines with
an extra term due to the centrifugal force when the flow is steady.

Paper 4, Section II

18C Fluid Dynamics
(a) Show that for an incompressible fluid, ∇ × ω = −∇2u, where ω is the flow

vorticity.

(b) State the equation of motion for an inviscid flow of constant density in a rotating
frame subject to gravity. Show that, on Earth, the local vertical component of the
centrifugal force is small compared to gravity. Present a scaling argument to justify the
linearisation of the Euler equations for sufficiently large rotation rates, and hence deduce
the linearised version of the Euler equations in a rapidly rotating frame.

(c) Denoting the rotation rate of the frame as Ω = Ωez, show that the linearised
Euler equations may be manipulated to obtain an equation for the velocity field u in the
form

∂2∇2u

∂t2
+ 4Ω2 ∂

2u

∂z2
= 0.

(d) Assume that there exist solutions of the form u = U0 exp [i(k · x− ωt)]. Show
that ω = ±2Ω cos θ where the angle θ is to be determined.
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Paper 3, Section II

18C Fluid Dynamics
A layer of thickness h1 of a fluid of density ρ1 is located above a layer of thickness

h2 of a fluid of density ρ2 > ρ1. The two-fluid system is bounded by two impenetrable
surfaces at y = h1 and y = −h2 and is assumed to be two-dimensional (i.e. independent
of z). The fluid is subsequently perturbed, and the interface between the two fluids is
denoted y = η(x, t).

(a) Assuming irrotational motion in each fluid, state the equations and boundary
conditions satisfied by the flow potentials, ϕ1 and ϕ2.

(b) The interface is perturbed by small-amplitude waves of the form η = η0e
i(kx−ωt),

with η0k ≪ 1. State the equations and boundary conditions satisfied by the linearised
system.

(c) Calculate the dispersion relation of the waves relating the frequency ω to the
wavenumber k.
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Paper 1, Section I

5B Fluid Dynamics
Consider a spherical bubble of radius a in an inviscid fluid in the absence of

gravity. The flow at infinity is at rest and the bubble undergoes translation with velocity
U = U(t)x̂. We assume that the flow is irrotational and derives from a potential given in
spherical coordinates by

φ(r, θ) = U(t)
a3

2r2
cos θ,

where θ is measured with respect to x̂. Compute the force, F, acting on the bubble. Show
that the formula for F can be interpreted as the acceleration force of a fraction α < 1 of
the fluid displaced by the bubble, and determine the value of α.

Paper 2, Section I

7B Fluid Dynamics
Consider the two-dimensional velocity field u = (u, v) with

u(x, y) = x2 − y2, v(x, y) = −2xy.

(i) Show that the flow is incompressible and irrotational.

(ii) Derive the velocity potential, φ, and the streamfunction, ψ.

(iii) Plot all streamlines passing through the origin.

(iv) Show that the complex function w = φ + iψ (where i2 = −1) can be written
solely as a function of the complex coordinate z = x+ iy and determine that function.
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Paper 1, Section II

17B Fluid Dynamics
A fluid layer of depth h1 and dynamic viscosity µ1 is located underneath a fluid

layer of depth h2 and dynamic viscosity µ2. The total fluid system of depth h = h1 + h2
is positioned between a stationary rigid plate at y = 0 and a rigid plate at y = h moving
with speed U = U x̂, where U is constant. Ignore the effects of gravity.

(i) Using dimensional analysis only, and the fact that the stress should be linear in
U , derive the expected form of the shear stress acted by the fluid on the plate at y = 0 as
a function of U , h1, h2, µ1 and µ2.

(ii) Solve for the unidirectional velocity profile between the two plates. State clearly
all boundary conditions you are using to solve this problem.

(iii) Compute the exact value of the shear stress acted by the fluid on the plate at
y = 0. Compare with the results in (i).

(iv) What is the condition on the viscosity of the bottom layer, µ1, for the stress in
(iii) to be smaller than it would be if the fluid had constant viscosity µ2 in both layers?

(v) Show that the stress acting on the plate at y = h is equal and opposite to the
stress on the plate at y = 0 and justify this result physically.

Paper 4, Section II

18B Fluid Dynamics
Consider a steady inviscid, incompressible fluid of constant density ρ in the absence

of external body forces. A cylindrical jet of area A and speed U impinges fully on a
stationary sphere of radius R with A < πR2. The flow is assumed to remain axisymmetric
and be deflected into a conical sheet of vertex angle α > 0.

(i) Show that the speed of the fluid in the conical sheet is constant.

(ii) Use conservation of mass to show that the width d(r) of the fluid sheet at a
distance r ≫ R from point of impact is given by

d(r) =
A

2πr sinα
·

(iii) Use Euler’s equation to derive the momentum integral equation

∫∫

S
(pni + ρnjujui) dS = 0,

for a closed surface S with normal n where um is the mth component of the velocity field
in cartesian coordinates and p is the pressure.

(iv) Use the result from (iii) to calculate the net force on the sphere.

Part IB, 2015 List of Questions

20152015



13

Paper 3, Section II

18B Fluid Dynamics
A source of sound induces a travelling wave of pressure above the free surface of a

fluid located in the z < 0 domain as

p = patm + p0 cos(kx− ωt),

with p0 ≪ patm. Here k and ω are fixed real numbers. We assume that the flow induced
in the fluid is irrotational.

(i) State the linearized equation of motion for the fluid and the free surface,
z = h(x, t), with all boundary conditions.

(ii) Solve for the velocity potential, φ(x, z, t), and the height of the free surface,
h(x, t). Verify that your solutions are dimensionally correct.

(iii) Interpret physically the behaviour of the solution when ω2 = gk.
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Paper 1, Section I

5B Fluid Dynamics
Constant density viscous fluid with dynamic viscosity µ flows in a two-dimensional

horizontal channel of depth h. There is a constant pressure gradient G > 0 in the horizontal
x−direction. The upper horizontal boundary at y = h is driven at constant horizontal
speed U > 0, with the lower boundary being held at rest. Show that the steady fluid
velocity u in the x−direction is

u =
−G

2µ
y(h− y) +

Uy

h
.

Show that it is possible to have du/dy < 0 at some point in the flow for sufficiently large
pressure gradient. Derive a relationship between G and U so that there is no net volume
flux along the channel. For the flow with no net volume flux, sketch the velocity profile.

Paper 2, Section I

7B Fluid Dynamics
Consider the steady two-dimensional fluid velocity field

u =

(
u
v

)
=

(
ǫ −γ
γ −ǫ

)(
x
y

)
,

where ǫ > 0 and γ > 0. Show that the fluid is incompressible. The streamfunction ψ is
defined by u = ∇×Ψ, where Ψ = (0, 0, ψ). Show that ψ is given by

ψ = ǫxy − γ

2
(x2 + y2).

Hence show that the streamlines are defined by

(ǫ− γ)(x+ y)2 − (ǫ+ γ)(x− y)2 = C,

for C a constant. For each of the three cases below, sketch the streamlines and briefly
describe the flow.

(i) ǫ = 1, γ = 0,

(ii) ǫ = 0, γ = 1,

(iii) ǫ = 1, γ = 1.
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Paper 1, Section II

17B Fluid Dynamics
Consider the purely two-dimensional steady flow of an inviscid incompressible

constant density fluid in the absence of body forces. For velocity u, the vorticity is
∇× u = ω = (0, 0, ω). Show that

u× ω = ∇
[
p

ρ
+

1

2
|u|2

]
,

where p is the pressure and ρ is the fluid density. Hence show that, if ω is a constant in
both space and time,

1

2
|u|2 + ω ψ +

p

ρ
= C,

where C is a constant and ψ is the streamfunction. Here, ψ is defined by u = ∇ × Ψ,
where Ψ = (0, 0, ψ).

Fluid in the annular region a < r < 2a has constant (in both space and time)
vorticity ω. The streamlines are concentric circles, with the fluid speed zero on r = 2a
and V > 0 on r = a. Calculate the velocity field, and hence show that

ω =
−2V

3a
.

Deduce that the pressure difference between the outer and inner edges of the annular
region is

∆p =

(
15− 16 ln 2

18

)
ρV 2.

[Hint: Note that in cylindrical polar coordinates (r, φ, z), the curl of a vector field

A(r, φ) = [a(r, φ), b(r, φ), c(r, φ)] is

∇×A =

[
1

r

∂c

∂φ
,−∂c

∂r
,
1

r

(
∂(rb)

∂r
− ∂a

∂φ

)]
. ]
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Paper 4, Section II

18B Fluid Dynamics
Consider a layer of fluid of constant density ρ and equilibrium depth h0 in a rotating

frame of reference, rotating at constant angular velocity Ω about the vertical z-axis. The
equations of motion are

∂u

∂t
− fv = −1

ρ

∂p

∂x
,

∂v

∂t
+ fu = −1

ρ

∂p

∂y
,

0 = −∂p

∂z
− ρg,

where p is the fluid pressure, u and v are the fluid velocities in the x-direction and y-
direction respectively, f = 2Ω, and g is the constant acceleration due to gravity. You may
also assume that the horizontal extent of the layer is sufficiently large so that the layer
may be considered to be shallow, such that vertical velocities may be neglected.

By considering mass conservation, show that the depth h(x, y, t) of the layer satisfies

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0.

Now assume that h = h0 + η(x, y, t), where |η| ≪ h0. Show that the (linearised) potential
vorticity Q = Qẑ, defined by

Q = ζ − η
f

h0
, where ζ =

∂v

∂x
− ∂u

∂y

and ẑ is the unit vector in the vertical z-direction, is a constant in time, i.e. Q = Q0(x, y).

When Q0 = 0 everywhere, establish that the surface perturbation η satisfies

∂2η

∂t2
− gh0

(
∂2η

∂x2
+

∂2η

∂y2

)
+ f2η = 0,

and show that this equation has wave-like solutions η = η0 cos[k(x− ct)] when c and k are
related through a dispersion relation to be determined. Show that, to leading order, the
trajectories of fluid particles for these waves are ellipses. Assuming that η0 > 0, k > 0,
c > 0 and f > 0, sketch the fluid velocity when k(x− ct) = nπ/2 for n = 0, 1, 2, 3.
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Paper 3, Section II

18B Fluid Dynamics
A bubble of gas occupies the spherical region r 6 R(t), and an incompressible

irrotational liquid of constant density ρ occupies the outer region r > R, such that as
r → ∞ the liquid is at rest with constant pressure p∞. Briefly explain why it is appropriate
to use a velocity potential φ(r, t) to describe the liquid velocity u.

By applying continuity of velocity across the gas-liquid interface, show that the
liquid pressure (for r > R) satisfies

p

ρ
+

1

2

(
R2Ṙ

r2

)2

− 1

r

d

dt

(
R2Ṙ

)
=

p∞
ρ

, where Ṙ =
dR

dt
.

Show that the excess pressure ps − p∞ at the bubble surface r = R is

ps − p∞ =
ρ

2

(
3Ṙ2 + 2RR̈

)
, where R̈ =

d2R

dt2
,

and hence that

ps − p∞ =
ρ

2R2

d

dR

(
R3Ṙ2

)
.

The pressure pg(t) inside the gas bubble satisfies the equation of state

pgV
4/3 = C,

where C is a constant, and V (t) is the bubble volume. At time t = 0 the bubble is at rest
with radius R = a. If the bubble then expands and comes to rest at R = 2a, determine
the required gas pressure p0 at t = 0 in terms of p∞.

[You may assume that there is contact between liquid and gas for all time, that all motion
is spherically symmetric about the origin r = 0, and that there is no body force. You may
also assume Bernoulli’s integral of the equation of motion to determine the liquid pressure
p:

p

ρ
+

∂φ

∂t
+

1

2
|∇φ|2 = A(t),

where φ(r, t) is the velocity potential.]
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Paper 1, Section I

5A Fluid Dynamics
A two-dimensional flow is given by

u = (x,−y + t) .

Show that the flow is both irrotational and incompressible. Find a stream function

ψ(x, y) such that u =
(
∂ψ
∂y ,−

∂ψ
∂x

)
. Sketch the streamlines at t = 0.

Find the pathline of a fluid particle that passes through (x0, y0) at t = 0 in the form
y = f(x, x0, y0) and sketch the pathline for x0 = 1, y0 = 1.

Paper 2, Section I

7A Fluid Dynamics
An incompressible, inviscid fluid occupies the region beneath the free surface

y = η(x, t) and moves with a velocity field determined by the velocity potential φ(x, y, t).
Gravity acts in the −y direction. You may assume Bernoulli’s integral of the equation of
motion:

p

ρ
+

∂φ

∂t
+

1

2
|∇φ|2 + gy = F (t) .

Give the kinematic and dynamic boundary conditions that must be satisfied by φ on
y = η(x, t).

In the absence of waves, the fluid has constant uniform velocity U in the x direction.
Derive the linearised form of the boundary conditions for small amplitude waves.

Assume that the free surface and velocity potential are of the form:

η = aei(kx−ωt)

φ = Ux+ ibekyei(kx−ωt)

(where implicitly the real parts are taken). Show that

(ω − kU)2 = gk .
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Paper 1, Section II

17A Fluid Dynamics
Starting from the Euler momentum equation, derive the form of Bernoulli’s equation

appropriate for an unsteady irrotational motion of an inviscid incompressible fluid.

Water of density ρ is driven through a horizontal tube of length L and internal radius
a from a water-filled balloon attached to one end of the tube. Assume that the pressure
exerted by the balloon is proportional to its current volume (in excess of atmospheric
pressure). Also assume that water exits the tube at atmospheric pressure, and that gravity
may be neglected. Show that the time for the balloon to empty does not depend on its
initial volume. Find the maximum speed of water exiting the pipe.

Paper 4, Section II

18A Fluid Dynamics
The axisymmetric, irrotational flow generated by a solid sphere of radius a translat-

ing at velocity U in an inviscid, incompressible fluid is represented by a velocity potential
φ(r, θ). Assume the fluid is at rest far away from the sphere. Explain briefly why ∇2φ = 0.

By trying a solution of the form φ(r, θ) = f(r) g(θ), show that

φ = −Ua3 cos θ

2r2

and write down the fluid velocity.

Show that the total kinetic energy of the fluid is kMU2/4 where M is the mass of
the sphere and k is the ratio of the density of the fluid to the density of the sphere.

A heavy sphere (i.e. k < 1) is released from rest in an inviscid fluid. Determine its
speed after it has fallen a distance h in terms of M , k, g and h.

Note, in spherical polars:

∇φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ

∇2φ =
1

r2
∂

∂r

(
r2

∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
.
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Paper 3, Section II

18A Fluid Dynamics
A layer of incompressible fluid of density ρ and viscosity µ flows steadily down a

plane inclined at an angle θ to the horizontal. The layer is of uniform thickness h measured
perpendicular to the plane and the viscosity of the overlying air can be neglected. Using
coordinates x parallel to the plane (in steepest downwards direction) and y normal to the
plane, write down the equations of motion and the boundary conditions on the plane and
on the free top surface. Determine the pressure and velocity fields and show that the
volume flux down the plane is

ρgh3 sin θ

3µ
.

Consider now the case where a second layer of fluid, of uniform thickness αh,
viscosity βµ and density ρ, flows steadily on top of the first layer. Explain why one
of the appropriate boundary conditions between the two fluids is

µ
∂

∂y
u(h−) = βµ

∂

∂y
u(h+) ,

where u is the component of velocity in the x direction and h− and h+ refer to just below
and just above the boundary respectively. Determine the velocity field in each layer.
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Paper 1, Section I

5A Fluid Dynamics
Viscous fluid, with viscosity µ and density ρ flows along a straight circular pipe of

radius R. The average velocity of the flow is U . Define a Reynolds number for the flow.

The flow is driven by a constant pressure gradient −G > 0 along the pipe and the
velocity is parallel to the axis of the pipe with magnitude u(r) that satisfies

µ

r

d

dr

(
r
du

dr

)
= −G,

where r is the radial distance from the axis.

State the boundary conditions on u and find the velocity as a function of r assuming
that it is finite on the axis r = 0. Hence, show that the shear stress τ at the pipe wall is
independent of the viscosity. Why is this the case?

Paper 2, Section I

7A Fluid Dynamics
Starting from Euler’s equation for the motion of an inviscid fluid, derive the vorticity

equation in the form

Dω

Dt
= ω · ∇u .

Deduce that an initially irrotational flow remains irrotational.

Consider a plane flow that at time t = 0 is described by the streamfunction

ψ = x2 + y2 .

Calculate the vorticity everywhere at times t > 0.
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Paper 1, Section II

17A Fluid Dynamics
Consider inviscid, incompressible fluid flow confined to the (x, y) plane. The fluid

has density ρ, and gravity can be neglected. Using the conservation of volume flux,
determine the velocity potential φ(r) of a point source of strength m, in terms of the
distance r from the source.

Two point sources each of strength m are located at x+ = (0, a) and x− = (0,−a).
Find the velocity potential of the flow.

Show that the flow in the region y > 0 is equivalent to the flow due to a source at
x+ and a fixed boundary at y = 0.

Find the pressure on the boundary y = 0 and hence determine the force on the
boundary.

[Hint: you may find the substitution x = a tan θ useful for the calculation of the
pressure.]
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Paper 4, Section II

18A Fluid Dynamics
The equations governing the flow of a shallow layer of inviscid liquid of uniform

depth H rotating with angular velocity 1
2f about the vertical z-axis are

∂u

∂t
− fv = −g

∂η

∂x
,

∂v

∂t
+ fu = −g

∂η

∂y
,

∂η

∂t
+H

(
∂u

∂x
+

∂v

∂y

)
= 0 ,

where u, v are the x- and y-components of velocity, respectively, and η is the elevation of
the free surface. Show that these equations imply that

∂q

∂t
= 0 , where q = ω − fη

H
and ω =

∂v

∂x
− ∂u

∂y
.

Consider an initial state where there is flow in the y-direction given by

u = η = 0, −∞ < x < ∞

v =





g
2f e

2x, x < 0

− g
2f e

−2x, x > 0 .

Find the initial potential vorticity.

Show that when this initial state adjusts, there is a final steady state independent
of y in which η satisfies

∂2η

∂x2
− η

a2
=

{
e2x, x < 0

e−2x, x > 0 ,

where a2 = gH/f2.

In the case a = 1, find the final free surface elevation that is finite at large |x| and
which is continuous and has continuous slope at x = 0, and show that it is negative for
all x.
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Paper 3, Section II

18A Fluid Dynamics
A rigid circular cylinder of radius a executes small amplitude oscillations with

velocity U(t) in a direction perpendicular to its axis, while immersed in an inviscid fluid
of density ρ contained within a larger concentric fixed cylinder of radius b. Gravity is
negligible. Neglecting terms quadratic in the amplitude, determine the boundary condition
on the velocity on the inner cylinder, and calculate the velocity potential of the induced
flow.

With the same approximations show that the difference in pressures on the surfaces
of the two cylinders has magnitude

ρ
dU

dt

a(b− a)

b+ a
cos θ,

where θ is the azimuthal angle measured from the direction of U .
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Paper 1, Section I

5B Fluid Dynamics
Inviscid fluid is contained in a square vessel with sides of length πL lying between

x = 0, πL, y = 0, πL. The base of the container is at z = −H where H ≫ L and the
horizontal surface is at z = 0 when the fluid is at rest. The variation of pressure of the air
above the fluid may be neglected.

Small amplitude surface waves are excited in the vessel.

(i) Now let H → ∞. Explain why on dimensional grounds the frequencies ω of such
waves are of the form

ω =
(γg
L

) 1
2

for some positive dimensionless constants γ, where g is the gravitational acceleration.

It is given that the velocity potential φ is of the form

φ(x, y, z) ≈ C cos(mx/L) cos(ny/L)eγz/L

where m and n are integers and C is a constant.

(ii) Why do cosines, rather than sines, appear in this expression?

(iii) Give an expression for γ in terms of m and n.

(iv) Give all possible values that γ2 can take between 1 and 10 inclusive. How many
different solutions for φ correspond to each of these values of γ2?

Paper 2, Section I

7D Fluid Dynamics
A body of volume V lies totally submerged in a motionless fluid of uniform density ρ.

Show that the force F on the body is given by

F = −
∫

S
(p− p0)n dS

where p is the pressure in the fluid and p0 is atmospheric pressure. You may use without
proof the generalised divergence theorem in the form

∫

S
φn dS =

∫

V
∇φdV.

Deduce that
F = ρgV ẑ,

where ẑ is the vertically upward unit vector. Interpret this result.
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Paper 1, Section II

17B Fluid Dynamics
A spherical bubble in an incompressible fluid of density ρ has radius a(t). Write

down an expression for the velocity field at a radius R > a.

The pressure far from the bubble is p∞. What is the pressure at radius R?

Find conditions on a and its time derivatives that ensure that the maximum pressure
in the fluid is reached at a radius Rmax where a < Rmax < ∞. Give an expression for this
maximum pressure when the conditions hold.

Give the most general form of a(t) that ensures that the pressure at R = a(t) is p∞
for all time.

Paper 3, Section II

18D Fluid Dynamics
Water of constant density ρ flows steadily through a long cylindrical tube, the wall

of which is elastic. The exterior radius of the tube at a distance z along the tube, r(z), is
determined by the pressure in the tube, p(z), according to

r(z) = r0 + b(p(z) − p0),

where r0 and p0 are the radius and pressure far upstream (z → −∞), and b is a positive
constant.

The interior radius of the tube is r(z)− h(z), where h(z), the thickness of the wall,
is a given slowly varying function of z which is zero at both ends of the pipe. The velocity
of the water in the pipe is u(z) and the water enters the pipe at velocity V .

Show that u(z) satisfies

H = 1− v−
1
2 + 1

4k(1− v2) ,

where H =
h

r0
, v =

u

V
and k =

2bρV 2

r0
. Sketch the graph of H against v.

Let Hm be the maximum value of H in the tube. Show that the flow is only possible
if Hm does not exceed a certain critical value Hc. Find Hc in terms of k.

Show that, under conditions to be determined (which include a condition on the
value of k), the water can leave the pipe with speed less than V .
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Paper 4, Section II

18D Fluid Dynamics
Show that an irrotational incompressible flow can be determined from a velocity

potential φ that satisfies ∇2φ = 0.

Given that the general solution of ∇2φ = 0 in plane polar coordinates is

φ =

∞∑

n=−∞
(an cosnθ + bn sinnθ)r

n + c log r + bθ ,

obtain the corresponding fluid velocity.

A two-dimensional irrotational incompressible fluid flows past the circular disc with
boundary r = a. For large r, the flow is uniform and parallel to the x-axis (x = r cos θ).
Write down the boundary conditions for large r and on r = a, and hence derive the velocity
potential in the form

φ = U

(
r +

a2

r

)
cos θ +

κθ

2π
,

where κ is the circulation.

Show that the acceleration of the fluid at r = a and θ = 0 is

κ

2πa2

(
− κ

2πa
er − 2Ueθ

)
.
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Paper 1, Section I

5B Fluid Dynamics
A planar solenoidal velocity field has the velocity potential

φ(x, y, t) = xe−t + yet.

Find and sketch (i) the streamlines at t = 0; (ii) the pathline that passes through the
origin at t = 0; (iii) the locus at t = 0 of points that pass through the origin at earlier
times (streakline).

Paper 2, Section I

7B Fluid Dynamics
Write down an expression for the velocity field of a line vortex of strength κ.

Consider N identical line vortices of strength κ arranged at equal intervals round a
circle of radius a . Show that the vortices all move around the circle at constant angular
velocity (N − 1)κ/(4πa2).

Paper 1, Section II

17B Fluid Dynamics
Starting with the Euler equations for an inviscid incompressible fluid, derive

Bernoulli’s theorem for unsteady irrotational flow.

Inviscid fluid of density ρ is contained within a U-shaped tube with the arms vertical,
of height h and with the same (unit) cross-section. The ends of the tube are closed. In
the equilibrium state the pressures in the two arms are p1 and p2 and the heights of the
fluid columns are ℓ1 , ℓ2 .

The fluid in arm 1 is displaced upwards by a distance ξ (and in the other arm
downward by the same amount). In the subsequent evolution the pressure above each
column may be taken as inversely proportional to the length of tube above the fluid
surface. Using Bernoulli’s theorem, show that ξ(t) obeys the equation

ρ(ℓ1 + ℓ2)ξ̈ +
p1ξ

h− ℓ1 − ξ
+

p2ξ

h− ℓ2 + ξ
+ 2ρgξ = 0.

Now consider the special case ℓ1 = ℓ2 = ℓ0, p1 = p2 = p0. Construct a first integral
of this equation and hence give an expression for the total kinetic energy ρℓ0ξ̇

2 of the flow
in terms of ξ and the maximum displacement ξmax.
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Paper 3, Section II

18B Fluid Dynamics
Write down the exact kinematic and dynamic boundary conditions that apply at

the free surface z = η(x, t) of a fluid layer in the presence of gravity in the z-direction.
Show how these may be approximated for small disturbances of a hydrostatic state about
z = 0. (The flow of the fluid is in the (x, z)-plane and may be taken to be irrotational,
and the pressure at the free surface may be assumed to be constant.)

Fluid of density ρ fills the region 0 > z > −h. At z = −h the z-component of
the velocity is ǫRe(eiωt cos kx), where |ǫ| ≪ 1. Find the resulting disturbance of the free
surface, assuming this to be small. Explain physically why your answer has a singularity
for a particular value of ω2.

Paper 4, Section II

18B Fluid Dynamics
Write down the velocity potential for a line source flow of strength m located at

(r, θ) = (d, 0) in polar coordinates (r, θ) and derive the velocity components ur, uθ.

A two-dimensional flow field consists of such a source in the presence of a circular
cylinder of radius a (a < d) centred at the origin. Show that the flow field outside the
cylinder is the sum of the original source flow, together with that due to a source of the
same strength at (a2/d, 0) and another at the origin, of a strength to be determined.

Use Bernoulli’s law to find the pressure distribution on the surface of the cylinder,
and show that the total force exerted on it is in the x-direction and of magnitude

m2ρ

2π2

∫ 2π

0

ad2 sin2 θ cos θ

(a2 + d2 − 2 ad cos θ)2
dθ ,

where ρ is the density of the fluid. Without evaluating the integral, show that it is positive.
Comment on the fact that the force on the cylinder is therefore towards the source.
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Paper 1, Section I

5D Fluid Dynamics

A steady velocity field u = (ur, uθ, uz) is given in cylindrical polar coordinates
(r, θ, z) by

ur = −αr, uθ =
γ

r
(1− e−βr2), uz = 2αz ,

where α, β, γ are positive constants.

Show that this represents a possible flow of an incompressible fluid, and find the
vorticity ω.

Show further that

curl (u ∧ ω) = −ν∇2ω

for a constant ν which should be calculated.

[The divergence and curl operators in cylindrical polars are given by

divu =
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

curlu =

(
1

r

∂uz
∂θ

− ∂uθ
∂z

,
∂ur
∂z

− ∂uz
∂r

,
1

r

∂

∂r
(ruθ)−

1

r

∂ur
∂θ

)

and ,when ω = [0, 0, ω(r, z)],

∇2ω =

[
0, 0,

1

r

∂

∂r

(
r
∂ω

∂r

)
+

∂2ω

∂z2

]
. ]
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Paper 2, Section I

8D Fluid Dynamics

A fireman’s hose full of water has cross-sectional area A0, apart from a smooth
contraction to the outlet nozzle which has cross-sectional area A1 < A0. The volume flow
rate of water through the hose is Q.

Use Bernoulli’s equation to calculate the pressure in the main part of the tube
(relative to atmospheric pressure). Then use the integral momentum equation in the
direction of the flow to show that the force F that the fireman has to exert on the nozzle
to keep it still is given by

F =
ρQ2

2A0

(
A0

A1
− 1

)2

,

where ρ is the density of water.

Paper 1, Section II

17D Fluid Dynamics

A canal has uniform width and a bottom that is horizontal apart from a localised
slowly-varying hump of height D(x) whose maximum value is Dmax. Far upstream the
water has depth h1 and velocity u1. Show that the depth h(x) of the water satisfies the
following equation:

D(x)

h1
= 1− h

h1
− F

2

(
h21
h2

− 1

)
,

where F = u21/gh1.

Describe qualitatively how h(x) varies as the flow passes over the hump in the three
cases

(i) F < 1 and Dmax < D∗

(ii) F > 1 and Dmax < D∗

(iii) Dmax = D∗,

where D∗ = h1
(
1− 3

2F
1/3 + 1

2F
)
.

Calculate the water depth far downstream in case (iii) when F < 1.

Part IB, 2009 List of Questions

20092009



13

Paper 3, Section II

18D Fluid Dynamics

Starting from Euler’s equations for an inviscid incompressible fluid of density ρ with
no body force, undergoing irrotational motion, show that the pressure p is given by

p

ρ
+

∂φ

∂t
+

1

2
(∇φ)2 = F (t),

for some function F (t), where φ is the velocity potential.

The fluid occupies an infinite domain and contains a spherical gas bubble of radius
R(t) in which the pressure is pg . The pressure in the fluid at infinity is p∞ .

Show that

R̈ R+
3

2
Ṙ2 =

pg − p∞
ρ

.

The bubble contains a fixed mass M of gas in which

pg = C
(
M/R3

)2

for a constant C. At time t = 0, R = R0, Ṙ = 0 and pg = p∞/2 . Show that

Ṙ2R3 =
p∞
ρ

[
R3

0 −
R6

0

3R3
− 2

3
R3

]
,

and deduce that the bubble radius oscillates between R0 and R0/2
1/3.
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Paper 4, Section II

18D Fluid Dynamics
An inviscid incompressible fluid occupies a rectangular tank with vertical sides at

x = 0, a and y = 0, b and a horizontal bottom at z = −h. The undisturbed free surface is
at z = 0.

(i) Write down the equations and boundary conditions governing small amplitude
free oscillations of the fluid, neglecting surface tension, and show that the frequencies ω
of such oscillations are given by

ω2

g
= k tanh kh, where k2 = π2

(
m2

a2
+

n2

b2

)
(1)

for non-negative integers m,n, which cannot both be zero.

(ii) The free surface is now acted on by a small external pressure

p = ǫρgh sinΩt cos
mπx

a
cos

nπy

b
,

where ǫ ≪ 1. Calculate the corresponding oscillation of the free surface when Ω is not
equal to the quantity ω given by (1).

Why does your solution break down as Ω → ω?
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1/I/5B Fluid Dynamics

Verify that the two-dimensional flow given in Cartesian coordinates by

u = (ey sinhx,−ey coshx)

satisfies ∇ · u = 0. Find the stream function ψ(x, y). Sketch the streamlines.
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1/II/17B Fluid Dynamics

Two incompressible fluids flow in infinite horizontal streams, the plane of contact
being z = 0, with z positive upwards. The flow is given by

U(r) =

{
U2êx, z > 0;
U1êx, z < 0,

where êx is the unit vector in the positive x direction. The upper fluid has density ρ2 and
pressure p0−gρ2z, the lower has density ρ1 and pressure p0−gρ1z, where p0 is a constant
and g is the acceleration due to gravity.

(i) Consider a perturbation to the flat surface z = 0 of the form

z ≡ ζ(x, y, t) = ζ0e
i(kx+`y)+st .

State the kinematic boundary conditions on the velocity potentials φi that hold on
the interface in the two domains, and show by linearising in ζ that they reduce to

∂φi
∂z

=
∂ζ

∂t
+ Ui

∂ζ

∂x
(z = 0, i = 1, 2) .

(ii) State the dynamic boundary condition on the perturbed interface, and show by
linearising in ζ that it reduces to

ρ1

(
U1
∂φ1
∂x

+
∂φ1
∂t

+ gζ

)
= ρ2

(
U2
∂φ2
∂x

+
∂φ2
∂t

+ gζ

)
(z = 0) .

(iii) Use the velocity potentials

φ1 = U1x+A1e
qzei(kx+`y)+st , φ2 = U2x+A2e

−qzei(kx+`y)+st,

where q =
√
k2 + `2,and the conditions in (i) and (ii) to perform a stability analysis. Show

that the relation between s, k and ` is

s = −ik ρ1U1 + ρ2U2

ρ1 + ρ2
±
[
k2ρ1ρ2(U1 − U2)2

(ρ1 + ρ2)2
− qg(ρ1 − ρ2)

ρ1 + ρ2

]1/2
.

Find the criterion for instability.
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2/I/8B Fluid Dynamics

(i) Show that for a two-dimensional incompressible flow (u(x, y), v(x, y), 0), the
vorticity is given by ω ≡ ωzêz = (0, 0,−∇2ψ) where ψ is the stream function.

(ii) Express the z-component of the vorticity equation

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u

in terms of the stream function ψ.

3/II/18B Fluid Dynamics

An ideal liquid contained within a closed circular cylinder of radius a rotates about
the axis of the cylinder (assume this axis to be in the vertical z-direction).

(i) Prove that the equation of continuity and the boundary conditions are satisfied
by the velocity v = Ω× r, where Ω = Ωêz is the angular velocity, with êz the unit vector
in the z-direction, which depends only on time, and r is the position vector measured from
a point on the axis of rotation.

(ii) Calculate the angular momentum M = ρ
∫

(r × v)dV per unit length of the
cylinder.

(iii) Suppose the the liquid starts from rest and flows under the action of an external
force per unit mass f = (αx + βy, γx + δy, 0). By taking the curl of the Euler equation,
prove that

dΩ

dt
=

1

2
(γ − β) .

(iv) Find the pressure.

4/II/18B Fluid Dynamics

(i) Starting from Euler’s equation for an incompressible fluid show that for potential
flow with u = ∇φ,

∂φ

∂t
+

1

2
u2 + χ = f(t) ,

where u = |u|, χ = p/ρ+V , the body force per unit mass is −∇V and f(t) is an arbitrary
function of time.

(ii) Hence show that, for the steady flow of a liquid of density ρ through a pipe of
varying cross-section that is subject to a pressure difference ∆p = p1− p2 between its two
ends, the mass flow through the pipe per unit time is given by

m ≡ dM

dt
= S1S2

√
2ρ∆p

S2
1 − S2

2

,

where S1 and S2 are the cross-sectional areas of the two ends.
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1/I/5D Fluid Dynamics

A steady two-dimensional velocity field is given by

u(x, y) = (αx− βy , βx− αy) , α > 0 , β > 0 .

(i) Calculate the vorticity of the flow.

(ii) Verify that u is a possible flow field for an incompressible fluid, and calculate
the stream function.

(iii) Show that the streamlines are bounded if and only if α < β.

(iv) What are the streamlines in the case α = β?

1/II/17D Fluid Dynamics

Write down the Euler equation for the steady motion of an inviscid, incompressible
fluid in a constant gravitational field. From this equation, derive (a) Bernoulli’s equation
and (b) the integral form of the momentum equation for a fixed control volume V with
surface S.

(i) A circular jet of water is projected vertically upwards with speed U0 from a
nozzle of cross-sectional area A0 at height z = 0. Calculate how the speed U and cross-
sectional area A of the jet vary with z, for z � U2

0 /2g.

(ii) A circular jet of speed U and cross-sectional area A impinges axisymmetrically
on the vertex of a cone of semi-angle α, spreading out to form an almost parallel-sided
sheet on the surface. Choose a suitable control volume and, neglecting gravity, show that
the force exerted by the jet on the cone is

ρAU2(1− cosα) .

(iii) A cone of mass M is supported, axisymmetrically and vertex down, by the jet
of part (i), with its vertex at height z = h, where h � U2

0 /2g. Assuming that the result
of part (ii) still holds, show that h is given by

ρA0U
2
0

(
1− 2gh

U2
0

) 1
2

(1− cosα) = Mg .
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2/I/8D Fluid Dynamics

An incompressible, inviscid fluid occupies the region beneath the free surface
y = η(x, t) and moves with a velocity field given by the velocity potential φ(x, y, t); gravity
acts in the −y direction. Derive the kinematic and dynamic boundary conditions that must
be satisfied by φ on y = η(x, t).

[You may assume Bernoulli’s integral of the equation of motion:

p

ρ
+
∂φ

∂t
+

1

2
|∇φ|2 + gy = F (t) . ]

In the absence of waves, the fluid has uniform velocity U in the x direction. Derive
the linearised form of the above boundary conditions for small amplitude waves, and verify
that they and Laplace’s equation are satisfied by the velocity potential

φ = Ux+Re{bekyei(kx−ωt)} ,

where |kb| � U , with a corresponding expression for η, as long as

(ω − kU)2 = gk .

What are the propagation speeds of waves with a given wave-number k?
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3/II/18D Fluid Dynamics

Given that the circulation round every closed material curve in an inviscid,
incompressible fluid remains constant in time, show that the velocity field of such a fluid
started from rest can be written as the gradient of a potential, φ, that satisfies Laplace’s
equation.

A rigid sphere of radius a moves in a straight line at speed U in a fluid that is
at rest at infinity. Using axisymmetric spherical polar coordinates (r, θ), with θ = 0 in
the direction of motion, write down the boundary conditions on φ and, by looking for a
solution of the form φ = f(r) cos θ, show that the velocity potential is given by

φ =
−Ua3 cos θ

2r2
.

Calculate the kinetic energy of the fluid.

A rigid sphere of radius a and uniform density ρb is submerged in an infinite fluid
of density ρ, under the action of gravity. Show that, when the sphere is released from rest,
its initial upwards acceleration is

2(ρ− ρb)g

ρ+ 2ρb
.

[Laplace’s equation for an axisymmetric scalar field in spherical polars is:

1

r2
∂

∂r

(
r2
∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
= 0 .

]

4/II/18D Fluid Dynamics

Starting from Euler’s equation for an inviscid, incompressible fluid in the absence
of body forces,

∂u

∂t
+ (u.∇)u = − 1

ρ
∇p ,

derive the equation for the vorticity ω = ∇∧u .

[You may assume that ∇∧(a∧b) = a∇.b− b∇.a+ (b.∇)a− (a.∇)b .]

Show that, in a two-dimensional flow, vortex lines keep their strength and move
with the fluid.

Show that a two-dimensional flow driven by a line vortex of circulation Γ at distance
b from a rigid plane wall is the same as if the wall were replaced by another vortex of
circulation −Γ at the image point, distance b from the wall on the other side. Deduce that
the first vortex will move at speed Γ/4πb parallel to the wall.

A line vortex of circulation Γ moves in a quarter-plane, bounded by rigid plane
walls at x = 0, y > 0 and y = 0, x > 0. Show that the vortex follows a trajectory whose
equation in plane polar coordinates is r sin 2θ = constant.
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1/I/5A Fluid Dynamics

Use the Euler equation for the motion of an inviscid fluid to derive the vorticity
equation in the form

Dω/Dt = ω ·∇u.

Give a physical interpretation of the terms in this equation and deduce that irrotational
flows remain irrotational.

In a plane flow the vorticity at time t = 0 has the uniform value ω0 6= 0. Find the
vorticity everywhere at times t > 0.

1/II/17A Fluid Dynamics

A point source of fluid of strength m is located at xs = (0, 0, a) in inviscid fluid
of density ρ. Gravity is negligible. The fluid is confined to the region z > 0 by the
fixed boundary z = 0. Write down the equation and boundary conditions satisfied by the
velocity potential φ. Find φ.

[Hint: consider the flow generated in unbounded fluid by the source m together with
an ‘image source’ of equal strength at x̄s = (0, 0,−a).]

Use Bernoulli’s theorem, which may be stated without proof, to find the fluid
pressure everywhere on z = 0. Deduce the magnitude of the hydrodynamic force on the
boundary z = 0. Determine whether the boundary is attracted toward the source or
repelled from it.

2/I/8A Fluid Dynamics

Explain what is meant by a material time derivative, D/Dt. Show that if the
material velocity is u(x, t) then

D/Dt = ∂/∂t+ u ·∇.

When glass is processed in its liquid state, its temperature, θ(x, t), satisfies the
equation

Dθ/Dt = −θ.
The glass flows in a two-dimensional channel −1 < y < 1, x > 0 with steady velocity
u = (1 − y2, 0). At x = 0 the glass temperature is maintained at the constant value θ0.
Find the steady temperature distribution throughout the channel.
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3/II/18A Fluid Dynamics

State and prove Bernoulli’s theorem for a time-dependent irrotational flow of an
inviscid fluid.

A large vessel is part-filled with inviscid liquid of density ρ. The pressure in the
air above the liquid is maintained at the constant value P + pa, where pa is atmospheric
pressure and P > 0. Liquid can flow out of the vessel along a cylindrical tube of length
L. The radius a of the tube is much smaller than both L and the linear dimensions of
the vessel. Initially the tube is sealed and is full of liquid. At time t = 0 the tube is
opened and the liquid starts to flow. Assuming that the tube remains full of liquid, that
the pressure at the open end of the tube is atmospheric and that P is so large that gravity
is negligible, determine the flux of liquid along the tube at time t.

4/II/18A Fluid Dynamics

A rectangular tank has a horizontal base and vertical sides. Viewed from above,
the cross-section of the tank is a square of side a. At rest, the depth of water in the
tank is h. Suppose that the free-surface is disturbed in such a way that the flow in the
water is irrotational. Take the pressure at the free surface as atmospheric. Starting from
the appropriate non-linear expressions, obtain free-surface boundary conditions for the
velocity potential appropriate for small-amplitude disturbances of the surface.

Show that the governing equations and boundary conditions admit small-amplitude
normal mode solutions for which the free-surface elevation above its equilibrium level is
everywhere proportional to eiωt, and find the frequencies, ω, of such modes.
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1/I/5E Fluid Dynamics

Explain how a streamfunction ψ can be used to represent in Cartesian Coordinates
an incompressible flow in two dimensions. Show that the streamlines are given by
ψ = const.

Consider the two-dimensional incompressible flow

u(x, y, t) = (x+ sin t,−y).

(a) Find the streamfunction, and hence the streamlines at t =
π

2
.

(b) Find the path of a fluid particle released at t = 0 from (x0, 1). For what value of
x0 does the particle not tend to infinity?

1/II/17E Fluid Dynamics

State Bernoulli’s expression for the pressure in an unsteady potential flow with
conservative force −∇χ.

A spherical bubble in an incompressible liquid of density ρ has radius R(t). If the
pressure far from the bubble is p∞ and inside the bubble is pb, show that

pb − p∞ = ρ

(
3

2
Ṙ2 +RR̈

)
.

Calculate the kinetic energy K(t) in the flow outside the bubble, and hence show that

K̇ = (pb − p∞)V̇ ,

where V (t) is the volume of the bubble.

If pb(t) = p∞V0/V , show that

K = K0 + p∞

(
V0 ln

V

V0
− V + V0

)
,

where K = K0 when V = V0.
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2/I/8E Fluid Dynamics

For a steady flow of an incompressible fluid of density ρ, show that

u× ω = ∇H ,

where ω = ∇× u is the vorticity and H is to be found. Deduce that H is constant along
streamlines.

Now consider a flow in the xy-plane described by a streamfunction ψ(x, y). Evaluate
u× ω and deduce from H = H(ψ) that

dH

dψ
+ ω = 0.

3/II/18E Fluid Dynamics

Consider the velocity potential in plane polar coordinates

φ(r, θ) = U

(
r +

a2

r

)
cos θ +

κθ

2π
.

Find the velocity field and show that it corresponds to flow past a cylinder r = a with
circulation κ and uniform flow U at large distances.

Find the distribution of pressure p over the surface of the cylinder. Hence find the
x and y components of the force on the cylinder

(Fx, Fy) =

∫
(cos θ, sin θ)pa dθ.

4/II/18E Fluid Dynamics

A fluid of density ρ1 occupies the region z > 0 and a second fluid of density ρ2
occupies the region z < 0. State the equations and boundary conditions that are satisfied
by the corresponding velocity potentials φ1 and φ2 and pressures p1 and p2 when the
system is perturbed so that the interface is at z = ζ(x, t) and the motion is irrotational.

Seek a set of linearised equations and boundary conditions when the disturbances
are proportional to ei(kx−ωt), and derive the dispersion relation

ω2 =
ρ2 − ρ1
ρ2 + ρ1

gk,

where g is the gravitational acceleration.
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1/I/9C Fluid Dynamics

From the general mass-conservation equation, show that the velocity field u(x) of
an incompressible fluid is solenoidal, i.e. that ∇ · u = 0.

Verify that the two-dimensional flow

u =

(
y

x2 + y2
,

−x
x2 + y2

)

is solenoidal and find a streamfunction ψ(x, y) such that u = (∂ψ/∂y,−∂ψ/∂x).

1/II/20C Fluid Dynamics

A layer of water of depth h flows along a wide channel with uniform velocity (U, 0),
in Cartesian coordinates (x, y), with x measured downstream. The bottom of the channel
is at y = −h, and the free surface of the water is at y = 0. Waves are generated on the
free surface so that it has the new position y = η(x, t) = a ei(ωt−kx).

Write down the equation and the full nonlinear boundary conditions for the velocity
potential φ (for the perturbation velocity) and the motion of the free surface.

By linearizing these equations about the state of uniform flow, show that

∂η

∂t
+ U

∂η

∂x
=
∂φ

∂y
,

∂φ

∂t
+ U

∂φ

∂x
+ gη = 0 on y = 0,

∂φ

∂y
= 0 on y = −h,

where g is the acceleration due to gravity.

Hence, determine the dispersion relation for small-amplitude surface waves

(ω − kU)2 = gk tanh kh.

3/I/10C Fluid Dynamics

State Bernoulli’s equation for unsteady motion of an irrotational, incompressible,
inviscid fluid subject to a conservative body force −∇χ.

A long vertical U-tube of uniform cross section contains an inviscid, incompressible
fluid whose surface, in equilibrium, is at height h above the base. Derive the equation

h
d2ζ

dt2
+ gζ = 0

governing the displacement ζ of the surface on one side of the U-tube, where t is time and
g is the acceleration due to gravity.
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3/II/21C Fluid Dynamics

Use separation of variables to determine the irrotational, incompressible flow

u = U
a3

r3
(
cos θ er +

1
2 sin θ eθ

)

around a solid sphere of radius a translating at velocity U along the direction θ = 0 in
spherical polar coordinates r and θ.

Show that the total kinetic energy of the fluid is

K = 1
4MfU

2,

where Mf is the mass of fluid displaced by the sphere.

A heavy sphere of mass M is released from rest in an inviscid fluid. Determine its
speed after it has fallen through a distance h in terms of M , Mf , g and h.

4/I/8C Fluid Dynamics

Write down the vorticity equation for the unsteady flow of an incompressible,
inviscid fluid with no body forces acting.

Show that the flow field

u = (−x, xω(t), z − 1)

has uniform vorticity of magnitude ω(t) = ω0e
t for some constant ω0.
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4/II/18C Fluid Dynamics

Use Euler’s equation to derive the momentum integral

∫

S

(pni + ρnjujui) dS = 0

for the steady flow u = (u1, u2, u3) and pressure p of an inviscid,incompressible fluid of
density ρ, where S is a closed surface with normal n.

A cylindrical jet of water of area A and speed u impinges axisymmetrically on a
stationary sphere of radius a and is deflected into a conical sheet of vertex angle α as
shown. Gravity is being ignored.

�

�

A u α

d

r
a

Use a suitable form of Bernoulli’s equation to determine the speed of the water in
the conical sheet, being careful to state how the equation is being applied.

Use conservation of mass to show that the width d(r) of the sheet far from the
point of impact is given by

d =
A

2πr sinα
,

where r is the distance along the sheet measured from the vertex of the cone.

Finally, use the momentum integral to determine the net force on the sphere in
terms of ρ, u, A and α.
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1/I/6C Fluid Dynamics

An unsteady fluid flow has velocity field given in Cartesian coordinates (x, y, z)
by u = (1, xt, 0), where t denotes time. Dye is released into the fluid from the origin
continuously. Find the position at time t of the dye particle that was released at time s
and hence show that the dye streak lies along the curve

y = 1
2 tx

2 − 1
6x

3.

1/II/15C Fluid Dynamics

Starting from the Euler equations for incompressible, inviscid flow

ρ
Du

Dt
= −∇p, ∇ · u = 0,

derive the vorticity equation governing the evolution of the vorticity ω = ∇× u.

Consider the flow

u = β(−x,−y, 2z) + Ω(t)(−y, x, 0),

in Cartesian coordinates (x, y, z), where t is time and β is a constant. Compute the
vorticity and show that it evolves in time according to

ω = ω0e
2βtk,

where ω0 is the initial magnitude of the vorticity and k is a unit vector in the z-direction.

Show that the material curve C(t) that takes the form

x2 + y2 = 1 and z = 1

at t = 0 is given later by

x2 + y2 = a2(t) and z =
1

a2(t)
,

where the function a(t) is to be determined.

Calculate the circulation of u around C and state how this illustrates Kelvin’s
circulation theorem.
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3/I/8C Fluid Dynamics

Show that the velocity field

u = U+
Γ× r

2πr2
,

where U = (U, 0, 0), Γ = (0, 0,Γ) and r = (x, y, 0) in Cartesian coordinates (x, y, z),
represents the combination of a uniform flow and the flow due to a line vortex. Define and
evaluate the circulation of the vortex.

Show that ∮

CR

(u · n)u dl → 1
2Γ×U as R→ ∞,

where CR is a circle x2 + y2 = R2, z = const. Explain how this result is related to the lift
force on a two-dimensional aerofoil or other obstacle.

3/II/18C Fluid Dynamics

State the form of Bernoulli’s theorem appropriate for an unsteady irrotational
motion of an inviscid incompressible fluid in the absence of gravity.

Water of density ρ is driven through a tube of length L and internal radius a by
the pressure exerted by a spherical, water-filled balloon of radius R(t) attached to one end
of the tube. The balloon maintains the pressure of the water entering the tube at 2γ/R in
excess of atmospheric pressure, where γ is a constant. It may be assumed that the water
exits the tube at atmospheric pressure. Show that

R3R̈+ 2R2Ṙ2 = − γa2

2ρL
. (†)

Solve equation (†), by multiplying through by 2RṘ or otherwise, to obtain

t = R2
0

(
2ρL

γa2

)1/2 [
π

4
− θ

2
+

1

4
sin 2θ

]
,

where θ = sin−1(R/R0) and R0 is the initial radius of the balloon. Hence find the time
when R = 0.
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4/I/7C Fluid Dynamics

Inviscid fluid issues vertically downwards at speed u0 from a circular tube of radius
a. The fluid falls onto a horizontal plate a distance H below the end of the tube, where it
spreads out axisymmetrically.

Show that while the fluid is falling freely it has speed

u = u0

[
1 +

2g

u20
(H − z)

]1/2
,

and occupies a circular jet of radius

R = a

[
1 +

2g

u20
(H − z)

]−1/4

,

where z is the height above the plate and g is the acceleration due to gravity.

Show further that along the plate, at radial distances r � a (i.e. far from the falling
jet), where the fluid is flowing almost horizontally, it does so as a film of height h(r), where

a4

4r2h2
= 1 +

2g

u20
(H − h).
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4/II/16C Fluid Dynamics

Define the terms irrotational flow and incompressible flow. The two-dimensional
flow of an incompressible fluid is given in terms of a streamfunction ψ(x, y) as

u = (u, v) =

(
∂ψ

∂y
,−∂ψ

∂x

)

in Cartesian coordinates (x, y). Show that the line integral

∫ x2

x1

u · n dl = ψ(x2)− ψ(x1)

along any path joining the points x1 and x2, where n is the unit normal to the path.
Describe how this result is related to the concept of mass conservation.

Inviscid, incompressible fluid is contained in the semi-infinite channel x > 0,
0 < y < 1, which has rigid walls at x = 0 and at y = 0, 1, apart from a small opening
at the origin through which the fluid is withdrawn with volume flux m per unit distance
in the third dimension. Show that the streamfunction for irrotational flow in the channel
can be chosen (up to an additive constant) to satisfy the equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0

and boundary conditions

ψ = 0 on y = 0, x > 0,

ψ = −m on x = 0, 0 < y < 1,

ψ = −m on y = 1, x > 0,

ψ → −my as x→ ∞,

if it is assumed that the flow at infinity is uniform. Solve the boundary-value problem
above using separation of variables to obtain

ψ = −my + 2m

π

∞∑

n=1

1

n
sinnπy e−nπx.
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1/I/6C Fluid Dynamics

A fluid flow has velocity given in Cartesian co-ordinates as u = (kty, 0, 0) where k
is a constant and t is time. Show that the flow is incompressible. Find a stream function
and determine an equation for the streamlines at time t.

At t = 0 the points along the straight line segment x = 0, 0 6 y 6 a, z = 0
are marked with dye. Show that at any later time the marked points continue to form a
segment of a straight line. Determine the length of this line segment at time t and the
angle that it makes with the x-axis.

1/II/15C Fluid Dynamics

State the unsteady form of Bernoulli’s theorem.

A spherical bubble having radius R0 at time t = 0 is located with its centre at the
origin in unbounded fluid. The fluid is inviscid, has constant density ρ and is everywhere
at rest at t = 0. The pressure at large distances from the bubble has the constant value
p∞, and the pressure inside the bubble has the constant value p∞−4p. In consequence the
bubble starts to collapse so that its radius at time t is R(t). Find the velocity everywhere
in the fluid in terms of R(t) at time t and, assuming that surface tension is negligible,
show that R satisfies the equation

RR̈+
3

2
Ṙ2 = −4p

ρ
.

Find the total kinetic energy of the fluid in terms of R(t) at time t. Hence or
otherwise obtain a first integral of the above equation.

3/I/8C Fluid Dynamics

State and prove Kelvin’s circulation theorem.

Consider a planar flow in the unbounded region outside a cylinder for which the
vorticity vanishes everywhere at time t = 0. What may be deduced about the circulation
around closed loops in the fluid at time t:

(i) that do not enclose the cylinder;

(ii) that enclose the cylinder?

Give a brief justification for your answer in each case.
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3/II/18C Fluid Dynamics

Use Euler’s equation to derive Bernoulli’s theorem for the steady flow of an inviscid
fluid of uniform density ρ in the absence of body forces.

Such a fluid flows steadily through a long cylindrical elastic tube having circular
cross-section. The variable z measures distance downstream along the axis of the tube.
The tube wall has thickness h(z), so that if the external radius of the tube is r(z), its
internal radius is r(z)−h(z), where h(z) > 0 is a given slowly-varying function that tends
to zero as z → ±∞. The elastic tube wall exerts a pressure p(z) on the fluid given as

p(z) = p0 + k[r(z)−R],

where p0, k and R are positive constants. Far upstream, r has the constant value R, the
fluid pressure has the constant value p0, and the fluid velocity u has the constant value V .
Assume that gravity is negligible and that h(z) varies sufficiently slowly that the velocity
may be taken as uniform across the tube at each value of z. Use mass conservation and
Bernoulli’s theorem to show that u(z) satisfies

h

R
= 1−

(
V

u

)1/2

+
1

4
λ

[
1−

( u
V

)2
]
, where λ =

2ρV 2

kR
.

Sketch a graph of h/R against u/V . Show that if h(z) exceeds a critical value hc(λ), no
such flow is possible and find hc(λ).

Show that if h < hc(λ) everywhere, then for given h the equation has two positive
solutions for u. Explain how the given value of λ determines which solution should be
chosen.

4/I/7C Fluid Dynamics

If u is given in Cartesian co-ordinates as u = (−Ωy,Ωx, 0), with Ω a constant,
verify that

u·∇u = ∇(− 1
2u

2) .

When incompressible fluid is placed in a stationary cylindrical container of radius
a with its axis vertical, the depth of the fluid is h. Assuming that the free surface does not
reach the bottom of the container, use cylindrical polar co-ordinates to find the equation
of the free surface when the fluid and the container rotate steadily about this axis with
angular velocity Ω.

Deduce the angular velocity at which the free surface first touches the bottom of
the container.
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4/II/16C Fluid Dynamics

Use Euler’s equation to show that in a planar flow of an inviscid fluid the vorticity
ω satisfies

Dω

Dt
= 0 .

Write down the velocity field associated with a point vortex of strength κ in
unbounded fluid.

Consider now the flow generated in unbounded fluid by two point vortices of
strengths κ1 and κ2 at x1(t) = (x1, y1) and x2(t) = (x2, y2), respectively. Show that
in the subsequent motion the quantity

q = κ1x1 + κ2x2

remains constant. Show also that the separation of the vortices, |x2−x1|, remains constant.

Suppose finally that κ1 = κ2 and that the vortices are placed at time t = 0 at
positions (a, 0) and (−a, 0). What are the positions of the vortices at time t?
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1/I/6G Fluid Dynamics

Determine the pressure at a depth z below the surface of a static fluid of density
ρ subject to gravity g. A rigid body having volume V is fully submerged in such a fluid.
Calculate the buoyancy force on the body.

An iceberg of uniform density ρI is observed to float with volume VI protruding
above a large static expanse of seawater of density ρw. What is the total volume of the
iceberg?

1/II/15G Fluid Dynamics

A fluid motion has velocity potential φ(x, y, t) given by

φ = εy cos (x− t)

where ε is a constant. Find the corresponding velocity field u (x, y, t). Determine ∇ · u.

The time-average of a quantity ψ (x, y, t) is defined as 1
2π

∫ 2π

0
ψ (x, y, t) dt.

Show that the time-average of this velocity field at every point (x, y) is zero.

Write down an expression for the fluid acceleration and find the time-average
acceleration at (x, y).

Suppose now that |ε| � 1. The material particle at (0, 0) at time t = 0 is marked
with dye. Write down equations for its subsequent motion and verify that its position
(x, y) at time t > 0 is given (correct to terms of order ε2) as

x = ε2( 12 t− 1
4 sin 2t),

y = ε sin t .

Deduce the time-average velocity of the dyed particle correct to this order.

3/I/8G Fluid Dynamics

Inviscid incompressible fluid occupies the region y > 0, which is bounded by a rigid
barrier along y = 0. At time t = 0, a line vortex of strength κ is placed at position (a, b).
By considering the flow due to an image vortex at (a,−b), or otherwise, determine the
velocity potential in the fluid.

Derive the position of the original vortex at time t > 0.
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3/II/18G Fluid Dynamics

State the form of Bernoulli’s theorem appropriate for an unsteady irrotational
motion of an inviscid incompressible fluid.

A circular cylinder of radius a is immersed in unbounded inviscid fluid of uniform
density ρ. The cylinder moves in a prescribed direction perpendicular to its axis, with
speed U . Use cylindrical polar coordinates, with the direction θ = 0 parallel to the
direction of the motion, to find the velocity potential in the fluid.

If U depends on time t and gravity is negligible, determine the pressure field in the
fluid at time t. Deduce the fluid force per unit length on the cylinder.

[In cylindrical polar coordinates, ∇φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ.]

4/I/7G Fluid Dynamics

Starting from the Euler equation, derive the vorticity equation for the motion of
an inviscid incompressible fluid under a conservative body force, and give a physical
interpretation of each term in the equation. Deduce that in a flow field of the form
u = (u(x, y, t), v(x, y, t), 0) the vorticity of a material particle is conserved.

Find the vorticity for such a flow in terms of the stream function ψ. Deduce that
if the flow is steady, there must be a function f such that

∇2ψ = f(ψ) .

4/II/16G Fluid Dynamics

A long straight canal has rectangular cross-section with a horizontal bottom and
width w(x) that varies slowly with distance x downstream. Far upstream, w has a constant
value W , the water depth has a constant value H, and the velocity has a constant value
U . Assuming that the water velocity is steady and uniform across the channel, use mass
conservation and Bernoulli’s theorem, which should be stated carefully, to show that the
water depth h(x) satisfies

(
W

w

)2

=

(
1 +

2

F

)(
h

H

)2

− 2

F

(
h

H

)3

where F =
U2

gH
.

Deduce that for a given value of F , a flow of this kind can exist only if w(x) is
everywhere greater than or equal to a critical value wc, which is to be determined in terms
of F .

Suppose that w(x) > wc everywhere. At locations where the channel width exceeds
W , determine graphically, or otherwise, under what circumstances the water depth exceeds
H.

Part IB

20012001


