Part IB

Complex Methods

Year
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001

Paper 1, Section I

3B Complex Analysis OR Complex Methods

(a) What is the Laurent series of $e^{1 / z}$ about $z_{0}=0$?
(b) Let $\rho>0$. Show that for all large enough $n \in \mathbb{N}$, all zeros of the function

$$
f_{n}(z)=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\ldots+\frac{1}{n!z^{n}}
$$

lie in the open disc $\{z:|z|<\rho\}$.

Paper 1, Section II

12G Complex Analysis OR Complex Methods

(a) Let $f(z)=-\sum_{n=1}^{\infty} \frac{(1-z)^{n}}{n}$ for $|z-1|<1$. By differentiating $z \exp (-f(z))$, show that f is an analytic branch of logarithm on the disc $D(1,1)$ with $f(1)=0$. Use scaling and the function f to show that for every point a in the domain $D=\mathbb{C} \backslash\{x \in \mathbb{R}: x \geqslant 0\}$, there is an analytic branch of logarithm on a small neighbourhood of a whose imaginary part lies in $(0,2 \pi)$.
(b) For $z \in D$, let $\theta(z)$ be the unique value of the argument of z in the interval $(0,2 \pi)$. Define the function $L: D \rightarrow \mathbb{C}$ by $L(z)=\log |z|+i \theta(z)$. Briefly explain using part (a) why L is an analytic branch of logarithm on D. For $\alpha \in(-1,1)$ write down an analytic branch of z^{α} on D.
(c) State the residue theorem. Evaluate the integral

$$
I=\int_{0}^{\infty} \frac{x^{\alpha}}{(x+1)^{2}} d x
$$

where $\alpha \in(-1,1)$.

Paper 2, Section II

12B Complex Analysis OR Complex Methods

(a) Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic, and is bounded in the half-plane $\{z: \operatorname{Re}(z)>0\}$. Prove that, for any real number $c>0$, there is a positive real constant M such that

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leqslant M\left|z_{1}-z_{2}\right|
$$

whenever $z_{1}, z_{2} \in \mathbb{C}$ satisfy $\operatorname{Re}\left(z_{1}\right)>c, \operatorname{Re}\left(z_{2}\right)>c$, and $\left|z_{1}-z_{2}\right|<c$.
(b) Let the functions $g, h: \mathbb{C} \rightarrow \mathbb{C}$ both be analytic.
(i) State Liouville's Theorem.
(ii) Show that if g is not constant, then $g(\mathbb{C})$ is dense in \mathbb{C}.
(iii) Show that if $|h(z)| \leqslant|\operatorname{Re}(z)|^{-1 / 2}$ for all $z \in \mathbb{C}$, then h is constant.

Paper 3, Section I

3B Complex Methods

Let $f=u+i v$ be an analytic function in a connected open set $D \subset \mathbb{C}$, where $u(x, y)$ and $v(x, y)$ are real-valued functions on D, with $x=\operatorname{Re}(z), y=\operatorname{Im}(z)$, for $z \in D$.
(a) Show that $f^{\prime}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$, and state the Cauchy-Riemann equations.
(b) Suppose there are real constants a, b and c such that $a^{2}+b^{2} \neq 0$ and

$$
a u(x, y)+b v(x, y)=c, \quad z \in D
$$

Show that f is constant on D.

Paper 4, Section II

12B Complex Methods

Let $B:[0, \infty) \rightarrow \mathbb{R}^{n \times p}$ be a $n \times p$ matrix-valued function. The Laplace transform $\mathcal{L}\{B\}$ of B is defined componentwise on the matrix element functions of B.
(a) Show that if A is a constant $n \times n$ matrix and $B:[0, \infty) \rightarrow \mathbb{R}^{n \times p}$ is an $n \times p$ matrix-valued function, then $\mathcal{L}\{A B\}=A \mathcal{L}\{B\}$.
(b) Consider the ODE given by

$$
\begin{equation*}
y^{\prime}(t)=A y(t)+g(t), \quad y(0)=y_{0} \in \mathbb{R}^{n}, \quad t \geqslant 0, \tag{*}
\end{equation*}
$$

where A is a constant $n \times n$ matrix, and $g:[0, \infty) \rightarrow \mathbb{R}^{n}$ is a vector-valued function whose Laplace transform $G(s)=\mathcal{L}\{g\}(s)$ exists for all but one $s \in \mathbb{C}$. Show that

$$
Y(s)=(s I-A)^{-1}\left(y_{0}+G(s)\right),
$$

and that

$$
\mathcal{L}\left\{e^{t A}\right\}(s)=(s I-A)^{-1},
$$

for all s that are not eigenvalues of A, where $Y=\mathcal{L}\{y\}$ is the Laplace transform of the solution y of $(*)$. You may assume that y exists and is the unique solution to the ODE for all $t \geqslant 0$ with solution $y(t)=e^{t A} y_{0}$ when $g=0$.
(c) Consider the ODE

$$
y^{\prime}(t)=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] y(t)+\left[\begin{array}{c}
e^{2 t} \\
-2 t
\end{array}\right], \quad y(0)=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \quad t \geqslant 0 .
$$

Determine the integer values $n \in \mathbb{N}$ such that $\lim _{t \rightarrow \infty} e^{-n t} y(t)$ exists and is a finite and nonzero vector in \mathbb{R}^{2}.

Paper 1, Section I

3G Complex Analysis or Complex Methods

Show that $f(z)=\frac{z}{\sin z}$ has a removable singularity at $z=0$. Find the radius of convergence of the power series of f at the origin.

Paper 1, Section II

12G Complex Analysis or Complex Methods

(a) Let $\Omega \subset \mathbb{C}$ be an open set such that there is $z_{0} \in \Omega$ with the property that for any $z \in \Omega$, the line segment $\left[z_{0}, z\right]$ connecting z_{0} to z is completely contained in Ω. Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function such that

$$
\int_{\Gamma} f(z) d z=0
$$

for any closed curve Γ which is the boundary of a triangle contained in Ω. Given $w \in \Omega$, let

$$
g(w)=\int_{\left[z_{0}, w\right]} f(z) d z .
$$

Explain briefly why g is a holomorphic function such that $g^{\prime}(w)=f(w)$ for all $w \in \Omega$.
(b) Fix $z_{0} \in \mathbb{C}$ with $z_{0} \neq 0$ and let $\mathcal{D} \subset \mathbb{C}$ be the set of points $z \in \mathbb{C}$ such that the line segment connecting z to z_{0} does not pass through the origin. Show that there exists a holomorphic function $h: \mathcal{D} \rightarrow \mathbb{C}$ such that $h(z)^{2}=z$ for all $z \in \mathcal{D}$. [You may assume that the integral of $1 / z$ over the boundary of any triangle contained in \mathcal{D} is zero.]
(c) Show that there exists a holomorphic function f defined in a neighbourhood U of the origin such that $f(z)^{2}=\cos z$ for all $z \in U$. Is it possible to find a holomorphic function f defined on the disk $|z|<2$ such that $f(z)^{2}=\cos z$ for all z in the disk? Justify your answer.

Paper 2, Section II

12A Complex Analysis or Complex Methods

(a) Let $R=P / Q$ be a rational function, where $\operatorname{deg} Q \geqslant \operatorname{deg} P+2$, and Q has no real zeros. Using the calculus of residues, write a general expression for

$$
\int_{-\infty}^{\infty} R(x) e^{i x} d x
$$

in terms of residues. Briefly justify your answer.
[You may assume that the polynomials P and Q do not have any common factors.]
(b) Explicitly evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{1+x^{4}} d x .
$$

Paper 3, Section I

3A Complex Methods

The function $f(x)$ has Fourier transform

$$
\tilde{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x=\frac{-2 k i}{p^{2}+k^{2}}
$$

where $p>0$ is a real constant. Using contour integration, calculate $f(x)$ for $x>0$. [Jordan's lemma and the residue theorem may be used without proof.]

Paper 4, Section II

12A Complex Methods

The Laplace transform $F(s)$ of a function $f(t)$ is defined as

$$
L\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

(a) For $f(t)=t^{n}$ for n a non-negative integer, show that

$$
\begin{aligned}
L\{f(t)\} & =F(s)=\frac{n!}{s^{n+1}} \\
L\left\{e^{a t} f(t)\right\} & =F(s-a)=\frac{n!}{(s-a)^{n+1}}
\end{aligned}
$$

(b) Use contour integration to find the inverse Laplace transform of

$$
F(s)=\frac{1}{s^{2}(s+2)^{2}}
$$

(c) Verify the result in part (b) by using the results in part (a) and the convolution theorem.
(d) Use Laplace transforms to solve the differential equation

$$
\frac{d^{4}}{d t^{4}}[f(t)]+4 \frac{d^{3}}{d t^{3}}[f(t)]+4 \frac{d^{2}}{d t^{2}}[f(t)]=0
$$

subject to the initial conditions

$$
f(0)=\frac{d}{d t} f(0)=\frac{d^{2}}{d t^{2}} f(0)=0 \text { and } \frac{d^{3}}{d t^{3}} f(0)=1
$$

Paper 1, Section I

3B Complex Analysis or Complex Methods

Let $x>0, x \neq 2$, and let C_{x} denote the positively oriented circle of radius x centred at the origin. Define

$$
g(x)=\oint_{C_{x}} \frac{z^{2}+e^{z}}{z^{2}(z-2)} d z .
$$

Evaluate $g(x)$ for $x \in(0, \infty) \backslash\{2\}$.

Paper 1, Section II

12G Complex Analysis or Complex Methods

(a) State a theorem establishing Laurent series of analytic functions on suitable domains. Give a formula for the $n^{\text {th }}$ Laurent coefficient.

Define the notion of isolated singularity. State the classification of an isolated singularity in terms of Laurent coefficients.

Compute the Laurent series of

$$
f(z)=\frac{1}{z(z-1)}
$$

on the annuli $A_{1}=\{z: 0<|z|<1\}$ and $A_{2}=\{z: 1<|z|\}$. Using this example, comment on the statement that Laurent coefficients are unique. Classify the singularity of f at 0 .
(b) Let U be an open subset of the complex plane, let $a \in U$ and let $U^{\prime}=U \backslash\{a\}$. Assume that f is an analytic function on U^{\prime} with $|f(z)| \rightarrow \infty$ as $z \rightarrow a$. By considering the Laurent series of $g(z)=\frac{1}{f(z)}$ at a, classify the singularity of f at a in terms of the Laurent coefficients. [You may assume that a continuous function on U that is analytic on U^{\prime} is analytic on U.]

Now let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function with $|f(z)| \rightarrow \infty$ as $z \rightarrow \infty$. By considering Laurent series at 0 of $f(z)$ and of $h(z)=f\left(\frac{1}{z}\right)$, show that f is a polynomial.
(c) Classify, giving reasons, the singularity at the origin of each of the following functions and in each case compute the residue:

$$
g(z)=\frac{\exp (z)-1}{z \log (z+1)} \quad \text { and } \quad h(z)=\sin (z) \sin (1 / z) .
$$

Paper 2, Section II

12B Complex Analysis or Complex Methods

(a) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function and let $a>0, b>0$ be constants. Show that if

$$
|f(z)| \leqslant a|z|^{n / 2}+b
$$

for all $z \in \mathbb{C}$, where n is a positive odd integer, then f must be a polynomial with degree not exceeding $\lfloor n / 2\rfloor$ (closest integer part rounding down).
Does there exist a function f, analytic in $\mathbb{C} \backslash\{0\}$, such that $|f(z)| \geqslant 1 / \sqrt{|z|}$ for all nonzero z ? Justify your answer.
(b) State Liouville's Theorem and use it to show the following.
(i) If u is a positive harmonic function on \mathbb{R}^{2}, then u is a constant function.
(ii) Let $L=\{z \mid z=a x+b, x \in \mathbb{R}\}$ be a line in \mathbb{C} where $a, b \in \mathbb{C}, a \neq 0$. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function such that $f(\mathbb{C}) \cap L=\emptyset$, then f is a constant function.

Paper 3, Section I

3B Complex Methods

Find the value of A for which the function

$$
\phi(x, y)=x \cosh y \sin x+A y \sinh y \cos x
$$

satisfies Laplace's equation. For this value of A, find a complex analytic function of which ϕ is the real part.

Paper 4, Section II

12B Complex Methods

Let $f(t)$ be defined for $t \geqslant 0$. Define the Laplace transform $\widehat{f}(s)$ of f. Find an expression for the Laplace transform of $\frac{d f}{d t}$ in terms of \widehat{f}.

Three radioactive nuclei decay sequentially, so that the numbers $N_{i}(t)$ of the three types obey the equations

$$
\begin{aligned}
\frac{d N_{1}}{d t} & =-\lambda_{1} N_{1} \\
\frac{d N_{2}}{d t} & =\lambda_{1} N_{1}-\lambda_{2} N_{2} \\
\frac{d N_{3}}{d t} & =\lambda_{2} N_{2}-\lambda_{3} N_{3}
\end{aligned}
$$

where $\lambda_{3}>\lambda_{2}>\lambda_{1}>0$ are constants. Initially, at $t=0, N_{1}=N, N_{2}=0$ and $N_{3}=n$. Using Laplace transforms, find $N_{3}(t)$.

By taking an appropriate limit, find $N_{3}(t)$ when $\lambda_{2}=\lambda_{1}=\lambda>0$ and $\lambda_{3}>\lambda$.

Paper 1, Section I

3G Complex Analysis or Complex Methods

Let D be the open disc with centre $e^{2 \pi i / 6}$ and radius 1 , and let L be the open lower half plane. Starting with a suitable Möbius map, find a conformal equivalence (or conformal bijection) of $D \cap L$ onto the open unit disc.

Paper 1, Section II

12G Complex Analysis or Complex Methods

Let $\ell(z)$ be an analytic branch of $\log z$ on a domain $D \subset \mathbb{C} \backslash\{0\}$. Write down an analytic branch of $z^{1 / 2}$ on D. Show that if $\psi_{1}(z)$ and $\psi_{2}(z)$ are two analytic branches of $z^{1 / 2}$ on D, then either $\psi_{1}(z)=\psi_{2}(z)$ for all $z \in D$ or $\psi_{1}(z)=-\psi_{2}(z)$ for all $z \in D$.

Describe the principal value or branch $\sigma_{1}(z)$ of $z^{1 / 2}$ on $D_{1}=\mathbb{C} \backslash\{x \in \mathbb{R}: x \leqslant 0\}$. Describe a branch $\sigma_{2}(z)$ of $z^{1 / 2}$ on $D_{2}=\mathbb{C} \backslash\{x \in \mathbb{R}: x \geqslant 0\}$.

Construct an analytic branch $\varphi(z)$ of $\sqrt{1-z^{2}}$ on $\mathbb{C} \backslash\{x \in \mathbb{R}:-1 \leqslant x \leqslant 1\}$ with $\varphi(2 i)=\sqrt{5}$. [If you choose to use σ_{1} and σ_{2} in your construction, then you may assume without proof that they are analytic.]

Show that for $0<|z|<1$ we have $\varphi(1 / z)=-i \sigma_{1}\left(1-z^{2}\right) / z$. Hence find the first three terms of the Laurent series of $\varphi(1 / z)$ about 0 .

Set $f(z)=\varphi(z) /\left(1+z^{2}\right)$ for $|z|>1$ and $g(z)=f(1 / z) / z^{2}$ for $0<|z|<1$. Compute the residue of g at 0 and use it to compute the integral

$$
\int_{|z|=2} f(z) d z .
$$

Paper 2, Section II

12B Complex Analysis or Complex Methods

For the function

$$
f(z)=\frac{1}{z(z-2)},
$$

find the Laurent expansions
(i) about $z=0$ in the annulus $0<|z|<2$,
(ii) about $z=0$ in the annulus $2<|z|<\infty$,
(iii) about $z=1$ in the annulus $0<|z-1|<1$.

What is the nature of the singularity of f, if any, at $z=0, z=\infty$ and $z=1$?
Using an integral of f, or otherwise, evaluate

$$
\int_{0}^{2 \pi} \frac{2-\cos \theta}{5-4 \cos \theta} d \theta
$$

Paper 1, Section I

2F Complex Analysis or Complex Methods

What is the Laurent series for a function f defined in an annulus A ? Find the Laurent series for $f(z)=\frac{10}{(z+2)\left(z^{2}+1\right)}$ on the annuli

$$
\begin{aligned}
& A_{1}=\{z \in \mathbb{C}|0<|z|<1\} \quad \text { and } \\
& A_{2}=\{z \in \mathbb{C}|1<|z|<2\} .
\end{aligned}
$$

Paper 1, Section II

13F Complex Analysis or Complex Methods

State and prove Jordan's lemma.
What is the residue of a function f at an isolated singularity a ? If $f(z)=\frac{g(z)}{(z-a)^{k}}$ with k a positive integer, g analytic, and $g(a) \neq 0$, derive a formula for the residue of f at a in terms of derivatives of g.

Evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{3} \sin x}{\left(1+x^{2}\right)^{2}} d x
$$

Paper 2, Section II

13D Complex Analysis or Complex Methods

Let C_{1} and C_{2} be smooth curves in the complex plane, intersecting at some point p. Show that if the map $f: \mathbb{C} \rightarrow \mathbb{C}$ is complex differentiable, then it preserves the angle between C_{1} and C_{2} at p, provided $f^{\prime}(p) \neq 0$. Give an example that illustrates why the condition $f^{\prime}(p) \neq 0$ is important.

Show that $f(z)=z+1 / z$ is a one-to-one conformal map on each of the two regions $|z|>1$ and $0<|z|<1$, and find the image of each region.

Hence construct a one-to-one conformal map from the unit disc to the complex plane with the intervals $(-\infty,-1 / 2]$ and $[1 / 2, \infty)$ removed.

Paper 3, Section I

4D Complex Methods

By considering the transformation $w=i(1-z) /(1+z)$, find a solution to Laplace's equation $\nabla^{2} \phi=0$ inside the unit disc $D \subset \mathbb{C}$, subject to the boundary conditions

$$
\left.\phi\right|_{|z|=1}= \begin{cases}\phi_{0} & \text { for } \arg (z) \in(0, \pi) \\ -\phi_{0} & \text { for } \arg (z) \in(\pi, 2 \pi),\end{cases}
$$

where ϕ_{0} is constant. Give your answer in terms of $(x, y)=(\operatorname{Re} z, \operatorname{Im} z)$.

Paper 4, Section II

14D Complex Methods

(a) Using the Bromwich contour integral, find the inverse Laplace transform of $1 / s^{2}$.

The temperature $u(r, t)$ of mercury in a spherical thermometer bulb $r \leqslant a$ obeys the radial heat equation

$$
\frac{\partial u}{\partial t}=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r u)
$$

with unit diffusion constant. At $t=0$ the mercury is at a uniform temperature u_{0} equal to that of the surrounding air. For $t>0$ the surrounding air temperature lowers such that at the edge of the thermometer bulb

$$
\left.\frac{1}{k} \frac{\partial u}{\partial r}\right|_{r=a}=u_{0}-u(a, t)-t,
$$

where k is a constant.
(b) Find an explicit expression for $U(r, s)=\int_{0}^{\infty} e^{-s t} u(r, t) d t$.
(c) Show that the temperature of the mercury at the centre of the thermometer bulb at late times is

$$
u(0, t) \approx u_{0}-t+\frac{a}{3 k}+\frac{a^{2}}{6} .
$$

[You may assume that the late time behaviour of $u(r, t)$ is determined by the singular part of $U(r, s)$ at $s=0$.]

Paper 1, Section I

2A Complex Analysis or Complex Methods

(a) Show that

$$
w=\log (z)
$$

is a conformal mapping from the right half z-plane, $\operatorname{Re}(z)>0$, to the strip

$$
S=\left\{w:-\frac{\pi}{2}<\operatorname{Im}(w)<\frac{\pi}{2}\right\},
$$

for a suitably chosen branch of $\log (z)$ that you should specify.
(b) Show that

$$
w=\frac{z-1}{z+1}
$$

is a conformal mapping from the right half z-plane, $\operatorname{Re}(z)>0$, to the unit disc

$$
D=\{w:|w|<1\} .
$$

(c) Deduce a conformal mapping from the strip S to the disc D.

Paper 1, Section II

13A Complex Analysis or Complex Methods
(a) Let C be a rectangular contour with vertices at $\pm R+\pi i$ and $\pm R-\pi i$ for some $R>0$ taken in the anticlockwise direction. By considering

$$
\lim _{R \rightarrow \infty} \oint_{C} \frac{e^{i z^{2} / 4 \pi}}{e^{z / 2}-e^{-z / 2}} d z
$$

show that

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{i x^{2} / 4 \pi} d x=2 \pi e^{\pi i / 4}
$$

(b) By using a semi-circular contour in the upper half plane, calculate

$$
\int_{0}^{\infty} \frac{x \sin (\pi x)}{x^{2}+a^{2}} d x
$$

for $a>0$.
[You may use Jordan's Lemma without proof.]

Paper 2, Section II

13A Complex Analysis or Complex Methods

(a) Let $f(z)$ be a complex function. Define the Laurent series of $f(z)$ about $z=z_{0}$, and give suitable formulae in terms of integrals for calculating the coefficients of the series.
(b) Calculate, by any means, the first 3 terms in the Laurent series about $z=0$ for

$$
f(z)=\frac{1}{e^{2 z}-1}
$$

Indicate the range of values of $|z|$ for which your series is valid.
(c) Let

$$
g(z)=\frac{1}{2 z}+\sum_{k=1}^{m} \frac{z}{z^{2}+\pi^{2} k^{2}}
$$

Classify the singularities of $F(z)=f(z)-g(z)$ for $|z|<(m+1) \pi$.
(d) By considering

$$
\oint_{C_{R}} \frac{F(z)}{z^{2}} d z
$$

where $C_{R}=\{|z|=R\}$ for some suitably chosen $R>0$, show that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Paper 3, Section I

4A Complex Methods

(a) Let $f(z)=\left(z^{2}-1\right)^{1 / 2}$. Define the branch cut of $f(z)$ as $[-1,1]$ such that

$$
f(x)=+\sqrt{x^{2}-1} \quad x>1
$$

Show that $f(z)$ is an odd function.
(b) Let $g(z)=\left[(z-2)\left(z^{2}-1\right)\right]^{1 / 2}$.
(i) Show that $z=\infty$ is a branch point of $g(z)$.
(ii) Define the branch cuts of $g(z)$ as $[-1,1] \cup[2, \infty)$ such that

$$
g(x)=e^{\pi i / 2} \sqrt{|x-2|\left|x^{2}-1\right|} \quad x \in(1,2) .
$$

Find $g\left(0_{ \pm}\right)$, where 0_{+}denotes $z=0$ just above the branch cut, and 0_{-}denotes $z=0$ just below the branch cut.

Paper 4, Section II

14A Complex Methods

(a) Find the Laplace transform of

$$
y(t)=\frac{e^{-a^{2} / 4 t}}{\sqrt{\pi t}}
$$

for $a \in \mathbb{R}, a \neq 0$.
[You may use without proof that

$$
\left.\int_{0}^{\infty} \exp \left(-c^{2} x^{2}-\frac{c^{2}}{x^{2}}\right) d x=\frac{\sqrt{\pi}}{2|c|} e^{-2 c^{2}} .\right]
$$

(b) By using the Laplace transform, show that the solution to

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \quad-\infty<x<\infty, \quad t>0 \\
& u(x, 0)=f(x) \\
& u(x, t) \text { bounded }
\end{aligned}
$$

can be written as

$$
u(x, t)=\int_{-\infty}^{\infty} K(|x-\xi|, t) f(\xi) d \xi
$$

for some $K(|x-\xi|, t)$ to be determined.
[You may use without proof that a particular solution to

$$
y^{\prime \prime}(x)-s y(x)+f(x)=0
$$

is given by

$$
\left.y(x)=\frac{e^{-\sqrt{s} x}}{2 \sqrt{s}} \int_{0}^{x} e^{\sqrt{s} \xi} f(\xi) d \xi-\frac{e^{\sqrt{s} x}}{2 \sqrt{s}} \int_{0}^{x} e^{-\sqrt{s} \xi} f(\xi) d \xi .\right]
$$

7

Paper 1, Section I

2A Complex Analysis or Complex Methods

Let $F(z)=u(x, y)+i v(x, y)$ where $z=x+i y$. Suppose $F(z)$ is an analytic function of z in a domain \mathcal{D} of the complex plane.

Derive the Cauchy-Riemann equations satisfied by u and v.
For $u=\frac{x}{x^{2}+y^{2}}$ find a suitable function v and domain \mathcal{D} such that $F=u+i v$ is analytic in \mathcal{D}.

Paper 2, Section II

13A Complex Analysis or Complex Methods

State the residue theorem.
By considering

$$
\oint_{C} \frac{z^{1 / 2} \log z}{1+z^{2}} d z
$$

with C a suitably chosen contour in the upper half plane or otherwise, evaluate the real integrals

$$
\int_{0}^{\infty} \frac{x^{1 / 2} \log x}{1+x^{2}} d x
$$

and

$$
\int_{0}^{\infty} \frac{x^{1 / 2}}{1+x^{2}} d x
$$

where $x^{1 / 2}$ is taken to be the positive square root.

Paper 1, Section II

13A Complex Analysis or Complex Methods

(a) Let $f(z)$ be defined on the complex plane such that $z f(z) \rightarrow 0$ as $|z| \rightarrow \infty$ and $f(z)$ is analytic on an open set containing $\operatorname{Im}(z) \geqslant-c$, where c is a positive real constant.

Let C_{1} be the horizontal contour running from $-\infty-i c$ to $+\infty-i c$ and let

$$
F(\lambda)=\frac{1}{2 \pi i} \int_{C_{1}} \frac{f(z)}{z-\lambda} d z
$$

By evaluating the integral, show that $F(\lambda)$ is analytic for $\operatorname{Im}(\lambda)>-c$.
(b) Let $g(z)$ be defined on the complex plane such that $z g(z) \rightarrow 0$ as $|z| \rightarrow \infty$ with $\operatorname{Im}(z) \geqslant-c$. Suppose $g(z)$ is analytic at all points except $z=\alpha_{+}$and $z=\alpha_{-}$which are simple poles with $\operatorname{Im}\left(\alpha_{+}\right)>c$ and $\operatorname{Im}\left(\alpha_{-}\right)<-c$.

Let C_{2} be the horizontal contour running from $-\infty+i c$ to $+\infty+i c$, and let

$$
\begin{aligned}
H(\lambda) & =\frac{1}{2 \pi i} \int_{C_{1}} \frac{g(z)}{z-\lambda} d z \\
J(\lambda) & =-\frac{1}{2 \pi i} \int_{C_{2}} \frac{g(z)}{z-\lambda} d z
\end{aligned}
$$

(i) Show that $H(\lambda)$ is analytic for $\operatorname{Im}(\lambda)>-c$.
(ii) Show that $J(\lambda)$ is analytic for $\operatorname{Im}(\lambda)<c$.
(iii) Show that if $-c<\operatorname{Im}(\lambda)<c$ then $H(\lambda)+J(\lambda)=g(\lambda)$.
[You should be careful to make sure you consider all points in the required regions.]

Paper 3, Section I

4A Complex Methods

By using the Laplace transform, show that the solution to

$$
y^{\prime \prime}-4 y^{\prime}+3 y=t e^{-3 t}
$$

subject to the conditions $y(0)=0$ and $y^{\prime}(0)=1$, is given by

$$
y(t)=\frac{37}{72} e^{3 t}-\frac{17}{32} e^{t}+\left(\frac{5}{288}+\frac{1}{24} t\right) e^{-3 t}
$$

when $t \geqslant 0$.

Paper 4, Section II

14A Complex Methods

By using Fourier transforms and a conformal mapping

$$
w=\sin \left(\frac{\pi z}{a}\right)
$$

with $z=x+i y$ and $w=\xi+i \eta$, and a suitable real constant a, show that the solution to

$$
\begin{array}{rlrl}
\nabla^{2} \phi & =0 & -2 \pi \leqslant x \leqslant 2 \pi, y \geqslant 0, \\
\phi(x, 0) & =f(x) & -2 \pi \leqslant x \leqslant 2 \pi, \\
\phi(\pm 2 \pi, y) & =0 & y>0, \\
\phi(x, y) & \rightarrow 0 & y & y \infty,-2 \pi \leqslant x \leqslant 2 \pi,
\end{array}
$$

is given by

$$
\phi(\xi, \eta)=\frac{\eta}{\pi} \int_{-1}^{1} \frac{F\left(\xi^{\prime}\right)}{\eta^{2}+\left(\xi-\xi^{\prime}\right)^{2}} d \xi^{\prime}
$$

where $F\left(\xi^{\prime}\right)$ is to be determined.
In the case of $f(x)=\sin \left(\frac{x}{4}\right)$, give $F\left(\xi^{\prime}\right)$ explicitly as a function of ξ^{\prime}. [You need not evaluate the integral.]

Paper 1, Section I

2A Complex Analysis or Complex Methods

Classify the singularities of the following functions at both $z=0$ and at the point at infinity on the extended complex plane:

$$
\begin{aligned}
f_{1}(z) & =\frac{e^{z}}{z \sin ^{2} z}, \\
f_{2}(z) & =\frac{1}{z^{2}(1-\cos z)}, \\
f_{3}(z) & =z^{2} \sin (1 / z) .
\end{aligned}
$$

Paper 2, Section II

13A Complex Analysis or Complex Methods

Let $a=N+1 / 2$ for a positive integer N. Let C_{N} be the anticlockwise contour defined by the square with its four vertices at $a \pm i a$ and $-a \pm i a$. Let

$$
I_{N}=\oint_{C_{N}} \frac{d z}{z^{2} \sin (\pi z)}
$$

Show that $1 / \sin (\pi z)$ is uniformly bounded on the contours C_{N} as $N \rightarrow \infty$, and hence that $I_{N} \rightarrow 0$ as $N \rightarrow \infty$.

Using this result, establish that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=\frac{\pi^{2}}{12} .
$$

Paper 1, Section II

13A Complex Analysis or Complex Methods

Let $w=u+i v$ and let $z=x+i y$, for u, v, x, y real.
(a) Let A be the map defined by $w=\sqrt{z}$, using the principal branch. Show that A maps the region to the left of the parabola $y^{2}=4(1-x)$ on the z-plane, with the negative real axis $x \in(-\infty, 0]$ removed, into the vertical strip of the w-plane between the lines $u=0$ and $u=1$.
(b) Let B be the map defined by $w=\tan ^{2}(z / 2)$. Show that B maps the vertical strip of the z-plane between the lines $x=0$ and $x=\pi / 2$ into the region inside the unit circle on the w-plane, with the part $u \in(-1,0]$ of the negative real axis removed.
(c) Using the results of parts (a) and (b), show that the map C, defined by $w=\tan ^{2}(\pi \sqrt{z} / 4)$, maps the region to the left of the parabola $y^{2}=4(1-x)$ on the z-plane, including the negative real axis, onto the unit disc on the w-plane.

Paper 3, Section I

4A Complex Methods

The function $f(x)$ has Fourier transform

$$
\tilde{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x=\frac{-2 k i}{p^{2}+k^{2}}
$$

where $p>0$ is a real constant. Using contour integration, calculate $f(x)$ for $x<0$. [Jordan's lemma and the residue theorem may be used without proof.]

Paper 4, Section II

14A Complex Methods

(a) Show that the Laplace transform of the Heaviside step function $H(t-a)$ is

$$
\int_{0}^{\infty} H(t-a) e^{-p t} d t=\frac{e^{-a p}}{p}
$$

for $a>0$.
(b) Derive an expression for the Laplace transform of the second derivative of a function $f(t)$ in terms of the Laplace transform of $f(t)$ and the properties of $f(t)$ at $t=0$.
(c) A bar of length L has its end at $x=L$ fixed. The bar is initially at rest and straight. The end at $x=0$ is given a small fixed transverse displacement of magnitude a at $t=0^{+}$. You may assume that the transverse displacement $y(x, t)$ of the bar satisfies the wave equation with some wave speed c, and so the tranverse displacement $y(x, t)$ is the solution to the problem:

$$
\begin{array}{ll}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} & \text { for } 0<x<L \text { and } t>0, \\
y(x, 0)=\frac{\partial y}{\partial t}(x, 0)=0 & \text { for } 0<x<L, \\
y(0, t)=a ; y(L, t)=0 & \text { for } t>0 .
\end{array}
$$

(i) Show that the Laplace transform $Y(x, p)$ of $y(x, t)$, defined as

$$
Y(x, p)=\int_{0}^{\infty} y(x, t) e^{-p t} d t,
$$

is given by

$$
Y(x, p)=\frac{a \sinh \left[\frac{p}{c}(L-x)\right]}{p \sinh \left[\frac{p L}{c}\right]} .
$$

(ii) By use of the binomial theorem or otherwise, express $y(x, t)$ as an infinite series.
(iii) Plot the transverse displacement of the midpoint of the bar $y(L / 2, t)$ against time.

Paper 1, Section I

2B Complex Analysis or Complex Methods

Consider the analytic (holomorphic) functions f and g on a nonempty domain Ω where g is nowhere zero. Prove that if $|f(z)|=|g(z)|$ for all z in Ω then there exists a real constant α such that $f(z)=e^{i \alpha} g(z)$ for all z in Ω.

Paper 2, Section II

13B Complex Analysis or Complex Methods

(i) A function $f(z)$ has a pole of order m at $z=z_{0}$. Derive a general expression for the residue of $f(z)$ at $z=z_{0}$ involving f and its derivatives.
(ii) Using contour integration along a contour in the upper half-plane, determine the value of the integral

$$
I=\int_{0}^{\infty} \frac{(\ln x)^{2}}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x
$$

Paper 1, Section II

13B Complex Analysis or Complex Methods

(i) Show that transformations of the complex plane of the form

$$
\zeta=\frac{a z+b}{c z+d},
$$

always map circles and lines to circles and lines, where a, b, c and d are complex numbers such that $a d-b c \neq 0$.
(ii) Show that the transformation

$$
\zeta=\frac{z-\alpha}{\bar{\alpha} z-1}, \quad|\alpha|<1,
$$

maps the unit disk centered at $z=0$ onto itself.
(iii) Deduce a conformal transformation that maps the non-concentric annular domain $\Omega=\{|z|<1,|z-c|>c\}, 0<c<1 / 2$, to a concentric annular domain.

Paper 3, Section I

4B Complex Methods

Find the Fourier transform of the function

$$
f(x)=\frac{1}{1+x^{2}}, \quad x \in \mathbb{R},
$$

using an appropriate contour integration. Hence find the Fourier transform of its derivative, $f^{\prime}(x)$, and evaluate the integral

$$
I=\int_{-\infty}^{\infty} \frac{4 x^{2}}{\left(1+x^{2}\right)^{4}} d x
$$

Paper 4, Section II

14B Complex Methods

(i) State and prove the convolution theorem for Laplace transforms of two realvalued functions.
(ii) Let the function $f(t), t \geqslant 0$, be equal to 1 for $0 \leqslant t \leqslant a$ and zero otherwise, where a is a positive parameter. Calculate the Laplace transform of f. Hence deduce the Laplace transform of the convolution $g=f * f$. Invert this Laplace transform to obtain an explicit expression for $g(t)$.
[Hint: You may use the notation $(t-a)_{+}=H(t-a) \cdot(t-a)$.]

Paper 1, Section I

2B Complex Analysis or Complex Methods

Let $f(z)$ be an analytic/holomorphic function defined on an open set D, and let $z_{0} \in D$ be a point such that $f^{\prime}\left(z_{0}\right) \neq 0$. Show that the transformation $w=f(z)$ preserves the angle between smooth curves intersecting at z_{0}. Find such a transformation $w=f(z)$ that maps the second quadrant of the unit disc (i.e. $|z|<1, \pi / 2<\arg (z)<\pi)$ to the region in the first quadrant of the complex plane where $|w|>1$ (i.e. the region in the first quadrant outside the unit circle).

Paper 1, Section II

13B Complex Analysis or Complex Methods

By choice of a suitable contour show that for $a>b>0$

$$
\int_{0}^{2 \pi} \frac{\sin ^{2} \theta d \theta}{a+b \cos \theta}=\frac{2 \pi}{b^{2}}\left[a-\sqrt{a^{2}-b^{2}}\right]
$$

Hence evaluate

$$
\int_{0}^{1} \frac{\left(1-x^{2}\right)^{1 / 2} x^{2} d x}{1+x^{2}}
$$

using the substitution $x=\cos (\theta / 2)$.

Paper 2, Section II

13B Complex Analysis or Complex Methods

By considering a rectangular contour, show that for $0<a<1$ we have

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{e^{x}+1} d x=\frac{\pi}{\sin \pi a}
$$

Hence evaluate

$$
\int_{0}^{\infty} \frac{d t}{t^{5 / 6}(1+t)}
$$

Paper 3, Section I

4B Complex Methods

Find the most general cubic form

$$
u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}
$$

which satisfies Laplace's equation, where a, b, c and d are all real. Hence find an analytic function $f(z)=f(x+i y)$ which has such a u as its real part.

Paper 4, Section II

14B Complex Methods

Find the Laplace transforms of t^{n} for n a positive integer and $H(t-a)$ where $a>0$ and $H(t)$ is the Heaviside step function.

Consider a semi-infinite string which is initially at rest and is fixed at one end. The string can support wave-like motions, and for $t>0$ it is allowed to fall under gravity. Therefore the deflection $y(x, t)$ from its initial location satisfies

$$
\frac{\partial^{2}}{\partial t^{2}} y=c^{2} \frac{\partial^{2}}{\partial x^{2}} y+g \quad \text { for } \quad x>0, t>0
$$

with

$$
y(0, t)=y(x, 0)=\frac{\partial}{\partial t} y(x, 0)=0 \quad \text { and } \quad y(x, t) \rightarrow \frac{g t^{2}}{2} \text { as } x \rightarrow \infty,
$$

where g is a constant. Use Laplace transforms to find $y(x, t)$.
[The convolution theorem for Laplace transforms may be quoted without proof.]

7

Paper 1, Section I

2D Complex Analysis or Complex Methods

Classify the singularities (in the finite complex plane) of the following functions:
(i) $\frac{1}{(\cosh z)^{2}}$;
(ii) $\frac{1}{\cos (1 / z)}$;
(iii) $\frac{1}{\log z} \quad(-\pi<\arg z<\pi)$;
(iv) $\frac{z^{\frac{1}{2}}-1}{\sin \pi z} \quad(-\pi<\arg z<\pi)$.

Paper 1, Section II

13E Complex Analysis or Complex Methods

Suppose $p(z)$ is a polynomial of even degree, all of whose roots satisfy $|z|<R$. Explain why there is a holomorphic (i.e. analytic) function $h(z)$ defined on the region $R<|z|<\infty$ which satisfies $h(z)^{2}=p(z)$. We write $h(z)=\sqrt{p(z)}$.

By expanding in a Laurent series or otherwise, evaluate

$$
\int_{C} \sqrt{z^{4}-z} d z
$$

where C is the circle of radius 2 with the anticlockwise orientation. (Your answer will be well-defined up to a factor of ± 1, depending on which square root you pick.)

Paper 2, Section II

13D Complex Analysis or Complex Methods

Let

$$
I=\oint_{C} \frac{e^{i z^{2} / \pi}}{1+e^{-2 z}} d z
$$

where C is the rectangle with vertices at $\pm R$ and $\pm R+i \pi$, traversed anti-clockwise.
(i) Show that $I=\frac{\pi(1+i)}{\sqrt{ } 2}$.
(ii) Assuming that the contribution to I from the vertical sides of the rectangle is negligible in the limit $R \rightarrow \infty$, show that

$$
\int_{-\infty}^{\infty} e^{i x^{2} / \pi} d x=\frac{\pi(1+i)}{\sqrt{ } 2}
$$

(iii) Justify briefly the assumption that the contribution to I from the vertical sides of the rectangle is negligible in the limit $R \rightarrow \infty$.

Paper 3, Section I

4D Complex Methods

Let $y(t)=0$ for $t<0$, and let $\lim _{t \rightarrow 0^{+}} y(t)=y_{0}$.
(i) Find the Laplace transforms of $H(t)$ and $t H(t)$, where $H(t)$ is the Heaviside step function.
(ii) Given that the Laplace transform of $y(t)$ is $\widehat{y}(s)$, find expressions for the Laplace transforms of $\dot{y}(t)$ and $y(t-1)$.
(iii) Use Laplace transforms to solve the equation

$$
\dot{y}(t)-y(t-1)=H(t)-(t-1) H(t-1)
$$

in the case $y_{0}=0$.

Paper 4, Section II

14D Complex Methods

Let C_{1} and C_{2} be the circles $x^{2}+y^{2}=1$ and $5 x^{2}-4 x+5 y^{2}=0$, respectively, and let D be the (finite) region between the circles. Use the conformal mapping

$$
w=\frac{z-2}{2 z-1}
$$

to solve the following problem:

$$
\nabla^{2} \phi=0 \text { in } D \text { with } \phi=1 \text { on } C_{1} \text { and } \phi=2 \text { on } C_{2} .
$$

Paper 1, Section I

2A Complex Analysis or Complex Methods
Find a conformal transformation $\zeta=\zeta(z)$ that maps the domain $D, 0<\arg z<\frac{3 \pi}{2}$, on to the strip $0<\operatorname{Im}(\zeta)<1$.

Hence find a bounded harmonic function ϕ on D subject to the boundary conditions $\phi=0, A$ on $\arg z=0, \frac{3 \pi}{2}$, respectively, where A is a real constant.

Paper 2, Section II

13A Complex Analysis or Complex Methods
By a suitable choice of contour show that, for $-1<\alpha<1$,

$$
\int_{0}^{\infty} \frac{x^{\alpha}}{1+x^{2}} \mathrm{~d} x=\frac{\pi}{2 \cos (\alpha \pi / 2)}
$$

Paper 1, Section II

13A Complex Analysis or Complex Methods

Using Cauchy's integral theorem, write down the value of a holomorphic function $f(z)$ where $|z|<1$ in terms of a contour integral around the unit circle, $\zeta=e^{i \theta}$.

By considering the point $1 / \bar{z}$, or otherwise, show that

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\zeta) \frac{1-|z|^{2}}{|\zeta-z|^{2}} \mathrm{~d} \theta
$$

By setting $z=r e^{i \alpha}$, show that for any harmonic function $u(r, \alpha)$,

$$
u(r, \alpha)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \theta) \frac{1-r^{2}}{1-2 r \cos (\alpha-\theta)+r^{2}} \mathrm{~d} \theta
$$

if $r<1$.
Assuming that the function $v(r, \alpha)$, which is the conjugate harmonic function to $u(r, \alpha)$, can be written as

$$
v(r, \alpha)=v(0)+\frac{1}{\pi} \int_{0}^{2 \pi} u(1, \theta) \frac{r \sin (\alpha-\theta)}{1-2 r \cos (\alpha-\theta)+r^{2}} \mathrm{~d} \theta
$$

deduce that

$$
f(z)=i v(0)+\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \theta) \frac{\zeta+z}{\zeta-z} \mathrm{~d} \theta
$$

[You may use the fact that on the unit circle, $\zeta=1 / \bar{\zeta}$, and hence

$$
\left.\frac{\zeta}{\zeta-1 / \bar{z}}=-\frac{\bar{z}}{\bar{\zeta}-\bar{z}} . \quad\right]
$$

Paper 3, Section I

4A Complex Methods

State the formula for the Laplace transform of a function $f(t)$, defined for $t \geqslant 0$.
Let $f(t)$ be periodic with period T (i.e. $f(t+T)=f(t)$). If $g(t)$ is defined to be equal to $f(t)$ in $[0, T]$ and zero elsewhere and its Laplace transform is $G(s)$, show that the Laplace transform of $f(t)$ is given by

$$
F(s)=\frac{G(s)}{1-e^{-s T}} .
$$

Hence, or otherwise, find the inverse Laplace transform of

$$
F(s)=\frac{1}{s} \frac{1-e^{-s T / 2}}{1-e^{-s T}} .
$$

Paper 4, Section II

14A Complex Methods

State the convolution theorem for Fourier transforms.
The function $\phi(x, y)$ satisfies

$$
\nabla^{2} \phi=0
$$

on the half-plane $y \geqslant 0$, subject to the boundary conditions

$$
\begin{gathered}
\phi \rightarrow 0 \text { as } y \rightarrow \infty \text { for all } x, \\
\phi(x, 0)= \begin{cases}1, & |x| \leqslant 1 \\
0, & |x|>1 .\end{cases}
\end{gathered}
$$

Using Fourier transforms, show that

$$
\phi(x, y)=\frac{y}{\pi} \int_{-1}^{1} \frac{1}{y^{2}+(x-t)^{2}} \mathrm{~d} t
$$

and hence that

$$
\phi(x, y)=\frac{1}{\pi}\left[\tan ^{-1}\left(\frac{1-x}{y}\right)+\tan ^{-1}\left(\frac{1+x}{y}\right)\right] .
$$

Paper 1, Section I

2A Complex Analysis or Complex Methods

Derive the Cauchy-Riemann equations satisfied by the real and imaginary parts of a complex analytic function $f(z)$.

If $|f(z)|$ is constant on $|z|<1$, prove that $f(z)$ is constant on $|z|<1$.

Paper 1, Section II

13A Complex Analysis or Complex Methods
(i) Let $-1<\alpha<0$ and let

$$
\begin{aligned}
& f(z)=\frac{\log (z-\alpha)}{z} \text { where }-\pi \leqslant \arg (z-\alpha)<\pi \\
& g(z)=\frac{\log z}{z} \quad \text { where }-\pi \leqslant \arg (z)<\pi
\end{aligned}
$$

Here the logarithms take their principal values. Give a sketch to indicate the positions of the branch cuts implied by the definitions of $f(z)$ and $g(z)$.
(ii) Let $h(z)=f(z)-g(z)$. Explain why $h(z)$ is analytic in the annulus $1 \leqslant|z| \leqslant R$ for any $R>1$. Obtain the first three terms of the Laurent expansion for $h(z)$ around $z=0$ in this annulus and hence evaluate

$$
\oint_{|z|=2} h(z) d z
$$

Paper 2, Section II

13A Complex Analysis or Complex Methods

(i) Let C be an anticlockwise contour defined by a square with vertices at $z=x+i y$ where

$$
|x|=|y|=\left(2 N+\frac{1}{2}\right) \pi
$$

for large integer N. Let

$$
I=\oint_{C} \frac{\pi \cot z}{(z+\pi a)^{4}} d z
$$

Assuming that $I \rightarrow 0$ as $N \rightarrow \infty$, prove that, if a is not an integer, then

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^{4}}=\frac{\pi^{4}}{3 \sin ^{2}(\pi a)}\left(\frac{3}{\sin ^{2}(\pi a)}-2\right)
$$

(ii) Deduce the value of

$$
\sum_{n=-\infty}^{\infty} \frac{1}{\left(n+\frac{1}{2}\right)^{4}}
$$

(iii) Briefly justify the assumption that $I \rightarrow 0$ as $N \rightarrow \infty$.
[Hint: For part (iii) it is sufficient to consider, at most, one vertical side of the square and one horizontal side and to use a symmetry argument for the remaining sides.]

Paper 3, Section I

4D Complex Methods

Write down the function $\psi(u, v)$ that satisfies

$$
\frac{\partial^{2} \psi}{\partial u^{2}}+\frac{\partial^{2} \psi}{\partial v^{2}}=0, \quad \psi\left(-\frac{1}{2}, v\right)=-1, \quad \psi\left(\frac{1}{2}, v\right)=1
$$

The circular $\operatorname{arcs} \mathcal{C}_{1}$ and \mathcal{C}_{2} in the complex z-plane are defined by

$$
|z+1|=1, z \neq 0 \text { and }|z-1|=1, z \neq 0,
$$

respectively. You may assume without proof that the mapping from the complex z-plane to the complex ζ-plane defined by

$$
\zeta=\frac{1}{z}
$$

takes \mathcal{C}_{1} to the line $u=-\frac{1}{2}$ and \mathcal{C}_{2} to the line $u=\frac{1}{2}$, where $\zeta=u+i v$, and that the region \mathcal{D} in the z-plane exterior to both the circles $|z+1|=1$ and $|z-1|=1$ maps to the region in the ζ-plane given by $-\frac{1}{2}<u<\frac{1}{2}$.

Use the above mapping to solve the problem

$$
\nabla^{2} \phi=0 \quad \text { in } \mathcal{D}, \quad \phi=-1 \text { on } \mathcal{C}_{1} \text { and } \phi=1 \text { on } \mathcal{C}_{2} .
$$

Paper 4, Section II

14D Complex Methods

State and prove the convolution theorem for Laplace transforms.
Use Laplace transforms to solve

$$
2 f^{\prime}(t)-\int_{0}^{t}(t-\tau)^{2} f(\tau) d \tau=4 t H(t)
$$

with $f(0)=0$, where $H(t)$ is the Heaviside function. You may assume that the Laplace transform, $\widehat{f}(s)$, of $f(t)$ exists for Re s sufficiently large.

Paper 1, Section I

2A Complex Analysis or Complex Methods
(a) Write down the definition of the complex derivative of the function $f(z)$ of a single complex variable.
(b) Derive the Cauchy-Riemann equations for the real and imaginary parts $u(x, y)$ and $v(x, y)$ of $f(z)$, where $z=x+i y$ and

$$
f(z)=u(x, y)+i v(x, y)
$$

(c) State necessary and sufficient conditions on $u(x, y)$ and $v(x, y)$ for the function $f(z)$ to be complex differentiable.

Paper 1, Section II

13A Complex Analysis or Complex Methods

Calculate the following real integrals by using contour integration. Justify your steps carefully.
(a)

$$
I_{1}=\int_{0}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x, \quad a>0
$$

(b)

$$
I_{2}=\int_{0}^{\infty} \frac{x^{1 / 2} \log x}{1+x^{2}} d x
$$

Paper 2, Section II

13A Complex Analysis or Complex Methods

(a) Prove that a complex differentiable map, $f(z)$, is conformal, i.e. preserves angles, provided a certain condition holds on the first complex derivative of $f(z)$.
(b) Let D be the region

$$
D:=\{z \in \mathbb{C}:|z-1|>1 \text { and }|z-2|<2\}
$$

Draw the region D. It might help to consider the two sets

$$
\begin{aligned}
& C(1):=\{z \in \mathbb{C}:|z-1|=1\} \\
& C(2):=\{z \in \mathbb{C}:|z-2|=2\}
\end{aligned}
$$

(c) For the transformations below identify the images of D.

Step 1: The first map is $f_{1}(z)=\frac{z-1}{z}$,
Step 2: The second map is the composite $f_{2} f_{1}$ where $f_{2}(z)=\left(z-\frac{1}{2}\right) i$,
Step 3: The third map is the composite $f_{3} f_{2} f_{1}$ where $f_{3}(z)=e^{2 \pi z}$.
(d) Write down the inverse map to the composite $f_{3} f_{2} f_{1}$, explaining any choices of branch.
[The composite $f_{2} f_{1}$ means $f_{2}\left(f_{1}(z)\right)$.]

Paper 3, Section I

4A Complex Methods

(a) Prove that the real and imaginary parts of a complex differentiable function are harmonic.
(b) Find the most general harmonic polynomial of the form

$$
u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3},
$$

where a, b, c, d, x and y are real.
(c) Write down a complex analytic function of $z=x+i y$ of which $u(x, y)$ is the real part.

Paper 4, Section II

14A Complex Methods

A linear system is described by the differential equation

$$
y^{\prime \prime \prime}(t)-y^{\prime \prime}(t)-2 y^{\prime}(t)+2 y(t)=f(t)
$$

with initial conditions

$$
y(0)=0, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=1 .
$$

The Laplace transform of $f(t)$ is defined as

$$
\mathcal{L}[f(t)]=\tilde{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

You may assume the following Laplace transforms,

$$
\begin{aligned}
\mathcal{L}[y(t)] & =\tilde{y}(s), \\
\mathcal{L}\left[y^{\prime}(t)\right] & =s \tilde{y}(s)-y(0), \\
\mathcal{L}\left[y^{\prime \prime}(t)\right] & =s^{2} \tilde{y}(s)-s y(0)-y^{\prime}(0), \\
\mathcal{L}\left[y^{\prime \prime \prime}(t)\right] & =s^{3} \tilde{y}(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0) .
\end{aligned}
$$

(a) Use Laplace transforms to determine the response, $y_{1}(t)$, of the system to the signal

$$
f(t)=-2 .
$$

(b) Determine the response, $y_{2}(t)$, given that its Laplace transform is

$$
\tilde{y}_{2}(s)=\frac{1}{s^{2}(s-1)^{2}} .
$$

(c) Given that

$$
y^{\prime \prime \prime}(t)-y^{\prime \prime}(t)-2 y^{\prime}(t)+2 y(t)=g(t)
$$

leads to the response with Laplace transform

$$
\tilde{y}(s)=\frac{1}{s^{2}(s-1)^{2}},
$$

determine $g(t)$.

Paper 1, Section I

3D Complex Analysis or Complex Methods

Let $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$, be an analytic function of z in a domain D of the complex plane. Derive the Cauchy-Riemann equations relating the partial derivatives of u and v.

For $u=e^{-x} \cos y$, find v and hence $f(z)$.

Paper 1, Section II

13D Complex Analysis or Complex Methods

Consider the real function $f(t)$ of a real variable t defined by the following contour integral in the complex s-plane:

$$
f(t)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{e^{s t}}{\left(s^{2}+1\right) s^{1 / 2}} d s
$$

where the contour Γ is the line $s=\gamma+i y,-\infty<y<\infty$, for constant $\gamma>0$. By closing the contour appropriately, show that

$$
f(t)=\sin (t-\pi / 4)+\frac{1}{\pi} \int_{0}^{\infty} \frac{e^{-r t} d r}{\left(r^{2}+1\right) r^{1 / 2}}
$$

when $t>0$ and is zero when $t<0$. You should justify your evaluation of the inversion integral over all parts of the contour.

By expanding $\left(r^{2}+1\right)^{-1} r^{-1 / 2}$ as a power series in r, and assuming that you may integrate the series term by term, show that the two leading terms, as $t \rightarrow \infty$, are

$$
f(t) \sim \sin (t-\pi / 4)+\frac{1}{(\pi t)^{1 / 2}}+\cdots
$$

[You may assume that $\int_{0}^{\infty} x^{-1 / 2} e^{-x} d x=\pi^{1 / 2}$.]

Paper 2, Section II

14D Complex Analysis or Complex Methods

Show that both the following transformations from the z-plane to the ζ-plane are conformal, except at certain critical points which should be identified in both planes, and in each case find a domain in the z-plane that is mapped onto the upper half ζ-plane:

$$
\begin{aligned}
\text { (i) } \zeta & =z+\frac{b^{2}}{z} \\
\text { (ii) } \zeta & =\cosh \frac{\pi z}{b}
\end{aligned}
$$

where b is real and positive.

Paper 3, Section I

5D Complex Methods

Use the residue calculus to evaluate

$$
\text { (i) } \oint_{C} z e^{1 / z} d z \text { and (ii) } \oint_{C} \frac{z d z}{1-4 z^{2}} \text {, }
$$

where C is the circle $|z|=1$.

Paper 4, Section II

15D Complex Methods

The function $u(x, y)$ satisfies Laplace's equation in the half-space $y \geqslant 0$, together with boundary conditions

$$
\begin{gathered}
u(x, y) \rightarrow 0 \text { as } y \rightarrow \infty \text { for all } x, \\
u(x, 0)=u_{0}(x), \text { where } x u_{0}(x) \rightarrow 0 \text { as }|x| \rightarrow \infty .
\end{gathered}
$$

Using Fourier transforms, show that

$$
u(x, y)=\int_{-\infty}^{\infty} u_{0}(t) v(x-t, y) d t
$$

where

$$
v(x, y)=\frac{y}{\pi\left(x^{2}+y^{2}\right)} .
$$

Suppose that $u_{0}(x)=\left(x^{2}+a^{2}\right)^{-1}$. Using contour integration and the convolution theorem, or otherwise, show that

$$
u(x, y)=\frac{y+a}{a\left[x^{2}+(y+a)^{2}\right]} .
$$

[You may assume the convolution theorem of Fourier transforms, i.e. that if $\tilde{f}(k), \tilde{g}(k)$ are the Fourier transforms of two functions $f(x), g(x)$, then $\tilde{f}(k) \tilde{g}(k)$ is the Fourier transform of $\int_{-\infty}^{\infty} f(t) g(x-t) d t$.]

1/I/3C Complex Analysis or Complex Methods

Given that $f(z)$ is an analytic function, show that the mapping $w=f(z)$
(a) preserves angles between smooth curves intersecting at z if $f^{\prime}(z) \neq 0$;
(b) has Jacobian given by $\left|f^{\prime}(z)\right|^{2}$.

1/II/13C Complex Analysis or Complex Methods

By a suitable choice of contour show the following:
(a)

$$
\int_{0}^{\infty} \frac{x^{1 / n}}{1+x^{2}} d x=\frac{\pi}{2 \cos (\pi / 2 n)}
$$

where $n>1$,
(b)

$$
\int_{0}^{\infty} \frac{x^{1 / 2} \log x}{1+x^{2}} d x=\frac{\pi^{2}}{2 \sqrt{2}}
$$

2/II/14C Complex Analysis or Complex Methods

Let $f(z)=1 /\left(e^{z}-1\right)$. Find the first three terms in the Laurent expansion for $f(z)$ valid for $0<|z|<2 \pi$.

Now let n be a positive integer, and define

$$
\begin{aligned}
& f_{1}(z)=\frac{1}{z}+\sum_{r=1}^{n} \frac{2 z}{z^{2}+4 \pi^{2} r^{2}} \\
& f_{2}(z)=f(z)-f_{1}(z)
\end{aligned}
$$

Show that the singularities of f_{2} in $\{z:|z|<2(n+1) \pi\}$ are all removable. By expanding f_{1} as a Laurent series valid for $|z|>2 n \pi$, and f_{2} as a Taylor series valid for $|z|<2(n+1) \pi$, find the coefficients of z^{j} for $-1 \leq j \leq 1$ in the Laurent series for f valid for $2 n \pi<|z|<2(n+1) \pi$.

By estimating an appropriate integral around the contour $|z|=(2 n+1) \pi$, show that

$$
\sum_{r=1}^{\infty} \frac{1}{r^{2}}=\frac{\pi^{2}}{6} .
$$

3/I/5C Complex Methods

Using the contour integration formula for the inversion of Laplace transforms find the inverse Laplace transforms of the following functions:
(a) $\frac{s}{s^{2}+a^{2}} \quad(a$ real and non-zero $)$,
(b) $\frac{1}{\sqrt{s}}$.
[You may use the fact that $\int_{-\infty}^{\infty} e^{-b x^{2}} d x=\sqrt{\pi / b}$.]

4/II/15C Complex Methods

Let H be the domain $\mathbb{C}-\{x+i y: x \leq 0, y=0\}$ (i.e., \mathbb{C} cut along the negative x-axis). Show, by a suitable choice of branch, that the mapping

$$
z \mapsto w=-i \log z
$$

maps H onto the strip $S=\{z=x+i y,-\pi<x<\pi\}$.
How would a different choice of branch change the result?

Let G be the domain $\{z \in \mathbb{C}:|z|<1,|z+i|>\sqrt{2}\}$. Find an analytic transformation that maps G to S, where S is the strip defined above.

1/I/3F Complex Analysis or Complex Methods

For the function

$$
f(z)=\frac{2 z}{z^{2}+1},
$$

determine the Taylor series of f around the point $z_{0}=1$, and give the largest r for which this series converges in the disc $|z-1|<r$.

1/II/13F Complex Analysis or Complex Methods

By integrating round the contour C_{R}, which is the boundary of the domain

$$
D_{R}=\left\{z=r e^{i \theta}: 0<r<R, \quad 0<\theta<\frac{\pi}{4}\right\},
$$

evaluate each of the integrals

$$
\int_{0}^{\infty} \sin x^{2} d x, \quad \int_{0}^{\infty} \cos x^{2} d x .
$$

[You may use the relations $\int_{0}^{\infty} e^{-r^{2}} d r=\frac{\sqrt{\pi}}{2}$ and $\sin t \geq \frac{2}{\pi} t$ for $0 \leq t \leq \frac{\pi}{2}$.]

2/II/14F Complex Analysis or Complex Methods

Let Ω be the half-strip in the complex plane,

$$
\Omega=\left\{z=x+i y \in \mathbb{C}:-\frac{\pi}{2}<x<\frac{\pi}{2}, \quad y>0\right\} .
$$

Find a conformal mapping that maps Ω onto the unit disc.

3/I/5F Complex Methods

Show that the function $\phi(x, y)=\tan ^{-1} \frac{y}{x}$ is harmonic. Find its harmonic conjugate $\psi(x, y)$ and the analytic function $f(z)$ whose real part is $\phi(x, y)$. Sketch the curves $\phi(x, y)=C$ and $\psi(x, y)=K$.

4/II/15F Complex Methods

(i) Use the definition of the Laplace transform of $f(t)$:

$$
L\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

to show that, for $f(t)=t^{n}$,

$$
L\{f(t)\}=F(s)=\frac{n!}{s^{n+1}}, \quad L\left\{e^{a t} f(t)\right\}=F(s-a)=\frac{n!}{(s-a)^{n+1}} .
$$

(ii) Use contour integration to find the inverse Laplace transform of

$$
F(s)=\frac{1}{s^{2}(s+1)^{2}} .
$$

(iii) Verify the result in (ii) by using the results in (i) and the convolution theorem.
(iv) Use Laplace transforms to solve the differential equation

$$
f^{(i v)}(t)+2 f^{\prime \prime \prime}(t)+f^{\prime \prime}(t)=0
$$

subject to the initial conditions

$$
f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=0, \quad f^{\prime \prime \prime}(0)=1 .
$$

1/I/3D Complex Analysis or Complex Methods

Let L be the Laplace operator, i.e., $L(g)=g_{x x}+g_{y y}$. Prove that if $f: \Omega \rightarrow \mathbf{C}$ is analytic in a domain Ω, then

$$
L\left(|f(z)|^{2}\right)=4\left|f^{\prime}(z)\right|^{2}, \quad z \in \Omega
$$

1/II/13D Complex Analysis or Complex Methods

By integrating round the contour involving the real axis and the $\operatorname{line} \operatorname{Im}(z)=2 \pi$, or otherwise, evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x, \quad 0<a<1
$$

Explain why the given restriction on the value a is necessary.

2/II/14D Complex Analysis or Complex Methods

Let Ω be the region enclosed between the two circles C_{1} and C_{2}, where

$$
C_{1}=\{z \in \mathbf{C}:|z-i|=1\}, \quad C_{2}=\{z \in \mathbf{C}:|z-2 i|=2\} .
$$

Find a conformal mapping that maps Ω onto the unit disc.
[Hint: you may find it helpful first to map Ω to a strip in the complex plane.]

3/I/5D Complex Methods

The transformation

$$
w=i\left(\frac{1-z}{1+z}\right)
$$

maps conformally the interior of the unit disc D onto the upper half-plane H_{+}, and maps the upper and lower unit semicircles C_{+}and C_{-}onto the positive and negative real axis \mathbb{R}_{+}and \mathbb{R}_{-}, respectively.

Consider the Dirichlet problem in the upper half-plane:

$$
\frac{\partial^{2} f}{\partial u^{2}}+\frac{\partial^{2} f}{\partial v^{2}}=0 \quad \text { in } \quad H_{+} ; \quad f(u, v)= \begin{cases}1 & \text { on } \mathbb{R}_{+} \\ 0 & \text { on } \mathbb{R}_{-}\end{cases}
$$

Its solution is given by the formula

$$
f(u, v)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{u}{v}\right)
$$

Using this result, determine the solution to the Dirichlet problem in the unit disc:

$$
\frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial^{2} F}{\partial y^{2}}=0 \quad \text { in } \quad D ; \quad F(x, y)= \begin{cases}1 & \text { on } C_{+} \\ 0 & \text { on } C_{-}\end{cases}
$$

Briefly explain your answer.

4/II/15D Complex Methods

Denote by $f * g$ the convolution of two functions, and by \widehat{f} the Fourier transform, i.e.,

$$
[f * g](x)=\int_{-\infty}^{\infty} f(t) g(x-t) d t, \quad \widehat{f}(\lambda)=\int_{-\infty}^{\infty} f(x) e^{-i \lambda x} d x
$$

(a) Show that, for suitable functions f and g, the Fourier transform \widehat{F} of the convolution $F=f * g$ is given by $\widehat{F}=\widehat{f} \cdot \widehat{g}$.
(b) Let

$$
f_{1}(x)= \begin{cases}1 & |x| \leqslant 1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

and let $f_{2}=f_{1} * f_{1}$ be the convolution of f_{1} with itself. Find the Fourier transforms of f_{1} and f_{2}, and, by applying Parseval's theorem, determine the value of the integral

$$
\int_{-\infty}^{\infty}\left(\frac{\sin y}{y}\right)^{4} d y
$$

1/I/3F Complex Analysis or Complex Methods

State the Cauchy integral formula.
Using the Cauchy integral formula, evaluate

$$
\int_{|z|=2} \frac{z^{3}}{z^{2}+1} d z
$$

1/II/13F Complex Analysis or Complex Methods

Determine a conformal mapping from $\Omega_{0}=\mathbf{C} \backslash[-1,1]$ to the complex unit disc $\Omega_{1}=\{z \in \mathbf{C}:|z|<1\}$.
[Hint: A standard method is first to map Ω_{0} to $\mathbf{C} \backslash(-\infty, 0]$, then to the complex right half-plane $\{z \in \mathbf{C}: \operatorname{Re} z>0\}$ and, finally, to Ω_{1}.]

2/II/14F Complex Analysis or Complex Methods

Let $F=P / Q$ be a rational function, where $\operatorname{deg} Q \geqslant \operatorname{deg} P+2$ and Q has no real zeros. Using the calculus of residues, write a general expression for

$$
\int_{-\infty}^{\infty} F(x) e^{i x} d x
$$

in terms of residues and briefly sketch its proof.
Evaluate explicitly the integral

$$
\int_{-\infty}^{\infty} \frac{\cos x}{4+x^{4}} d x
$$

$3 / \mathrm{I} / 5 \mathrm{~F}$
 Complex Methods

Define a harmonic function and state when the harmonic functions f and g are conjugate.

Let $\{u, v\}$ and $\{p, q\}$ be two pairs of harmonic conjugate functions. Prove that $\{p(u, v), q(u, v)\}$ are also harmonic conjugate.

4/II/15F Complex Methods

Determine the Fourier expansion of the function $f(x)=\sin \lambda x$, where $-\pi \leqslant x \leqslant \pi$, in the two cases where λ is an integer and λ is a real non-integer.

Using the Parseval identity in the case $\lambda=\frac{1}{2}$, find an explicit expression for the sum

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(4 n^{2}-1\right)^{2}}
$$

1/I/5A Complex Methods

Determine the poles of the following functions and calculate their residues there.
(i) $\frac{1}{z^{2}+z^{4}}$,
(ii) $\frac{e^{1 / z^{2}}}{z-1}$,
(iii) $\frac{1}{\sin \left(e^{z}\right)}$.

1/II/16A Complex Methods

Let p and q be two polynomials such that

$$
q(z)=\prod_{l=1}^{m}\left(z-\alpha_{l}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{m}$ are distinct non-real complex numbers and $\operatorname{deg} p \leqslant m-1$. Using contour integration, determine

$$
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} e^{i x} d x
$$

carefully justifying all steps.

2/I/5A Complex Methods

Let the functions f and g be analytic in an open, nonempty domain Ω and assume that $g \neq 0$ there. Prove that if $|f(z)| \equiv|g(z)|$ in Ω then there exists $\alpha \in \mathbb{R}$ such that $f(z) \equiv e^{i \alpha} g(z)$.

2/II/16A Complex Methods

Prove by using the Cauchy theorem that if f is analytic in the open disc $\Omega=\{z \in \mathbb{C}:|z|<1\}$ then there exists a function g, analytic in Ω, such that $g^{\prime}(z)=f(z)$, $z \in \Omega$.

4/I/5A Complex Methods

State and prove the Parseval formula.
[You may use without proof properties of convolution, as long as they are precisely stated.]

4/II/15A Complex Methods

(i) Show that the inverse Fourier transform of the function

$$
\hat{g}(s)= \begin{cases}e^{s}-e^{-s}, & |s| \leqslant 1 \\ 0, & |s| \geqslant 1\end{cases}
$$

is

$$
g(x)=\frac{2 i}{\pi} \frac{1}{1+x^{2}}(x \sinh 1 \cos x-\cosh 1 \sin x)
$$

(ii) Determine, by using Fourier transforms, the solution of the Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

given in the strip $-\infty<x<\infty, 0<y<1$, together with the boundary conditions

$$
u(x, 0)=g(x), \quad u(x, 1) \equiv 0, \quad-\infty<x<\infty
$$

where g has been given above.
[You may use without proof properties of Fourier transforms.]

1/I/7B Complex Methods

Let $u(x, y)$ and $v(x, y)$ be a pair of conjugate harmonic functions in a domain D. Prove that

$$
U(x, y)=e^{-2 u v} \cos \left(u^{2}-v^{2}\right) \quad \text { and } \quad V(x, y)=e^{-2 u v} \sin \left(u^{2}-v^{2}\right)
$$

also form a pair of conjugate harmonic functions in D.

1/II/16B Complex Methods

Sketch the region A which is the intersection of the discs

$$
D_{0}=\{z \in \mathbb{C}:|z|<1\} \quad \text { and } \quad D_{1}=\{z \in \mathbb{C}:|z-(1+i)|<1\} .
$$

Find a conformal mapping that maps A onto the right half-plane $H=\{z \in \mathbb{C}: \operatorname{Re} z>0\}$. Also find a conformal mapping that maps A onto D_{0}.
[Hint: You may find it useful to consider maps of the form $w(z)=\frac{a z+b}{c z+d}$.]

2/I/7B Complex Methods

(a) Using the residue theorem, evaluate

$$
\int_{|z|=1}\left(z-\frac{1}{z}\right)^{2 n} \frac{d z}{z}
$$

(b) Deduce that

$$
\int_{0}^{2 \pi} \sin ^{2 n} t d t=\frac{\pi}{2^{2 n-1}} \frac{(2 n)!}{(n!)^{2}}
$$

2/II/16B Complex Methods

(a) Show that if f satisfies the equation

$$
\begin{equation*}
f^{\prime \prime}(x)-x^{2} f(x)=\mu f(x), \quad x \in \mathbb{R} \tag{*}
\end{equation*}
$$

where μ is a constant, then its Fourier transform \widehat{f} satisfies the same equation, i.e.

$$
\widehat{f}^{\prime \prime}(\lambda)-\lambda^{2} \widehat{f}(\lambda)=\mu \widehat{f}(\lambda) .
$$

(b) Prove that, for each $n \geq 0$, there is a polynomial $p_{n}(x)$ of degree n, unique up to multiplication by a constant, such that

$$
f_{n}(x)=p_{n}(x) e^{-x^{2} / 2}
$$

is a solution of $(*)$ for some $\mu=\mu_{n}$.
(c) Using the fact that $g(x)=e^{-x^{2} / 2}$ satisfies $\widehat{g}=c g$ for some constant c, show that the Fourier transform of f_{n} has the form

$$
\widehat{f_{n}}(\lambda)=q_{n}(\lambda) e^{-\lambda^{2} / 2}
$$

where q_{n} is also a polynomial of degree n.
(d) Deduce that the f_{n} are eigenfunctions of the Fourier transform operator, i.e. $\widehat{f_{n}}(x)=c_{n} f_{n}(x)$ for some constants c_{n}.

4/I/8B Complex Methods

Find the Laurent series centred on 0 for the function

$$
f(z)=\frac{1}{(z-1)(z-2)}
$$

in each of the domains
(a) $|z|<1$,
(b) $1<|z|<2$,
(c) $|z|>2$.

4/II/17B Complex Methods
Let

$$
f(z)=\frac{z^{m}}{1+z^{n}}, \quad n>m+1, \quad m, n \in \mathbb{N}
$$

and let C_{R} be the boundary of the domain

$$
D_{R}=\left\{z=r e^{i \theta}: 0<r<R, \quad 0<\theta<\frac{2 \pi}{n}\right\}, \quad R>1
$$

(a) Using the residue theorem, determine

$$
\int_{C_{R}} f(z) d z
$$

(b) Show that the integral of $f(z)$ along the circular part γ_{R} of C_{R} tends to 0 as $R \rightarrow \infty$.
(c) Deduce that

$$
\int_{0}^{\infty} \frac{x^{m}}{1+x^{n}} d x=\frac{\pi}{n \sin \frac{\pi(m+1)}{n}}
$$

1/I/7B Complex Methods

Using contour integration around a rectangle with vertices

$$
-x, x, x+i y,-x+i y
$$

prove that, for all real y,

$$
\int_{-\infty}^{+\infty} e^{-(x+i y)^{2}} d x=\int_{-\infty}^{+\infty} e^{-x^{2}} d x
$$

Hence derive that the function $f(x)=e^{-x^{2} / 2}$ is an eigenfunction of the Fourier transform

$$
\widehat{f}(y)=\int_{-\infty}^{+\infty} f(x) e^{-i x y} d x
$$

i.e. \widehat{f} is a constant multiple of f.

1/II/16B Complex Methods

(a) Show that if f is an analytic function at z_{0} and $f^{\prime}\left(z_{0}\right) \neq 0$, then f is conformal at z_{0}, i.e. it preserves angles between paths passing through z_{0}.
(b) Let D be the disc given by $|z+i|<\sqrt{2}$, and let H be the half-plane given by $y>0$, where $z=x+i y$. Construct a map of the domain $D \cap H$ onto H, and hence find a conformal mapping of $D \cap H$ onto the disc $\{z:|z|<1\}$. [Hint: You may find it helpful to consider a mapping of the form $(a z+b) /(c z+d)$, where $a d-b c \neq 0$.]

2/I/7B Complex Methods

Suppose that f is analytic, and that $|f(z)|^{2}$ is constant in an open disk D. Use the Cauchy-Riemann equations to show that $f(z)$ is constant in D.

2/II/16B Complex Methods

A function $f(z)$ has an isolated singularity at a, with Laurent expansion

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n} .
$$

(a) Define res (f, a), the residue of f at the point a.
(b) Prove that if a is a pole of order $k+1$, then

$$
\operatorname{res}(f, a)=\lim _{z \rightarrow a} \frac{h^{(k)}(z)}{k!}, \quad \text { where } \quad h(z)=(z-a)^{k+1} f(z)
$$

(c) Using the residue theorem and the formula above show that

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{k+1}}=\pi \frac{(2 k)!}{(k!)^{2}} 4^{-k}, \quad k \geq 1 .
$$

4/I/8B Complex Methods

Let f be a function such that $\int_{-\infty}^{+\infty}|f(x)|^{2} d x<\infty$. Prove that

$$
\int_{-\infty}^{+\infty} f(x+k) \overline{f(x+l)} d x=0 \quad \text { for all integers } k \text { and } l \text { with } k \neq l,
$$

if and only if

$$
\int_{-\infty}^{+\infty}|\widehat{f}(t)|^{2} e^{-i m t} d t=0 \quad \text { for all integers } m \neq 0
$$

where \widehat{f} is the Fourier transform of f.

4/II/17B Complex Methods

(a) Using the inequality $\sin \theta \geq 2 \theta / \pi$ for $0 \leq \theta \leq \frac{\pi}{2}$, show that, if f is continuous for large $|z|$, and if $f(z) \rightarrow 0$ as $z \rightarrow \infty$, then

$$
\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} f(z) e^{i \lambda z} d z=0 \quad \text { for } \quad \lambda>0
$$

where $\Gamma_{R}=R e^{i \theta}, 0 \leq \theta \leq \pi$.
(b) By integrating an appropriate function $f(z)$ along the contour formed by the semicircles Γ_{R} and Γ_{r} in the upper half-plane with the segments of the real axis $[-R,-r]$ and $[r, R]$, show that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

1/I/7E Complex Methods

State the Cauchy integral formula.
Assuming that the function $f(z)$ is analytic in the disc $|z|<1$, prove that, for every $0<r<1$, it is true that

$$
\frac{d^{n} f(0)}{d z^{n}}=\frac{n!}{2 \pi i} \int_{|\xi|=r} \frac{f(\xi)}{\xi^{n+1}} d \xi, \quad n=0,1, \ldots
$$

[Taylor's theorem may be used if clearly stated.]

1/II/16E Complex Methods

Let the function F be integrable for all real arguments x, such that

$$
\int_{-\infty}^{\infty}|F(x)| d x<\infty
$$

and assume that the series

$$
f(\tau)=\sum_{n=-\infty}^{\infty} F(2 n \pi+\tau)
$$

converges uniformly for all $0 \leqslant \tau \leqslant 2 \pi$.
Prove the Poisson summation formula

$$
f(\tau)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \hat{F}(n) e^{i n \tau}
$$

where \hat{F} is the Fourier transform of F. [Hint: You may show that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i m x} f(x) d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i m x} F(x) d x
$$

or, alternatively, prove that f is periodic and express its Fourier expansion coefficients explicitly in terms of \hat{F}.]

Letting $F(x)=e^{-|x|}$, use the Poisson summation formula to evaluate the sum

$$
\sum_{n=-\infty}^{\infty} \frac{1}{1+n^{2}}
$$

2/I/7E Complex Methods

A complex function is defined for every $z \in V$, where V is a non-empty open subset of \mathbb{C}, and it possesses a derivative at every $z \in V$. Commencing from a formal definition of derivative, deduce the Cauchy-Riemann equations.

2/II/16E Complex Methods

Let R be a rational function such that $\lim _{z \rightarrow \infty}\{z R(z)\}=0$. Assuming that R has no real poles, use the residue calculus to evaluate

$$
\int_{-\infty}^{\infty} R(x) d x
$$

Given that $n \geqslant 1$ is an integer, evaluate

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2 n}}
$$

4/I/8F Complex Methods

Consider a conformal mapping of the form

$$
f(z)=\frac{a+b z}{c+d z}, \quad z \in \mathbb{C}
$$

where $a, b, c, d \in \mathbb{C}$, and $a d \neq b c$. You may assume $b \neq 0$. Show that any such $f(z)$ which maps the unit circle onto itself is necessarily of the form

$$
f(z)=e^{i \psi} \frac{a+z}{1+\bar{a} z} .
$$

[Hint: Show that it is always possible to choose $b=1$.]

4/II/17F Complex Methods

State Jordan's Lemma.
Consider the integral

$$
I=\oint_{C} d z \frac{z \sin (x z)}{\left(a^{2}+z^{2}\right) \sin \pi z},
$$

for real x and a. The rectangular contour C runs from $+\infty+i \epsilon$ to $-\infty+i \epsilon$, to $-\infty-i \epsilon$, to $+\infty-i \epsilon$ and back to $+\infty+i \epsilon$, where ϵ is infinitesimal and positive. Perform the integral in two ways to show that

$$
\sum_{n=-\infty}^{\infty}(-1)^{n} \frac{n \sin n x}{a^{2}+n^{2}}=-\pi \frac{\sinh a x}{\sinh a \pi}
$$

for $|x|<\pi$.

Part IB

