Part IB

Analysis and Topology

Year
2023
2022
2021
2020

Paper 2, Section I

2G Analysis and Topology

Show that a topological space X is connected if and only if every continuous integervalued function on X is constant.

Let \mathcal{A} be a family of connected subsets of a topological space X such that $\bigcup_{A \in \mathcal{A}} A=X$. Assume that $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{A}$. Prove that X is connected.

Deduce, or otherwise show, that if X and Y are connected topological spaces, then $X \times Y$ is also connected in the product topology.

Paper 4, Section I

2G Analysis and Topology

Let $\left(f_{n}\right)$ be a sequence of continuous real-valued functions on a topological space X. Assume that there is a function $f: X \rightarrow \mathbb{R}$ such that every $x \in X$ has a neighbourhood U on which $\left(f_{n}\right)$ converges to f uniformly. Show that f is continuous at every $x \in X$. Further show that $\left(f_{n}\right)$ converges to f uniformly on every compact subset of X.

Paper 1, Section II
 10G Analysis and Topology

Define the terms Cauchy sequence and complete metric space. Prove that every Cauchy sequence in a metric space is bounded.

Show that a metric space (M, d) is complete if and only if given any sequence $\left(F_{n}\right)$ of non-empty, closed subsets of M satisfying

- $F_{n} \supset F_{n+1}$ for all $n \in \mathbb{N}$ and
- $\operatorname{diam} F_{n}=\sup \left\{d(x, y): x, y \in F_{n}\right\} \rightarrow 0$ as $n \rightarrow \infty$,
the intersection $\bigcap_{n \in \mathbb{N}} F_{n}$ is non-empty.
State the contraction mapping theorem.
Let (Λ, ρ) and (M, d) be non-empty metric spaces, and assume that (M, d) is complete. Let $T: \Lambda \times M \rightarrow M$ be a function with the following properties:
- there exists $0 \leqslant k<1$ such that $d(T(\lambda, x), T(\lambda, y)) \leqslant k d(x, y)$ for all $\lambda \in \Lambda$ and all $x, y \in M$;
- for each $x \in M$, the function $\Lambda \rightarrow M$, given by $\lambda \mapsto T(\lambda, x)$, is continuous.

Show that there is a unique function $x^{*}: \Lambda \rightarrow M$ such that $T\left(\lambda, x^{*}(\lambda)\right)=x^{*}(\lambda)$ for all $\lambda \in \Lambda$. Show further that the function x^{*} is continuous.

Paper 2, Section II

10G Analysis and Topology

Define the notion of uniform convergence for a sequence $\left(f_{n}\right)$ of real-valued functions on an arbitrary set S and the notion of uniform continuity for a function $h: M \rightarrow N$ between metric spaces.

Let $C_{0}\left(\mathbb{R}^{d}\right)$ denote the set of all continuous functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ satisfying $f(x) \rightarrow 0$ as $\|x\| \rightarrow \infty$, i.e. for all $\varepsilon>0$ there exists $K>0$ such that $|f(x)|<\varepsilon$ whenever $\|x\|>K$ (where $\|x\|$ denotes the usual Euclidean length of x). Briefly explain why every function in $C_{0}\left(\mathbb{R}^{d}\right)$ is bounded. Prove that $C_{0}\left(\mathbb{R}^{d}\right)$ is a complete metric space in the uniform metric. Is it true that every member of $C_{0}\left(\mathbb{R}^{d}\right)$ is uniformly continuous? Give a proof or counterexample.

Let $\varepsilon: \mathbb{R} \rightarrow[0, \infty)$ be a continuous function with $\varepsilon(0)=0$. For $n \in \mathbb{N}$ define $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{n}(x)=\sqrt{x^{2}+\varepsilon(x / n)}$. Must $\left(f_{n}\right)$ converge pointwise? Must $\left(f_{n}\right)$ converge uniformly? Do your answers change if we further assume that for some $M \geqslant 0$ and for all $t \in \mathbb{R}$ we have $\varepsilon(t) \leqslant M|t|$? Justify your answers.

Paper 3, Section II
 11G Analysis and Topology

Let $f: U \rightarrow \mathbb{R}^{n}$ be a function where U is an open subset of \mathbb{R}^{m}, and let $a \in U$. Define what it means that f is differentiable at a and define the derivative of f at a. Define what it means that f is continuously differentiable at a. Show that a linear map $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is continuously differentiable at every point of \mathbb{R}^{m}.

State and prove the mean value inequality. Let U be an open, connected subset of \mathbb{R}^{m}. Let $f: U \rightarrow \mathbb{R}^{n}$ be a differentiable function such that $\left.D f\right|_{a}$ is the zero map for all $a \in U$. Show that f is a constant function.

State the inverse function theorem. Consider the curve C in \mathbb{R}^{2} defined by the equation

$$
x^{2}+y+\cos (x y)=1 .
$$

Show that there exist an open neighbourhood U of $(0,0)$ in \mathbb{R}^{2}, an open interval I in \mathbb{R} containing 0 and a continuous function $g: I \rightarrow \mathbb{R}$ such that $U \cap C$ is the graph of g, i.e.,

$$
\left\{(x, y) \in \mathbb{R}^{2}: x \in I, y=g(x)\right\}=U \cap C .
$$

Paper 4, Section II

10G Analysis and Topology

Define the notions of compact space, Hausdorff space and homeomorphism.
Let X be a topological space and R be an equivalence relation on X. Define the quotient space X / R and show that the quotient map $q: X \rightarrow X / R$ is continuous. Let Y be another topological space and $f: X \rightarrow Y$ be a continuous function such that $f(x)=f(y)$ whenever $x R y$ in X. Show that the unique function $F: X / R \rightarrow Y$ with $F \circ q=f$ is continuous.

Show that the quotient of a compact space is compact. Give an example to show that the quotient of a Hausdorff space need not be Hausdorff.

Let $f: X \rightarrow Y$ be a continuous bijection from the compact space X to the Hausdorff space Y. Carefully quoting any necessary results, show that f is a homeomorphism.

Let $X=[0,1]^{2}$ be the closed unit square in \mathbb{R}^{2}. Define an equivalence relation R on X by $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ if and only if one of the following holds:
(i) $x_{1}=x_{2}$ and $y_{1}=y_{2}$, or
(ii) $\left\{x_{1}, x_{2}\right\}=\{0,1\}$ and $y_{1}=y_{2}$, or
(iii) $y_{1}=y_{2} \in\{0,1\}$.

Show that the quotient space X / R is homeomorphic to the unit sphere $S^{2}=$ $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$.

Paper 2, Section I

2G Analysis and Topology

Let $f:(M, d) \rightarrow(N, e)$ be a homeomorphism between metric spaces. Show that $d^{\prime}(x, y)=e(f(x), f(y))$ defines a metric on M that is equivalent to d. Construct a metric on \mathbb{R} which is equivalent to the standard metric but in which \mathbb{R} is not complete.

Paper 4, Section I

2G Analysis and Topology

Define the closure of a subspace Z of a topological space X, and what it means for Z to be dense. What does it mean for a topological space Y to be Hausdorff?

Assume that Y is Hausdorff, and that Z is a dense subspace of X. Show that if two continuous maps $f, g: X \rightarrow Y$ agree on Z, they must agree on the whole of X. Does this remain true if you drop the assumption that Y is Hausdorff?

Paper 1, Section II
 10G Analysis and Topology

Let X and Y be metric spaces. Determine which of the following statements are always true and which may be false, giving a proof or a counterexample as appropriate.
(a) Let f_{n} and f be real-valued functions on X and let A, B be two subsets of X such that $X=A \cup B$. If f_{n} converges uniformly to f on both A and B, then f_{n} converges uniformly to f on X.
(b) If the sequences of real-valued functions f_{n} and g_{n} converge uniformly on X to f and g respectively, then $f_{n} g_{n}$ converges uniformly to $f g$ on X.
(c) Let X be the rectangle $[1,2] \times[1,2] \subset \mathbb{R}^{2}$ and let $f_{n}: X \rightarrow \mathbb{R}$ be given by

$$
f_{n}(x, y)=\frac{1+n x}{1+n y} .
$$

Then f_{n} converges uniformly on X.
(d) Let A be a subset of X and x_{0} a point such that any neighbourhood of x_{0} contains a point of A different from x_{0}. Suppose the functions $f_{n}: A \rightarrow Y$ converge uniformly on A and, for each $n, \lim _{x \rightarrow x_{0}} f_{n}(x)=y_{n}$. If Y is complete, then the sequence y_{n} converges.
(e) Let f_{n} converge uniformly on X to a bounded function f and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Then the composition $g \circ f_{n}$ converges uniformly to $g \circ f$ on X.

Paper 2, Section II

10G Analysis and Topology

State the inverse function theorem for a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Suppose F is a differentiable bijection with F^{-1} also differentiable. Show that the derivative of F at any point in \mathbb{R}^{n} is a linear isomorphism.

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuously differentiable map such that its derivative is invertible at any point in \mathbb{R}^{n}. Is $F\left(\mathbb{R}^{n}\right)$ open? Is $F\left(\mathbb{R}^{n}\right)$ closed? Justify your answers.

Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by

$$
F(x, y, z)=(x+y+z, z y+z x+x y, x y z) .
$$

Determine the set C of points $p \in \mathbb{R}^{3}$ for which F fails to admit a differentiable local inverse around p. Is the set $\mathbb{R}^{3} \backslash C$ connected? Justify your answer.

Paper 3, Section II

11G Analysis and Topology
Define a contraction mapping between two metric spaces. State and prove the contraction mapping theorem. Use this to show that the equation $x=\cos x$ has a unique real solution.

State the mean value inequality. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map given by

$$
f(x, y)=\left(\frac{\cos x+\cos y-1}{2}, \cos x-\cos y\right) .
$$

Prove that f has a fixed point. [Hint: Find a suitable subset of \mathbb{R}^{2} on which f is a contraction mapping.]

Paper 4, Section II

10G Analysis and Topology

Define what it means for a topological space to be connected. Describe without proof the connected subspaces of \mathbb{R} with the standard topology. Define what it means for a topological space to be path connected, and show that path connectedness implies connectedness.

Given metric spaces A and B, let $C(A, B)$ be the space of continuous bounded functions from A to B with the topology induced by the uniform metric.
(a) For $n \in \mathbb{N}$, let $I_{n} \subset \mathbb{R}$ be

$$
I_{n}=[1,2] \cup[3,4] \cup \ldots \cup[2 n-1,2 n]
$$

with the subspace topology. For fixed $m, n \in \mathbb{N}$, how many connected components does $C\left(I_{n}, I_{m}\right)$ have?
(b) (i) Give an example of a closed bounded subspace of \mathbb{R}^{2} which is connected but not path connected, justifying your answer. Call your example S.
(ii) Show that $C([0,1], S)$ is not path connected.
(iii) Is $C([0,1], S)$ connected? Briefly justify your answer.

Paper 2, Section I

2F Analysis and Topology

Let $K:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function and let $C([0,1])$ denote the set of continuous real-valued functions on $[0,1]$. Given $f \in C([0,1])$, define the function $T f$ by the expression

$$
T f(x)=\int_{0}^{1} K(x, y) f(y) d y .
$$

(a) Prove that T is a continuous map $C([0,1]) \rightarrow C([0,1])$ with the uniform metric on $C([0,1])$.
(b) Let d_{1} be the metric on $C([0,1])$ given by

$$
d_{1}(f, g)=\int_{0}^{1}|f(x)-g(x)| d x .
$$

Is T continuous with respect to d_{1} ?

Paper 4, Section I

2F Analysis and Topology

Let X be a topological space with an equivalence relation, \tilde{X} the set of equivalence classes, $\pi: X \rightarrow \tilde{X}$, the quotient map taking a point in X to its equivalence class.
(a) Define the quotient topology on \tilde{X} and check it is a topology.
(b) Prove that if Y is a topological space, a map $f: \tilde{X} \rightarrow Y$ is continuous if and only if $f \circ \pi$ is continuous.
(c) If X is Hausdorff, is it true that \tilde{X} is also Hausdorff? Justify your answer.

Paper 1, Section II
 10F Analysis and Topology

Let $f: X \rightarrow Y$ be a map between metric spaces. Prove that the following two statements are equivalent:
(i) $f^{-1}(A) \subset X$ is open whenever $A \subset Y$ is open.
(ii) $f\left(x_{n}\right) \rightarrow f(a)$ for any sequence $x_{n} \rightarrow a$.

For $f: X \rightarrow Y$ as above, determine which of the following statements are always true and which may be false, giving a proof or a counterexample as appropriate.
(a) If X is compact and f is continuous, then f is uniformly continuous.
(b) If X is compact and f is continuous, then Y is compact.
(c) If X is connected, f is continuous and $f(X)$ is dense in Y, then Y is connected.
(d) If the set $\{(x, y) \in X \times Y: y=f(x)\}$ is closed in $X \times Y$ and Y is compact, then f is continuous.

Paper 2, Section II

10F Analysis and Topology

Let $k_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a sequence of functions satisfying the following properties:

1. $k_{n}(x) \geqslant 0$ for all n and $x \in \mathbb{R}$ and there is $R>0$ such that k_{n} vanishes outside $[-R, R]$ for all n;
2. each k_{n} is continuous and

$$
\int_{-\infty}^{\infty} k_{n}(t) d t=1
$$

3. given $\varepsilon>0$ and $\delta>0$, there exists a positive integer N such that if $n \geqslant N$, then

$$
\int_{-\infty}^{-\delta} k_{n}(t) d t+\int_{\delta}^{\infty} k_{n}(t) d t<\varepsilon
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded continuous function and set

$$
f_{n}(x):=\int_{-\infty}^{\infty} k_{n}(t) f(x-t) d t
$$

Show that f_{n} converges uniformly to f on any compact subset of \mathbb{R}.
Let $g:[0,1] \rightarrow \mathbb{R}$ be a continuous function with $g(0)=g(1)=0$. Show that there is a sequence of polynomials p_{n} such that p_{n} converges uniformly to g on $[0,1]$. [Hint: consider the functions

$$
k_{n}(t)= \begin{cases}\left(1-t^{2}\right)^{n} / c_{n} & t \in[-1,1] \\ 0 & \text { otherwise }\end{cases}
$$

where c_{n} is a suitably chosen constant.]

Paper 3, Section II

11F Analysis and Topology

Define the terms connected and path-connected for a topological space. Prove that the interval $[0,1]$ is connected and that if a topological space is path-connected, then it is connected.

Let X be an open subset of Euclidean space \mathbb{R}^{n}. Show that X is connected if and only if X is path-connected.

Let X be a topological space with the property that every point has a neighbourhood homeomorphic to an open set in \mathbb{R}^{n}. Assume X is connected; must X be also pathconnected? Briefly justify your answer.

Consider the following subsets of \mathbb{R}^{2} :

$$
\begin{gathered}
A=\{(x, 0): x \in(0,1]\}, \quad B=\{(0, y): y \in[1 / 2,1]\}, \text { and } \\
C_{n}=\{(1 / n, y): y \in[0,1]\} \text { for } n \geqslant 1 .
\end{gathered}
$$

Let

$$
X=A \cup B \cup \bigcup_{n \geqslant 1} C_{n}
$$

with the subspace topology. Is X path-connected? Is X connected? Justify your answers.

Paper 4, Section II

10F Analysis and Topology

(a) Let $g:[0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function such that for each $t \in[0,1]$, the partial derivatives $D_{i} g(t, x)(i=1, \ldots, n)$ of $x \mapsto g(t, x)$ exist and are continuous on $[0,1] \times \mathbb{R}^{n}$. Define $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
G(x)=\int_{0}^{1} g(t, x) d t
$$

Show that G has continuous partial derivatives $D_{i} G$ given by

$$
D_{i} G(x)=\int_{0}^{1} D_{i} g(t, x) d t
$$

for $i=1, \ldots, n$.
(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be an infinitely differentiable function, that is, partial derivatives $D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}} f$ exist and are continuous for all $k \in \mathbb{N}$ and $i_{1}, \ldots, i_{k} \in\{1,2\}$. Show that for any $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
f\left(x_{1}, x_{2}\right)=f\left(x_{1}, 0\right)+x_{2} D_{2} f\left(x_{1}, 0\right)+x_{2}^{2} h\left(x_{1}, x_{2}\right)
$$

where $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is an infinitely differentiable function.
[Hint: You may use the fact that if $u: \mathbb{R} \rightarrow \mathbb{R}$ is infinitely differentiable, then

$$
\left.u(1)=u(0)+u^{\prime}(0)+\int_{0}^{1}(1-t) u^{\prime \prime}(t) d t .\right]
$$

Paper 2, Section I

2E Analysis and Topology

Let τ be the collection of subsets of \mathbb{C} of the form $\mathbb{C} \backslash f^{-1}(0)$, where f is an arbitrary complex polynomial. Show that τ is a topology on \mathbb{C}.

Given topological spaces X and Y, define the product topology on $X \times Y$. Equip \mathbb{C}^{2} with the topology given by the product of (\mathbb{C}, τ) with itself. Let g be an arbitrary two-variable complex polynomial. Is the subset $\mathbb{C}^{2} \backslash g^{-1}(0)$ always open in this topology? Justify your answer.

Paper 1, Section II

10E Analysis and Topology

State what it means for a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{r}$ to be differentiable at a point $x \in \mathbb{R}^{m}$, and define its derivative $f^{\prime}(x)$.

Let \mathcal{M}_{n} be the vector space of $n \times n$ real-valued matrices, and let $p: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ be given by $p(A)=A^{3}-3 A-I$. Show that p is differentiable at any $A \in \mathcal{M}_{n}$, and calculate its derivative.

State the inverse function theorem for a function f. In the case when $f(0)=0$ and $f^{\prime}(0)=I$, prove the existence of a continuous local inverse function in a neighbourhood of 0 . [The rest of the proof of the inverse function theorem is not expected.]

Show that there exists a positive ϵ such that there is a continuously differentiable function $q: D_{\epsilon}(I) \rightarrow \mathcal{M}_{n}$ such that $p \circ q=\left.\mathrm{id}\right|_{D_{\epsilon}(I)}$. Is it possible to find a continuously differentiable inverse to p on the whole of \mathcal{M}_{n} ? Justify your answer.

Paper 2, Section II

10E Analysis and Topology

Let $C[0,1]$ be the space of continuous real-valued functions on $[0,1]$, and let d_{1}, d_{∞} be the metrics on it given by

$$
d_{1}(f, g)=\int_{0}^{1}|f(x)-g(x)| d x \quad \text { and } \quad d_{\infty}(f, g)=\max _{x \in[0,1]}|f(x)-g(x)| .
$$

Show that id : $\left(C[0,1], d_{\infty}\right) \rightarrow\left(C[0,1], d_{1}\right)$ is a continuous map. Do d_{1} and d_{∞} induce the same topology on $C[0,1]$? Justify your answer.

Let d denote for any $m \in \mathbb{N}$ the uniform metric on $\mathbb{R}^{m}: d\left(\left(x_{i}\right),\left(y_{i}\right)\right)=\max _{i}\left|x_{i}-y_{i}\right|$. Let $\mathcal{P}_{n} \subset C[0,1]$ be the subspace of real polynomials of degree at most n. Define a Lipschitz map between two metric spaces, and show that evaluation at a point gives a Lipschitz map $\left(C[0,1], d_{\infty}\right) \rightarrow(\mathbb{R}, d)$. Hence or otherwise find a bijection from ($\mathcal{P}_{n}, d_{\infty}$) to ($\left.\mathbb{R}^{n+1}, d\right)$ which is Lipschitz and has a Lipschitz inverse.

Let $\tilde{\mathcal{P}}_{n} \subset \mathcal{P}_{n}$ be the subset of polynomials with values in the range $[-1,1]$.
(i) Show that $\left(\tilde{\mathcal{P}}_{n}, d_{\infty}\right)$ is compact.
(ii) Show that d_{1} and d_{∞} induce the same topology on $\tilde{\mathcal{P}}_{n}$.

Any theorems that you use should be clearly stated.
[You may use the fact that for distinct constants a_{i}, the following matrix is invertible:

$$
\left.\left(\begin{array}{ccccc}
1 & a_{0} & a_{0}^{2} & \ldots & a_{0}^{n} \\
1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & a_{n} & a_{n}^{2} & \ldots & a_{n}^{n}
\end{array}\right) .\right]
$$

