Part IB

Analysis and Topology

Year

2023

2022

2021

2020

2G Analysis and Topology

Show that a topological space X is connected if and only if every continuous integer-valued function on X is constant.

Let \mathcal{A} be a family of connected subsets of a topological space X such that $\bigcup_{A \in \mathcal{A}} A = X$. Assume that $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{A}$. Prove that X is connected.

Deduce, or otherwise show, that if X and Y are connected topological spaces, then $X \times Y$ is also connected in the product topology.

Paper 4, Section I

2G Analysis and Topology

Let (f_n) be a sequence of continuous real-valued functions on a topological space X. Assume that there is a function $f: X \to \mathbb{R}$ such that every $x \in X$ has a neighbourhood U on which (f_n) converges to f uniformly. Show that f is continuous at every $x \in X$. Further show that (f_n) converges to f uniformly on every compact subset of X.

Paper 1, Section II

10G Analysis and Topology

Define the terms Cauchy sequence and complete metric space. Prove that every Cauchy sequence in a metric space is bounded.

Show that a metric space (M,d) is complete if and only if given any sequence (F_n) of non-empty, closed subsets of M satisfying

- $F_n \supset F_{n+1}$ for all $n \in \mathbb{N}$ and
- $\operatorname{diam} F_n = \sup\{d(x,y): x,y \in F_n\} \to 0 \text{ as } n \to \infty,$

the intersection $\bigcap_{n\in\mathbb{N}} F_n$ is non-empty.

State the contraction mapping theorem.

Let (Λ, ρ) and (M, d) be non-empty metric spaces, and assume that (M, d) is complete. Let $T \colon \Lambda \times M \to M$ be a function with the following properties:

- there exists $0 \le k < 1$ such that $d(T(\lambda, x), T(\lambda, y)) \le kd(x, y)$ for all $\lambda \in \Lambda$ and all $x, y \in M$;
- for each $x \in M$, the function $\Lambda \to M$, given by $\lambda \mapsto T(\lambda, x)$, is continuous.

Show that there is a unique function $x^* : \Lambda \to M$ such that $T(\lambda, x^*(\lambda)) = x^*(\lambda)$ for all $\lambda \in \Lambda$. Show further that the function x^* is continuous.

10G Analysis and Topology

Define the notion of uniform convergence for a sequence (f_n) of real-valued functions on an arbitrary set S and the notion of uniform continuity for a function $h: M \to N$ between metric spaces.

Let $C_0(\mathbb{R}^d)$ denote the set of all continuous functions $f : \mathbb{R}^d \to \mathbb{R}$ satisfying $f(x) \to 0$ as $||x|| \to \infty$, i.e. for all $\varepsilon > 0$ there exists K > 0 such that $|f(x)| < \varepsilon$ whenever ||x|| > K (where ||x|| denotes the usual Euclidean length of x). Briefly explain why every function in $C_0(\mathbb{R}^d)$ is bounded. Prove that $C_0(\mathbb{R}^d)$ is a complete metric space in the uniform metric. Is it true that every member of $C_0(\mathbb{R}^d)$ is uniformly continuous? Give a proof or counterexample.

Let $\varepsilon \colon \mathbb{R} \to [0, \infty)$ be a continuous function with $\varepsilon(0) = 0$. For $n \in \mathbb{N}$ define $f_n \colon \mathbb{R} \to \mathbb{R}$ by $f_n(x) = \sqrt{x^2 + \varepsilon(x/n)}$. Must (f_n) converge pointwise? Must (f_n) converge uniformly? Do your answers change if we further assume that for some $M \geqslant 0$ and for all $t \in \mathbb{R}$ we have $\varepsilon(t) \leqslant M|t|$? Justify your answers.

Paper 3, Section II

11G Analysis and Topology

Let $f: U \to \mathbb{R}^n$ be a function where U is an open subset of \mathbb{R}^m , and let $a \in U$. Define what it means that f is differentiable at a and define the derivative of f at a. Define what it means that f is continuously differentiable at a. Show that a linear map $\mathbb{R}^m \to \mathbb{R}^n$ is continuously differentiable at every point of \mathbb{R}^m .

State and prove the mean value inequality. Let U be an open, connected subset of \mathbb{R}^m . Let $f: U \to \mathbb{R}^n$ be a differentiable function such that $Df|_a$ is the zero map for all $a \in U$. Show that f is a constant function.

State the inverse function theorem. Consider the curve C in \mathbb{R}^2 defined by the equation

$$x^2 + y + \cos(xy) = 1.$$

Show that there exist an open neighbourhood U of (0,0) in \mathbb{R}^2 , an open interval I in \mathbb{R} containing 0 and a continuous function $g: I \to \mathbb{R}$ such that $U \cap C$ is the graph of g, *i.e.*,

$$\{(x,y) \in \mathbb{R}^2 : x \in I, \ y = g(x)\} = U \cap C.$$

Part IB, Paper 1

10G Analysis and Topology

Define the notions of compact space, Hausdorff space and homeomorphism.

Let X be a topological space and R be an equivalence relation on X. Define the quotient space X/R and show that the quotient map $q\colon X\to X/R$ is continuous. Let Y be another topological space and $f\colon X\to Y$ be a continuous function such that f(x)=f(y) whenever xRy in X. Show that the unique function $F\colon X/R\to Y$ with $F\circ q=f$ is continuous.

Show that the quotient of a compact space is compact. Give an example to show that the quotient of a Hausdorff space need not be Hausdorff.

Let $f: X \to Y$ be a continuous bijection from the compact space X to the Hausdorff space Y. Carefully quoting any necessary results, show that f is a homeomorphism.

Let $X = [0, 1]^2$ be the closed unit square in \mathbb{R}^2 . Define an equivalence relation R on X by $(x_1, y_1)R(x_2, y_2)$ if and only if one of the following holds:

- (i) $x_1 = x_2$ and $y_1 = y_2$, or
- (ii) $\{x_1, x_2\} = \{0, 1\}$ and $y_1 = y_2$, or
- (iii) $y_1 = y_2 \in \{0, 1\}.$

Show that the quotient space X/R is homeomorphic to the unit sphere $S^2 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$

2G Analysis and Topology

Let $f:(M,d) \to (N,e)$ be a homeomorphism between metric spaces. Show that d'(x,y) = e(f(x),f(y)) defines a metric on M that is equivalent to d. Construct a metric on \mathbb{R} which is equivalent to the standard metric but in which \mathbb{R} is not complete.

Paper 4, Section I

2G Analysis and Topology

Define the *closure* of a subspace Z of a topological space X, and what it means for Z to be *dense*. What does it mean for a topological space Y to be *Hausdorff*?

Assume that Y is Hausdorff, and that Z is a dense subspace of X. Show that if two continuous maps $f, g: X \to Y$ agree on Z, they must agree on the whole of X. Does this remain true if you drop the assumption that Y is Hausdorff?

Paper 1, Section II

10G Analysis and Topology

Let X and Y be metric spaces. Determine which of the following statements are always true and which may be false, giving a proof or a counterexample as appropriate.

- (a) Let f_n and f be real-valued functions on X and let A, B be two subsets of X such that $X = A \cup B$. If f_n converges uniformly to f on both A and B, then f_n converges uniformly to f on X.
- (b) If the sequences of real-valued functions f_n and g_n converge uniformly on X to f and g respectively, then f_ng_n converges uniformly to fg on X.
 - (c) Let X be the rectangle $[1,2] \times [1,2] \subset \mathbb{R}^2$ and let $f_n: X \to \mathbb{R}$ be given by

$$f_n(x,y) = \frac{1+nx}{1+ny}.$$

Then f_n converges uniformly on X.

- (d) Let A be a subset of X and x_0 a point such that any neighbourhood of x_0 contains a point of A different from x_0 . Suppose the functions $f_n: A \to Y$ converge uniformly on A and, for each n, $\lim_{x\to x_0} f_n(x) = y_n$. If Y is complete, then the sequence y_n converges.
- (e) Let f_n converge uniformly on X to a bounded function f and let $g: \mathbb{R} \to \mathbb{R}$ be continuous. Then the composition $g \circ f_n$ converges uniformly to $g \circ f$ on X.

10G Analysis and Topology

State the inverse function theorem for a function $F: \mathbb{R}^n \to \mathbb{R}^n$. Suppose F is a differentiable bijection with F^{-1} also differentiable. Show that the derivative of F at any point in \mathbb{R}^n is a linear isomorphism.

Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable map such that its derivative is invertible at any point in \mathbb{R}^n . Is $F(\mathbb{R}^n)$ open? Is $F(\mathbb{R}^n)$ closed? Justify your answers.

Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$F(x, y, z) = (x + y + z, zy + zx + xy, xyz).$$

Determine the set C of points $p \in \mathbb{R}^3$ for which F fails to admit a differentiable local inverse around p. Is the set $\mathbb{R}^3 \setminus C$ connected? Justify your answer.

Paper 3, Section II

11G Analysis and Topology

Define a contraction mapping between two metric spaces. State and prove the contraction mapping theorem. Use this to show that the equation $x = \cos x$ has a unique real solution.

State the mean value inequality. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the map given by

$$f(x,y) = \left(\frac{\cos x + \cos y - 1}{2}, \cos x - \cos y\right).$$

Prove that f has a fixed point. [Hint: Find a suitable subset of \mathbb{R}^2 on which f is a contraction mapping.]

10G Analysis and Topology

Define what it means for a topological space to be *connected*. Describe without proof the connected subspaces of \mathbb{R} with the standard topology. Define what it means for a topological space to be *path connected*, and show that path connectedness implies connectedness.

Given metric spaces A and B, let C(A,B) be the space of continuous bounded functions from A to B with the topology induced by the uniform metric.

(a) For $n \in \mathbb{N}$, let $I_n \subset \mathbb{R}$ be

$$I_n = [1, 2] \cup [3, 4] \cup \ldots \cup [2n - 1, 2n]$$

with the subspace topology. For fixed $m, n \in \mathbb{N}$, how many connected components does $C(I_n, I_m)$ have?

- (b) (i) Give an example of a closed bounded subspace of \mathbb{R}^2 which is connected but not path connected, justifying your answer. Call your example S.
 - (ii) Show that C([0,1], S) is not path connected.
 - (iii) Is C([0,1], S) connected? Briefly justify your answer.

2F Analysis and Topology

Let $K:[0,1]\times[0,1]\to\mathbb{R}$ be a continuous function and let C([0,1]) denote the set of continuous real-valued functions on [0,1]. Given $f\in C([0,1])$, define the function Tf by the expression

$$Tf(x) = \int_0^1 K(x, y) f(y) \, dy.$$

- (a) Prove that T is a continuous map $C([0,1]) \to C([0,1])$ with the uniform metric on C([0,1]).
 - (b) Let d_1 be the metric on C([0,1]) given by

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| \, dx.$$

Is T continuous with respect to d_1 ?

Paper 4, Section I

2F Analysis and Topology

Let X be a topological space with an equivalence relation, \tilde{X} the set of equivalence classes, $\pi: X \to \tilde{X}$, the quotient map taking a point in X to its equivalence class.

- (a) Define the quotient topology on \tilde{X} and check it is a topology.
- (b) Prove that if Y is a topological space, a map $f: \tilde{X} \to Y$ is continuous if and only if $f \circ \pi$ is continuous.
 - (c) If X is Hausdorff, is it true that \tilde{X} is also Hausdorff? Justify your answer.

Paper 1, Section II

10F Analysis and Topology

Let $f:X\to Y$ be a map between metric spaces. Prove that the following two statements are equivalent:

- (i) $f^{-1}(A) \subset X$ is open whenever $A \subset Y$ is open.
- (ii) $f(x_n) \to f(a)$ for any sequence $x_n \to a$.

For $f: X \to Y$ as above, determine which of the following statements are always true and which may be false, giving a proof or a counterexample as appropriate.

- (a) If X is compact and f is continuous, then f is uniformly continuous.
- (b) If X is compact and f is continuous, then Y is compact.
- (c) If X is connected, f is continuous and f(X) is dense in Y, then Y is connected.
- (d) If the set $\{(x,y) \in X \times Y : y = f(x)\}$ is closed in $X \times Y$ and Y is compact, then f is continuous.

10F Analysis and Topology

Let $k_n : \mathbb{R} \to \mathbb{R}$ be a sequence of functions satisfying the following properties:

- 1. $k_n(x) \ge 0$ for all n and $x \in \mathbb{R}$ and there is R > 0 such that k_n vanishes outside [-R, R] for all n;
- 2. each k_n is continuous and

$$\int_{-\infty}^{\infty} k_n(t) dt = 1;$$

3. given $\varepsilon > 0$ and $\delta > 0$, there exists a positive integer N such that if $n \ge N$, then

$$\int_{-\infty}^{-\delta} k_n(t) dt + \int_{\delta}^{\infty} k_n(t) dt < \varepsilon.$$

Let $f: \mathbb{R} \to \mathbb{R}$ be a bounded continuous function and set

$$f_n(x) := \int_{-\infty}^{\infty} k_n(t) f(x-t) dt.$$

Show that f_n converges uniformly to f on any compact subset of \mathbb{R} .

Let $g:[0,1] \to \mathbb{R}$ be a continuous function with g(0) = g(1) = 0. Show that there is a sequence of polynomials p_n such that p_n converges uniformly to g on [0,1]. [Hint: consider the functions

$$k_n(t) = \begin{cases} (1-t^2)^n/c_n & t \in [-1,1] \\ 0 & \text{otherwise,} \end{cases}$$

where c_n is a suitably chosen constant.]

11F Analysis and Topology

Define the terms connected and path-connected for a topological space. Prove that the interval [0,1] is connected and that if a topological space is path-connected, then it is connected.

Let X be an open subset of Euclidean space \mathbb{R}^n . Show that X is connected if and only if X is path-connected.

Let X be a topological space with the property that every point has a neighbourhood homeomorphic to an open set in \mathbb{R}^n . Assume X is connected; must X be also path-connected? Briefly justify your answer.

Consider the following subsets of \mathbb{R}^2 :

$$A = \{(x,0): x \in (0,1]\}, B = \{(0,y): y \in [1/2,1]\}, \text{ and}$$

$$C_n = \{(1/n,y): y \in [0,1]\} \text{ for } n \geqslant 1.$$

Let

$$X = A \cup B \cup \bigcup_{n \geqslant 1} C_n$$

with the subspace topology. Is X path-connected? Is X connected? Justify your answers.

10F Analysis and Topology

(a) Let $g:[0,1]\times\mathbb{R}^n\to\mathbb{R}$ be a continuous function such that for each $t\in[0,1]$, the partial derivatives $D_ig(t,x)$ $(i=1,\ldots,n)$ of $x\mapsto g(t,x)$ exist and are continuous on $[0,1]\times\mathbb{R}^n$. Define $G:\mathbb{R}^n\to\mathbb{R}$ by

$$G(x) = \int_0^1 g(t, x) dt.$$

Show that G has continuous partial derivatives D_iG given by

$$D_i G(x) = \int_0^1 D_i g(t, x) dt$$

for i = 1, ..., n.

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be an infinitely differentiable function, that is, partial derivatives $D_{i_1}D_{i_2}\cdots D_{i_k}f$ exist and are continuous for all $k\in\mathbb{N}$ and $i_1,\ldots,i_k\in\{1,2\}$. Show that for any $(x_1,x_2)\in\mathbb{R}^2$,

$$f(x_1, x_2) = f(x_1, 0) + x_2 D_2 f(x_1, 0) + x_2^2 h(x_1, x_2),$$

where $h: \mathbb{R}^2 \to \mathbb{R}$ is an infinitely differentiable function.

[Hint: You may use the fact that if $u: \mathbb{R} \to \mathbb{R}$ is infinitely differentiable, then

$$u(1) = u(0) + u'(0) + \int_0^1 (1 - t)u''(t) dt.$$

2E Analysis and Topology

Let τ be the collection of subsets of \mathbb{C} of the form $\mathbb{C}\backslash f^{-1}(0)$, where f is an arbitrary complex polynomial. Show that τ is a topology on \mathbb{C} .

Given topological spaces X and Y, define the *product topology* on $X \times Y$. Equip \mathbb{C}^2 with the topology given by the product of (\mathbb{C}, τ) with itself. Let g be an arbitrary two-variable complex polynomial. Is the subset $\mathbb{C}^2 \setminus g^{-1}(0)$ always open in this topology? Justify your answer.

Paper 1, Section II

10E Analysis and Topology

State what it means for a function $f: \mathbb{R}^m \to \mathbb{R}^r$ to be differentiable at a point $x \in \mathbb{R}^m$, and define its derivative f'(x).

Let \mathcal{M}_n be the vector space of $n \times n$ real-valued matrices, and let $p : \mathcal{M}_n \to \mathcal{M}_n$ be given by $p(A) = A^3 - 3A - I$. Show that p is differentiable at any $A \in \mathcal{M}_n$, and calculate its derivative.

State the inverse function theorem for a function f. In the case when f(0) = 0 and f'(0) = I, prove the existence of a continuous local inverse function in a neighbourhood of 0. [The rest of the proof of the inverse function theorem is not expected.]

Show that there exists a positive ϵ such that there is a continuously differentiable function $q: D_{\epsilon}(I) \to \mathcal{M}_n$ such that $p \circ q = \mathrm{id}|_{D_{\epsilon}(I)}$. Is it possible to find a continuously differentiable inverse to p on the whole of \mathcal{M}_n ? Justify your answer.

10E Analysis and Topology

Let C[0,1] be the space of continuous real-valued functions on [0,1], and let d_1, d_{∞} be the metrics on it given by

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx$$
 and $d_{\infty}(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|$.

Show that id: $(C[0,1], d_{\infty}) \to (C[0,1], d_1)$ is a continuous map. Do d_1 and d_{∞} induce the same topology on C[0,1]? Justify your answer.

Let d denote for any $m \in \mathbb{N}$ the uniform metric on \mathbb{R}^m : $d((x_i), (y_i)) = \max_i |x_i - y_i|$. Let $\mathcal{P}_n \subset C[0, 1]$ be the subspace of real polynomials of degree at most n. Define a Lipschitz map between two metric spaces, and show that evaluation at a point gives a Lipschitz map $(C[0, 1], d_{\infty}) \to (\mathbb{R}, d)$. Hence or otherwise find a bijection from $(\mathcal{P}_n, d_{\infty})$ to (\mathbb{R}^{n+1}, d) which is Lipschitz and has a Lipschitz inverse.

Let $\tilde{\mathcal{P}}_n \subset \mathcal{P}_n$ be the subset of polynomials with values in the range [-1,1].

- (i) Show that $(\tilde{\mathcal{P}}_n, d_{\infty})$ is compact.
- (ii) Show that d_1 and d_{∞} induce the same topology on $\tilde{\mathcal{P}}_n$.

Any theorems that you use should be clearly stated.

[You may use the fact that for distinct constants a_i , the following matrix is invertible:

$$\begin{pmatrix} 1 & a_0 & a_0^2 & \dots & a_0^n \\ 1 & a_1 & a_1^2 & \dots & a_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^n \end{pmatrix}.$$