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Paper 3, Section I

2E Analysis II
(a) Let A ⊂ R. What does it mean for a function f : A → R to be uniformly

continuous?

(b) Which of the following functions are uniformly continuous? Briefly justify your
answers.

(i) f(x) = x2 on R.

(ii) f(x) =
√
x on [0,∞).

(iii) f(x) = cos(1/x) on [1,∞).

Paper 4, Section I

3E Analysis II
Let A ⊂ R. What does it mean to say that a sequence of real-valued functions on

A is uniformly convergent?

(i) If a sequence (fn) of real-valued functions on A converges uniformly to f , and each
fn is continuous, must f also be continuous?

(ii) Let fn(x) = e−nx. Does the sequence (fn) converge uniformly on [0, 1]?

(iii) If a sequence (fn) of real-valued functions on [−1, 1] converges uniformly to f , and
each fn is differentiable, must f also be differentiable?

Give a proof or counterexample in each case.

Paper 2, Section I

3E Analysis II
Consider the map f : R2 → R2 given by

f(x, y) = (x1/3 + y2, y5)

where x1/3 denotes the unique real cube root of x ∈ R.

(a) At what points is f continuously differentiable? Calculate its derivative there.

(b) Show that f has a local differentiable inverse near any (x, y) with xy 6= 0.

You should justify your answers, stating accurately any results that you require.

Part IB, 2019 List of Questions

2019
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Paper 1, Section II

11E Analysis II
Let A ⊂ Rn be an open subset. State what it means for a function f : A → Rm to

be differentiable at a point p ∈ A, and define its derivative Df(p).

State and prove the chain rule for the derivative of g ◦ f , where g : Rm → Rr is a
differentiable function.

Let M =Mn(R) be the vector space of n× n real-valued matrices, and V ⊂M the
open subset consisting of all invertible ones. Let f : V → V be given by f(A) = A−1.

(a) Show that f is differentiable at the identity matrix, and calculate its derivative.

(b) For C ∈ V , let lC , rC : M → M be given by lC(A) = CA and rC(A) = AC.
Show that rC ◦ f ◦ lC = f on V . Hence or otherwise, show that f is differentiable at any
point of V , and calculate Df(C)(h) for h ∈M .

Paper 4, Section II

12E Analysis II
(a) (i) Show that a compact metric space must be complete.

(ii) If a metric space is complete and bounded, must it be compact? Give a
proof or counterexample.

(b) A metric space (X, d) is said to be totally bounded if for all ǫ > 0, there exists
N ∈ N and {x1, . . . , xN} ⊂ X such that X =

⋃N
i=1Bǫ(xi).

(i) Show that a compact metric space is totally bounded.

(ii) Show that a complete, totally bounded metric space is compact.

[Hint: If (xn) is Cauchy, then there is a subsequence (xnj ) such that

∑

j

d(xnj+1 , xnj ) <∞ .]

(iii) Consider the space C[0, 1] of continuous functions f : [0, 1] → R, with the
metric

d(f, g) = min

{∫ 1

0
|f(t)− g(t)|dt, 1

}
.

Is this space compact? Justify your answer.

Part IB, 2019 List of Questions [TURN OVER

2019
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Paper 3, Section II

12E Analysis II
(a) Carefully state the Picard–Lindelöf theorem on solutions to ordinary differential

equations.

(b) Let X = C([1, b],Rn) be the set of continuous functions from a closed interval
[1, b] to Rn, and let || · || be a norm on Rn.

(i) Let f ∈ X. Show that for any c ∈ [0,∞) the norm

||f ||c = sup
t∈[1,b]

||f(t)t−c||

is Lipschitz equivalent to the usual sup norm on X.

(ii) Assume that F : [1, b]×Rn → Rn is continuous and Lipschitz in the second
variable, i.e. there exists M > 0 such that

‖F (t, x) − F (t, y)‖ 6M‖x− y‖

for all t ∈ [1, b] and all x, y ∈ Rn. Define ϕ : X → X by

ϕ(f)(t) =

∫ t

1
F (l, f(l)) dl

for t ∈ [1, b].

Show that there is a choice of c such that ϕ is a contraction on (X, || · ||c).
Deduce that for any y0 ∈ Rn, the differential equation

Df(t) = F (t, f(t))

has a unique solution on [1, b] with f(1) = y0.

Part IB, 2019 List of Questions

2019
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Paper 2, Section II

12E Analysis II
(a) (i) Define what it means for two norms on a vector space to be Lipschitz

equivalent.

(ii) Show that any two norms on a finite-dimensional vector space are Lipschitz
equivalent.

(iii) Show that if two norms ||·||, ||·||′ on a vector space V are Lipschitz equivalent
then the following holds: for any sequence (vn) in V , (vn) is Cauchy with
respect to || · || if and only if it is Cauchy with respect to || · ||′.

(b) Let V be the vector space of real sequences x = (xi) such that
∑ |xi| <∞. Let

||x||∞ = sup{|xi| : i ∈ N},

and for 1 6 p <∞, let

||x||p =
(∑

|xi|p
)1/p

.

You may assume that || · ||∞ and || · ||p are well-defined norms on V .

(i) Show that || · ||p is not Lipschitz equivalent to || · ||∞ for any 1 6 p <∞.

(ii) Are there any p, q with 1 6 p < q < ∞ such that || · ||p and || · ||q are
Lipschitz equivalent? Justify your answer.

Part IB, 2019 List of Questions [TURN OVER

2019
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Paper 3, Section I

2F Analysis II
For a continuous function f = (f1, f2, . . . , fm) : [0, 1] → Rm, define

∫ 1

0
f(t) dt =

(∫ 1

0
f1(t) dt,

∫ 1

0
f2(t) dt, . . . ,

∫ 1

0
fm(t) dt

)
.

Show that ∥∥∥
∫ 1

0
f(t) dt

∥∥∥
2
6

∫ 1

0
‖f(t)‖2 dt

for every continuous function f : [0, 1] → Rm, where ‖ · ‖2 denotes the Euclidean norm
on Rm.

Find all continuous functions f : [0, 1] → Rm with the property that

∥∥∥
∫ 1

0
f(t) dt

∥∥∥ =

∫ 1

0
‖f(t)‖ dt

regardless of the norm ‖ · ‖ on Rm.

[Hint: start by analysing the case when ‖·‖ is the Euclidean norm ‖·‖2.]

Paper 2, Section I

3F Analysis II
Show that ‖f‖1 =

∫ 1
0 |f(x)| dx defines a norm on the space C([0, 1]) of continuous

functions f : [0, 1] → R.

Let S be the set of continuous functions g : [0, 1] → R with g(0) = g(1) = 0.
Show that for each continuous function f : [0, 1] → R, there is a sequence gn ∈ S with
supx∈[0,1] |gn(x)| 6 supx∈[0,1] |f(x)| such that ‖f − gn‖1 → 0 as n→ ∞.

Show that if f : [0, 1] → R is continuous and
∫ 1
0 f(x)g(x) dx = 0 for every g ∈ S

then f = 0.

Part IB, 2018 List of Questions

2018
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Paper 4, Section I

3F Analysis II
State the Bolzano–Weierstrass theorem in R. Use it to deduce the Bolzano–

Weierstrass theorem in Rn.

Let D be a closed, bounded subset of Rn, and let f : D → R be a function. Let
S be the set of points in D where f is discontinuous. For ρ > 0 and z ∈ Rn, let Bρ(z)
denote the ball {x ∈ Rn : ‖x − z‖ < ρ}. Prove that for every ǫ > 0, there exists δ > 0
such that |f(x)− f(y)| < ǫ whenever x ∈ D, y ∈ D \ ∪z∈SBǫ(z) and ‖x− y‖ < δ.

(If you use the fact that a continuous function on a compact metric space is uniformly
continuous, you must prove it.)

Paper 1, Section II

11F Analysis II
Let U ⊂ Rn be a non-empty open set and let f : U → Rn.

(a) What does it mean to say that f is differentiable? What does it mean to say that
f is a C1 function?

If f is differentiable, show that f is continuous.

State the inverse function theorem.

(b) Suppose that U is convex, f is C1 and that its derivative Df(a) at a satisfies
‖Df(a) − I‖ < 1 for all a ∈ U, where I : Rn → Rn is the identity map and ‖ · ‖
denotes the operator norm. Show that f is injective.

Explain why f(U) is an open subset of Rn.

Must it be true that f(U) = Rn? What if U = Rn? Give proofs or counter-examples
as appropriate.

(c) Find the largest set U ⊂ R2 such that the map f : R2 → R2 given by
f(x, y) = (x2 − y2, 2xy) satisfies ‖Df(a)− I‖ < 1 for every a ∈ U.

Part IB, 2018 List of Questions [TURN OVER

2018
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Paper 4, Section II

12F Analysis II

(a) Define what it means for a metric space (X, d) to be complete. Give a metric d on
the interval I = (0, 1] such that (I, d) is complete and such that a subset of I is
open with respect to d if and only if it is open with respect to the Euclidean metric
on I. Be sure to prove that d has the required properties.

(b) Let (X, d) be a complete metric space.

(i) If Y ⊂ X, show that Y taken with the subspace metric is complete if and only
if Y is closed in X.

(ii) Let f : X → X and suppose that there is a number λ ∈ (0, 1) such that
d(f(x), f(y)) 6 λd(x, y) for every x, y ∈ X. Show that there is a unique point
x0 ∈ X such that f(x0) = x0.

Deduce that if (an) is a sequence of points in X converging to a point a 6= x0, then
there are integers ℓ and m > ℓ such that f(am) 6= an for every n > ℓ.

Paper 3, Section II

12F Analysis II

(a) Let A ⊂ Rm and let f, fn : A → R be functions for n = 1, 2, 3, . . .. What does it
mean to say that the sequence (fn) converges uniformly to f on A? What does it
mean to say that f is uniformly continuous?

(b) Let f : R → R be a uniformly continuous function. Determine whether each of the
following statements is true or false. Give reasons for your answers.

(i) If fn(x) = f(x + 1/n) for each n = 1, 2, 3, . . . and each x ∈ R, then fn → f
uniformly on R.

(ii) If gn(x) = (f(x + 1/n))2 for each n = 1, 2, 3, . . . and each x ∈ R, then
gn → (f)2 uniformly on R.

(c) Let A be a closed, bounded subset of Rm. For each n = 1, 2, 3, . . . , let gn : A→ R
be a continuous function such that (gn(x)) is a decreasing sequence for each x ∈ A.
If δ ∈ R is such that for each n there is xn ∈ A with gn(xn) > δ, show that there is
x0 ∈ A such that limn→∞ gn(x0) > δ.

Deduce the following: If fn : A→ R is a continuous function for each n = 1, 2, 3, . . .
such that (fn(x)) is a decreasing sequence for each x ∈ A, and if the pointwise limit
of (fn) is a continuous function f : A→ R, then fn → f uniformly on A.

Part IB, 2018 List of Questions

2018
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Paper 2, Section II

12F Analysis II

(a) Let (X, d) be a metric space, A a non-empty subset of X and f : A → R. Define
what it means for f to be Lipschitz. If f is Lipschitz with Lipschitz constant L and
if

F (x) = inf
y∈A

(f(y) + Ld(x, y))

for each x ∈ X, show that F (x) = f(x) for each x ∈ A and that F : X → R is
Lipschitz with Lipschitz constant L. (Be sure to justify that F (x) ∈ R, i.e. that the
infimum is finite for every x ∈ X.)

(b) What does it mean to say that two norms on a vector space are Lipschitz equivalent?

Let V be an n-dimensional real vector space equipped with a norm ‖ · ‖. Let
{e1, e2, . . . , en} be a basis for V . Show that the map g : Rn → R defined by
g(x1, x2, . . . , xn) = ‖x1e1 + x2e2 + . . . + xnen‖ is continuous. Deduce that any two
norms on V are Lipschitz equivalent.

(c) Prove that for each positive integer n and each a ∈ (0, 1], there is a constant C > 0
with the following property: for every polynomial p of degree 6 n, there is a point
y ∈ [0, a] such that

sup
x∈[0,1]

|p′(x)| 6 C|p(y)|,

where p′ is the derivative of p.

Part IB, 2018 List of Questions [TURN OVER

2018
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Paper 3, Section I

2G Analysis II
What does it mean to say that a metric space is complete? Which of the following

metric spaces are complete? Briefly justify your answers.

(i) [0, 1] with the Euclidean metric.

(ii) Q with the Euclidean metric.

(iii) The subset
{ (0, 0) } ∪ { (x, sin(1/x)) | x > 0 } ⊂ R2

with the metric induced from the Euclidean metric on R2.

Write down a metric on R with respect to which R is not complete, justifying your answer.

[You may assume throughout that R is complete with respect to the Euclidean
metric.]

Paper 2, Section I

3G Analysis II
Let X ⊂ R. What does it mean to say that a sequence of real-valued functions on

X is uniformly convergent?

Let f, fn (n > 1): R → R be functions.

(a) Show that if each fn is continuous, and (fn) converges uniformly on R to f , then
f is also continuous.

(b) Suppose that, for every M > 0, (fn) converges uniformly on [−M,M ]. Need
(fn) converge uniformly on R? Justify your answer.

Paper 4, Section I

3G Analysis II
State the chain rule for the composition of two differentiable functions f : Rm → Rn

and g : Rn → Rp.

Let f : R2 → R be differentiable. For c ∈ R, let g(x) = f(x, c − x). Compute the
derivative of g. Show that if ∂f/∂x = ∂f/∂y throughout R2, then f(x, y) = h(x+ y) for
some function h : R → R.

Part IB, 2017 List of Questions

2017
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Paper 1, Section II

11G Analysis II
What does it mean to say that a real-valued function on a metric space is uniformly

continuous? Show that a continuous function on a closed interval in R is uniformly
continuous.

What does it mean to say that a real-valued function on a metric space is Lipschitz?
Show that if a function is Lipschitz then it is uniformly continuous.

Which of the following statements concerning continuous functions f : R → R are
true and which are false? Justify your answers.

(i) If f is bounded then f is uniformly continuous.

(ii) If f is differentiable and f ′ is bounded, then f is uniformly continuous.

(iii) There exists a sequence of uniformly continuous functions converging
pointwise to f .

Part IB, 2017 List of Questions [TURN OVER

2017



4

Paper 2, Section II

12G Analysis II
Let V be a real vector space. What is a norm on V ? Show that if ‖−‖ is a norm on

V , then the maps Tv : x 7→ x+ v (for v ∈ V ) and ma : x 7→ ax (for a ∈ R) are continuous
with respect to the norm.

Let B ⊂ V be a subset containing 0. Show that there exists at most one norm on
V for which B is the open unit ball.

Suppose that B satisfies the following two properties:

• if v ∈ V is a nonzero vector, then the line Rv ⊂ V meets B in a set of the form
{tv : −λ < t < λ} for some λ > 0;

• if x, y ∈ B and s, t > 0 then (s + t)−1(sx+ ty) ∈ B.

Show that there exists a norm ‖−‖B for which B is the open unit ball.

Identify ‖−‖B in the following two cases:

(i) V = Rn, B = { (x1, . . . , xn) ∈ Rn : −1 < xi < 1 for all i }.

(ii) V = R2, B the interior of the square with vertices (±1, 0), (0,±1).

Let C ⊂ R2 be the set

C = { (x1, x2) ∈ R2 : |x1| < 1, |x2| < 1, and (|x1| − 1)2 + (|x2| − 1)2 > 1 } .

Is there a norm on R2 for which C is the open unit ball? Justify your answer.

Paper 4, Section II

12G Analysis II
Let U ⊂ Rm be a nonempty open set. What does it mean to say that a function

f : U → Rn is differentiable?

Let f : U → R be a function, where U ⊂ R2 is open. Show that if the first partial
derivatives of f exist and are continuous on U , then f is differentiable on U .

Let f : R2 → R be the function

f(x, y) =





0 (x, y) = (0, 0)

x3 + 2y4

x2 + y2
(x, y) 6= (0, 0).

Determine, with proof, where f is differentiable.

Part IB, 2017 List of Questions

2017
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Paper 3, Section II

12G Analysis II
What is a contraction map on a metric space X? State and prove the contraction

mapping theorem.

Let (X, d) be a complete non-empty metric space. Show that if f : X → X is a map
for which some iterate fk (k > 1) is a contraction map, then f has a unique fixed point.
Show that f itself need not be a contraction map.

Let f : [0,∞) → [0,∞) be the function

f(x) =
1

3

(
x+ sinx+

1

x+ 1

)
.

Show that f has a unique fixed point.

Part IB, 2017 List of Questions [TURN OVER

2017
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Paper 3, Section I

2G Analysis II
(a) Let X be a subset of R. What does it mean to say that a sequence of functions

fn : X → R (n ∈ N) is uniformly convergent?

(b) Which of the following sequences of functions are uniformly convergent? Justify
your answers.

(i) fn : (0, 1) → R, fn(x) =
1− xn

1− x
.

(ii) fn : (0, 1) → R, fn(x) =

n∑

k=1

1

k2
xk.

(iii) fn : R → R, fn(x) = x/n.

(iv) fn : [0,∞) → R, fn(x) = xe−nx.

Paper 4, Section I

3G Analysis II
(a) What does it mean to say that a mapping f : X → X from a metric space to

itself is a contraction?

(b) State carefully the contraction mapping theorem.

(c) Let (a1, a2, a3) ∈ R3. By considering the metric space (R3, d) with

d(x, y) =

3∑

i=1

|xi − yi| ,

or otherwise, show that there exists a unique solution (x1, x2, x3) ∈ R3 of the system of
equations

x1 = a1 +
1

6
(sinx2 + sinx3) ,

x2 = a2 +
1

6
(sinx1 + sinx3) ,

x3 = a3 +
1

6
(sinx1 + sinx2) .

Part IB, 2016 List of Questions

2016
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Paper 2, Section I

3G Analysis II
(a) What does it mean to say that the function f : Rn → Rm is differentiable at the

point x = (x1, x2, . . . , xn) ∈ Rn? Show from your definition that if f is differentiable at x,
then f is continuous at x.

(b) Suppose that there are functions gj : R → Rm (1 6 j 6 n) such that for every
x = (x1, . . . , xn) ∈ Rn,

f(x) =

n∑

j=1

gj(xj).

Show that f is differentiable at x if and only if each gj is differentiable at xj.

(c) Let f : R2 → R be given by

f(x, y) = |x|3/2 + |y|1/2 .

Determine at which points (x, y) ∈ R2 the function f is differentiable.

Part IB, 2016 List of Questions [TURN OVER

2016
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Paper 1, Section II

11G Analysis II
Let (X, d) be a metric space.

(a) What does it mean to say that (xn)n is a Cauchy sequence in X? Show that if
(xn)n is a Cauchy sequence, then it converges if it contains a convergent subsequence.

(b) Let (xn)n be a Cauchy sequence in X.

(i) Show that for every m > 1, the sequence (d(xm, xn))n converges to some
dm ∈ R.

(ii) Show that dm → 0 as m→ ∞.

(iii) Let (yn)n be a subsequence of (xn)n. If ℓ, m are such that yℓ = xm, show
that d(yℓ, yn) → dm as n→ ∞.

(iv) Show also that for every m and n,

dm − dn 6 d(xm, xn) 6 dm + dn.

(v) Deduce that (xn)n has a subsequence (yn)n such that for every m and n,

d(ym+1, ym) 6 1

3
d(ym, ym−1)

and

d(ym+1, yn+1) 6
1

2
d(ym, yn).

(c) Suppose that every closed subset Y of X has the property that every contraction
mapping Y → Y has a fixed point. Prove thatX is complete.

Part IB, 2016 List of Questions

2016
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Paper 4, Section II

12G Analysis II
(a) Let V be a real vector space. What does it mean to say that two norms on V are

Lipschitz equivalent? Prove that every norm on Rn is Lipschitz equivalent to the Euclidean
norm. Hence or otherwise, show that any linear map from Rn to Rm is continuous.

(b) Let f : U → V be a linear map between normed real vector spaces. We say that
f is bounded if there exists a constant C such that for all u ∈ U , ‖f(u)‖ 6 C ‖u‖. Show
that f is bounded if and only if f is continuous.

(c) Let ℓ2 denote the space of sequences (xn)n>1 of real numbers such that
∑

n>1 x
2
n

is convergent, with the norm ‖(xn)n‖ =
(∑

n>1 x
2
n

)1/2
. Let em ∈ ℓ2 be the sequence

em = (xn)n with xm = 1 and xn = 0 if n 6= m. Let w be the sequence (2−n)n. Show that
the subset {w} ∪ {em | m > 1} is linearly independent. Let V ⊂ ℓ2 be the subspace it
spans, and consider the linear map f : V → R defined by

f(w) = 1, f(em) = 0 for all m > 1.

Is f continuous? Justify your answer.

Paper 3, Section II

12G Analysis II
Let X be a metric space.

(a) What does it mean to say that a function f : X → R is uniformly continuous?
What does it mean to say that f is Lipschitz? Show that if f is Lipschitz then it is
uniformly continuous. Show also that if (xn)n is a Cauchy sequence in X, and f is
uniformly continuous, then the sequence (f(xn))n is convergent.

(b) Let f : X → R be continuous, and X be sequentially compact. Show that f is
uniformly continuous. Is f necessarily Lipschitz? Justify your answer.

(c) Let Y be a dense subset of X, and let g : Y → R be a continuous function. Show
that there exists at most one continuous function f : X → R such that for all y ∈ Y ,
f(y) = g(y). Prove that if g is uniformly continuous, then such a function f exists, and is
uniformly continuous.

[A subset Y ⊂ X is dense if for any nonempty open subset U ⊂ X, the intersection
U ∩ Y is nonempty.]

Part IB, 2016 List of Questions [TURN OVER

2016
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Paper 2, Section II

12G Analysis II
(a) What is a norm on a real vector space?

(b) Let L(Rm,Rn) be the space of linear maps from Rm to Rn. Show that

‖A‖ = sup
06=x∈Rm

‖Ax‖
‖x‖ , A ∈ L(Rm,Rn),

defines a norm on L(Rm,Rn), and that if B ∈ L(Rℓ,Rm) then ‖AB‖ 6 ‖A‖ ‖B‖.
(c) Let Mn be the space of n × n real matrices, identified with L(Rn,Rn) in the

usual way. Let U ⊂Mn be the subset

U = {X ∈Mn | I −X is invertible} .

Show that U is an open subset of Mn which contains the set V = {X ∈Mn | ‖X‖ < 1}.
(d) Let f : U → Mn be the map f(X) = (I −X)−1. Show carefully that the series∑∞

k=0X
k converges on V to f(X). Hence or otherwise, show that f is twice differentiable

at 0, and compute its first and second derivatives there.

Part IB, 2016 List of Questions

2016
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Paper 3, Section I

2G Analysis II
Define what is meant by a uniformly continuous function f on a subset E of a metric

space. Show that every continuous function on a closed, bounded interval is uniformly
continuous. [You may assume the Bolzano–Weierstrass theorem.]

Suppose that a function g : [0,∞) → R is continuous and tends to a finite limit
at ∞. Is g necessarily uniformly continuous on [0,∞)? Give a proof or a counterexample
as appropriate.

Paper 4, Section I

3G Analysis II
Define what is meant for two norms on a vector space to be Lipschitz equivalent.

Let C1
c ([−1, 1]) denote the vector space of continuous functions f : [−1, 1] → R with

continuous first derivatives and such that f(x) = 0 for x in some neighbourhood of the
end-points −1 and 1. Which of the following four functions C1

c ([−1, 1]) → R define norms
on C1

c ([−1, 1]) (give a brief explanation)?

p(f) = sup |f |, q(f) = sup(|f |+ |f ′|),

r(f) = sup |f ′|, s(f) =

∣∣∣∣
∫ 1

−1
f(x)dx

∣∣∣∣.

Among those that define norms, which pairs are Lipschitz equivalent? Justify your answer.

Paper 2, Section I

3G Analysis II
Show that the map f : R3 → R3 given by

f(x, y, z) = (x− y − z, x2 + y2 + z2, xyz)

is differentiable everywhere and find its derivative.

Stating accurately any theorem that you require, show that f has a differentiable
local inverse at a point (x, y, z) if and only if

(x+ y)(x+ z)(y − z) 6= 0.

Part IB, 2015 List of Questions

2015
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Paper 1, Section II

11G Analysis II
Define what it means for a sequence of functions fn : [0, 1] → R to converge

uniformly on [0, 1] to a function f .

Let fn(x) = npxe−nqx, where p, q are positive constants. Determine all the values
of (p, q) for which fn(x) converges pointwise on [0, 1]. Determine all the values of (p, q)
for which fn(x) converges uniformly on [0, 1].

Let now fn(x) = e−nx2
. Determine whether or not fn converges uniformly on [0, 1].

Let f : [0, 1] → R be a continuous function. Show that the sequence xnf(x) is
uniformly convergent on [0, 1] if and only if f(1) = 0.

[If you use any theorems about uniform convergence, you should prove these.]

Paper 4, Section II

12G Analysis II
Consider the space ℓ∞ of bounded real sequences x = (xi)

∞
i=1 with the norm

‖x‖∞ = supi |xi|. Show that for every bounded sequence x(n) in ℓ∞ there is a subsequence

x(nj) which converges in every coordinate, i.e. the sequence (x
(nj)
i )∞j=1 of real numbers

converges for each i. Does every bounded sequence in ℓ∞ have a convergent subsequence?
Justify your answer.

Let ℓ1 ⊂ ℓ∞ be the subspace of real sequences x = (xi)
∞
i=1 such that

∑∞
i=1 |xi|

converges. Is ℓ1 complete in the norm ‖ · ‖∞ (restricted from ℓ∞ to ℓ1)? Justify your
answer.

Suppose that (xi) is a real sequence such that, for every (yi) ∈ ℓ∞, the series∑∞
i=1 xiyi converges. Show that (xi) ∈ ℓ1.

Suppose now that (xi) is a real sequence such that, for every (yi) ∈ ℓ1, the series∑∞
i=1 xiyi converges. Show that (xi) ∈ ℓ∞.
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Paper 3, Section II

12G Analysis II
Define what it means for a function f : Rn → Rm to be differentiable at x ∈ Rn

with derivative Df(x).

State and prove the chain rule for the derivative of g ◦ f , where g : Rm → Rp is a
differentiable function.

Now let f : R2 → R be a differentiable function and let g(x) = f(x, c − x) where
c is a constant. Show that g is differentiable and find its derivative in terms of the
partial derivatives of f . Show that if D1f(x, y) = D2f(x, y) holds everywhere in R2, then
f(x, y) = h(x+ y) for some differentiable function h.

Paper 2, Section II

12G Analysis II
Let E,F be normed spaces with norms ‖·‖E , ‖·‖F . Show that for a map f : E → F

and a ∈ E, the following two statements are equivalent:

(i) For every given ε > 0 there exists δ > 0 such that ‖f(x)− f(a)‖F < ε whenever
‖x− a‖E < δ.

(ii) f(xn) → f(a) for each sequence xn → a.

We say that f is continuous at a if (i), or equivalently (ii), holds.

Let now (E, ‖ · ‖E) be a normed space. Let A ⊂ E be a non-empty closed subset
and define d(x,A) = inf{‖x− a‖E : a ∈ A}. Show that

|d(x,A) − d(y,A)| 6 ‖x− y‖E for all x, y ∈ E.

In the case when E = Rn with the standard Euclidean norm, show that there exists a ∈ A
such that d(x,A) = ‖x− a‖.

Let A,B be two disjoint closed sets in Rn. Must there exist disjoint open sets U, V
such that A ⊂ U and B ⊂ V ? Must there exist a ∈ A and b ∈ B such that d(a, b) 6 d(x, y)
for all x ∈ A and y ∈ B? For each answer, give a proof or counterexample as appropriate.
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Paper 3, Section I

2F Analysis II
Let U ⊂ Rn be an open set and let f : U → R be a differentiable function on U

such that ‖ Df |x ‖6 M for some constant M and all x ∈ U , where ‖ Df |x ‖ denotes the
operator norm of the linear map Df |x. Let [a, b] = {ta+ (1− t)b : 0 6 t 6 1} (a, b,∈ Rn)
be a straight-line segment contained in U . Prove that |f(b) − f(a)| 6 M‖b − a‖, where
‖ · ‖ denotes the Euclidean norm on Rn.

Prove that if U is an open ball and Df |x= 0 for each x ∈ U , then f is constant
on U .

Paper 4, Section I

3F Analysis II
Define a contraction mapping and state the contraction mapping theorem.

Let C[0, 1] be the space of continuous real-valued functions on [0, 1] endowed with
the uniform norm. Show that the map A : C[0, 1] → C[0, 1] defined by

Af(x) =

∫ x

0
f(t)dt

is not a contraction mapping, but that A ◦ A is.

Paper 2, Section I

3F Analysis II
Define what is meant by a uniformly continuous function on a set E ⊂ R.

If f and g are uniformly continuous functions on R, is the (pointwise) product fg
necessarily uniformly continuous on R?

Is a uniformly continuous function on (0, 1) necessarily bounded?

Is cos(1/x) uniformly continuous on (0, 1)?

Justify your answers.
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Paper 1, Section II

11F Analysis II
Define what it means for two norms on a real vector space V to be Lipschitz

equivalent. Show that if two norms on V are Lipschitz equivalent and F ⊂ V , then
F is closed in one norm if and only if F is closed in the other norm.

Show that if V is finite-dimensional, then any two norms on V are Lipschitz
equivalent.

Show that ‖f‖1 =
∫ 1
0 |f(x)|dx is a norm on the space C[0, 1] of continuous real-

valued functions on [0, 1]. Is the set S = {f ∈ C[0, 1] : f(1/2) = 0} closed in the norm
‖ · ‖1?

Determine whether or not the norm ‖ · ‖1 is Lipschitz equivalent to the uniform
norm ‖ · ‖∞ on C[0, 1].

[You may assume the Bolzano–Weierstrass theorem for sequences in Rn.]

Paper 4, Section II

12F Analysis II
Let U ⊂ R2 be an open set. Define what it means for a function f : U → R to be

differentiable at a point (x0, y0) ∈ U .

Prove that if the partial derivatives D1f and D2f exist on U and are continuous at
(x0, y0), then f is differentiable at (x0, y0).

If f is differentiable on U must D1f , D2f be continuous at (x0, y0)? Give a proof
or counterexample as appropriate.

The function h : R2 → R is defined by

h(x, y) = xy sin(1/x) for x 6= 0, h(0, y) = 0.

Determine all the points (x, y) at which h is differentiable.
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Paper 3, Section II

12F Analysis II
Let fn, n = 1, 2, . . ., be continuous functions on an open interval (a, b). Prove that

if the sequence (fn) converges to f uniformly on (a, b) then the function f is continuous
on (a, b).

If instead (fn) is only known to converge pointwise to f and f is continuous, must
(fn) be uniformly convergent? Justify your answer.

Suppose that a function f has a continuous derivative on (a, b) and let

gn(x) = n

(
f(x+

1

n
)− f(x)

)
.

Stating clearly any standard results that you require, show that the functions gn converge
uniformly to f ′ on each interval [α, β] ⊂ (a, b).

Paper 2, Section II

12F Analysis II
Let X, Y be subsets of Rn and define X + Y = {x + y : x ∈ X, y ∈ Y }. For

each of the following statements give a proof or a counterexample (with justification) as
appropriate.

(i) If each of X, Y is bounded and closed, then X + Y is bounded and closed.

(ii) If X is bounded and closed and Y is closed, then X + Y is closed.

(iii) If X, Y are both closed, then X + Y is closed.

(iv) If X is open and Y is closed, then X + Y is open.

[The Bolzano–Weierstrass theorem in Rn may be assumed without proof.]
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Paper 3, Section I

2F Analysis II
For each of the following sequences of functions on [0, 1], indexed by n = 1, 2, . . .,

determine whether or not the sequence has a pointwise limit, and if so, determine whether
or not the convergence to the pointwise limit is uniform.

1. fn(x) = 1/(1 + n2x2)

2. gn(x) = nx(1− x)n

3. hn(x) =
√
nx(1− x)n

Paper 4, Section I

3F Analysis II
State and prove the chain rule for differentiable mappings F : Rn → Rm and

G : Rm → Rk.

Suppose now F : R2 → R2 has image lying on the unit circle in R2. Prove that the
determinant det(DF |x) vanishes for every x ∈ R2.

Paper 2, Section I

3F Analysis II
Let C[a, b] denote the vector space of continuous real-valued functions on the interval

[a, b], and let C′[a, b] denote the subspace of continuously differentiable functions.

Show that ‖f‖1 = max |f |+ max |f ′| defines a norm on C′[a, b]. Show furthermore
that the map Φ : f 7→ f ′((a + b)/2) takes the closed unit ball {‖f‖1 6 1} ⊂ C′[a, b] to a
bounded subset of R.

If instead we had used the norm ‖f‖0 = max |f | restricted from C[a, b] to C′[a, b],
would Φ take the closed unit ball {‖f‖0 6 1} ⊂ C′[a, b] to a bounded subset of R ? Justify
your answer.
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Paper 1, Section II

11F Analysis II
Define what it means for a sequence of functions kn : A → R, n = 1, 2, . . ., to

converge uniformly on an interval A ⊂ R.

By considering the functions kn(x) = sin(nx)√
n

, or otherwise, show that uniform

convergence of a sequence of differentiable functions does not imply uniform convergence
of their derivatives.

Now suppose kn(x) is continuously differentiable on A for each n, that kn(x0)
converges as n → ∞ for some x0 ∈ A, and moreover that the derivatives k′n(x) converge
uniformly on A. Prove that kn(x) converges to a continuously differentiable function k(x)
on A, and that

k′(x) = lim
n→∞

k′n(x).

Hence, or otherwise, prove that the function

∞∑

n=1

xn sin(nx)

n3 + 1

is continuously differentiable on (−1, 1).

Paper 4, Section II

12F Analysis II
State the contraction mapping theorem.

A metric space (X, d) is bounded if {d(x, y) |x, y ∈ X} is a bounded subset of R.
Suppose (X, d) is complete and bounded. Let Maps(X,X) denote the set of continuous
maps from X to itself. For f, g ∈ Maps(X,X), let

δ(f, g) = sup
x∈X

d(f(x), g(x)).

Prove that (Maps(X,X), δ) is a complete metric space. Is the subspace C ⊂ Maps(X,X)
of contraction mappings a complete subspace?

Let τ : C → X be the map which associates to any contraction its fixed point. Prove
that τ is continuous.

Part IB, 2013 List of Questions [TURN OVER

2013



4

Paper 3, Section II

12F Analysis II
For each of the following statements, provide a proof or justify a counterexample.

1. The norms ‖x‖1 =
∑n

i=1 |xi| and ‖x‖∞ = max16i6n|xi| on Rn are Lipschitz
equivalent.

2. The norms ‖x‖1 =
∑∞

i=1 |xi| and ‖x‖∞ = maxi|xi| on the vector space of sequences
(xi)i>1 with

∑ |xi| < ∞ are Lipschitz equivalent.

3. Given a linear function φ : V → W between normed real vector spaces, there is
some N for which ‖φ(x)‖ 6 N for every x ∈ V with ‖x‖ 6 1.

4. Given a linear function φ : V → W between normed real vector spaces for which
there is some N for which ‖φ(x)‖ 6 N for every x ∈ V with ‖x‖ 6 1, then φ is
continuous.

5. The uniform norm ‖f‖ = supx∈R|f(x)| is complete on the vector space of continuous
real-valued functions f on R for which f(x) = 0 for |x| sufficiently large.

6. The uniform norm ‖f‖ = supx∈R|f(x)| is complete on the vector space of continuous
real-valued functions f on R which are bounded.
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Paper 2, Section II

12F Analysis II
Let f : U → R be continuous on an open set U ⊂ R2. Suppose that on U the

partial derivatives D1f , D2f , D1D2f and D2D1f exist and are continuous. Prove that
D1D2 f = D2D1 f on U.

If f is infinitely differentiable, and m ∈ N, what is the maximum number of distinct
m-th order partial derivatives that f may have on U ?

Let f : R2 → R be defined by

f(x, y) =





x2y2

x4 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Let g : R2 → R be defined by

g(x, y) =





xy(x4 − y4)

x4 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

For each of f and g, determine whether they are (i) differentiable, (ii) infinitely differen-
tiable at the origin. Briefly justify your answers.
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Paper 3, Section I

2E Analysis II
Let C[0, 1] be the set of continuous real-valued functions on [0, 1] with the uniform

norm. Suppose T : C[0, 1] → C[0, 1] is defined by

T (f)(x) =

∫ x

0
f(t3) dt ,

for all x ∈ [0, 1] and f ∈ C[0, 1]. Is T a contraction mapping? Does T have a unique fixed
point? Justify your answers.

Paper 4, Section I

3E Analysis II
Let f : Rn × Rm → R be a bilinear function. Show that f is differentiable at any

point in Rn × Rm and find its derivative.

Paper 2, Section I

3E Analysis II
Let f : R2 → R be a function. What does it mean to say that f is differentiable at

a point (x, y) ∈ R2? Prove directly from this definition, that if f is differentiable at (x, y),
then f is continuous at (x, y).

Let f : R2 → R be the function:

f(x, y) =





x2 + y2 if x and y are rational

0 otherwise.

For which points (x, y) ∈ R2 is f differentiable? Justify your answer.
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Paper 1, Section II

11E Analysis II
State the inverse function theorem for a function F : Rn → Rn. Suppose F is a

differentiable bijection with F−1 also differentiable. Show that the derivative of F at any
point in Rn is a linear isomorphism.

Let f : R2 → R be a function such that the partial derivatives ∂f
∂x ,

∂f
∂y exist and are

continuous. Assume there is a point (a, b) ∈ R2 for which f(a, b) = 0 and ∂f
∂x(a, b) 6= 0.

Prove that there exist open sets U ⊂ R2 and W ⊂ R containing (a, b) and b, respectively,
such that for every y ∈ W there exists a unique x such that (x, y) ∈ U and f(x, y) = 0.
Moreover, if we define g : W → R by g(y) = x, prove that g is differentiable with
continuous derivative. Find the derivative of g at b in terms of ∂f

∂x (a, b) and
∂f
∂y (a, b).

Paper 4, Section II

12E Analysis II
State and prove the Bolzano-Weierstrass theorem in Rn. [You may assume the

Bolzano-Weierstrass theorem in R.]

Let X ⊂ Rn be a subset and let f : X → X be a mapping such that
d(f(x), f(y)) = d(x, y) for all x, y ∈ X, where d is the Euclidean distance in Rn. Prove
that if X is closed and bounded, then f is a bijection. Is this result still true if we drop
the boundedness assumption on X? Justify your answer.

Paper 3, Section II

12E Analysis II
Let fn be a sequence of continuous functions on the interval [0, 1] such that

fn(x) → f(x) for each x. For the three statements:

(a) fn → f uniformly on [0, 1];

(b) f is a continuous function;

(c)
∫ 1
0 fn(x) dx →

∫ 1
0 f(x) dx as n → ∞;

say which of the six possible implications (a) ⇒ (b), (a) ⇒ (c), (b) ⇒ (a), (b) ⇒ (c),
(c) ⇒ (a), (c) ⇒ (b) are true and which false, giving in each case a proof or counter-
example.
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Paper 2, Section II

12E Analysis II
Let f : Rn → Rm be a mapping. Fix a ∈ Rn and prove that the following two

statements are equivalent:

(i) Given ε > 0 there is δ > 0 such that ‖f(x) − f(a)‖ < ε whenever ‖x − a‖ < δ
(we use the standard norm in Euclidean space).

(ii) f(xn) → f(a) for any sequence xn → a.

We say that f is continuous if (i) (or equivalently (ii)) holds for every a ∈ Rn.

Let E and F be subsets of Rn and Rm respectively. For f : Rn → Rm as above,
determine which of the following statements are always true and which may be false, giving
a proof or a counterexample as appropriate.

(a) If f−1(F ) is closed whenever F is closed, then f is continuous.

(b) If f is continuous, then f−1(F ) is closed whenever F is closed.

(c) If f is continuous, then f(E) is open whenever E is open.

(d) If f is continuous, then f(E) is bounded whenever E is bounded.

(e) If f is continuous and f−1(F ) is bounded whenever F is bounded, then f(E) is
closed whenever E is closed.
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Paper 3, Section I

2E Analysis II
Suppose f is a uniformly continuous mapping from a metric space X to a metric

space Y . Prove that f(xn) is a Cauchy sequence in Y for every Cauchy sequence xn in X.

Let f be a continuous mapping between metric spaces and suppose that f has the
property that f(xn) is a Cauchy sequence whenever xn is a Cauchy sequence. Is it true
that f must be uniformly continuous? Justify your answer.

Paper 4, Section I

3E Analysis II
Let B[0, 1] denote the set of bounded real-valued functions on [0, 1]. A distance d

on B[0, 1] is defined by
d(f, g) = sup

x∈[0,1]
|f(x)− g(x)|.

Given that (B[0, 1], d) is a metric space, show that it is complete. Show that the subset
C[0, 1] ⊂ B[0, 1] of continuous functions is a closed set.

Paper 2, Section I

3E Analysis II
Define differentiability of a function f : Rn → R. Let a > 0 be a constant. For

which points (x, y) ∈ R2 is
f(x, y) = |x|a + |x− y|

differentiable? Justify your answer.
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Paper 1, Section II

11E Analysis II
What is meant by saying that a sequence of functions fn converges uniformly to a

function f?

Let fn be a sequence of differentiable functions on [a, b] with f ′
n continuous and such

that fn(x0) converges for some point x0 ∈ [a, b]. Assume in addition that f ′
n converges

uniformly on [a, b]. Prove that fn converges uniformly to a differentiable function f on
[a, b] and f ′(x) = limn→∞ f ′

n(x) for all x ∈ [a, b]. [You may assume that the uniform limit
of continuous functions is continuous.]

Show that the series

ζ(s) =
∞∑

n=1

1

ns

converges for s > 1 and is uniformly convergent on [1 + ε,∞) for any ε > 0. Show that
ζ(s) is differentiable on (1,∞) and

ζ ′(s) = −
∞∑

n=2

log n

ns
.

[You may use the Weierstrass M -test provided it is clearly stated.]

Paper 4, Section II

12E Analysis II
Define a contraction mapping and state the contraction mapping theorem.

Let (X, d) be a non-empty complete metric space and let φ : X → X be a map.
Set φ1 = φ and φn+1 = φ ◦ φn. Assume that for some integer r > 1, φr is a contraction
mapping. Show that φ has a unique fixed point y and that any x ∈ X has the property
that φn(x) → y as n → ∞.

Let C[0, 1] be the set of continuous real-valued functions on [0, 1] with the uniform
norm. Suppose T : C[0, 1] → C[0, 1] is defined by

T (f)(x) =

∫ x

0
f(t) dt

for all x ∈ [0, 1] and f ∈ C[0, 1]. Show that T is not a contraction mapping but that T 2

is.
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Paper 3, Section II

12E Analysis II
Consider a map f : Rn → Rm.

Assume f is differentiable at x and let Dxf denote the derivative of f at x. Show
that

Dxf(v) = lim
t→0

f(x+ tv)− f(x)

t

for any v ∈ Rn.

Assume now that f is such that for some fixed x and for every v ∈ Rn the limit

lim
t→0

f(x+ tv)− f(x)

t

exists. Is it true that f is differentiable at x? Justify your answer.

LetMk denote the set of all k×k real matrices which is identified with Rk2 . Consider
the function f : Mk → Mk given by f(A) = A3. Explain why f is differentiable. Show
that the derivative of f at the matrix A is given by

DAf(H) = HA2 +AHA+A2H

for any matrix H ∈ Mk. State carefully the inverse function theorem and use it to prove
that there exist open sets U and V containing the identity matrix such that given B ∈ V
there exists a unique A ∈ U such that A3 = B.

Paper 2, Section II

12E Analysis II
What is meant by saying that two norms on a real vector space are Lipschitz

equivalent?

Show that any two norms on Rn are Lipschitz equivalent. [You may assume that a
continuous function on a closed bounded set in Rn has closed bounded image.]

Show that ‖f‖1 =
∫ 1
−1 |f(x)| dx defines a norm on the space C[−1, 1] of continuous

real-valued functions on [−1, 1]. Is it Lipschitz equivalent to the uniform norm? Justify
your answer. Prove that the normed space (C[−1, 1], ‖ · ‖1) is not complete.
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Paper 3, Section I

2G Analysis II
Consider the map f : R3 → R3 given by

f(x, y, z) = (x+ y + z, xy + yz + zx, xyz) .

Show that f is differentiable everywhere and find its derivative.

Stating carefully any theorem that you quote, show that f is locally invertible near
a point (x, y, z) unless (x− y)(y − z)(z − x) = 0 .

Paper 2, Section I

3G Analysis II
Let c > 1 be a real number, and let Fc be the space of sequences a = (a1, a2, . . . ) of

real numbers ai with
∑∞

r=1 c−r|ar| convergent. Show that ‖a‖c =
∑∞

r=1 c−r|ar| defines a
norm on Fc .

Let F denote the space of sequences a with |ai| bounded; show that F ⊂ Fc. If
c′ > c , show that the norms on F given by restricting to F the norms ‖ . ‖c on Fc and
‖ . ‖c′ on Fc′ are not Lipschitz equivalent.

By considering sequences of the form a(n) = (a, a2, . . . , an, 0, 0, . . . ) in F , for a
an appropriate real number, or otherwise, show that F (equipped with the norm ‖ . ‖c) is
not complete.

Paper 4, Section I

3G Analysis II
Let S denote the set of continuous real-valued functions on the interval [0, 1]. For

f, g ∈ S , set

d1(f, g) = sup {|f(x)− g(x)| : x ∈ [0, 1]} and d2(f, g) =

∫ 1

0
|f(x)− g(x)| dx .

Show that both d1 and d2 define metrics on S. Does the identity map on S define
a continuous map of metric spaces (S, d1) → (S, d2)? Does the identity map define a
continuous map of metric spaces (S, d2) → (S, d1)?
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Paper 1, Section II

11G Analysis II
State and prove the contraction mapping theorem. Demonstrate its use by showing

that the differential equation f ′(x) = f(x2), with boundary condition f(0) = 1 , has a
unique solution on [0, 1), with one-sided derivative f ′(0) = 1 at zero.

Paper 2, Section II

12G Analysis II
Suppose the functions fn (n = 1, 2, . . .) are defined on the open interval (0, 1) and

that fn tends uniformly on (0, 1) to a function f . If the fn are continuous, show that f is
continuous. If the fn are differentiable, show by example that f need not be differentiable.

Assume now that each fn is differentiable and the derivatives f ′
n converge uniformly

on (0, 1). For any given c ∈ (0, 1), we define functions gc,n by

gc,n(x) =





fn(x)− fn(c)

x− c
for x 6= c ,

f ′
n(c) for x = c .

Show that each gc,n is continuous. Using the general principle of uniform conver-
gence (the Cauchy criterion) and the Mean Value Theorem, or otherwise, prove that the
functions gc,n converge uniformly to a continuous function gc on (0, 1), where

gc(x) =
f(x)− f(c)

x− c
for x 6= c .

Deduce that f is differentiable on (0, 1).
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Paper 3, Section II

12G Analysis II
Let f : U → Rn be a map on an open subset U ⊂ Rm. Explain what it means for f

to be differentiable on U . If g : V → Rm is a differentiable map on an open subset V ⊂ Rp

with g(V ) ⊂ U , state and prove the Chain Rule for the derivative of the composite fg.

Suppose now F : Rn → R is a differentiable function for which the partial
derivatives D1F (x) = D2F (x) = . . . = DnF (x) for all x ∈ Rn. By considering the
function G : Rn → R given by

G(y1, . . . , yn) = F

(
y1, . . . , yn−1, yn −

n−1∑

i=1

yi

)
,

or otherwise, show that there exists a differentiable function h : R → Rwith F (x1, . . . , xn) =
h(x1 + · · ·+ xn) at all points of Rn.

Paper 4, Section II

12G Analysis II
What does it mean to say that a function f on an interval in R is uniformly

continuous? Assuming the Bolzano–Weierstrass theorem, show that any continuous
function on a finite closed interval is uniformly continuous.

Suppose that f is a continuous function on the real line, and that f(x) tends to
finite limits as x → ±∞; show that f is uniformly continuous.

If f is a uniformly continuous function on R, show that f(x)/x is bounded as
x → ±∞. If g is a continuous function on R for which g(x)/x → 0 as x → ±∞,
determine whether g is necessarily uniformly continuous, giving proof or counterexample
as appropriate.
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Paper 2, Section I

3E Analysis II
State and prove the contraction mapping theorem. Let f(x) = e−x. By considering

f(f(x)) and using the contraction mapping theorem, show that there is a unique real num-
ber x such that x = e−x.

Paper 4, Section I

3E Analysis II
Let (sn)

∞
n=1 be a sequence of continuous functions from R to R and let s : R → R

be another continuous function. What does it mean to say that sn → s uniformly? Give
examples (without proof) of a sequence (sn) of nonzero functions which converges to 0
uniformly, and of a sequence which converges to 0 pointwise but not uniformly. Show that
if sn → s uniformly then ∫ 1

−1
sn(x) dx →

∫ 1

−1
s(x) dx.

Give an example of a continuous function s : R → R with s(x) > 0 for all x, s(x) → 0 as
|x| → ∞ but for which

∫∞
−∞ s(x) dx does not converge. For each positive integer n define

sn(x) to be equal to s(x) if |x| 6 n, and to be s(n)min(1, ||x|−n|−2) for |x| > n. Show that
the functions sn are continuous, tend uniformly to s, and furthermore that

∫∞
−∞ sn(x) dx

exists and is finite for all n.

Paper 3, Section I

3E Analysis II
What is meant by a norm on Rn? For x ∈ Rn write

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|,

‖x‖2 =
√

|x1|2 + |x2|2 + · · · + |xn|2.
Prove that ‖ · ‖1 and ‖ · ‖2 are norms. [You may assume the Cauchy-Schwarz inequality.]

Find the smallest constant Cn such that ‖x‖1 6 Cn‖x‖2 for all x ∈ Rn, and also the
smallest constant C ′

n such that ‖x‖2 6 C ′
n‖x‖1 for all x ∈ Rn.
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Paper 1, Section II

11E Analysis II
Define a function f : R → R by

f(x) =
∞∑

n=1

2−n‖2nx‖,

where ‖t‖ is the distance from t to the nearest integer. Prove that f is continuous. [Results
about uniform convergence may not be used unless they are clearly stated and proved.]

Suppose now that g : R → R is a function which is differentiable at some point x,
and let (un)

∞
n=1, (vn)

∞
n=1 be two sequences of real numbers with un 6 x 6 vn for all n,

un 6= vn and un, vn → x as n → ∞. Prove that

lim
n→∞

g(vn)− g(un)

vn − un

exists.

By considering appropriate sequences of rationals with denominator 2−n, or other-
wise, show that f is nowhere differentiable.

Paper 3, Section II

13E Analysis II
What does it mean for a function f : Rn → Rm of several variables to be

differentiable at a point x? State and prove the chain rule for functions of several variables.
For each of the following two functions from R2 to R, give with proof the set of points at
which it is differentiable:

g1(x, y) =

{
(x2 − y2) sin 1

x2−y2
if x 6= ±y

0 otherwise;

g2(x, y) =

{
(x2 + y2) sin 1

x2+y2
if at least one of x, y is not 0

0 if x = y = 0.
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Paper 2, Section II

13E Analysis II
Let U ⊆ Rn be a set. What does it mean to say that U is open? Show that if U is

open and if f : U → {0, 1} is a continuous function then f is also differentiable, and that
its derivative is zero.

Suppose that g : U → R is differentiable and that ‖(Dg)|x‖ 6 M for all x, where
(Dg)|x denotes the derivative of g at x and ‖ · ‖ is the operator norm. Suppose that
a,b ∈ Rn and that the line segment [a,b] = {λa+ (1 − λ)b : λ ∈ [0, 1]} lies wholly in U .
Prove that |g(a)− g(b)| 6 M‖a− b‖.

Let ℓ1, . . . , ℓk be (infinite) lines in R3, and write V = R3 \ (ℓ1∪ · · · ∪ ℓk). If a,b ∈ V ,
show that there is some c ∈ V such that the line segments [a, c] and [c,b] both lie inside
V . [You may assume without proof that R3 may not be written as the union of finitely
many planes.]

Show that if V → {0, 1} is a continuous function then f is constant on V .

Paper 4, Section II

13E Analysis II
Let (X, d) be a metric space with at least two points. If f : X → R is a function,

write

Lip(f) = sup
x 6=y

|f(x)− f(y)|
d(x, y)

+ sup
z

|f(z)|,

provided that this supremum is finite. Let Lip(X) = {f : Lip(f) is defined}. Show that
Lip(X) is a vector space over R, and that Lip is a norm on it.

Now let X = R. Suppose that (fi)∞i=1 is a sequence of functions with Lip(fi) 6 1 and
with the property that the sequence fi(q) converges as i → ∞ for every rational number
q. Show that the fi converge pointwise to a function f satisfying Lip(f) 6 1.

Suppose now that (fi)
∞
i=1 are any functions with Lip(fi) 6 1. Show that there is

a subsequence fi1, fi2 , . . . which converges pointwise to a function f with Lip(f) 6 1.

Part IB, 2009 List of Questions

2009



9

1/II/11F Analysis II

State and prove the Contraction Mapping Theorem.

Let (X, d) be a nonempty complete metric space and f : X → X a mapping such
that, for some k > 0, the kth iterate fk of f (that is, f composed with itself k times) is a
contraction mapping. Show that f has a unique fixed point.

Now let X be the space of all continuous real-valued functions on [0, 1], equipped
with the uniform norm ‖h‖∞ = sup {|h(t)| : t ∈ [0, 1]}, and let φ : R × [0, 1] → R be a
continuous function satisfying the Lipschitz condition

|φ(x, t)− φ(y, t)| 6M |x− y|

for all t ∈ [0, 1] and all x, y ∈ R, where M is a constant. Let F : X → X be defined by

F (h)(t) = g(t) +

∫ t

0

φ(h(s), s) ds ,

where g is a fixed continuous function on [0, 1]. Show by induction on n that

|Fn(h)(t)− Fn(k)(t)| 6 Mntn

n!
‖h− k‖∞

for all h, k ∈ X and all t ∈ [0, 1]. Deduce that the integral equation

f(t) = g(t) +

∫ t

0

φ(f(s), s) ds

has a unique continuous solution f on [0, 1].

2/I/3F Analysis II

Explain what is meant by the statement that a sequence (fn) of functions defined
on an interval [a, b] converges uniformly to a function f . If (fn) converges uniformly to f ,
and each fn is continuous on [a, b], prove that f is continuous on [a, b].

Now suppose additionally that (xn) is a sequence of points of [a, b] converging to a
limit x. Prove that fn(xn)→ f(x).
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2/II/13F Analysis II

Let (un(x) : n = 0, 1, 2, . . .) be a sequence of real-valued functions defined on a
subset E of R. Suppose that for all n and all x ∈ E we have |un(x)| 6 Mn, where∑∞
n=0Mn converges. Prove that

∑∞
n=0 un(x) converges uniformly on E.

Now let E = R \ Z, and consider the series
∑∞
n=0 un(x), where u0(x) = 1/x2 and

un(x) = 1/(x− n)2 + 1/(x+ n)2

for n > 0. Show that the series converges uniformly on ER = {x ∈ E : |x| < R} for any
real number R. Deduce that f(x) =

∑∞
n=0 un(x) is a continuous function on E. Does the

series converge uniformly on E? Justify your answer.

3/I/3F Analysis II

Explain what it means for a function f(x, y) of two variables to be differentiable
at a point (x0, y0). If f is differentiable at (x0, y0), show that for any α the function gα
defined by

gα(t) = f(x0 + t cos α, y0 + t sin α)

is differentiable at t = 0, and find its derivative in terms of the partial derivatives of f at
(x0, y0).

Consider the function f defined by

f(x, y) = (x2y + xy2)/(x2 + y2) ((x, y) 6= (0, 0))
= 0 ((x, y) = (0, 0)).

Is f differentiable at (0, 0)? Justify your answer.

3/II/13F Analysis II

Let f : R2 → R be a function, and (x0, y0) a point of R2. Prove that if the partial
derivatives of f exist in some open disc around (x0, y0) and are continuous at (x0, y0),
then f is differentiable at (x0, y0).

Now let X denote the vector space of all (n× n) real matrices, and let f : X → R
be the function assigning to each matrix its determinant. Show that f is differentiable
at the identity matrix I, and that Df |I is the linear map H 7→ tr H. Deduce
that f is differentiable at any invertible matrix A, and that Df |A is the linear map
H 7→ detA tr (A−1H).

Show also that if K is a matrix with ‖K‖ < 1, then (I +K) is invertible. Deduce
that f is twice differentiable at I, and find D2f |I as a bilinear map X ×X → R.

[You may assume that the norm ‖ − ‖ on X is complete, and that it satisfies the
inequality ‖AB‖ 6 ‖A‖.‖B‖ for any two matrices A and B.]
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4/I/3F Analysis II

Let X be the vector space of all continuous real-valued functions on the unit interval
[0, 1]. Show that the functions

‖f‖1 =

∫ 1

0

|f(t)| dt and ‖f‖∞ = sup{|f(t)| : 0 6 t 6 1}

both define norms on X.

Consider the sequence (fn) defined by fn(t) = ntn(1 − t). Does (fn) converge in
the norm ‖ − ‖1? Does it converge in the norm ‖ − ‖∞? Justify your answers.

4/II/13F Analysis II

Explain what it means for two norms on a real vector space to be Lipschitz
equivalent. Show that if two norms are Lipschitz equivalent, then one is complete if
and only if the other is.

Let ‖ − ‖ be an arbitrary norm on the finite-dimensional space Rn, and let ‖ − ‖2
denote the standard (Euclidean) norm. Show that for every x ∈ Rn with ‖x‖2 = 1, we
have

‖x‖ 6 ‖e1‖+ ‖e2‖+ · · ·+ ‖en‖
where (e1, e2, . . . , en) is the standard basis for Rn, and deduce that the function ‖ − ‖ is
continuous with respect to ‖ − ‖2. Hence show that there exists a constant m > 0 such
that ‖x‖ > m for all x with ‖x‖2 = 1, and deduce that ‖ − ‖ and ‖ − ‖2 are Lipschitz
equivalent.

[You may assume the Bolzano–Weierstrass Theorem.]
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2008



8

1/II/11H Analysis II

Define what it means for a function f : Ra → Rb to be differentiable at a point
p ∈ Ra with derivative a linear map Df |p.

State the Chain Rule for differentiable maps f : Ra → Rb and g : Rb → Rc. Prove
the Chain Rule.

Let ‖x‖ denote the standard Euclidean norm of x ∈ Ra. Find the partial
derivatives ∂f

∂xi
of the function f(x) = ‖x‖ where they exist.

2/I/3H Analysis II

For integers a and b, define d(a, b) to be 0 if a = b, or 1
2n if a 6= b and n is the

largest non-negative integer such that a − b is a multiple of 2n. Show that d is a metric
on the integers Z.

Does the sequence xn = 2n − 1 converge in this metric?

2/II/13H Analysis II

Show that the limit of a uniformly convergent sequence of real valued continuous
functions on [0, 1] is continuous on [0, 1].

Let fn be a sequence of continuous functions on [0, 1] which converge point-wise to

a continuous function. Suppose also that the integrals
∫ 1

0
fn(x) dx converge to

∫ 1

0
f(x) dx.

Must the functions fn converge uniformly to f? Prove or give a counterexample.

Let fn be a sequence of continuous functions on [0, 1] which converge point-wise to

a function f . Suppose that f is integrable and that the integrals
∫ 1

0
fn(x) dx converge to∫ 1

0
f(x) dx. Is the limit f necessarily continuous? Prove or give a counterexample.

3/I/3H Analysis II

Define uniform continuity for a real-valued function on an interval in the real line.
Is a uniformly continuous function on the real line necessarily bounded?

Which of the following functions are uniformly continuous on the real line?

(i) f(x) = x sinx,

(ii) f(x) = e−x4

.

Justify your answers.
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3/II/13H Analysis II

Let V be the real vector space of continuous functions f : [0, 1] → R. Show that
defining

||f || =

∫ 1

0

|f(x)|dx

makes V a normed vector space.

Define fn(x) = sinnx for positive integers n. Is the sequence (fn) convergent to
some element of V ? Is (fn) a Cauchy sequence in V ? Justify your answers.

4/I/3H Analysis II

Define uniform convergence for a sequence f1, f2, . . . of real-valued functions on the
interval (0, 1).

For each of the following sequences of functions on (0, 1), find the pointwise limit
function. Which of these sequences converge uniformly on (0, 1)?

(i) fn(x) = log (x+ 1
n
),

(ii) fn(x) = cos ( x
n ).

Justify your answers.

4/II/13H Analysis II

State and prove the Contraction Mapping Theorem.

Find numbers a and b, with a < 0 < b, such that the mapping T : C[a, b] → C[a, b]
defined by

T (f)(x) = 1 +

∫ x

0

3t f(t) dt

is a contraction, in the sup norm on C[a, b]. Deduce that the differential equation

dy

dx
= 3xy, with y = 1 when x = 0,

has a unique solution in some interval containing 0.

Part IB 2007
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1/II/11F Analysis II

Let an and bn be sequences of real numbers for n > 1 such that |an| 6 c/n1+ε and
|bn| 6 c/n1+ε for all n > 1, for some constants c > 0 and ε > 0. Show that the series

f(x) =
∑

n>1

an cosnx+
∑

n>1

bn sinnx

converges uniformly to a continuous function on the real line. Show that f is periodic in
the sense that f(x+ 2π) = f(x).

Now suppose that |an| 6 c/n2+ε and |bn| 6 c/n2+ε for all n > 1, for some constants
c > 0 and ε > 0. Show that f is differentiable on the real line, with derivative

f ′(x) = −
∑

n>1

nan sinnx+
∑

n>1

nbn cosnx.

[You may assume the convergence of standard series.]

2/I/3F Analysis II

Define uniform convergence for a sequence f1, f2, . . . of real-valued functions on an
interval in R. If (fn) is a sequence of continuous functions converging uniformly to a
(necessarily continuous) function f on a closed interval [a, b], show that

∫ b

a

fn(x) dx→
∫ b

a

f(x) dx

as n→ ∞.

Which of the following sequences of functions f1, f2, . . . converges uniformly on the
open interval (0, 1)? Justify your answers.

(i) fn(x) = 1/(nx);

(ii) fn(x) = e−x/n.
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2/II/13F Analysis II

For a smooth mapping F : R2 → R2, the Jacobian J(F ) at a point (x, y) is defined
as the determinant of the derivative DF , viewed as a linear map R2 → R2. Suppose that
F maps into a curve in the plane, in the sense that F is a composition of two smooth
mappings R2 → R → R2. Show that the Jacobian of F is identically zero.

Conversely, let F : R2 → R2 be a smooth mapping whose Jacobian is identically
zero. Write F (x, y) = (f(x, y), g(x, y)). Suppose that ∂f/∂y|(0,0) 6= 0. Show that
∂f/∂y 6= 0 on some open neighbourhood U of (0, 0) and that on U

(∂g/∂x, ∂g/∂y) = e(x, y) (∂f/∂x, ∂f/∂y)

for some smooth function e defined on U . Now suppose that c : R → U is a smooth curve
of the form t 7→ (t, α(t)) such that F ◦ c is constant. Write down a differential equation
satisfied by α. Apply an existence theorem for differential equations to show that there
is a neighbourhood V of (0, 0) such that every point in V lies on a curve t 7→ (t, α(t)) on
which F is constant.

[A function is said to be smooth when it is infinitely differentiable. Detailed justification
of the smoothness of the functions in question is not expected.]

3/I/3F Analysis II

Define what it means for a function f : R2 → R to be differentiable at a point (a, b).
If the partial derivatives ∂f/∂x and ∂f/∂y are defined and continuous on a neighbourhood
of (a, b), show that f is differentiable at (a, b).

3/II/13F Analysis II

State precisely the inverse function theorem for a smooth map F from an open
subset of R2 to R2.

Define F : R2 → R2 by

F (x, y) = (x3 − x− y2, y).

Determine the open subset of R2 on which F is locally invertible.

Let C be the curve {(x, y) ∈ R2 : x3 − x − y2 = 0}. Show that C is the union of
the two subsets C1 = {(x, y) ∈ C : x ∈ [−1, 0]} and C2 = {(x, y) ∈ C : x > 1}. Show that
for each y ∈ R there is a unique x = p(y) such that (x, y) ∈ C2. Show that F is locally
invertible at all points of C2, and deduce that p(y) is a smooth function of y.

[A function is said to be smooth when it is infinitely differentiable.]
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4/I/3F Analysis II

Let V be the vector space of all sequences (x1, x2, . . .) of real numbers such that xi
converges to zero. Show that the function

|(x1, x2, . . .)| = max
i>1

|xi|

defines a norm on V .

Is the sequence
(1, 0, 0, 0, . . .), (0, 1, 0, 0, . . .), . . .

convergent in V ? Justify your answer.

4/II/13F Analysis II

State precisely the contraction mapping theorem.

An ancient way to approximate the square root of a positive number a is to start
with a guess x > 0 and then hope that the average of x and a/x gives a better guess.
We can then repeat the procedure using the new guess. Justify this procedure as follows.
First, show that all the guesses after the first one are greater than or equal to

√
a. Then

apply the properties of contraction mappings to the interval [
√
a,∞) to show that the

procedure always converges to
√
a.

Once the above procedure is close enough to
√
a, estimate how many more steps of

the procedure are needed to get one more decimal digit of accuracy in computing
√
a.
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1/II/11B Analysis II

Let (fn)n>1 be a sequence of continuous real-valued functions defined on a set
E ⊂ R. Suppose that the functions fn converge uniformly to a function f . Prove that f
is continuous on E.

Show that the series
∑∞

n=1 1/n1+x defines a continuous function on the half-open
interval (0, 1].

[Hint: You may assume the convergence of standard series.]

2/I/3B Analysis II

Define uniform continuity for a real-valued function defined on an interval in R.

Is a uniformly continuous function on the interval (0, 1) necessarily bounded?

Is 1/x uniformly continuous on (0, 1)?

Is sin(1/x) uniformly continuous on (0, 1)?

Justify your answers.

2/II/13B Analysis II

Use the standard metric on Rn in this question.

(i) Let A be a nonempty closed subset of Rn and y a point in Rn. Show that there
is a point x ∈ A which minimizes the distance to y, in the sense that d(x, y) 6 d(a, y) for
all a ∈ A.

(ii) Suppose that the set A in part (i) is convex, meaning that A contains the line
segment between any two of its points. Show that point x ∈ A described in part (i) is
unique.
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3/I/3B Analysis II

Let f : R2 → R be a function. What does it mean to say that f is differentiable
at a point (a, b) in R2? Show that if f is differentiable at (a, b), then f is continuous at
(a, b).

For each of the following functions, determine whether or not it is differentiable at
(0, 0). Justify your answers.

(i)

f(x, y) =

{
x2y2(x2 + y2)−1 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0).

(ii)

f(x, y) =

{
x2(x2 + y2)−1 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0).

3/II/13B Analysis II

Let f be a real-valued differentiable function on an open subset U of Rn. Assume
that 0 6∈ U and that for all x ∈ U and λ > 0, λx is also in U . Suppose that f is
homogeneous of degree c ∈ R, in the sense that f(λx) = λcf(x) for all x ∈ U and λ > 0.
By means of the Chain Rule or otherwise, show that

Df |x(x) = cf(x)

for all x ∈ U . (Here Df |x denotes the derivative of f at x, viewed as a linear map
Rn → R.)

Conversely, show that any differentiable function f on U with Df |x(x) = cf(x) for
all x ∈ U must be homogeneous of degree c.

4/I/3B Analysis II

Let V be the vector space of continuous real-valued functions on [0, 1]. Show that
the function

||f || =

∫ 1

0

|f(x)| dx

defines a norm on V .

For n = 1, 2, . . ., let fn(x) = e−nx. Is fn a convergent sequence in the space V with
this norm? Justify your answer.
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4/II/13B Analysis II

Let F : [−a, a] × [x0 − r, x0 + r] → R be a continuous function. Let C be the
maximum value of |F (t, x)|. Suppose there is a constant K such that

|F (t, x) − F (t, y)| 6 K|x− y|

for all t ∈ [−a, a] and x, y ∈ [x0 − r, x0 + r]. Let b < min(a, r/C, 1/K). Show that there is
a unique C1 function x : [−b, b] → [x0 − r, x0 + r] such that

x(0) = x0

and
dx

dt
= F (t, x(t)).

[Hint: First show that the differential equation with its initial condition is equivalent to
the integral equation

x(t) = x0 +

∫ t

0

F (s, x(s)) ds.

]
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1/I/4G Analysis II

Define what it means for a sequence of functions Fn : (0, 1) → R, where n = 1, 2, . . . ,
to converge uniformly to a function F .

For each of the following sequences of functions on (0, 1), find the pointwise limit
function. Which of these sequences converge uniformly? Justify your answers.

(i) Fn(x) = 1
n
ex

(ii) Fn(x) = e−nx2

(iii) Fn(x) =

n∑

i=0

xi

1/II/15G Analysis II

State the axioms for a norm on a vector space. Show that the usual Euclidean
norm on Rn,

||x|| = (x21 + x22 + . . .+ x2n)1/2 ,

satisfies these axioms.

Let U be any bounded convex open subset of Rn that contains 0 and such that if
x ∈ U then −x ∈ U . Show that there is a norm on Rn, satisfying the axioms, for which U
is the set of points in Rn of norm less than 1.

2/I/3G Analysis II

Consider a sequence of continuous functions Fn : [−1, 1] → R. Suppose that the
functions Fn converge uniformly to some continuous function F . Show that the integrals∫ 1

−1 Fn(x)dx converge to
∫ 1

−1 F (x)dx.

Give an example to show that, even if the functions Fn(x) and F (x) are differen-
tiable, the derivatives F ′n(0) need not converge to F ′(0).
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2/II/14G Analysis II

Let X be a non-empty complete metric space. Give an example to show that the
intersection of a descending sequence of non-empty closed subsets of X, A1 ⊃ A2 ⊃ · · · ,
can be empty. Show that if we also assume that

lim
n→∞

diam (An) = 0

then the intersection is not empty. Here the diameter diam(A) is defined as the supremum
of the distances between any two points of a set A.

We say that a subset A of X is dense if it has nonempty intersection with every
nonempty open subset of X. Let U1, U2, . . . be any sequence of dense open subsets of X.
Show that the intersection

⋂∞
n=1 Un is not empty.

[Hint: Look for a descending sequence of subsets A1 ⊃ A2 ⊃ · · · , with Ai ⊂ Ui,
such that the previous part of this problem applies.]

3/I/4F Analysis II

Let X and X ′ be metric spaces with metrics d and d′. If u = (x, x′) and v = (y, y′)
are any two points of X ×X ′, prove that the formula

D(u, v) = max
{
d(x, y), d′(x′, y′)

}

defines a metric on X ×X ′. If X = X ′, prove that the diagonal ∆ of X ×X is closed in
X ×X.

3/II/16F Analysis II

State and prove the contraction mapping theorem.

Let a be a positive real number, and take X = [
√

a
2 , ∞). Prove that the function

f(x) =
1

2

(
x+

a

x

)

is a contraction from X to X. Find the unique fixed point of f .
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4/I/3F Analysis II

Let U, V be open sets in Rn,Rm, respectively, and let f : U → V be a map. What
does it mean for f to be differentiable at a point u of U?

Let g : R2 → R be the map given by

g(x, y) = |x|+ |y| .

Prove that g is differentiable at all points (a, b) with ab 6= 0.

4/II/13F Analysis II

State the inverse function theorem for maps f : U → R2, where U is a non-empty
open subset of R2.

Let f : R2 → R2 be the function defined by

f(x, y) = (x, x3 + y3 − 3xy) .

Find a non-empty open subset U of R2 such that f is locally invertible on U , and compute
the derivative of the local inverse.

Let C be the set of all points (x, y) in R2 satisfying

x3 + y3 − 3xy = 0 .

Prove that f is locally invertible at all points of C except (0, 0) and (22/3, 21/3). Deduce
that, for each point (a, b) in C except (0, 0) and (22/3, 21/3), there exist open intervals I, J
containing a, b, respectively, such that for each x in I, there is a unique point y in J with
(x, y) in C.
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1/I/1F Analysis II

Let E be a subset of Rn. Prove that the following conditions on E are equivalent:

(i) E is closed and bounded.

(ii) E has the Bolzano–Weierstrass property (i.e., every sequence in E has a
subsequence convergent to a point of E).

(iii) Every continuous real-valued function on E is bounded.

[The Bolzano–Weierstrass property for bounded closed intervals in R1 may be
assumed.]

1/II/10F Analysis II

Explain briefly what is meant by a metric space, and by a Cauchy sequence in a
metric space.

A function d : X × X → R is called a pseudometric on X if it satisfies all the
conditions for a metric except the requirement that d(x, y) = 0 implies x = y. If d is a
pseudometric on X, show that the binary relation R on X defined by xR y ⇔ d(x, y) = 0
is an equivalence relation, and that the function d induces a metric on the set X/R of
equivalence classes.

Now let (X, d) be a metric space. If (xn) and (yn) are Cauchy sequences in X,
show that the sequence whose nth term is d(xn, yn) is a Cauchy sequence of real numbers.
Deduce that the function d defined by

d((xn), (yn)) = lim
n→∞

d(xn, yn)

is a pseudometric on the set C of all Cauchy sequences in X. Show also that there is an
isometric embedding (that is, a distance-preserving mapping) X → C/R, where R is the
equivalence relation on C induced by the pseudometric d as in the previous paragraph.
Under what conditions on X is X → C/R bijective? Justify your answer.

2/I/1F Analysis II

Explain what it means for a function f : R2 → R1 to be differentiable at a point
(a, b). Show that if the partial derivatives ∂f/∂x and ∂f/∂y exist in a neighbourhood of
(a, b) and are continuous at (a, b) then f is differentiable at (a, b).

Let
f(x, y) =

xy

x2 + y2
((x, y) 6= (0, 0))

and f(0, 0) = 0. Do the partial derivatives of f exist at (0, 0)? Is f differentiable at (0, 0)?
Justify your answers.
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2/II/10F Analysis II

Let V be the space of n× n real matrices. Show that the function

N(A) = sup {‖Ax‖ : x ∈ Rn, ‖x‖ = 1}

(where ‖ − ‖ denotes the usual Euclidean norm on Rn) defines a norm on V . Show also
that this norm satisfies N(AB) 6 N(A)N(B) for all A and B, and that if N(A) < ε then
all entries of A have absolute value less than ε. Deduce that any function f : V → R such
that f(A) is a polynomial in the entries of A is continuously differentiable.

Now let d : V → R be the mapping sending a matrix to its determinant. By
considering d(I +H) as a polynomial in the entries of H, show that the derivative d′(I) is
the function H 7→ trH. Deduce that, for any A, d′(A) is the mapping H 7→ tr((adjA)H),
where adjA is the adjugate of A, i.e. the matrix of its cofactors.

[Hint: consider first the case when A is invertible. You may assume the results that
the set U of invertible matrices is open in V and that its closure is the whole of V , and
the identity (adjA)A = detA.I.]

3/I/1F Analysis II

Let V be the vector space of continuous real-valued functions on [−1, 1]. Show that
the function

‖f‖ =

∫ 1

−1

|f(x)| dx

defines a norm on V .

Let fn(x) = xn. Show that (fn) is a Cauchy sequence in V . Is (fn) convergent?
Justify your answer.

3/II/11F Analysis II

State and prove the Contraction Mapping Theorem.

Let (X, d) be a bounded metric space, and let F denote the set of all continuous
maps X → X. Let ρ : F × F → R be the function

ρ(f, g) = sup{d(f(x), g(x)) : x ∈ X} .

Show that ρ is a metric on F , and that (F, ρ) is complete if (X, d) is complete. [You may
assume that a uniform limit of continuous functions is continuous.]

Now suppose that (X, d) is complete. Let C ⊆ F be the set of contraction mappings,
and let θ : C → X be the function which sends a contraction mapping to its unique fixed
point. Show that θ is continuous. [Hint: fix f ∈ C and consider d(θ(g), f(θ(g))), where
g ∈ C is close to f .]
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4/I/1F Analysis II

Explain what it means for a sequence of functions (fn) to converge uniformly to
a function f on an interval. If (fn) is a sequence of continuous functions converging
uniformly to f on a finite interval [a, b], show that

∫ b

a

fn(x) dx −→
∫ b

a

f(x) dx as n→ ∞ .

Let fn(x) = x exp(−x/n)/n2, x > 0. Does fn → 0 uniformly on [0,∞)? Does∫ ∞
0
fn(x) dx→ 0? Justify your answers.

4/II/10F Analysis II

Let (fn)n>1 be a sequence of continuous complex-valued functions defined on a set
E ⊆ C, and converging uniformly on E to a function f . Prove that f is continuous on E.

State the Weierstrass M -test for uniform convergence of a series
∑∞

n=1 un(z) of
complex-valued functions on a set E.

Now let f(z) =
∑∞

n=1 un(z), where

un(z) = n−2sec (πz/2n) .

Prove carefully that f is continuous on C \ Z.

[You may assume the inequality | cos z| > | cos(Re z)|.]
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1/I/1E Analysis II

Suppose that for each n = 1, 2, . . ., the function fn : R → R is uniformly continuous
on R.

(a) If fn → f pointwise on R is f necessarily continuous on R?

(b) If fn → f uniformly on R is f necessarily continuous on R?

In each case, give a proof or a counter-example (with justification).

1/II/10E Analysis II

Suppose that (X, d) is a metric space that has the Bolzano-Weierstrass property
(that is, any sequence has a convergent subsequence). Let (Y, d′) be any metric space,
and suppose that f is a continuous map of X onto Y . Show that (Y, d′) also has the
Bolzano-Weierstrass property.

Show also that if f is a bijection of X onto Y , then f−1 : Y → X is continuous.

By considering the map x 7→ eix defined on the real interval [−π/2, π/2], or
otherwise, show that there exists a continuous choice of arg z for the complex number
z lying in the right half-plane {x+ iy : x > 0}.

2/I/1E Analysis II

Define what is meant by (i) a complete metric space, and (ii) a totally bounded
metric space.

Give an example of a metric space that is complete but not totally bounded. Give
an example of a metric space that is totally bounded but not complete.

Give an example of a continuous function that maps a complete metric space onto
a metric space that is not complete. Give an example of a continuous function that maps
a totally bounded metric space onto a metric space that is not totally bounded.

[You need not justify your examples.]
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2/II/10E Analysis II

(a) Let f be a map of a complete metric space (X, d) into itself, and suppose that
there exists some k in (0, 1), and some positive integer N , such that d

(
fN(x), fN (y)

)
6

k d(x, y) for all distinct x and y in X, where fm is the mth iterate of f . Show that f has
a unique fixed point in X.

(b) Let f be a map of a compact metric space (X, d) into itself such that
d
(
f(x), f(y)

)
< d(x, y) for all distinct x and y in X. By considering the function

d
(
f(x), x

)
, or otherwise, show that f has a unique fixed point in X.

(c) Suppose that f : Rn → Rn satisfies |f(x) − f(y)| < |x− y| for every distinct x
and y in Rn. Suppose that for some x, the orbit O(x) = {x, f(x), f 2(x), . . .} is bounded.
Show that f maps the closure of O(x) into itself, and deduce that f has a unique fixed
point in Rn.

[The Contraction Mapping Theorem may be used without proof providing that it is
correctly stated.]

3/I/1E Analysis II

Let f : R → R2 be defined by f = (u, v), where u and v are defined by
u(0) = v(0) = 0 and, for t 6= 0, u(t) = t2 sin(1/t) and v(t) = t2 cos(1/t). Show that
f is differentiable on R.

Show that for any real non-zero a, ||f ′(a) − f ′(0)|| > 1, where we regard f ′(a) as
the vector

(
u′(a), v′(a)

)
in R2.
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3/II/11E Analysis II

Show that if a, b and c are non-negative numbers, and a 6 b+ c, then

a

1 + a
6 b

1 + b
+

c

1 + c
.

Deduce that if (X, d) is a metric space, then d(x, y)/[1 + d(x, y)] is a metric on X.

Let D = {z ∈ C : |z| < 1} and Kn = {z ∈ D : |z| 6 (n− 1)/n}. Let F be the class
of continuous complex-valued functions on D and, for f and g in F , define

σ(f, g) =
∞∑

n=2

1

2n

||f − g||n
1 + ||f − g||n

,

where ||f − g||n = sup{|f(z)− g(z)| : z ∈ Kn}. Show that the series for σ(f, g) converges,
and that σ is a metric on F .

For |z| < 1, let sk(z) = 1 + z+ z2 + · · ·+ zk and s(z) = 1 + z+ z2 + · · ·. Show that
for n > 2, ||sk − s||n = n(1 − 1

n )k+1. By considering the sums for 2 6 n 6 N and n > N
separately, show that for each N ,

σ(sk, s) 6
N∑

n=2

||sk − s||n + 2−N ,

and deduce that σ(sk, s) → 0 as k → ∞.

4/I/1E Analysis II

(a) Let (X, d) be a metric space containing the point x0, and let

U = {x ∈ X : d(x, x0) < 1}, K = {x ∈ X : d(x, x0) 6 1}.

Is U necessarily the largest open subset of K? Is K necessarily the smallest closed set
that contains U? Justify your answers.

(b) Let X be a normed space with norm ||·||, and let

U = {x ∈ X : ||x|| < 1}, K = {x ∈ X : ||x|| 6 1}.

Is U necessarily the largest open subset of K? Is K necessarily the smallest closed set
that contains U? Justify your answers.
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4/II/10E Analysis II

(a) Let V be a finite-dimensional real vector space, and let ||·||1 and ||·||2 be two
norms on V . Show that a function f : V → R is differentiable at a point a in V with
respect to ||·||1 if and only if it is differentiable at a with respect to ||·||2, and that if this
is so then the derivative f ′(a) of f is independent of the norm used. [You may assume
that all norms on a finite-dimensional vector space are equivalent.]

(b) Let V1, V2 and V3 be finite-dimensional normed real vector spaces with Vj

having norm ||·||j , j = 1, 2, 3, and let f : V1 × V2 → V3 be a continuous bilinear mapping.
Show that f is differentiable at any point (a, b) in V1 × V2, and that f ′(a, b)(h, k) =

f(h, b) + f(a, k). [You may assume that
(
||u||21 + ||v||22

)1/2
is a norm on V1 × V2, and

that {(x, y) ∈ V1 × V2 : ||x||1 = 1, ||y||2 = 1} is compact.]
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1/I/1A Analysis II

Define uniform continuity for functions defined on a (bounded or unbounded)
interval in R.

Is it true that a real function defined and uniformly continuous on [0, 1] is necessarily
bounded?

Is it true that a real function defined and with a bounded derivative on [1,∞) is
necessarily uniformly continuous there?

Which of the following functions are uniformly continuous on [1,∞):

(i) x2;

(ii) sin(x2);

(iii) sinx
x ?

Justify your answers.

1/II/10A Analysis II

Show that each of the functions below is a metric on the set of functions x(t) ∈
C[a, b] :

d1(x, y) = sup
t∈[a,b]

|x(t) − y(t)|,

d2(x, y) =
{ ∫ b

a
|x(t) − y(t)|2dt}

1/2
.

Is the space complete in the d1 metric? Justify your answer.

Show that the set of functions

xn(t) =

{ 0, −1 6 t < 0
nt, 0 6 t < 1/n
1, 1/n 6 t 6 1

is a Cauchy sequence with respect to the d2 metric on C[−1, 1], yet does not tend to a
limit in the d2 metric in this space. Hence, deduce that this space is not complete in the
d2 metric.
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2/I/1A Analysis II

State and prove the contraction mapping theorem.

Let A = {x, y, z}, let d be the discrete metric on A, and let d ′ be the metric given
by: d ′ is symmetric and

d ′(x, y) = 2, d ′(x, z) = 2, d ′(y, z) = 1,

d ′(x, x) = d ′(y, y) = d ′(z, z) = 0.

Verify that d ′ is a metric, and that it is Lipschitz equivalent to d.

Define an appropriate function f : A → A such that f is a contraction in the d ′

metric, but not in the d metric.

2/II/10A Analysis II

Define total boundedness for metric spaces.

Prove that a metric space has the Bolzano–Weierstrass property if and only if it is
complete and totally bounded.

3/I/1A Analysis II

Define what is meant by a norm on a real vector space.

(a) Prove that two norms on a vector space (not necessarily finite-dimensional) give
rise to equivalent metrics if and only if they are Lipschitz equivalent.

(b) Prove that if the vector space V has an inner product, then for all x, y ∈ V,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2,

in the induced norm.

Hence show that the norm on R2 defined by ‖x‖ = max (|x1|, |x2|), where x = (x1, x2) ∈
R2, cannot be induced by an inner product.
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3/II/11A Analysis II

Prove that if all the partial derivatives of f : Rp → R (with p > 2) exist in an
open set containing (0, 0, . . . , 0) and are continuous at this point, then f is differentiable
at (0, 0, . . . , 0).

Let

g(x) =

{
x2 sin(1/x), x 6= 0,
0, x = 0,

and
f(x, y) = g(x) + g(y).

At which points of the plane is the partial derivative fx continuous?

At which points is the function f(x, y) differentiable? Justify your answers.

4/I/1A Analysis II

Let f be a mapping of a metric space (X, d) into itself such that d(f(x), f(y)) <
d(x, y) for all distinct x, y in X.

Show that f(x) and d(x, f(x)) are continuous functions of x.

Now suppose that (X, d) is compact and let

h = inf
x∈X

d(x, f(x)).

Show that we cannot have h > 0.

[You may assume that a continuous function on a compact metric space is bounded and
attains its bounds.]

Deduce that f possesses a fixed point, and that it is unique.

4/II/10A Analysis II

Let {fn} be a pointwise convergent sequence of real-valued functions on a closed
interval [a, b]. Prove that, if for every x ∈ [a, b], the sequence {fn(x)} is monotonic in n,
and if all the functions fn, n = 1, 2, . . . , and f = lim fn are continuous, then fn → f
uniformly on [a, b].

By considering a suitable sequence of functions {fn} on [0, 1), show that if the
interval is not closed but all other conditions hold, the conclusion of the theorem may fail.
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