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Paper 2, Section I

3F Probability
(a) State and prove Markov’s inequality.

(b) Let X be a standard normal random variable. Compute the moment generating
function MX(t) = E(etX).

(c) Prove that, for all v > 0,

∫ ∞

v

1√
2π
e−x

2/2dx 6 e−v
2/2.

Paper 2, Section I

4F Probability
A 2k-spalindrome is a sequence of 2k digits that contains k distinct digits and reads

the same backwards as forwards.

(a) What is the probability that a sequence of 2k digits, chosen independently and
uniformly at random from {0, 1, . . . , 9}, is a 2k-spalindrome?

(b) Suppose now a sequence of 3k digits is chosen independently and uniformly at
random from {0, 1, . . . , 9}. What is the probability that this longer sequence contains a
2k-spalindrome? [Hint: Consider the event that the subsequence starting in position ` is
a 2k-spalindrome.]

Paper 2, Section II

9F Probability
In a group of people, each pair are friends with probability 1/2, and friendships

between different pairs of people are independent. Each person’s birthday is distributed
independently and uniformly among the 365 days of the year. Birthdays are independent
of friendships.

The number of people in the group, N , has a Poisson distribution with mean 365.

(a) What is the expectation of the number of pairs of friends with the same birthday?

(b) Let Zi be the number of people born on the ith day of the year. Find the joint
probability mass function of (Z1, . . . , Z365).

(c) What is the probability that no pair of friends have the same birthday? [You
may express your answer in terms of the constant

C =
∞∑

n=2

2−n(n−1)/2

n!
≈ 0.27 . ]

Part IA, Paper 1
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Paper 2, Section II

10F Probability
Let X be a random variable with probability density function

f(x) =
xn−1e−x

(n− 1)!
for x > 0,

where n is a positive integer.

(a) Find the moment generating function MX(t) for t < 1.

(b) Find the mean and variance of X.

(c) Prove that, for every q > 0,

∫ n+q
√
n

0

xn−1e−x

(n− 1)!
dx→ Φ(q) as n→∞ ,

where Φ is the distribution function of a standard normal random variable. [You may cite
any result from the course, provided that it is clearly stated.]

Paper 2, Section II

11F Probability
Let T1 and T2 be independent exponential random variables with means λ−1

1 and
λ−1
2 , respectively. Let V = min(T1, T2) and W = max(T1, T2).

(a) Find the distribution of V . What is the probability that V = T1?

(b) Find Pr(V 6 t | V > s) for t > s > 0.

From now on, suppose that λ1 = λ2 = λ.

(c) Prove that V and W − V are independent. What is the distribution of W − V ?

(d) Hence, find the distribution of 2V/(W + V ).

Part IA, Paper 1 [TURN OVER]

2023
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Paper 2, Section II

12F Probability
Let X be a random variable taking values in {0, 1, 2, . . . }, with Pr(X > 2) > 0.

(a) Define the probability generating function GX of X. Show that the first and
second derivatives of GX are positive and non-decreasing on (0, 1].

Now consider a branching process which starts with a population of 1. For each
n > 1, each individual in generation n gives rise to an independent number of offspring,
distributed as X, which together form generation n+ 1.

(b) Let d be the probability that the population eventually becomes extinct. Prove
that d is the smallest non-negative solution to t = GX(t).

(c) Let E(X) = µ. Show that if µ > 1 then d < 1.

(d) Suppose that µ > 1 and that X has variance σ2. Show that for t ∈ [0, 1],

GX(t) 6 1− µ(1− t) +
1

2
(σ2 + µ2 − µ)(1− t)2.

Hence find an upper bound d∗ < 1 for the extinction probability d, where d∗ is given in
terms of µ and σ2.

Part IA, Paper 1

2023
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Paper 2, Section I
3F Probability

What does it mean to say a function is convex? State Jensen’s inequality for a
convex function f and an integrable random variable X.

Let x1, . . . , xn be positive real numbers. Show that

∑n
i=1 xi log xi∑n

i=1 xi
> log

(∑n
i=1 xi
n

)
.

[You may use without proof a standard sufficient condition for convexity if it is stated
carefully.]

Paper 2, Section I
4F Probability

Let X be a random variable with mean µ and variance σ2. Let

G(a) = E
[
(X − a)2

]
.

Show that G(a) > σ2 for all a. For what value of a is there equality?

Let
H(a) = E

[
|X − a|

]
.

Supposing that X is a continuous random variable with probability density function f ,
express H(a) in terms of f . Show that H is minimised for a such that

∫ a
−∞ f(x)dx = 1/2.

Part IA, Paper 1

2022
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Paper 2, Section II
9F Probability

(a) Let U and V be two bounded random variables such that E[Uk] = E[V k] for all
non-negative integers k. Show that U and V have the same moment generating function.

(b) Let X be a continuous random variable with probability density function

f(x) = Ae−x2/2

for all real x, where A is a normalising constant. Compute the moment generating function
of X.

(c) Let Y be a discrete random variable with probability mass function

P(Y = n) = Be−n2/2

for all integers n, where B is a normalising constant. Show that

E[ekY ] = E[ekX ]

for all integers k, where X is a standard normal random variable.

(d) Let U and V be unbounded random variables such that Uk and V k are integrable
and E[Uk] = E[V k] for all non-negative integers k. Does it follow that U and V have the
same distribution?

Paper 2, Section II
10F Probability
(a) LetX be a random variable valued in {1, 2, . . .} and letGX be its probability generating
function. Show that

P(X = n) =
G

(n)
X (0)

n!

where G
(n)
X denotes the nth derivative of GX .

(b) Let Y be another random variable valued in {1, 2, . . .}, independent of X. Prove that
GX+Y (s) = GX(s)GY (s) for all 0 6 s 6 1.

(c) Compute GX in the case where X is a geometric random variable taking values in
{1, 2, . . .} with P(X = 1) = p for a given constant 0 < p 6 1.

(d) A jar contains n marbles. Initially, all of the marbles are red. Every minute, a marble
is drawn at random from the jar, and then replaced with a blue marble. Let T be the
number of minutes until the jar contains only blue marbles. Compute the probability
generating function GT .

Part IA, Paper 1 [TURN OVER]

2022
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Paper 2, Section II
11F Probability

Consider a coin that is biased such that when tossed the probability of heads is p
and tails is 1− p.

(a) Suppose that the coin was tossed n times. What is the probability that the coin
came up heads exactly k times?

(b) Suppose that the coin was tossed n times. Given that the coin came up heads
exactly k times, what is the probability that the coin came up heads k times in a row?

(c) Suppose that the coin was tossed repeatedly until heads came up k times. What
is the probability that the total number of tosses was n?

(d) Suppose that the coin was tossed repeatedly until heads came up k times in a
row. Find the expected number of tosses.

Paper 2, Section II
12F Probability

Let A1, A2, . . . be a collection of events. Let N =
∑

n>1 1An be the random variable
that counts how many of these events occur. Note that N takes values in {0, 1, . . .}∪{∞}.
(a) By considering the quantity E(N), show that if

∑
n>1 P(An) < ∞ then

P(an infinite number of the events occur) = 0.

(b) Suppose now that the events are independent. Show the inequality E(2−N ) 6 e−
1
2
E(N),

with the convention that 2−∞ = 0. [Hint: use the inequality 1− x 6 e−x for all x.]

(c) Again suppose that the events are independent. Show that if
∑

n>1 P(An) = ∞ then
P(an infinite number of the events occur) = 1.

(d) A monkey types by randomly striking keys on a 26-letter keyboard, with each letter of
the alphabet equally likely to be struck and the keystrokes independent. Show that with
probability one, the word HELLO appears infinitely often.

Part IA, Paper 1

2022
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Paper 2, Section I

3D Probability
A coin has probability p of landing heads. Let qn be the probability that the

number of heads after n tosses is even. Give an expression for qn+1 in terms of qn. Hence,
or otherwise, find qn.

Paper 2, Section I

4F Probability
Let X be a continuous random variable taking values in [0,

√
3]. Let the probability

density function of X be

fX(x) =
c

1 + x2
, for x ∈ [0,

√
3],

where c is a constant.

Find the value of c and calculate the mean, variance and median of X.

[Recall that the median of X is the number m such that P(X 6 m) = 1
2 .]

Part IA, 2021 List of Questions [TURN OVER]

2021
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Paper 2, Section II

9E Probability
(a) (i) Define the conditional probability P(A|B) of the event A given the event B.

Let {Bj : 1 6 j 6 n} be a partition of the sample space such that P(Bj) > 0
for all j. Show that, if P(A) > 0,

P(Bj |A) =
P(A|Bj)P(Bj)∑n
k=1 P(A|Bk)P(Bk)

.

(ii) There are n urns, the rth of which contains r − 1 red balls and n − r blue
balls. Alice picks an urn (uniformly) at random and removes two balls
without replacement. Find the probability that the first ball is blue, and
the conditional probability that the second ball is blue, given that the first is
blue. [You may assume, if you wish, that

∑n−1
i=1 i(i−1) = 1

3n(n−1)(n−2).]

(b) (i) What is meant by saying that two events A and B are independent? Two
fair (6-sided) dice are rolled. Let At be the event that the sum of the
numbers shown is t, and let Bi be the event that the first die shows i. For
what values of t and i are the two events At and Bi independent?

(ii) The casino at Monte Corona features the following game: three coins each
show heads with probability 3/5 and tails otherwise. The first counts 10
points for a head and 2 for a tail; the second counts 4 points for both a head
and a tail; and the third counts 3 points for a head and 20 for a tail. You
and your opponent each choose a coin. You cannot both choose the same
coin. Each of you tosses your coin once and the person with the larger score
wins the jackpot. Would you prefer to be the first or the second to choose
a coin?

Part IA, 2021 List of Questions

2021
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Paper 2, Section II

10E Probability
(a) Alanya repeatedly rolls a fair six-sided die. What is the probability that the

first number she rolls is a 1, given that she rolls a 1 before she rolls a 6?

(b) Let (Xn)n>0 be a simple symmetric random walk on the integers starting at
x ∈ Z, that is,

Xn =

{
x if n = 0

x+
∑n

i=1 Yi if n > 1
,

where (Yn)n>1 is a sequence of IID random variables with P(Yn = 1) = P(Yn = −1) = 1
2 .

Let T =min{n > 0 : Xn = 0} be the time that the walk first hits 0.

(i) Let n be a positive integer. For 0 < x < n, calculate the probability that
the walk hits 0 before it hits n.

(ii) Let x = 1 and let A be the event that the walk hits 0 before it hits 3. Find
P(X1 = 0|A). Hence find E(T |A).

(iii) Let x = 1 and let B be the event that the walk hits 0 before it hits 4. Find
E(T |B).

Paper 2, Section II

11D Probability
Let ∆ be the disc of radius 1 with centre at the origin O. Let P be a random point

uniformly distributed in ∆. Let (R,Θ) be the polar coordinates of P . Show that R and
Θ are independent and find their probability density functions fR and fΘ.

Let A, B and C be three random points selected independently and uniformly in
∆. Find the expected area of triangle OAB and hence find the probability that C lies in
the interior of triangle OAB.

Find the probability that O, A, B and C are the vertices of a convex quadrilat-
eral.

Part IA, 2021 List of Questions [TURN OVER]

2021
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Paper 2, Section II

12F Probability
State and prove Chebyshev’s inequality.

Let (Xi)i>1 be a sequence of independent, identically distributed random variables
such that

P(Xi = 0) = p and P(Xi = 1) = 1− p
for some p ∈ [0, 1], and let f : [0, 1]→ R be a continuous function.

(i) Prove that

Bn(p) := E
(
f

(
X1 + · · ·+Xn

n

))

is a polynomial function of p, for any natural number n.

(ii) Let δ > 0. Prove that

∑

k∈Kδ

(
n

k

)
pk(1− p)n−k 6 1

4nδ2
,

where Kδ is the set of natural numbers 0 6 k 6 n such that |k/n− p| > δ.

(iii) Show that
sup
p∈[0,1]

|f(p)−Bn(p)| → 0

as n→∞. [You may use without proof that, for any ε > 0, there is a δ > 0
such that |f(x)− f(y)| 6 ε for all x, y ∈ [0, 1] with |x− y| 6 δ.]

Part IA, 2021 List of Questions

2021
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Paper 1, Section I

4F Probability
A robot factory begins with a single generation-0 robot. Each generation-n robot

independently builds some number of generation-(n + 1) robots before breaking down.
The number of generation-(n+1) robots built by a generation-n robot is 0, 1, 2 or 3 with
probabilities 1

12 ,
1
2 ,

1
3 and 1

12 respectively. Find the expectation of the total number of
generation-n robots produced by the factory. What is the probability that the factory
continues producing robots forever?

[Standard results about branching processes may be used without proof as long as
they are carefully stated.]

Paper 1, Section II

11F Probability
Let A1, A2, . . . , An be events in some probability space. State and prove the

inclusion-exclusion formula for the probability P(
⋃n

i=1Ai). Show also that

P
( n⋃

i=1

Ai

)
>
∑

i

P(Ai)−
∑

i<j

P(Ai ∩Aj).

Suppose now that n > 2 and that whenever i 6= j we have P(Ai ∩Aj) 6 1/n. Show
that there is a constant c independent of n such that

∑n
i=1 P(Ai) 6 c

√
n.

Paper 1, Section II

12F Probability
(a) Let Z be a N(0, 1) random variable. Write down the probability density function

(pdf) of Z, and verify that it is indeed a pdf. Find the moment generating function (mgf)
mZ(θ) = E(eθZ) of Z and hence, or otherwise, verify that Z has mean 0 and variance 1.

(b) Let (Xn)n>1 be a sequence of IID N(0, 1) random variables. Let Sn =
∑n

i=1Xi

and let Un = Sn/
√
n. Find the distribution of Un.

(c) Let Yn = X2
n. Find the mean µ and variance σ2 of Y1. Let Tn =

∑n
i=1 Yi and

let Vn = (Tn − nµ)/σ
√
n.

If (Wn)n>1 is a sequence of random variables and W is a random variable, what
does it mean to say that Wn →W in distribution? State carefully the continuity theorem
and use it to show that Vn → Z in distribution.

[You may not assume the central limit theorem.]

Part IA, 2020 List of Questions

2020
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Paper 2, Section I

3F Probability
(a) Prove that log(n!) ∼ n log n as n → ∞.

(b) State Stirling’s approximation for n!.

(c) A school party of n boys and n girls travel on a red bus and a green bus. Each
bus can hold n children. The children are distributed at random between the buses.

Let An be the event that the boys all travel on the red bus and the girls all travel
on the green bus. Show that

P(An) ∼
√
πn

4n
as n → ∞.

Paper 2, Section I

4F Probability
Let X and Y be independent exponential random variables each with parameter 1.

Write down the joint density function of X and Y .

Let U = 6X + 8Y and V = 2X + 3Y . Find the joint density function of U and V .

Are U and V independent? Briefly justify your answer.

Part IA, 2019 List of Questions

2019
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Paper 2, Section II

9F Probability
(a) State the axioms that must be satisfied by a probability measure P on a

probability space Ω.

Let A and B be events with P(B) > 0. Define the conditional probability P(A|B).

Let B1, B2, . . . be pairwise disjoint events with P(Bi) > 0 for all i and Ω = ∪∞
i=1Bi.

Starting from the axioms, show that

P(A) =
∞∑

i=1

P(A|Bi)P(Bi)

and deduce Bayes’ theorem.

(b) Two identical urns contain white balls and black balls. Urn I contains 45 white
balls and 30 black balls. Urn II contains 12 white balls and 36 black balls. You do not
know which urn is which.

(i) Suppose you select an urn and draw one ball at random from it. The ball is
white. What is the probability that you selected Urn I?

(ii) Suppose instead you draw one ball at random from each urn. One of the balls
is white and one is black. What is the probability that the white ball came from Urn I?

(c) Now suppose there are n identical urns containing white balls and black balls,
and again you do not know which urn is which. Each urn contains 1 white ball. The
ith urn contains 2i − 1 black balls (1 6 i 6 n). You select an urn and draw one ball at
random from it. The ball is white. Let p(n) be the probability that if you replace this ball
and again draw a ball at random from the same urn then the ball drawn on the second
occasion is also white. Show that p(n) → 1

3 as n → ∞.

Part IA, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section II

10F Probability
Let m and n be positive integers with n > m > 0 and let p ∈ (0, 1) be a real

number. A random walk on the integers starts at m. At each step, the walk moves up 1
with probability p and down 1 with probability q = 1−p. Find, with proof, the probability
that the walk hits n before it hits 0.

Patricia owes a very large sum £2(N !) of money to a member of a violent criminal
gang. She must return the money this evening to avoid terrible consequences but she only
has £N !. She goes to a casino and plays a game with the probability of her winning being
18
37 . If she bets £a on the game and wins then her £a is returned along with a further £a;
if she loses then her £a is lost.

The rules of the casino allow Patricia to play the game repeatedly until she runs
out of money. She may choose the amount £a that she bets to be any integer a with
1 6 a 6 N , but it must be the same amount each time. What choice of a would be best
and why?

What choice of a would be best, and why, if instead the probability of her winning the
game is 19

37?

Part IA, 2019 List of Questions

2019
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Paper 2, Section II

11F Probability
Recall that a random variable X in R2 is bivariate normal or Gaussian if uTX is

normal for all u ∈ R2. Let X =

(
X1

X2

)
be bivariate normal.

(a) (i) Show that if A is a 2× 2 real matrix then AX is bivariate normal.

(ii) Let µ = E(X) and V = Var (X) = E[(X − µ)(X − µ)T ]. Find the moment

generating function MX(λ) = E(eλTX) of X and deduce that the distribution of a bivariate
normal random variable X is uniquely determined by µ and V .

(iii) Let µi = E(Xi) and σ2
i = Var (Xi) for i = 1, 2. Let ρ = Cov (X1,X2)

σ1σ2
be the

correlation of X1 and X2. Write down V in terms of some or all of µ1, µ2, σ1, σ2 and ρ.
If Cov (X1,X2) = 0, why must X1 and X2 be independent?

For each a ∈ R, find Cov (X1,X2 − aX1). Hence show that X2 = aX1 + Y for some
normal random variable Y in R that is independent of X1 and some a ∈ R that should be
specified.

(b) A certain species of East Anglian goblin has left arm of mean length 100cm with
standard deviation 1cm, and right arm of mean length 102cm with standard deviation
2cm. The correlation of left- and right-arm-length of a goblin is 1

2 . You may assume
that the distribution of left- and right-arm-lengths can be modelled by a bivariate normal
distribution. What is the probability that a randomly selected goblin has longer right arm
than left arm?

[You may give your answer in terms of the distribution function Φ of a N(0, 1) ran-
dom variable Z. That is, Φ(t) = P(Z 6 t).]

Part IA, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section II

12F Probability
Let A1, A2, . . . , An be events in some probability space. Let X be the number of

Ai that occur (so X is a random variable). Show that

E(X) =
n∑

i=1

P(Ai)

and

Var (X) =

n∑

i=1

n∑

j=1

(
P(Ai ∩Aj)− P(Ai)P(Aj)

)
.

[Hint: Write X =
∑n

i=1Xi where Xi =

{
1 if Ai occurs
0 if not

.]

A collection of n lightbulbs are arranged in a circle. Each bulb is on independently
with probability p. Let X be the number of bulbs such that both that bulb and the next
bulb clockwise are on. Find E(X) and Var (X).

Let B be the event that there is at least one pair of adjacent bulbs that are both
on.

Use Markov’s inequality to show that if p = n−0.6 then P(B) → 0 as n → ∞.

Use Chebychev’s inequality to show that if p = n−0.4 then P(B) → 1 as n → ∞.

Part IA, 2019 List of Questions

2019
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Paper 2, Section I

3F Probability
Let X and Y be independent Poisson random variables with parameters λ and µ

respectively.

(i) Show that X + Y is Poisson with parameter λ+ µ.

(ii) Show that the conditional distribution of X given X + Y = n is binomial, and find
its parameters.

Paper 2, Section I

4F Probability

(a) State the Cauchy–Schwarz inequality and Markov’s inequality. State and prove
Jensen’s inequality.

(b) For a discrete random variable X, show that Var(X) = 0 implies that X is constant,
i.e. there is x ∈ R such that P(X = x) = 1.

Part IA, 2018 List of Questions

2018
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Paper 2, Section II

9F Probability

(a) Let Y and Z be independent discrete random variables taking values in sets S1 and
S2 respectively, and let F : S1 × S2 → R be a function.

Let E(z) = EF (Y, z). Show that

EE(Z) = EF (Y,Z) .

Let V (z) = E(F (Y, z)2)− (EF (Y, z))2. Show that

VarF (Y,Z) = EV (Z) + VarE(Z) .

(b) Let X1, . . . ,Xn be independent Bernoulli(p) random variables. For any function
F : {0, 1} → R, show that

VarF (X1) = p(1− p)(F (1) − F (0))2 .

Let {0, 1}n denote the set of all 0 -1 sequences of length n. By induction, or
otherwise, show that for any function F : {0, 1}n → R,

VarF (X) 6 p(1− p)

n∑

i=1

E((F (X) − F (Xi))2)

where X = (X1, . . . ,Xn) and Xi = (X1, . . . ,Xi−1, 1−Xi,Xi+1, . . . ,Xn).

Paper 2, Section II

10F Probability

(a) Let X and Y be independent random variables taking values ±1, each with
probability 1

2 , and let Z = XY . Show that X, Y and Z are pairwise independent.
Are they independent?

(b) Let X and Y be discrete random variables with mean 0, variance 1, covariance ρ.
Show that Emax{X2, Y 2} 6 1 +

√
1− ρ2.

(c) Let X1,X2,X3 be discrete random variables. Writing aij = P(Xi > Xj), show that
min{a12, a23, a31} 6 2

3 .

Part IA, 2018 List of Questions [TURN OVER

2018
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Paper 2, Section II

11F Probability

(a) Consider a Galton–Watson process (Xn). Prove that the extinction probability q is
the smallest non-negative solution of the equation q = F (q) where F (t) = E(tX1).
[You should prove any properties of Galton–Watson processes that you use.]

In the case of a Galton–Watson process with

P(X1 = 1) = 1/4, P(X1 = 3) = 3/4,

find the mean population size and compute the extinction probability.

(b) For each n ∈ N, let Yn be a random variable with distribution Poisson(n). Show
that

Yn − n√
n

→ Z

in distribution, where Z is a standard normal random variable.

Deduce that

lim
n→∞

e−n
n∑

k=0

nk

k!
=

1

2
.

Paper 2, Section II

12F Probability
For a symmetric simple random walk (Xn) on Z starting at 0, let Mn = maxi6nXi.

(i) For m > 0 and x ∈ Z, show that

P(Mn > m,Xn = x) =

{
P(Xn = x) if x > m

P(Xn = 2m− x) if x < m.

(ii) For m > 0, show that P(Mn > m) = P(Xn = m) + 2
∑

x>m P(Xn = x) and that

P(Mn = m) = P(Xn = m) + P(Xn = m+ 1).

(iii) Prove that E(M2
n) < E(X2

n).

Part IA, 2018 List of Questions

2018
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Paper 2, Section I

3F Probability
Let X be a non-negative integer-valued random variable such that 0 < E(X2) <∞.

Prove that
E(X)2

E(X2)
6 P(X > 0) 6 E(X).

[You may use any standard inequality.]

Paper 2, Section I

4F Probability
Let X and Y be real-valued random variables with joint density function

f(x, y) =

{
xe−x(y+1) if x > 0 and y > 0

0 otherwise.

(i) Find the conditional probability density function of Y given X.

(ii) Find the expectation of Y given X.

Part IA, 2017 List of Questions [TURN OVER

2017
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Paper 2, Section II

9F Probability
For a positive integer N , p ∈ [0, 1], and k ∈ {0, 1, . . . , N}, let

pk(N, p) =

(
N

k

)
pk(1− p)N−k.

(a) For fixed N and p, show that pk(N, p) is a probability mass function on {0, 1, . . . , N}
and that the corresponding probability distribution has mean Np and variance
Np(1− p).

(b) Let λ > 0. Show that, for any k ∈ {0, 1, 2, . . . },

lim
N→∞

pk(N,λ/N) =
e−λλk

k!
. (∗)

Show that the right-hand side of (∗) is a probability mass function on {0, 1, 2, . . . }.

(c) Let p ∈ (0, 1) and let a, b ∈ R with a < b. For all N , find integers ka(N) and kb(N)
such that

kb(N)∑

k=ka(N)

pk(N, p) →
1√
2π

∫ b

a
e−

1
2x

2

dx as N → ∞.

[You may use the Central Limit Theorem.]

Paper 2, Section II

10F Probability

(a) For any random variable X and λ > 0 and t > 0, show that

P(X > t) 6 E(eλX)e−λt.

For a standard normal random variable X, compute E(eλX) and deduce that

P(X > t) 6 e−
1
2
t2 .

(b) Let µ, λ > 0, µ 6= λ. For independent random variables X and Y with distributions
Exp(λ) and Exp(µ), respectively, compute the probability density functions of X +Y
and min{X,Y }.
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Paper 2, Section II

11F Probability
Let β > 0. The Curie–Weiss Model of ferromagnetism is the probability distribution

defined as follows. For n ∈ N, define random variables S1, . . . , Sn with values in {±1} such
that the probabilities are given by

P(S1 = s1, . . . , Sn = sn) =
1

Zn,β
exp


 β

2n

n∑

i=1

n∑

j=1

sisj




where Zn,β is the normalisation constant

Zn,β =
∑

s1∈{±1}
· · ·

∑

sn∈{±1}
exp


 β

2n

n∑

i=1

n∑

j=1

sisj


 .

(a) Show that E(Si) = 0 for any i.

(b) Show that P(S2 = +1|S1 = +1) > P(S2 = +1). [You may use E(SiSj) > 0 for all i, j
without proof. ]

(c) Let M = 1
n

∑n
i=1 Si. Show that M takes values in En = {−1+ 2k

n : k = 0, . . . , n}, and
that for each m ∈ En the number of possible values of (S1, . . . , Sn) such that M = m
is

n!(
1+m
2 n

)
!
(
1−m
2 n

)
!
.

Find P(M = m) for any m ∈ En.
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Paper 2, Section II

12F Probability

(a) Let k ∈ {1, 2, . . . }. For j ∈ {0, . . . , k + 1}, let Dj be the first time at which a simple
symmetric random walk on Z with initial position j at time 0 hits 0 or k + 1. Show
E(Dj) = j(k + 1− j). [If you use a recursion relation, you do not need to prove that
its solution is unique.]

(b) Let (Sn) be a simple symmetric random walk on Z starting at 0 at time n = 0. For
k ∈ {1, 2, . . . }, let Tk be the first time at which (Sn) has visited k distinct vertices.
In particular, T1 = 0. Show E(Tk+1 − Tk) = k for k > 1. [You may use without proof
that, conditional on STk

= i, the random variables (STk+n)n>0 have the distribution
of a simple symmetric random walk starting at i.]

(c) For n > 3, let Zn be the circle graph consisting of vertices 0, . . . , n − 1 and edges
between k and k+1 where n is identified with 0. Let (Yi) be a simple random walk on
Zn starting at time 0 from 0. Thus Y0 = 0 and conditional on Yi the random variable
Yi+1 is Yi ± 1 with equal probability (identifying k + n with k).

The cover time T of the simple random walk on Zn is the first time at which the
random walk has visited all vertices. Show that E(T ) = n(n− 1)/2.

Part IA, 2017 List of Questions
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Paper 2, Section I

3F Probability
Let X1, . . . ,Xn be independent random variables, all with uniform distribution

on [0, 1]. What is the probability of the event {X1 > X2 > · · · > Xn−1 > Xn}?

Paper 2, Section I

4F Probability
Define the moment-generating function mZ of a random variable Z. Let X1, . . . ,Xn

be independent and identically distributed random variables with distribution N (0, 1),
and let Z = X2

1 + · · ·+X2
n. For θ < 1/2, show that

mZ(θ) = (1− 2θ)−n/2 .

Paper 2, Section II

9F Probability
For any positive integer n and positive real number θ, the Gamma distribution

Γ(n, θ) has density fΓ defined on (0,∞) by

fΓ(x) =
θn

(n− 1)!
xn−1e−θx .

For any positive integers a and b, the Beta distributionB(a, b) has density fB defined
on (0, 1) by

fB(x) =
(a+ b− 1)!

(a− 1)!(b− 1)!
xa−1(1− x)b−1 .

Let X and Y be independent random variables with respective distributions Γ(n, θ)
and Γ(m, θ). Show that the random variables X/(X+Y ) and X+Y are independent and
give their distributions.
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Paper 2, Section II

10F Probability
We randomly place n balls in m bins independently and uniformly. For each i with

1 6 i 6 m, let Bi be the number of balls in bin i.

(a) What is the distribution of Bi? For i 6= j, are Bi and Bj independent?

(b) Let E be the number of empty bins, C the number of bins with two or more balls,
and S the number of bins with exactly one ball. What are the expectations of E, C
and S?

(c) Let m = an, for an integer a > 2. What is P(E = 0)? What is the limit of E[E]/m
when n→ ∞?

(d) Instead, let n = dm, for an integer d > 2. What is P(C = 0)? What is the limit of
E[C]/m when n→ ∞?

Paper 2, Section II

11F Probability
Let X be a non-negative random variable such that E[X2] > 0 is finite, and let

θ ∈ [0, 1].

(a) Show that
E[X I[{X > θE[X]}]] > (1− θ)E[X] .

(b) Let Y1 and Y2 be random variables such that E[Y 2
1 ] and E[Y 2

2 ] are finite. State and
prove the Cauchy–Schwarz inequality for these two variables.

(c) Show that

P(X > θE[X]) > (1− θ)2
E[X]2

E[X2]
.
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Paper 2, Section II

12F Probability
A random graph with n nodes v1, . . . , vn is drawn by placing an edge with probability

p between vi and vj for all distinct i and j, independently. A triangle is a set of three
distinct nodes vi, vj , vk that are all connected: there are edges between vi and vj, between
vj and vk and between vi and vk.

(a) Let T be the number of triangles in this random graph. Compute the maximum value
and the expectation of T .

(b) State the Markov inequality. Show that if p = 1/nα, for some α > 1, then
P(T = 0) → 1 when n→ ∞.

(c) State the Chebyshev inequality. Show that if p is such that Var[T ]/E[T ]2 → 0 when
n→ ∞, then P(T = 0) → 0 when n→ ∞.
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Paper 2, Section I

3F Probability
Let U be a uniform random variable on (0, 1), and let λ > 0.

(a) Find the distribution of the random variable −(logU)/λ.

(b) Define a new random variable X as follows: suppose a fair coin is tossed, and if it
lands heads we set X = U2 whereas if it lands tails we set X = 1 − U2. Find the
probability density function of X.

Paper 2, Section I

4F Probability
Let A,B be events in the sample space Ω such that 0 < P (A) < 1 and 0 < P (B) < 1.

The event B is said to attract A if the conditional probability P (A|B) is greater than P (A),
otherwise it is said that A repels B. Show that if B attracts A, then A attracts B. Does
Bc = Ω \B repel A?

Paper 2, Section II

9F Probability
Lionel and Cristiana have a and b million pounds, respectively, where a, b ∈ N.

They play a series of independent football games in each of which the winner receives one
million pounds from the loser (a draw cannot occur). They stop when one player has lost
his or her entire fortune. Lionel wins each game with probability 0 < p < 1 and Cristiana
wins with probability q = 1− p, where p 6= q. Find the expected number of games before
they stop playing.
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Paper 2, Section II

10F Probability
Consider the function

φ(x) =
1√
2π

e−x2/2, x ∈ R.

Show that φ defines a probability density function. If a random variable X has probability
density function φ, find the moment generating function ofX, and find all moments E[Xk],
k ∈ N.

Now define

r(x) =
P (X > x)

φ(x)
.

Show that for every x > 0,
1

x
− 1

x3
< r(x) <

1

x
.

Paper 2, Section II

11F Probability
State and prove Markov’s inequality and Chebyshev’s inequality, and deduce the

weak law of large numbers.

If X is a random variable with mean zero and finite variance σ2, prove that for any
a > 0,

P (X > a) 6 σ2

σ2 + a2
.

[Hint: Show first that P (X > a) 6 P
(
(X + b)2 > (a+ b)2

)
for every b > 0.]

Paper 2, Section II

12F Probability
When coin A is tossed it comes up heads with probability 1

4 , whereas coin B comes
up heads with probability 3

4 . Suppose one of these coins is randomly chosen and is tossed
twice. If both tosses come up heads, what is the probability that coin B was tossed?
Justify your answer.

In each draw of a lottery, an integer is picked independently at random from the
first n integers 1, 2, . . . , n, with replacement. What is the probability that in a sample
of r successive draws the numbers are drawn in a non-decreasing sequence? Justify your
answer.
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Paper 2, Section I

3F Probability
Consider a particle situated at the origin (0, 0) of R2. At successive times a direction

is chosen independently by picking an angle uniformly at random in the interval [0, 2π],
and the particle then moves an Euclidean unit length in this direction. Find the expected
squared Euclidean distance of the particle from the origin after n such movements.

Paper 2, Section I

4F Probability
Consider independent discrete random variablesX1, . . . ,Xn and assume E[Xi] exists

for all i = 1, . . . , n.

Show that

E

[
n∏

i=1

Xi

]
=

n∏

i=1

E[Xi].

If the X1, . . . ,Xn are also positive, show that

n∏

i=1

∞∑

m=0

P (Xi > m) =

∞∑

m=0

P

(
n∏

i=1

Xi > m

)
.

Paper 2, Section II

9F Probability
State the axioms of probability.

State and prove Boole’s inequality.

Suppose you toss a sequence of coins, the i-th of which comes up heads with
probability pi, where

∑∞
i=1 pi < ∞. Calculate the probability of the event that infinitely

many heads occur.

Suppose you repeatedly and independently roll a pair of fair dice and each time
record the sum of the dice. What is the probability that an outcome of 5 appears before
an outcome of 7? Justify your answer.
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Paper 2, Section II

10F Probability
Define what it means for a random variable X to have a Poisson distribution, and

find its moment generating function.

SupposeX,Y are independent Poisson random variables with parameters λ, µ. Find
the distribution of X + Y .

If X1, . . . ,Xn are independent Poisson random variables with parameter λ = 1, find
the distribution of

∑n
i=1Xi. Hence or otherwise, find the limit of the real sequence

an = e−n
n∑

j=0

nj

j!
, n ∈ N.

[Standard results may be used without proof provided they are clearly stated.]

Paper 2, Section II

11F Probability
For any function g : R → R and random variables X,Y, the “tower property” of

conditional expectations is
E[g(X)] = E

[
E[g(X)|Y ]

]
.

Provide a proof of this property when both X,Y are discrete.

Let U1, U2, . . . be a sequence of independent uniform U(0, 1)-random variables. For
x ∈ [0, 1] find the expected number of Ui’s needed such that their sum exceeds x, that is,
find E[N(x)] where

N(x) = min

{
n :

n∑

i=1

Ui > x

}
.

[Hint: Write E[N(x)] = E
[
E[N(x)|U1]

]
.]
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Paper 2, Section II

12F Probability
Give the definition of an exponential random variable X with parameter λ. Show

that X is memoryless.

Now let X,Y be independent exponential random variables, each with parameter
λ. Find the probability density function of the random variable Z = min(X,Y ) and the
probability P (X > Y ).

Suppose the random variables G1, G2 are independent and each has probability
density function given by

f(y) = C−1e−yy−1/2, y > 0, where C =

∫ ∞

0
e−yy−1/2dy.

Find the probability density function of G1 +G2. [You may use standard results without
proof provided they are clearly stated.]
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Paper 2, Section I

3F Probability
Let X be a random variable with mean µ and variance σ2. Let

G(a) = E
[
(X − a)2

]
.

Show that G(a) > σ2 for all a. For what value of a is there equality?

Let
H(a) = E

[
|X − a|

]
.

Supposing that X has probability density function f , express H(a) in terms of f . Show
that H is minimised when a is such that

∫ a
−∞ f(x)dx = 1/2.

Paper 2, Section I

4F Probability

(i) Let X be a random variable. Use Markov’s inequality to show that

P(X > k) 6 E(etX)e−kt

for all t > 0 and real k.

(ii) Calculate E(etX) in the case where X is a Poisson random variable with parameter
λ = 1. Using the inequality from part (i) with a suitable choice of t, prove that

1

k!
+

1

(k + 1)!
+

1

(k + 2)!
+ . . . 6

( e
k

)k

for all k > 1.

Part IA, 2013 List of Questions

20132013



19

Paper 2, Section II

9F Probability
Let Z be an exponential random variable with parameter λ = 1. Show that

P(Z > s+ t | Z > s) = P(Z > t)

for any s, t > 0.

Let Zint = ⌊Z⌋ be the greatest integer less than or equal to Z. What is the
probability mass function of Zint? Show that E(Zint) =

1
e−1 .

Let Zfrac = Z − Zint be the fractional part of Z. What is the density of Zfrac?

Show that Zint and Zfrac are independent.

Paper 2, Section II

10F Probability
Let X be a random variable taking values in the non-negative integers, and let G

be the probability generating function of X. Assuming G is everywhere finite, show that

G′(1) = µ and G′′(1) = σ2 + µ2 − µ

where µ is the mean of X and σ2 is its variance. [You may interchange differentiation and
expectation without justification.]

Consider a branching process where individuals produce independent random num-
bers of offspring with the same distribution as X. Let Xn be the number of individuals
in the n-th generation, and let Gn be the probability generating function of Xn. Explain
carefully why

Gn+1(t) = Gn(G(t))

Assuming X0 = 1, compute the mean of Xn. Show that

Var(Xn) = σ2µ
n−1(µn − 1)

µ− 1
.

Suppose P(X = 0) = 3/7 and P(X = 3) = 4/7. Compute the probability that the
population will eventually become extinct. You may use standard results on branching
processes as long as they are clearly stated.

Part IA, 2013 List of Questions [TURN OVER

20132013



20

Paper 2, Section II

11F Probability
Let X be a geometric random variable with P(X = 1) = p. Derive formulae for

E(X) and Var(X) in terms of p.

A jar contains n balls. Initially, all of the balls are red. Every minute, a ball is
drawn at random from the jar, and then replaced with a green ball. Let T be the number
of minutes until the jar contains only green balls. Show that the expected value of T is
n
∑n

i=1 1/i. What is the variance of T ?

Paper 2, Section II

12F Probability
Let Ω be the sample space of a probabilistic experiment, and suppose that the sets

B1, B2, . . . , Bk are a partition of Ω into events of positive probability. Show that

P(Bi|A) =
P(A|Bi)P(Bi)∑k
j=1 P(A|Bj)P(Bj)

for any event A of positive probability.

A drawer contains two coins. One is an unbiased coin, which when tossed, is equally
likely to turn up heads or tails. The other is a biased coin, which will turn up heads with
probability p and tails with probability 1− p. One coin is selected (uniformly) at random
from the drawer. Two experiments are performed:

(a) The selected coin is tossed n times. Given that the coin turns up heads k times
and tails n− k times, what is the probability that the coin is biased?

(b) The selected coin is tossed repeatedly until it turns up heads k times. Given
that the coin is tossed n times in total, what is the probability that the coin is biased?
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Paper 2, Section I

3F Probability
Given two events A and B with P (A) > 0 and P (B) > 0, define the conditional

probability P (A | B).

Show that

P (B | A) = P (A | B)
P (B)

P (A)
.

A random number N of fair coins are tossed, and the total number of heads is
denoted by H. If P (N = n) = 2−n for n = 1, 2, . . . , find P (N = n | H = 1).

Paper 2, Section I

4F Probability
Define the probability generating function G(s) of a random variable X taking values

in the non-negative integers.

A coin shows heads with probability p ∈ (0, 1) on each toss. Let N be the number
of tosses up to and including the first appearance of heads, and let k > 1. Find the
probability generating function of X = min{N, k}.

Show that E(X) = p−1(1− qk) where q = 1− p.

Part IA, 2012 List of Questions
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Paper 2, Section II

9F Probability
(i) Define the moment generating function MX(t) of a random variable X. If X, Y

are independent and a, b ∈ R, show that the moment generating function of Z = aX + bY
is MX(at)MY (bt).

(ii) Assume T > 0, and MX(t) <∞ for |t| < T . Explain the expansion

MX(t) = 1 + µt+ 1
2s

2t2 + o(t2)

where µ = E(X) and s2 = E(X2). [You may assume the validity of interchanging
expectation and differentiation.]

(iii) Let X, Y be independent, identically distributed random variables with mean
0 and variance 1, and assume their moment generating function M satisfies the condition
of part (ii) with T = ∞.

Suppose that X+Y and X−Y are independent. Show thatM(2t) =M(t)3M(−t),
and deduce that ψ(t) =M(t)/M(−t) satisfies ψ(t) = ψ(t/2)2.

Show that ψ(h) = 1 + o(h2) as h→ 0, and deduce that ψ(t) = 1 for all t.

Show that X and Y are normally distributed.

Paper 2, Section II

10F Probability
(i) Define the distribution function F of a random variable X, and also its density

function f assuming F is differentiable. Show that

f(x) = − d

dx
P (X > x) .

(ii) Let U , V be independent random variables each with the uniform distribution
on [0, 1]. Show that

P (V 2 > U > x) = 1
3 − x+ 2

3x
3/2, x ∈ (0, 1) .

What is the probability that the random quadratic equation x2 +2V x+U = 0 has
real roots?

Given that the two roots R1, R2 of the above quadratic are real, what is the
probability that both |R1| 6 1 and |R2| 6 1 ?
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Paper 2, Section II

11F Probability
(i) Let Xn be the size of the nth generation of a branching process with family-

size probability generating function G(s), and let X0 = 1. Show that the probability
generating function Gn(s) of Xn satisfies Gn+1(s) = G(Gn(s)) for n > 0.

(ii) Suppose the family-size mass function is P (X1 = k) = 2−k−1, k = 0, 1, 2, . . . .
Find G(s), and show that

Gn(s) =
n− (n − 1)s

n+ 1− ns
for |s| < 1 +

1

n
.

Deduce the value of P (Xn = 0).

(iii) Write down the moment generating function of Xn/n. Hence or otherwise show
that, for x > 0,

P (Xn/n > x | Xn > 0) → e−x as n → ∞ .

[You may use the continuity theorem but, if so, should give a clear statement of it.]

Paper 2, Section II

12F Probability
Let X, Y be independent random variables with distribution functions FX , FY .

Show that U = min{X,Y }, V = max{X,Y } have distribution functions

FU (u) = 1− (1− FX(u))(1 − FY (u)) , FV (v) = FX(v)FY (v) .

Now let X, Y be independent random variables, each having the exponential
distribution with parameter 1. Show that U has the exponential distribution with
parameter 2, and that V − U is independent of U .

Hence or otherwise show that V has the same distribution as X + 1
2Y , and deduce

the mean and variance of V .

[You may use without proof that X has mean 1 and variance 1.]
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Paper 2, Section I

3F Probability

Let X be a random variable taking non-negative integer values and let Y be a
random variable taking real values.

(a) Define the probability-generating function GX(s). Calculate it explicitly for a
Poisson random variable with mean λ > 0.

(b) Define the moment-generating function MY (t). Calculate it explicitly for a
normal random variable N(0, 1).

(c) By considering a random sum of independent copies of Y , prove that, for general
X and Y , GX

(
MY (t)

)
is the moment-generating function of some random variable.

Paper 2, Section I

4F Probability

What does it mean to say that events A1, . . . , An are (i) pairwise independent, (ii)
independent?

Consider pairwise disjoint events B1, B2, B3 and C, with

P(B1) = P(B2) = P(B3) = p and P(C) = q, where 3p+ q 6 1.

Let 0 6 q 6 1/16. Prove that the events B1 ∪ C, B2 ∪ C and B3 ∪ C are pairwise
independent if and only if

p = −q +
√
q .

Prove or disprove that there exist p > 0 and q > 0 such that these three events are
independent.
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Paper 2, Section II

9F Probability

(a) Let B1, . . . , Bn be pairwise disjoint events such that their union B1∪B2∪. . .∪Bn

gives the whole set of outcomes, with P(Bi) > 0 for 1 6 i 6 n. Prove that for any event
A with P(A) > 0 and for any i

P(Bi|A) =
P(A|Bi)P(Bi)∑

16j6n
P(A|Bj)P(Bj)

.

(b) A prince is equally likely to sleep on any number of mattresses from six to eight;
on half the nights a pea is placed beneath the lowest mattress. With only six mattresses
his sleep is always disturbed by the presence of a pea; with seven a pea, if present, is
unnoticed in one night out of five; and with eight his sleep is undisturbed despite an
offending pea in two nights out of five.

What is the probability that, on a given night, the prince’s sleep was undisturbed?

On the morning of his wedding day, he announces that he has just spent the most
peaceful and undisturbed of nights. What is the expected number of mattresses on which
he slept the previous night?
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Paper 2, Section II

10F Probability

(a) State Markov’s inequality.

(b) Let r be a given positive integer. You toss an unbiased coin repeatedly until the
first head appears, which occurs on the H1th toss. Next, I toss the same coin until I get
my first tail, which occurs on my T1th toss. Then you continue until you get your second
head with a further H2 tosses; then I continue with a further T2 tosses until my second
tail. We continue for r turns like this, and generate a sequence H1, T1, H2, T2, . . . ,Hr,
Tr of random variables. The total number of tosses made is Yr. (For example, for r = 2,
a sequence of outcomes t t h | t | t t t h |hh t gives H1 = 3, T1 = 1, H2 = 4, T2 = 3 and
Y2 = 11.)

Find the probability-generating functions of the random variables Hj and Tj . Hence
or otherwise obtain the mean values EHj and ETj .

Obtain the probability-generating function of the random variable Yr, and find the
mean value EYr.

Prove that, for n > 2r,

P(Yr = n) =
1

2n

(
n− 1
2r − 1

)
.

For r = 1, calculate P(Y1 > 5), and confirm that it satisfies Markov’s inequality.
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Paper 2, Section II

11F Probability

I was given a clockwork orange for my birthday. Initially, I place it at the centre of
my dining table, which happens to be exactly 20 units long. One minute after I place it on
the table it moves one unit towards the left end of the table or one unit towards the right,
each with probability 1/2. It continues in this manner at one minute intervals, with the
direction of each move being independent of what has gone before, until it reaches either
end of the table where it promptly falls off. If it falls off the left end it will break my Ming
vase. If it falls off the right end it will land in a bucket of sand leaving the vase intact.

(a) Derive the difference equation for the probability that the Ming vase will survive,
in terms of the current distance k from the orange to the left end, where k = 1, . . . , 19.

(b) Derive the corresponding difference equation for the expected time when the
orange falls off the table.

(c) Write down the general formula for the solution of each of the difference equations
from (a) and (b). [No proof is required.]

(d) Based on parts (a)–(c), calculate the probability that the Ming vase will survive
if, instead of placing the orange at the centre of the table, I place it initially 3 units from
the right end of the table. Calculate the expected time until the orange falls off.

(e) Suppose I place the orange 3 units from the left end of the table. Calculate the
probability that the orange will fall off the right end before it reaches a distance 1 unit
from the left end of the table.

Part IA, 2011 List of Questions

20112011



21

Paper 2, Section II

12F Probability

A circular island has a volcano at its central point. During an eruption, lava flows
from the mouth of the volcano and covers a sector with random angle Φ (measured in
radians), whose line of symmetry makes a random angle Θ with some fixed compass
bearing.

The variables Θ and Φ are independent. The probability density function of Θ is
constant on (0, 2π) and the probability density function of Φ is of the form A(π − φ/2)
where 0 < φ < 2π, and A is a constant.

(a) Find the value of A. Calculate the expected value and the variance of the sector
angle Φ. Explain briefly how you would simulate the random variable Φ using a uniformly
distributed random variable U .

(b) H1 and H2 are two houses on the island which are collinear with the mouth of
the volcano, but on different sides of it. Find

(i) the probability that H1 is hit by the lava;

(ii) the probability that both H1 and H2 are hit by the lava;

(iii) the probability that H2 is not hit by the lava given that H1 is hit.
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Paper 2, Section I

3F Probability

Jensen’s inequality states that for a convex function f and a random variable X
with a finite mean, Ef(X) > f

(
EX

)
.

(a) Suppose that f(x) = xm where m is a positive integer, and X is a random
variable taking values x1, . . . , xN > 0 with equal probabilities, and where the sum
x1 + . . .+ xN = 1. Deduce from Jensen’s inequality that

N∑

i=1

f(xi) > Nf

(
1

N

)
. (1)

(b) N horses take part in m races. The results of different races are independent.
The probability for horse i to win any given race is pi > 0, with p1 + . . .+ pN = 1.

Let Q be the probability that a single horse wins all m races. Express Q as a
polynomial of degree m in the variables p1, . . ., pN .

By using (1) or otherwise, prove that Q > N1−m.

Paper 2, Section I

4F Probability

Let X and Y be two non-constant random variables with finite variances. The
correlation coefficient ρ(X,Y ) is defined by

ρ(X,Y ) =
E
[
(X − EX)(Y − EY )

]
(
Var X

)1/2(
Var Y

)1/2 .

(a) Using the Cauchy–Schwarz inequality or otherwise, prove that

−1 6 ρ(X,Y ) 6 1 .

(b) What can be said about the relationship between X and Y when either
(i) ρ(X,Y ) = 0 or (ii) |ρ(X,Y )| = 1. [Proofs are not required.]

(c) Take 0 6 r 6 1 and let X, X ′ be independent random variables taking values
±1 with probabilities 1/2. Set

Y =

{
X, with probability r,

X ′, with probability 1− r.

Find ρ(X,Y ).
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Paper 2, Section II

9F Probability

(a) What does it mean to say that a random variable X with values n = 1, 2, . . .
has a geometric distribution with a parameter p where p ∈ (0, 1)?

An expedition is sent to the Himalayas with the objective of catching a pair of wild
yaks for breeding. Assume yaks are loners and roam about the Himalayas at random. The
probability p ∈ (0, 1) that a given trapped yak is male is independent of prior outcomes.
Let N be the number of yaks that must be caught until a breeding pair is obtained.

(b) Find the expected value of N .

(c) Find the variance of N .

Paper 2, Section II

10F Probability

The yearly levels of water in the river Camse are independent random variables
X1, X2, . . ., with a given continuous distribution function F (x) = P(Xi 6 x), x > 0 and
F (0) = 0. The levels have been observed in years 1, . . ., n and their values X1, . . ., Xn

recorded. The local council has decided to construct a dam of height

Yn = max
[
X1, . . . ,Xn

]
.

Let τ be the subsequent time that elapses before the dam overflows:

τ = min
[
t > 1 : Xn+t > Yn

]
.

(a) Find the distribution function P(Yn 6 z), z > 0, and show that the mean value

EYn =

∫ ∞

0
[1− F (z)n]dz.

(b) Express the conditional probability P(τ = k |Yn = z), where k = 1, 2, . . . and
z > 0, in terms of F .

(c) Show that the unconditional probability

P(τ = k) =
n

(k + n− 1)(k + n)
, k = 1, 2, . . . .

(d) Determine the mean value E τ .
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Paper 2, Section II

11F Probability

In a branching process every individual has probability pk of producing exactly
k offspring, k = 0, 1, . . ., and the individuals of each generation produce offspring
independently of each other and of individuals in preceding generations. Let Xn represent
the size of the nth generation. Assume that X0 = 1 and p0 > 0 and let Fn(s) be the
generating function of Xn. Thus

F1(s) = EsX1 =

∞∑

k=0

pks
k, |s| 6 1.

(a) Prove that
Fn+1(s) = Fn(F1(s)).

(b) State a result in terms of F1(s) about the probability of eventual extinction.
[No proofs are required.]

(c) Suppose the probability that an individual leaves k descendants in the next
generation is pk = 1/2k+1, for k > 0. Show from the result you state in (b) that extinction
is certain. Prove further that in this case

Fn(s) =
n− (n− 1)s

(n+ 1)− ns
, n > 1 ,

and deduce the probability that the nth generation is empty.
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Paper 2, Section II

12F Probability

Let X1, X2 be bivariate normal random variables, with the joint probability density
function

fX1,X2(x1, x2) =
1

2πσ1σ2
√

1− ρ2
exp

[
− ϕ(x1, x2)

2(1 − ρ2)

]
,

where

ϕ(x1, x2) =

(
x1 − µ1

σ1

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+

(
x2 − µ2

σ2

)2

and x1, x2 ∈ R .

(a) Deduce that the marginal probability density function

fX1(x1) =
1√
2πσ1

exp

[
− (x1 − µ1)

2

2σ2
1

]
.

(b) Write down the moment-generating function of X2 in terms of µ2 and σ2. [No
proofs are required.]

(c) By considering the ratio fX1,X2(x1, x2)
/
fX2(x2) prove that, conditional on

X2 = x2, the distribution of X1 is normal, with mean and variance µ1 + ρσ1(x2 − µ2)
/
σ2

and σ2
1(1− ρ2), respectively.
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Paper 2, Section I

3F Probability
Consider a pair of jointly normal random variables X1, X2, with mean values µ1,

µ2, variances σ
2
1 , σ

2
2 and correlation coefficient ρ with |ρ| < 1.

(a) Write down the joint probability density function for (X1,X2).

(b) Prove that X1, X2 are independent if and only if ρ = 0.

Paper 2, Section I

4F Probability
Prove the law of total probability: if A1, . . ., An are pairwise disjoint events with

P(Ai) > 0, and B ⊆ A1 ∪ . . . ∪An then P(B) =
n∑

i=1
P(Ai)P(B|Ai).

There are n people in a lecture room. Their birthdays are independent random
variables, and each person’s birthday is equally likely to be any of the 365 days of the
year. By using the bound 1 − x 6 e−x for 0 6 x 6 1, prove that if n > 29 then the
probability that at least two people have the same birthday is at least 2/3.

[In calculations, you may take
√
1 + 8× 365 ln 3 = 56.6.]

Paper 2, Section II

9F Probability
I throw two dice and record the scores S1 and S2. Let X be the sum S1 + S2 and

Y the difference S1 − S2.

(a) Suppose that the dice are fair, so the values 1, . . . , 6 are equally likely. Calculate
the mean and variance of both X and Y . Find all the values of x and y at which
the probabilities P(X = x), P(Y = y) are each either greatest or least. Determine
whether the random variables X and Y are independent.

(b) Now suppose that the dice are unfair, and that they give the values 1, . . . , 6 with
probabilities p1, . . . , p6 and q1, . . . , q6, respectively. Write down the values of P(X =
2), P(X = 7) and P(X = 12). By comparing P(X = 7) with

√
P(X = 2)P(X = 12)

and applying the arithmetic-mean–geometric-mean inequality, or otherwise, show
that the probabilities P(X = 2), P(X = 3), . . ., P(X = 12) cannot all be equal.
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Paper 2, Section II

10F Probability
No-one in their right mind would wish to be a guest at the Virtual Reality Hotel.

See the diagram below showing a part of the floor plan of the hotel where rooms are
represented by black or white circles. The hotel is built in a shape of a tree: there is one
room (reception) situated at level 0, three rooms at level 1, nine at level 2, and so on.
The rooms are joined by corridors to their neighbours: each room has four neighbours,
apart from the reception, which has three neighbours. Each corridor is blocked with
probability 1/3 and open for passage in both directions with probability 2/3, independently
for different corridors. Every room at level N , whereN is a given very large number, has an
open window through which a guest can (and should) escape into the street. An arriving
guest is placed in the reception and then wanders freely, insofar as the blocked corridors
allow.

. . .

. . .

. . .

.
 
.
 
.

reception

0 1 2 N

. . .

. . .

. . .

level:

(a) Prove that the probability that the guest will not escape is close to a solution of the
equation φ(t) = t, where φ(t) is a probability-generating function that you should
specify.

(b) Hence show that the guest’s chance of escape is approximately (9− 3
√
3)/4.
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Paper 2, Section II

11F Probability
Let X and Y be two independent uniformly distributed random variables on [0, 1].

Prove that EXk =
1

k + 1
and E(XY )k =

1

(k + 1)2
, and find E(1 − XY )k, where k is a

non-negative integer.

Let (X1, Y1), . . . , (Xn, Yn) be n independent random points of the unit square
S = {(x, y) : 0 6 x, y 6 1}. We say that (Xi, Yi) is a maximal external point if, for each
j = 1, . . . , n, either Xj 6 Xi or Yj 6 Yi. (For example, in the figure below there are three
maximal external points.) Determine the expected number of maximal external points.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
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Paper 2, Section II

12F Probability
Let A1, A2 and A3 be three pairwise disjoint events such that the union A1∪A2∪A3

is the full event and P(A1),P(A2),P(A3) > 0. Let E be any event with P(E) > 0. Prove
the formula

P(Ai|E) =
P(Ai)P(E|Ai)∑

j=1,2,3
P(Aj)P(E|Aj)

.

A Royal Navy speedboat has intercepted an abandoned cargo of packets of the
deadly narcotic spitamin. This sophisticated chemical can be manufactured in only three
places in the world: a plant in Authoristan (A), a factory in Bolimbia (B) and the
ultramodern laboratory on board of a pirate submarine Crash (C) cruising ocean waters.
The investigators wish to determine where this particular cargo comes from, but in the
absence of prior knowledge they have to assume that each of the possibilities A, B and C
is equally likely.

It is known that a packet from A contains pure spitamin in 95% of cases and is
contaminated in 5% of cases. For B the corresponding figures are 97% and 3%, and for C
they are 99% and 1%.

Analysis of the captured cargo showed that out of 10000 packets checked, 9800
contained the pure drug and the remaining 200 were contaminated. On the basis of this
analysis, the Royal Navy captain estimated that 98% of the packets contain pure spitamin
and reported his opinion that with probability roughly 0.5 the cargo was produced in B
and with probability roughly 0.5 it was produced in C.

Assume that the number of contaminated packets follows the binomial distribution
Bin(10000, δ/100) where δ equals 5 for A, 3 for B and 1 for C. Prove that the captain’s
opinion is wrong: there is an overwhelming chance that the cargo comes from B.

[Hint: Let E be the event that 200 out of 10000 packets are contaminated. Compare
the ratios of the conditional probabilities P(E|A), P(E|B) and P(E|C). You may find it
helpful that ln 3 ≈ 1.09861 and ln 5 ≈ 1.60944. You may also take ln(1−δ/100) ≈ −δ/100.]
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2/I/3F Probability

There are n socks in a drawer, three of which are red and the rest black. John
chooses his socks by selecting two at random from the drawer and puts them on. He is
three times more likely to wear socks of different colours than to wear matching red socks.
Find n .

For this value of n , what is the probability that John wears matching black socks?

2/I/4F Probability

A standard six-sided die is thrown. Calculate the mean and variance of the number
shown.

The die is thrown n times. By using Chebyshev’s inequality, find an n such that

P
( ∣∣∣∣

Yn
n
− 3.5

∣∣∣∣ > 1.5

)
6 0.1

where Yn is the total of the numbers shown over the n throws.

2/II/9F Probability

A population evolves in generations. Let Zn be the number of members in the
nth generation, with Z0 = 1 . Each member of the nth generation gives birth to a
family, possibly empty, of members of the (n + 1)th generation; the size of this family is
a random variable and we assume that the family sizes of all individuals form a collection
of independent identically distributed random variables each with generating function G.

Let Gn be the generating function of Zn . State and prove a formula for Gn in
terms of G. Determine the mean of Zn in terms of the mean of Z1 .

Suppose that Z1 has a Poisson distribution with mean λ . Find an expression for
xn+1 in terms of xn , where xn = P {Zn = 0} is the probability that the population
becomes extinct by the nth generation.
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2/II/10F Probability

A and B play a series of games. The games are independent, and each is won by A
with probability p and by B with probability 1 − p . The players stop when the number
of wins by one player is three greater than the number of wins by the other player. The
player with the greater number of wins is then declared overall winner.

(i) Find the probability that exactly 5 games are played.

(ii) Find the probability that A is the overall winner.

2/II/11F Probability

Let X and Y have the bivariate normal density function

f(x, y) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

}
, x, y ∈ R ,

for fixed ρ ∈ (−1, 1). Let Z = (Y − ρX)/
√

1− ρ2 . Show that X and Z are independent
N(0, 1) variables. Hence, or otherwise, determine

P (X > 0, Y > 0 ) .

2/II/12F Probability

The discrete random variable Y has distribution given by

P (Y = k) = (1− p)k−1 p , k = 1, 2, . . . ,

where p ∈ (0, 1). Determine the mean and variance of Y .

A fair die is rolled until all 6 scores have occurred. Find the mean and standard
deviation of the number of rolls required.

[
Hint:

6∑

i=1

(
6

i

)2

= 53.7
]
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2/I/3F Probability

Let X and Y be independent random variables, each uniformly distributed on
[0, 1]. Let U = min(X,Y ) and V = max(X,Y ). Show that EU = 1

3 , and hence find the
covariance of U and V .

2/I/4F Probability

Let X be a normally distributed random variable with mean 0 and variance 1.
Define, and determine, the moment generating function of X. Compute EXr for
r = 0, 1, 2, 3, 4.

Let Y be a normally distributed random variable with mean µ and variance σ2.
Determine the moment generating function of Y .

2/II/9F Probability

Let N be a non-negative integer-valued random variable with

P{N = r} = pr, r = 0, 1, 2, . . .

Define EN , and show that

EN =
∞∑

n=1

P{N > n} .

Let X1, X2, . . . be a sequence of independent and identically distributed continuous
random variables. Let the random variable N mark the point at which the sequence stops
decreasing: that is, N > 2 is such that

X1 > X2 > . . . > XN−1 < XN ,

where, if there is no such finite value of N , we set N = ∞. Compute P{N = r}, and show
that P{N = ∞} = 0. Determine EN .
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2/II/10F Probability

Let X and Y be independent non-negative random variables, with densities f and
g respectively. Find the joint density of U = X and V = X + aY , where a is a positive
constant.

Let X and Y be independent and exponentially distributed random variables, each
with density

f(x) = λe−λx, x > 0 .

Find the density of X + 1
2Y . Is it the same as the density of the random variable

max(X,Y )?

2/II/11F Probability

Let A1, A2, . . ., An (n > 2) be events in a sample space. For each of the following
statements, either prove the statement or provide a counterexample.

(i)

P

(
n⋂

k=2

Ak

∣∣∣∣∣A1

)
=

n∏

k=2

P

(
Ak

∣∣∣∣∣
k−1⋂

r=1

Ar

)
, provided P

(
n−1⋂

k=1

Ak

)
> 0 .

(ii)

If
n∑

k=1

P (Ak) > n− 1 then P

(
n⋂

k=1

Ak

)
> 0 .

(iii)

If
∑

i<j

P
(
Ai

⋂
Aj

)
>
(n
2

)
− 1 then P

(
n⋂

k=1

Ak

)
> 0 .

(iv) If B is an event and if, for each k, {B,Ak} is a pair of independent events, then
{B,∪n

k=1Ak} is also a pair of independent events.

2/II/12F Probability

Let A, B and C be three random points on a sphere with centre O. The positions
of A, B and C are independent, and each is uniformly distributed over the surface of the
sphere. Calculate the probability density function of the angle ∠AOB formed by the lines
OA and OB.

Calculate the probability that all three of the angles ∠AOB, ∠AOC and ∠BOC
are acute. [Hint: Condition on the value of the angle ∠AOB.]
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2/I/3F Probability

What is a convex function? State Jensen’s inequality for a convex function of a
random variable which takes finitely many values.

Let p > 1. By using Jensen’s inequality, or otherwise, find the smallest constant cp
so that

(a+ b)
p 6 cp (a

p + bp) for all a, b > 0.

[You may assume that x 7→ |x|p is convex for p > 1.]

2/I/4F Probability

Let K be a fixed positive integer and X a discrete random variable with values in
{1, 2, . . . ,K}. Define the probability generating function of X. Express the mean of X in
terms of its probability generating function. The Dirichlet probability generating function
of X is defined as

q (z) =
K∑

n=1

1

nz
P (X = n) .

Express the mean of X and the mean of logX in terms of q (z).

2/II/9F Probability

Suppose that a population evolves in generations. Let Zn be the number of members
in the n-th generation and Z0 ≡ 1. Each member of the n-th generation gives birth to a
family, possibly empty, of members of the (n+ 1)-th generation; the size of this family is
a random variable and we assume that the family sizes of all individuals form a collection
of independent identically distributed random variables with the same generating function
G.

Let Gn be the generating function of Zn. State and prove a formula for Gn in terms
of G. Use this to compute the variance of Zn.

Now consider the total number of individuals in the first n generations; this number
is a random variable and we write Hn for its generating function. Find a formula that
expresses Hn+1(s) in terms of Hn(s), G(s) and s.

2/II/10F Probability

Let X,Y be independent random variables with values in (0,∞) and the same

probability density 2√
π
e−x2

. Let U = X2 + Y 2, V = Y/X. Compute the joint probability

density of U, V and the marginal densities of U and V respectively. Are U and V
independent?
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2/II/11F Probability

A normal deck of playing cards contains 52 cards, four each with face values in the
set F = {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K}. Suppose the deck is well shuffled so that each
arrangement is equally likely. Write down the probability that the top and bottom cards
have the same face value.

Consider the following algorithm for shuffling:

S1: Permute the deck randomly so that each arrangement is equally likely.

S2: If the top and bottom cards do not have the same face value, toss a biased coin
that comes up heads with probability p and go back to step S1 if head turns up.
Otherwise stop.

All coin tosses and all permutations are assumed to be independent. When the
algorithm stops, let X and Y denote the respective face values of the top and bottom
cards and compute the probability that X = Y . Write down the probability that X = x
for some x ∈ F and the probability that Y = y for some y ∈ F . What value of p will make
X and Y independent random variables? Justify your answer.

2/II/12F Probability

Let γ > 0 and define

f (x) = γ
1

1 + x2
, −∞ < x <∞.

Find γ such that f is a probability density function. Let {Xi : i > 1} be a sequence
of independent, identically distributed random variables, each having f with the correct
choice of γ as probability density. Compute the probability density function of X1 + · · ·+
Xn. [You may use the identity

m

∫ ∞

−∞

{(
1 + y2

) [
m2 + (x− y)

2
]}−1

dy = π (m+ 1)
{
(m+ 1)

2
+ x2

}−1

,

valid for all x ∈ R and m ∈ N.]

Deduce the probability density function of

X1 + · · ·+Xn

n
.

Explain why your result does not contradict the weak law of large numbers.
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2/I/3F Probability

Suppose c > 1 and Xc is a positive real-valued random variable with probability
density

fc (t) = Act
c−1e−tc ,

for t > 0, where Ac is a constant.

Find the constant Ac and show that, if c > 1 and s, t > 0,

P [Xc > s+ t | Xc > t] < P [Xc > s] .

[You may assume the inequality (1 + x)c > 1 + xc for all x > 0, c > 1.]

2/I/4F Probability

Describe the Poisson distribution characterised by parameter λ > 0. Calculate the
mean and variance of this distribution in terms of λ.

Show that the sum of n independent random variables, each having the Poisson
distribution with λ = 1, has a Poisson distribution with λ = n.

Use the central limit theorem to prove that

e−n

(
1 +

n

1!
+
n2

2!
+ ...+

nn

n!

)
→ 1/2 as n→ ∞.
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2/II/9F Probability

Given a real-valued random variable X, we define E[eiX ] by

E
[
eiX
]
≡ E [cosX] + iE [sinX] .

Consider a second real-valued random variable Y , independent of X. Show that

E
[
ei(X+Y )

]
= E

[
eiX
]
E
[
eiY
]
.

You gamble in a fair casino that offers you unlimited credit despite your initial
wealth of 0. At every game your wealth increases or decreases by £1 with equal probability
1/2. Let Wn denote your wealth after the nth game. For a fixed real number u, compute
φ(u) defined by

φ (u) = E
[
eiuWn

]
.

Verify that the result is real-valued.

Show that for n even,

P [Wn = 0] = γ

∫ π/2

0

[cosu]
n
du ,

for some constant γ, which you should determine. What is P [Wn = 0] for n odd?

2/II/10F Probability

Alice and Bill fight a paint-ball duel. Nobody has been hit so far and they are
both left with one shot. Being exhausted, they need to take a breath before firing their
last shot. This takes A seconds for Alice and B seconds for Bill. Assume these times are
exponential random variables with means 1/α and 1/β, respectively.

Find the distribution of the (random) time that passes by before the next shot is
fired. What is its standard deviation? What is the probability that Alice fires the next
shot?

Assume Alice has probability 1/2 of hitting whenever she fires whereas Bill never
misses his target. If the next shot is a hit, what is the probability that it was fired by
Alice?
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2/II/11F Probability

Let (S, T ) be uniformly distributed on [−1, 1]2 and define R =
√
S2 + T 2. Show

that, conditionally on
R 6 1 ,

the vector (S, T ) is uniformly distributed on the unit disc. Let (R,Θ) denote the
point (S, T ) in polar coordinates and find its probability density function f (r, θ) for
r ∈ [0, 1], θ ∈ [0, 2π). Deduce that R and Θ are independent.

Introduce the new random variables

X =
S

R

√
−2 log (R2), Y =

T

R

√
−2 log (R2) ,

noting that under the above conditioning, (S, T ) are uniformly distributed on the unit
disc. The pair (X,Y ) may be viewed as a (random) point in R2 with polar coordinates
(Q,Ψ). Express Q as a function of R and deduce its density. Find the joint density of
(Q,Ψ) . Hence deduce that X and Y are independent normal random variables with zero
mean and unit variance.

2/II/12F Probability

Let a1, a2, ..., an be a ranking of the yearly rainfalls in Cambridge over the next n
years: assume a1, a2, ..., an is a random permutation of 1, 2, ..., n. Year k is called a record
year if ai > ak for all i < k (thus the first year is always a record year). Let Yi = 1 if year
i is a record year and 0 otherwise.

Find the distribution of Yi and show that Y1, Y2, ..., Yn are independent and
calculate the mean and variance of the number of record years in the next n years.

Find the probability that the second record year occurs at year i. What is the
expected number of years until the second record year occurs?
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2/I/3F Probability

Define the covariance, cov(X,Y ), of two random variables X and Y .

Prove, or give a counterexample to, each of the following statements.

(a) For any random variables X,Y, Z

cov(X + Y, Z) = cov(X,Z) + cov(Y, Z).

(b) If X and Y are identically distributed, not necessarily independent, random
variables then

cov(X + Y,X − Y ) = 0.

2/I/4F Probability

The random variable X has probability density function

f(x) =
{
cx(1− x) if 0 6 x 6 1
0 otherwise.

Determine c, and the mean and variance of X.

2/II/9F Probability

LetX be a positive-integer valued random variable. Define its probability generating
function pX . Show that if X and Y are independent positive-integer valued random
variables, then pX+Y = pXpY .

A non-standard pair of dice is a pair of six-sided unbiased dice whose faces are
numbered with strictly positive integers in a non-standard way (for example, (2, 2, 2, 3, 5, 7)
and (1, 1, 5, 6, 7, 8)). Show that there exists a non-standard pair of dice A and B such that
when thrown

P{total shown by A and B is n} = P{total shown by pair of ordinary dice is n}

for all 2 6 n 6 12.

[Hint: (x+x2+x3+x4+x5+x6) = x(1+x)(1+x2+x4) = x(1+x+x2)(1+x3).]
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2/II/10F Probability

Define the conditional probability P (A | B) of the event A given the event B.

A bag contains four coins, each of which when tossed is equally likely to land on
either of its two faces. One of the coins shows a head on each of its two sides, while each
of the other three coins shows a head on only one side. A coin is chosen at random, and
tossed three times in succession. If heads turn up each time, what is the probability that
if the coin is tossed once more it will turn up heads again? Describe the sample space you
use and explain carefully your calculations.

2/II/11F Probability

The random variables X1 and X2 are independent, and each has an exponential
distribution with parameter λ. Find the joint density function of

Y1 = X1 +X2 , Y2 = X1/X2 ,

and show that Y1 and Y2 are independent. What is the density of Y2?

2/II/12F Probability

Let A1, A2, . . . , Ar be events such that Ai∩Aj = ∅ for i 6= j. Show that the number
N of events that occur satisfies

P (N = 0) = 1 −
r∑

i=1

P (Ai) .

Planet Zog is a sphere with centre O. A number N of spaceships land at random
on its surface, their positions being independent, each uniformly distributed over the
surface. A spaceship at A is in direct radio contact with another point B on the surface
if ∠AOB < π

2 . Calculate the probability that every point on the surface of the planet is
in direct radio contact with at least one of the N spaceships.

[Hint: The intersection of the surface of a sphere with a plane through the centre of
the sphere is called a great circle. You may find it helpful to use the fact that N random
great circles partition the surface of a sphere into N(N − 1) + 2 disjoint regions with
probability one.]
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2/I/3F Probability

(a) Define the probability generating function of a random variable. Calculate the
probability generating function of a binomial random variable with parameters n and p,
and use it to find the mean and variance of the random variable.

(b) X is a binomial random variable with parameters n and p, Y is a binomial
random variable with parameters m and p, and X and Y are independent. Find the
distribution of X + Y ; that is, determine P{X + Y = k} for all possible values of k.

2/I/4F Probability

The random variable X is uniformly distributed on the interval [0, 1]. Find the
distribution function and the probability density function of Y , where

Y =
3X

1−X
.

2/II/9F Probability

State the inclusion-exclusion formula for the probability that at least one of the
events A1, A2, . . . , An occurs.

After a party the n guests take coats randomly from a pile of their n coats. Calculate
the probability that no-one goes home with the correct coat.

Let p(m,n) be the probability that exactly m guests go home with the correct
coats. By relating p(m,n) to p(0, n−m), or otherwise, determine p(m,n) and deduce that

lim
n→∞

p(m,n) =
1

em!
.

2/II/10F Probability

The random variables X and Y each take values in {0, 1}, and their joint distribu-
tion p(x, y) = P{X = x, Y = y} is given by

p(0, 0) = a, p(0, 1) = b, p(1, 0) = c, p(1, 1) = d .

Find necessary and sufficient conditions for X and Y to be

(i) uncorrelated;

(ii) independent.

Are the conditions established in (i) and (ii) equivalent?
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2/II/11F Probability

A laboratory keeps a population of aphids. The probability of an aphid passing
a day uneventfully is q < 1. Given that a day is not uneventful, there is probability r
that the aphid will have one offspring, probability s that it will have two offspring and
probability t that it will die, where r + s + t = 1. Offspring are ready to reproduce
the next day. The fates of different aphids are independent, as are the events of different
days. The laboratory starts out with one aphid.

Let X1 be the number of aphids at the end of the first day. What is the expected
value of X1? Determine an expression for the probability generating function of X1.

Show that the probability of extinction does not depend on q, and that if 2r+3s 6 1
then the aphids will certainly die out. Find the probability of extinction if r = 1/5, s = 2/5
and t = 2/5.

[Standard results on branching processes may be used without proof, provided that
they are clearly stated.]

2/II/12F Probability

Planet Zog is a ball with centre O. Three spaceships A,B and C land at random
on its surface, their positions being independent and each uniformly distributed on its
surface. Calculate the probability density function of the angle ∠AOB formed by the
lines OA and OB.

Spaceships A and B can communicate directly by radio if ∠AOB < π/2, and
similarly for spaceships B and C and spaceships A and C. Given angle ∠AOB = γ < π/2,
calculate the probability that C can communicate directly with either A or B. Given angle
∠AOB = γ > π/2, calculate the probability that C can communicate directly with both A
and B. Hence, or otherwise, show that the probability that all three spaceships can keep in
in touch (with, for example, A communicating with B via C if necessary) is (π+2)/(4π).
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2/I/3F Probability

Define the indicator function IA of an event A.

Let Ii be the indicator function of the event Ai, 1 ≤ i ≤ n, and let N =
∑n

1 Ii be
the number of values of i such that Ai occurs. Show that E(N) =

∑
i pi where pi = P (Ai),

and find var(N) in terms of the quantities pij = P (Ai ∩Aj).

Using Chebyshev’s inequality or otherwise, show that

P (N = 0) ≤ var(N)

{E(N)}2 .

2/I/4F Probability

A coin shows heads with probability p on each toss. Let πn be the probability that
the number of heads after n tosses is even. Show carefully that πn+1 = (1−p)πn+p(1−πn),
n ≥ 1, and hence find πn. [The number 0 is even.]

2/II/9F Probability

(a) Define the conditional probability P (A | B) of the event A given the event B. Let
{Bi : 1 ≤ i ≤ n} be a partition of the sample space Ω such that P (Bi) > 0 for all i. Show
that, if P (A) > 0,

P (Bi | A) =
P (A | Bi)P (Bi)∑
j P (A | Bj)P (Bj)

.

(b) There are n urns, the rth of which contains r − 1 red balls and n− r blue balls. You
pick an urn (uniformly) at random and remove two balls without replacement. Find the
probability that the first ball is blue, and the conditional probability that the second ball
is blue given that the first is blue. [You may assume that

∑n−1
i=1 i(i−1) = 1

3n(n−1)(n−2).]

(c) What is meant by saying that two events A and B are independent?

(d) Two fair dice are rolled. Let As be the event that the sum of the numbers shown is s,
and let Bi be the event that the first die shows i. For what values of s and i are the two
events As, Bi independent?
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2/II/10F Probability

There is a random number N of foreign objects in my soup, with mean µ and finite
variance. Each object is a fly with probability p, and otherwise is a spider; different objects
have independent types. Let F be the number of flies and S the number of spiders.

(a) Show that GF (s) = GN (ps+ 1− p). [GX denotes the probability generating function
of a random variable X. You should present a clear statement of any general result used.]

(b) Suppose N has the Poisson distribution with parameter µ. Show that F has the
Poisson distribution with parameter µp, and that F and S are independent.

(c) Let p = 1
2 and suppose that F and S are independent. [You are given nothing about

the distribution of N .] Show that GN (s) = GN ( 12 (1 + s))2. By working with the function
H(s) = GN (1 − s) or otherwise, deduce that N has the Poisson distribution. [You may
assume that

(
1 + x

n + o(n−1)
)n → ex as n→ ∞.]

2/II/11F Probability

Let X, Y , Z be independent random variables each with the uniform distribution
on the interval [0, 1].

(a) Show that X + Y has density function

fX+Y (u) =

{
u if 0 ≤ u ≤ 1,
2− u if 1 ≤ u ≤ 2,
0 otherwise.

(b) Show that P (Z > X + Y ) = 1
6 .

(c) You are provided with three rods of respective lengths X, Y , Z. Show that the
probability that these rods may be used to form the sides of a triangle is 1

2 .

(d) Find the density function fX+Y+Z(s) of X+Y +Z for 0 6 s 6 1. Let W be uniformly
distributed on [0, 1], and independent of X, Y , Z. Show that the probability that rods of
lengths W , X, Y , Z may be used to form the sides of a quadrilateral is 5

6 .

2/II/12F Probability

(a) Explain what is meant by the term ‘branching process’.

(b) Let Xn be the size of the nth generation of a branching process in which each family
size has probability generating function G, and assume that X0 = 1. Show that the
probability generating function Gn of Xn satisfies Gn+1(s) = Gn(G(s)) for n ≥ 1.

(c) Show that G(s) = 1−α(1−s)β is the probability generating function of a non-negative
integer-valued random variable when α, β ∈ (0, 1), and find Gn explicitly when G is thus
given.

(d) Find the probability thatXn = 0, and show that it converges as n→ ∞ to 1−α1/(1−β).
Explain carefully why this implies that the probability of ultimate extinction equals
1− α1/(1−β).
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2/I/3F Probability

The following problem is known as Bertrand’s paradox. A chord has been chosen
at random in a circle of radius r. Find the probability that it is longer than the side of
the equilateral triangle inscribed in the circle. Consider three different cases:

a) the middle point of the chord is distributed uniformly inside the circle,

b) the two endpoints of the chord are independent and uniformly distributed over
the circumference,

c) the distance between the middle point of the chord and the centre of the circle
is uniformly distributed over the interval [0, r].

[Hint: drawing diagrams may help considerably.]

2/I/4F Probability

The Ruritanian authorities decided to pardon and release one out of three remaining
inmates, A, B and C, kept in strict isolation in the notorious Alkazaf prison. The inmates
know this, but can’t guess who among them is the lucky one; the waiting is agonising. A
sympathetic, but corrupted, prison guard approaches A and offers to name, in exchange
for a fee, another inmate (not A) who is doomed to stay. He says: “This reduces your
chances to remain here from 2/3 to 1/2: will it make you feel better?” A hesitates but
then accepts the offer; the guard names B.

Assume that indeed B will not be released. Determine the conditional probability

P
(
A remains

∣∣ B named
)

= P (A&B remain)
P (B named)

and thus check the guard’s claim, in three cases:

a) when the guard is completely unbiased (i.e., names any of B and C with
probability 1/2 if the pair B,C is to remain jailed),

b) if he hates B and would certainly name him if B is to remain jailed,

c) if he hates C and would certainly name him if C is to remain jailed.
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2/II/9F Probability

I play tennis with my parents; the chances for me to win a game against Mum (M)
are p and against Dad (D) q, where 0 < q < p < 1. We agreed to have three games,
and their order can be DMD (where I play against Dad, then Mum then again Dad) or
MDM . The results of games are independent.

Calculate under each of the two orders the probabilities of the following events:

a) that I win at least one game,

b) that I win at least two games,

c) that I win at least two games in succession (i.e., games 1 and 2 or 2 and 3, or 1,
2 and 3),

d) that I win exactly two games in succession (i.e., games 1 and 2 or 2 and 3, but
not 1, 2 and 3),

e) that I win exactly two games (i.e., 1 and 2 or 2 and 3 or 1 and 3, but not 1, 2
and 3).

In each case a)– e) determine which order of games maximizes the probability of
the event. In case e) assume in addition that p+ q > 3pq.

2/II/10F Probability

A random point is distributed uniformly in a unit circle D so that the probability
that it falls within a subset A ⊆ D is proportional to the area of A. Let R denote the
distance between the point and the centre of the circle. Find the distribution function
FR(x) = P (R < x), the expected value ER and the variance Var R = ER2 − (ER)2.

Let Θ be the angle formed by the radius through the random point and the
horizontal line. Prove that R and Θ are independent random variables.

Consider a coordinate system where the origin is placed at the centre of D. Let
X and Y denote the horizontal and vertical coordinates of the random point. Find
the covariance Cov(X,Y ) = E(XY ) − EXEY and determine whether X and Y are
independent.

Calculate the sum of expected values EX
R + iE Y

R . Show that it can be written as
the expected value Eeiξ and determine the random variable ξ.
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2/II/11F Probability

Dipkomsky, a desperado in the wild West, is surrounded by an enemy gang and
fighting tooth and nail for his survival. He has m guns, m > 1, pointing in different
directions and tries to use them in succession to give an impression that there are several
defenders. When he turns to a subsequent gun and discovers that the gun is loaded
he fires it with probability 1/2 and moves to the next one. Otherwise, i.e. when the
gun is unloaded, he loads it with probability 3/4 or simply moves to the next gun with
complementary probability 1/4. If he decides to load the gun he then fires it or not with
probability 1/2 and after that moves to the next gun anyway.

Initially, each gun had been loaded independently with probability p. Show that if
after each move this distribution is preserved, then p = 3/7. Calculate the expected value
EN and variance Var N of the number N of loaded guns under this distribution.

[Hint: it may be helpful to represent N as a sum
∑

1≤j≤mXj of random variables
taking values 0 and 1.]

2/II/12F Probability

A taxi travels between four villages, W , X, Y , Z, situated at the corners of a
rectangle. The four roads connecting the villages follow the sides of the rectangle; the
distance from W to X and Y to Z is 5 miles and from W to Z and Y to X 10 miles.
After delivering a customer the taxi waits until the next call then goes to pick up the new
customer and takes him to his destination. The calls may come from any of the villages
with probability 1/4 and each customer goes to any other village with probability 1/3.
Naturally, when travelling between a pair of adjacent corners of the rectangle, the taxi
takes the straight route, otherwise (when it travels from W to Y or X to Z or vice versa)
it does not matter. Distances within a given village are negligible. Let D be the distance
travelled to pick up and deliver a single customer. Find the probabilitites that D takes
each of its possible values. Find the expected value ED and the variance Var D.
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