Part IA

Numbers and Sets

Year
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001

Paper 4, Section I

1F Numbers and Sets

A permutation of the integers $\{1, \ldots, n\}$ is a bijection from this set to itself. The permutation σ is said to be up-down if $\sigma(1)<\sigma(2)>\sigma(3)<\sigma(4)>\ldots$; it is said to be down-up if, instead, $\sigma(1)>\sigma(2)<\sigma(3)>\sigma(4)<\ldots$.
(a) Define a bijection between the set of up-down and the set of down-up permutations of $\{1, \ldots, n\}$.
(b) Let A_{n} be the number of up-down permutations of $\{1, \ldots, n\}$ for $n \geqslant 1$, and define $A_{0}=1$. Show that these numbers satisfy the equation

$$
2 A_{n+1}=\sum_{k=0}^{n}\binom{n}{k} A_{k} A_{n-k} \quad \text { for } n \geqslant 1 .
$$

[Hint: Consider the possible up-down or down-up permutations for which a given element of $\{1, \ldots, n+1\}$ maps to $n+1$.]

Paper 4, Section I

2E Numbers and Sets

State and prove the Chinese remainder theorem.
Find all solutions x of the simultaneous congruences

$$
\left\{\begin{array}{l}
x \equiv 4 \quad \bmod 6 \\
x \equiv 2 \quad \bmod 8
\end{array}\right.
$$

Prove that for every positive integer d there exist integers a and b such that $4 a^{2}+9 b^{2}-1$ is divisible by d.

Paper 4, Section II

$5 F$ Numbers and Sets

The Chebyshev polynomials are defined for $x \in \mathbb{R}$ by the recurrence relation

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{n+1}(x) & =2 x T_{n}(x)-T_{n-1}(x) \quad \text { for } n \geqslant 1 .
\end{aligned}
$$

(a) Prove that $T_{n}(\cos (y))=\cos (n y)$ for all integers $n \geqslant 0$.
(b) Prove that $\cos (\pi / n)$ is algebraic for all integers $n \geqslant 1$.
(c) For each integer $n \geqslant 1$, determine whether $\cos (\pi / n)$ is rational or not. [Hint: After stating the known answers for small n, it is useful to consider the form of $T_{n}(x)$ for odd n.]
(d) In each of the following cases, prove that the sequence $\left(a_{n}\right)$ is bounded and determine whether it has a limit:
(i) $a_{n}=\sum_{k=1}^{n}(1-\cos (\pi / k))$,
(ii) $a_{n}=\sum_{k=0}^{n} \cos (k y)$, with $\cos (y) \neq 1$.

Paper 4, Section II

6E Numbers and Sets

If p is a prime number, prove that $(p-1)!\equiv-1 \bmod p$.
If $n>4$ is a composite number, prove that $(n-1)!\equiv 0 \bmod n$.
State the Fermat-Euler theorem and deduce from it Fermat's little theorem.
If p is any prime, prove that if $a \equiv b \bmod p$, then $a^{p^{n}} \equiv b^{p^{n}} \bmod p^{n+1}$ for all integers $n \geqslant 1$.

Let $a>1$ be an integer. A pseudo-prime of base a is a composite number $n>1$ satisfying $a^{n-1} \equiv 1 \bmod n$. By considering the numbers $\frac{a^{2 p}-1}{a^{2}-1}$, where p is prime, or otherwise, prove that for each a there are infinitely many pseudo-primes of base a.

Paper 4, Section II

7D Numbers \& Sets

(a) Let X be a set and let $f: X \rightarrow X$ be an injective function. Show that $f^{n}: X \rightarrow X$ is injective, where f^{n} denotes the n-fold composite of f with itself.

The image of f is given by $\{f(x): x \in X\}$ and denoted $f(X)$. Show that

$$
X \supseteq f(X) \supseteq f^{2}(X) \supseteq f^{3}(X) \supseteq \cdots
$$

Suppose there exists $k \in \mathbb{N}$ such that $f^{k}(X)=f^{k+1}(X)$. Show that $f^{k}(X)=$ $f^{k+m}(X)$ for all $m \in \mathbb{N}$. Hence, or otherwise, find a subset A of X such that $f: A \rightarrow A$ is bijective.
(b) Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and let W_{k} be the set of words in elements of X of length k, that is $W_{k}=\left\{w_{1} \ldots w_{k}: w_{i} \in X\right.$ for $\left.1 \leqslant i \leqslant k\right\}$. Let P_{n} be the set of bijections $f: X \rightarrow X$. We define a relation \sim on W_{k} as follows. Suppose $w, z \in W_{k}$, then $w \sim z$ if and only if there exists $f \in P_{n}$ such that $w_{1} \ldots w_{k}=f\left(z_{1}\right) \ldots f\left(z_{k}\right)$, where $w=w_{1} \ldots w_{k}$ and $z=z_{1} \ldots z_{k}$. Show that \sim defines an equivalence relation on W_{k}.

List the equivalence classes of W_{3} for each $n \in \mathbb{N}$.
List the equivalence classes of W_{4} when $n=3$.
Let $n=4$ and $g \in P_{4}$ be such that

$$
g: x_{1} \mapsto x_{2}, x_{2} \mapsto x_{3}, x_{3} \mapsto x_{4} \text { and } x_{4} \mapsto x_{1} .
$$

Let $F=\left\{g, g^{2}, g^{3}, g^{4}\right\}$. We define a new equivalence relation $\underset{F}{\sim}$ on W_{k}. Suppose $w, z \in W_{k}$, then $w \underset{F}{\sim} z$ if and only if there exists $f \in F$ such that $w_{1} \ldots w_{k}=f\left(z_{1}\right) \ldots f\left(z_{k}\right)$. Are the equivalence classes of W_{3} under $\underset{F}{\sim}$ the same as the equivalence classes under \sim ? Justify your answer. [You may assume that $\underset{F}{\sim}$ is an equivalence relation.]

Paper 4, Section II

8D Numbers \& Sets

Prove that a countable union of countable sets is countable.
Infinite binary sequences are sequences of the form $a_{1} a_{2} a_{3} \ldots$, where $a_{i} \in\{0,1\}$ for $i \in \mathbb{N}$. Are the sets consisting of the following countable? Justify your answers.
(i) All infinite binary sequences.
(ii) Infinite binary sequences with either a finite number of $1 s$ or a finite number of 0 s .
(iii) Infinite binary sequences with infinitely many $1 s$ and infinitely many $0 s$.

A function $f: \mathbb{Z} \rightarrow \mathbb{N}$ is called periodic if there exists a positive integer k such that $f(x+k)=f(x)$ for every $x \in \mathbb{Z}$. Is the set of periodic functions $f: \mathbb{Z} \rightarrow \mathbb{N}$ countable? Justify your answer.

Is the set of bijections from \mathbb{N} to \mathbb{N} countable? Justify your answer.

Paper 4, Section I

1E Numbers and Sets

By considering numbers of the form $3 p_{1} \ldots p_{k}-1$, show that there are infinitely many primes of the form $3 n+2$ with $n \in \mathbb{N}$.

For which primes p is the number $2 p^{2}+1$ also prime? Justify your answer.

Paper 4, Section I

2D Numbers and Sets

Prove that $\sqrt[3]{2}+\sqrt[3]{3}$ is irrational.
Using the fact that the number $e-e^{-1}$ can be represented by a convergent series
$2 \sum_{n=0}^{\infty} \frac{1}{(2 n+1)!}$, prove that $e-e^{-1}$ is irrational.
What is a transcendental number? Given that e is transcendental, show that $a e+b e^{-1}$ is also transcendental for any integers a, b that are not both zero.

Paper 4, Section II

5E Numbers and Sets

State Bezout's theorem. Suppose that $p \in \mathbb{N}$ is prime and $a, b \in \mathbb{N}$. Show that if p divides $a b$ then p divides a or p divides b.

Show that if $m, n \in \mathbb{N}$ are coprime then any pair of congruences of the form

$$
x \equiv a \quad \bmod m \quad \text { and } \quad x \equiv b \quad \bmod n
$$

has a unique simultaneous solution modulo $m n$.
Show that if p is an odd prime and $d \in \mathbb{N}$ then there are precisely 2 solutions of $x^{2} \equiv 1$ modulo p^{d}. Deduce that if $n \geqslant 3$ is odd, then the number of solutions of $x^{2} \equiv 1$ modulo n is equal to 2^{k}, where k denotes the number of distinct prime factors of n.

How many solutions of $x^{2} \equiv 1$ modulo n are there when $n=2^{d}$?

Paper 4, Section II

6D Numbers and Sets

(a) Define the binomial coefficient $\binom{n}{k}$ for $0 \leqslant k \leqslant n$. Show from your definition that $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ holds when both sides are well-defined.
(b) Prove the following special case of the binomial theorem: $(1+t)^{n}=\sum_{k=0}^{n}\binom{n}{k} t^{k}$ for any real number t. By integrating this expression over a suitable range, or otherwise, evaluate $\sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k}$ and $\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1}\binom{n}{k}$.

Deduce that $\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}\binom{n}{k}=1+\frac{1}{2}+\ldots+\frac{1}{n}$.
(c) The Fibonacci numbers are defined by

$$
F_{1}=1, \quad F_{2}=1, \quad F_{n+2}=F_{n+1}+F_{n} \quad \text { for } n \geqslant 1 .
$$

By using induction, or otherwise, prove that

$$
F_{n}=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-k-1}{k}
$$

for all $n \geqslant 1$, where $\left\lfloor\frac{n-1}{2}\right\rfloor$ denotes the largest integer less than or equal to $\frac{n-1}{2}$.

Paper 4, Section II

7F Numbers and Sets
For a given natural number $n \geqslant 2$, let S be the set of ordered real n-tuples $x=\left(x_{1}, \ldots, x_{n}\right)$ where $x_{i} \geqslant 0$ for $1 \leqslant i \leqslant n$. For $x \in S$, let

$$
P(x)=\left\{i: x_{i}>0\right\} .
$$

Define the relation \preceq by

$$
x \preceq y \text { if and only if } P(x) \subseteq P(y) .
$$

(a) Is the relation \preceq reflexive? Is it transitive? Is it symmetric? Justify your answers.
(b) Show that $x \preceq y$ if and only if there exists $z \in S$ such that $x_{i}=y_{i} z_{i}$ for all $1 \leqslant i \leqslant n$.
(c) Define the relation \sim by

$$
x \sim y \text { if and only if } x \preceq y \text { and } y \preceq x .
$$

Show that \sim defines an equivalence relation on S. Into how many equivalence classes does \sim partition S ?
(d) Define the relation \perp by

$$
x \perp y \text { if and only if } P(x) \cap P(y)=\emptyset .
$$

Given $s \in S$, show that for every $x \in S$ there exist unique $y, z \in S$ such that $x=y+z$ where $y \preceq s$ and $z \perp s$.

Paper 4, Section II

8F Numbers and Sets
(a) What does it mean to say a set is countable?
(b) Show from first principles that the following sets are countable:
(i) the Cartesian product $\mathbb{N} \times \mathbb{N}$, where $\mathbb{N}=\{1,2, \ldots\}$ is the set of natural numbers,
(ii) the rational numbers,
(iii) the points of discontinuity of an increasing function $F: \mathbb{R} \rightarrow \mathbb{R}$.
(c) Let A_{1}, A_{2}, \ldots be a collection of non-empty countable sets and consider the Cartesian product

$$
B=A_{1} \times A_{2} \times \cdots .
$$

Show from first principles that B is countable if and only if there exists a natural number N such that $\left|A_{n}\right|=1$ for all $n>N$.

Paper 4, Section I

1E Numbers and Sets

Consider functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$. Which of the following statements are always true, and which can be false? Give proofs or counterexamples as appropriate.
(i) If $g \circ f$ is surjective then f is surjective.
(ii) If $g \circ f$ is injective then f is injective.
(iii) If $g \circ f$ is injective then g is injective.

If $X=\{1, \ldots, m\}$ and $Y=\{1, \ldots, n\}$ with $m<n$, and $g \circ f$ is the identity on X, then how many possibilities are there for the pair of functions f and g ?

Paper 4, Section I

2E Numbers and Sets

The Fibonacci numbers F_{n} are defined by $F_{1}=1, F_{2}=1, F_{n+2}=F_{n+1}+F_{n}(n \geqslant 1)$. Let $a_{n}=F_{n+1} / F_{n}$ be the ratio of successive Fibonacci numbers.
(i) Show that $a_{n+1}=1+1 / a_{n}$. Hence prove by induction that

$$
(-1)^{n} a_{n+2} \leqslant(-1)^{n} a_{n}
$$

for all $n \geqslant 1$. Deduce that the sequence $a_{2 n}$ is monotonically decreasing.
(ii) Prove that

$$
F_{n+2} F_{n}-F_{n+1}^{2}=(-1)^{n+1}
$$

for all $n \geqslant 1$. Hence show that $a_{n+1}-a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(iii) Explain without detailed justification why the sequence a_{n} has a limit.

Paper 4, Section II

5E Numbers and Sets

(a) Let S be the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}$. Define $\delta: S \rightarrow S$ by

$$
(\delta f)(n)=f(n+1)-f(n)
$$

(i) Define the binomial coefficient $\binom{n}{r}$ for $0 \leqslant r \leqslant n$. Setting $\binom{n}{r}=0$ when $r>n$, prove from your definition that if $f_{r}(n)=\binom{n}{r}$ then $\delta f_{r}=f_{r-1}$.
(ii) Show that if $f \in S$ is integer-valued and $\delta^{k+1} f=0$, then

$$
f(n)=c_{0}\binom{n}{k}+c_{1}\binom{n}{k-1}+\cdots+c_{k-1}\binom{n}{1}+c_{k}
$$

for some integers c_{0}, \ldots, c_{k}.
(b) State the binomial theorem. Show that

$$
\sum_{r=0}^{n}(-1)^{r}\binom{n}{r}^{2}=\left\{\begin{array}{cl}
0 & \text { if } n \text { is odd } \\
(-1)^{n / 2}\binom{n}{n / 2} & \text { if } n \text { is even }
\end{array} .\right.
$$

Paper 4, Section II

6E Numbers and Sets

(a) (i) By considering Euclid's algorithm, show that the highest common factor of two positive integers a and b can be written in the form $\alpha a+\beta b$ for suitable integers α and β. Find an integer solution of

$$
15 x+21 y+35 z=1
$$

Is your solution unique?
(ii) Suppose that n and m are coprime. Show that the simultaneous congruences

$$
\begin{aligned}
& x \equiv a \quad(\bmod n), \\
& x \equiv b \quad(\bmod m)
\end{aligned}
$$

have the same set of solutions as $x \equiv c(\bmod m n)$ for some $c \in \mathbb{N}$. Hence solve (i.e. find all solutions of) the simultaneous congruences

$$
\begin{aligned}
& 3 x \equiv 1 \quad(\bmod 5), \\
& 5 x \equiv 1 \quad(\bmod 7), \\
& 7 x \equiv 1 \quad(\bmod 3) .
\end{aligned}
$$

(b) State the inclusion-exclusion principle.

For integers $r, n \geqslant 1$, denote by $\phi_{r}(n)$ the number of ordered r-tuples $\left(x_{1}, \ldots, x_{r}\right)$ of integers x_{i} satisfying $1 \leqslant x_{i} \leqslant n$ for $i=1, \ldots, r$ and such that the greatest common divisor of $\left\{n, x_{1}, \ldots, x_{r}\right\}$ is 1 . Show that

$$
\phi_{r}(n)=n^{r} \prod_{p \mid n}\left(1-\frac{1}{p^{r}}\right)
$$

where the product is over all prime numbers p dividing n.

Paper 4, Section II

7E Numbers and Sets

(a) Prove that every real number $\alpha \in(0,1]$ can be written in the form $\alpha=$ $\sum_{n=1}^{\infty} 2^{-b_{n}}$ where $\left(b_{n}\right)$ is a strictly increasing sequence of positive integers.

Are such expressions unique?
(b) Let $\theta \in \mathbb{R}$ be a root of $f(x)=\alpha_{d} x^{d}+\cdots+\alpha_{1} x+\alpha_{0}$, where $\alpha_{0}, \ldots, \alpha_{d} \in \mathbb{Z}$. Suppose that f has no rational roots, except possibly θ.
(i) Show that if $s, t \in \mathbb{R}$ then

$$
|f(s)-f(t)| \leqslant A(\max \{|s|,|t|, 1\})^{d-1}|s-t|
$$

where A is a constant depending only on f.
(ii) Deduce that if $p, q \in \mathbb{Z}$ with $q>0$ and $0<\left|\theta-\frac{p}{q}\right|<1$ then

$$
\left|\theta-\frac{p}{q}\right| \geqslant \frac{1}{A}\left(\frac{1}{|\theta|+1}\right)^{d-1} \frac{1}{q^{d}} .
$$

(c) Prove that $\alpha=\sum_{n=1}^{\infty} 2^{-n!}$ is transcendental.
(d) Let β and γ be transcendental numbers. What of the following statements are always true and which can be false? Briefly justify your answers.
(i) $\beta \gamma$ is transcendental.
(ii) β^{n} is transcendental for every $n \in \mathbb{N}$.

Paper 4, Section II
8E Numbers and Sets
(a) Prove that a countable union of countable sets is countable.
(b) (i) Show that the set $\mathbb{N}^{\mathbb{N}}$ of all functions $\mathbb{N} \rightarrow \mathbb{N}$ is uncountable.
(ii) Determine the countability or otherwise of each of the two sets

$$
\begin{aligned}
& A=\left\{f \in \mathbb{N}^{\mathbb{N}}: f(n) \leqslant f(n+1) \text { for all } n \in \mathbb{N}\right\}, \\
& B=\left\{f \in \mathbb{N}^{\mathbb{N}}: f(n) \geqslant f(n+1) \text { for all } n \in \mathbb{N}\right\}
\end{aligned}
$$

Justify your answers.
(c) A permutation σ of the natural numbers \mathbb{N} is a mapping $\sigma \in \mathbb{N}^{\mathbb{N}}$ that is bijective. Determine the countability or otherwise of each of the two sets C and D of permutations, justifying your answers:
(i) C is the set of all permutations σ of \mathbb{N} such that $\sigma(j)=j$ for all sufficiently large j.
(ii) D is the set all permutations σ of \mathbb{N} such that

$$
\sigma(j)=j-1 \text { or } j \text { or } j+1
$$

for each j.

Paper 2, Section I

2D Numbers and Sets

Define an equivalence relation. Which of the following is an equivalence relation on the set of non-zero complex numbers? Justify your answers.
(i) $x \sim y$ if $|x-y|^{2}<|x|^{2}+|y|^{2}$.
(ii) $x \sim y$ if $|x+y|=|x|+|y|$.
(iii) $x \sim y$ if $\left|\frac{x}{y^{n}}\right|$ is rational for some integer $n \geqslant 1$.
(iv) $x \sim y$ if $\left|x^{3}-x\right|=\left|y^{3}-y\right|$.

Paper 2, Section II

7D Numbers and Sets

(a) Define the Euler function $\phi(n)$. State the Chinese remainder theorem, and use it to derive a formula for $\phi(n)$ when $n=p_{1} p_{2} \ldots p_{r}$ is a product of distinct primes. Show that there are at least ten odd numbers n with $\phi(n)$ a power of 2 .
(b) State and prove the Fermat-Euler theorem.
(c) In the RSA cryptosystem a message $m \in\{1,2, \ldots, N-1\}$ is encrypted as $c=m^{e}$ $(\bmod N)$. Explain how N and e should be chosen, and how (given a factorisation of N) to compute the decryption exponent d. Prove that your choice of d works, subject to reasonable assumptions on m. If $N=187$ and $e=13$ then what is $d ?$

Paper 2, Section II

8D Numbers and Sets

(a) Define what it means for a set to be countable. Prove that $\mathbb{N} \times \mathbb{Z}$ is countable, and that the power set of \mathbb{N} is uncountable.
(b) Let $\sigma: X \rightarrow Y$ be a bijection. Show that if $f: X \rightarrow X$ and $g: Y \rightarrow Y$ are related by $g=\sigma f \sigma^{-1}$ then they have the same number of fixed points.
[A fixed point of f is an element $x \in X$ such that $f(x)=x$.]
(c) Let T be the set of bijections $f: \mathbb{N} \rightarrow \mathbb{N}$ with the property that no iterate of f has a fixed point.
[The $k^{\text {th }}$ iterate of f is the map obtained by k successive applications of f.]
(i) Write down an explicit element of T.
(ii) Determine whether T is countable or uncountable.

Paper 4, Section I

1E Numbers and Sets

Find all solutions to the simultaneous congruences

$$
4 x \equiv 1 \quad(\bmod 21) \quad \text { and } \quad 2 x \equiv 5 \quad(\bmod 45)
$$

Paper 4, Section I

2E Numbers and Sets

Show that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+n} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{(2 n-1)!}
$$

converge. Determine in each case whether the limit is a rational number. Justify your answers.

Paper 4, Section II

5E Numbers and Sets

(a) State and prove Fermat's theorem. Use it to compute $3^{803}(\bmod 17)$.
(b) The Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ are defined by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for all $n \geqslant 2$. Prove by induction that for all $n \geqslant 1$ we have

$$
F_{2 n}=F_{n}\left(F_{n-1}+F_{n+1}\right) \quad \text { and } \quad F_{2 n+1}=F_{n}^{2}+F_{n+1}^{2} .
$$

(c) Let $m \geqslant 1$ and let p be an odd prime dividing F_{m}. Which of the following statements are true, and which can be false? Justify your answers.
(i) If m is odd then $p \equiv 1(\bmod 4)$.
(ii) If m is even then $p \equiv 3(\bmod 4)$.

Paper 4, Section II

6E Numbers and Sets

State the inclusion-exclusion principle.
Let $n \geqslant 2$ be an integer. Let $X=\{0,1,2, \ldots, n-1\}$ and

$$
Y=\left\{(a, b) \in X^{2} \mid \operatorname{gcd}(a, b, n)=1\right\}
$$

where $\operatorname{gcd}\left(x_{1}, \ldots, x_{k}\right)$ is the largest number dividing all of x_{1}, \ldots, x_{k}. Let R be the relation on Y where $(a, b) R(c, d)$ if $a d-b c \equiv 0(\bmod n)$.
(a) Show that

$$
|Y|=n^{2} \prod_{p \mid n}\left(1-\frac{1}{p^{2}}\right)
$$

where the product is over all primes p dividing n.
(b) Show that if $\operatorname{gcd}(a, b, n)=1$ then there exist integers r, s, t with $r a+s b+t n=1$.
(c) Show that if $(a, b) R(c, d)$ then there exists an integer λ with $\lambda a \equiv c(\bmod n)$ and $\lambda b \equiv d(\bmod n)$. [Hint: Consider $\lambda=r c+s d$, where r, s are as in part (b).] Deduce that R is an equivalence relation.
(d) What is the size of the equivalence class containing $(1,1)$? Show that all equivalence classes have the same size, and deduce that the number of equivalence classes is

$$
n \prod_{p \mid n}\left(1+\frac{1}{p}\right) .
$$

Paper 4, Section II

7E Numbers and Sets

(a) Let $f: X \rightarrow Y$ be a function. Show that the following statements are equivalent.
(i) f is injective.
(ii) For every subset $A \subset X$ we have $f^{-1}(f(A))=A$.
(iii) For every pair of subsets $A, B \subset X$ we have $f(A \cap B)=f(A) \cap f(B)$.
(b) Let $f: X \rightarrow X$ be an injection. Show that $X=A \cup B$ for some subsets $A, B \subset X$ such that

$$
\bigcap_{n=1}^{\infty} f^{n}(A)=\emptyset \quad \text { and } \quad f(B)=B
$$

[Here f^{n} denotes the n-fold composite of f with itself.]

Paper 4, Section II

8E Numbers and Sets

(a) What is a countable set? Let X, A, B be sets with A, B countable. Show that if $f: X \rightarrow A \times B$ is an injection then X is countable. Deduce that \mathbb{Z} and \mathbb{Q} are countable. Show too that a countable union of countable sets is countable.
(b) Show that, in the plane, any collection of pairwise disjoint circles with rational radius is countable.
(c) A lollipop is any subset of the plane obtained by translating, rotating and scaling (by any factor $\lambda>0$) the set

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \cup\left\{(0, y) \in \mathbb{R}^{2} \mid-3 \leqslant y \leqslant-1\right\}
$$

What happens if in part (b) we replace 'circles with rational radius' by 'lollipops'?

Paper 4, Section I

1E Numbers and Sets

State Fermat's theorem.
Let p be a prime such that $p \equiv 3(\bmod 4)$. Prove that there is no solution to $x^{2} \equiv-1(\bmod p)$.

Show that there are infinitely many primes congruent to $1(\bmod 4)$.

Paper 4, Section I

2E Numbers and Sets

Given $n \in \mathbb{N}$, show that \sqrt{n} is either an integer or irrational.
Let α and β be irrational numbers and q be rational. Which of $\alpha+q, \alpha+\beta, \alpha \beta, \alpha^{q}$ and α^{β} must be irrational? Justify your answers. [Hint: For the last part consider $\sqrt{2}^{\sqrt{2}}$.]

Paper 4, Section II

5E Numbers and Sets

Let n be a positive integer. Show that for any a coprime to n, there is a unique b $(\bmod n)$ such that $a b \equiv 1(\bmod n)$. Show also that if a and b are integers coprime to n, then $a b$ is also coprime to n. [Any version of Bezout's theorem may be used without proof provided it is clearly stated.]

State and prove Wilson's theorem.
Let n be a positive integer and p be a prime. Show that the exponent of p in the prime factorisation of n ! is given by $\sum_{i=1}^{\infty}\left\lfloor\frac{n}{p^{i}}\right\rfloor$ where $\lfloor x\rfloor$ denotes the integer part of x.

Evaluate $20!(\bmod 23)$ and $1000!\left(\bmod 10^{249}\right)$.
Let p be a prime and $0<k<p^{m}$. Let ℓ be the exponent of p in the prime factorisation of k. Find the exponent of p in the prime factorisation of $\binom{p^{m}}{k}$, in terms of m and ℓ.

Paper 4, Section II

6E Numbers and Sets

For $n \in \mathbb{N}$ let $Q_{n}=\{0,1\}^{n}$ denote the set of all 0-1 sequences of length n. We define the distance $d(x, y)$ between two elements x and y of Q_{n} to be the number of coordinates in which they differ. Show that $d(x, z) \leqslant d(x, y)+d(y, z)$ for all $x, y, z \in Q_{n}$.

For $x \in Q_{n}$ and $1 \leqslant j \leqslant n$ let $B(x, j)=\left\{y \in Q_{n}: d(y, x) \leqslant j\right\}$. Show that $|B(x, j)|=\sum_{i=0}^{j}\binom{n}{i}$.

A subset C of Q_{n} is called a k-code if $d(x, y) \geqslant 2 k+1$ for all $x, y \in C$ with $x \neq y$. Let $M(n, k)$ be the maximum possible value of $|C|$ for a k-code C in Q_{n}. Show that

$$
2^{n}\left(\sum_{i=0}^{2 k}\binom{n}{i}\right)^{-1} \leqslant M(n, k) \leqslant 2^{n}\left(\sum_{i=0}^{k}\binom{n}{i}\right)^{-1}
$$

Find $M(4,1)$, carefully justifying your answer.

Paper 4, Section II

7E Numbers and Sets

Let $n \in \mathbb{N}$ and A_{1}, \ldots, A_{n} be subsets of a finite set X. Let $0 \leqslant t \leqslant n$. Show that if $x \in X$ belongs to A_{i} for exactly m values of i, then

$$
\sum_{S \subset\{1, \ldots, n\}}\binom{|S|}{t}(-1)^{|S|-t} \mathbf{1}_{A_{S}}(x)= \begin{cases}0 & \text { if } m \neq t \\ 1 & \text { if } m=t\end{cases}
$$

where $A_{S}=\bigcap_{i \in S} A_{i}$ with the convention that $A_{\emptyset}=X$, and $\mathbf{1}_{A_{S}}$ denotes the indicator function of A_{S}. [Hint: Set $M=\left\{i: x \in A_{i}\right\}$ and consider for which $S \subset\{1, \ldots, n\}$ one has $\mathbf{1}_{A_{S}}(x)=1$.]

Use this to show that the number of elements of X that belong to A_{i} for exactly t values of i is

$$
\sum_{S \subset\{1, \ldots, n\}}\binom{|S|}{t}(-1)^{|S|-t}\left|A_{S}\right| .
$$

Deduce the Inclusion-Exclusion Principle.
Using the Inclusion-Exclusion Principle, prove a formula for the Euler totient function $\varphi(N)$ in terms of the distinct prime factors of N.

A Carmichael number is a composite number n such that $x^{n-1} \equiv 1(\bmod n)$ for every integer x coprime to n. Show that if $n=q_{1} q_{2} \ldots q_{k}$ is the product of $k \geqslant 2$ distinct primes q_{1}, \ldots, q_{k} satisfying $q_{j}-1 \mid n-1$ for $j=1, \ldots, k$, then n is a Carmichael number.

Paper 4, Section II

8E Numbers and Sets

Define what it means for a set to be countable.
Show that for any set X, there is no surjection from X onto the power set $\mathcal{P}(X)$. Deduce that the set $\{0,1\}^{\mathbb{N}}$ of all infinite $0-1$ sequences is uncountable.

Let \mathcal{L} be the set of sequences $\left(F_{n}\right)_{n=0}^{\infty}$ of subsets $F_{0} \subset F_{1} \subset F_{2} \subset \ldots$ of \mathbb{N} such that $\left|F_{n}\right|=n$ for all $n \in \mathbb{N}$ and $\bigcup_{n} F_{n}=\mathbb{N}$. Let \mathcal{L}_{0} consist of all members $\left(F_{n}\right)_{n=0}^{\infty}$ of \mathcal{L} for which $n \in F_{n}$ for all but finitely many $n \in \mathbb{N}$. Let \mathcal{L}_{1} consist of all members $\left(F_{n}\right)_{n=0}^{\infty}$ of \mathcal{L} for which $n \in F_{n+1}$ for all but finitely many $n \in \mathbb{N}$. For each of \mathcal{L}_{0} and \mathcal{L}_{1} determine whether it is countable or uncountable. Justify your answers.

Paper 4, Section I

1D Numbers and Sets

(a) Show that for all positive integers z and n, either $z^{2 n} \equiv 0(\bmod 3)$ or $z^{2 n} \equiv 1(\bmod 3)$.
(b) If the positive integers x, y, z satisfy $x^{2}+y^{2}=z^{2}$, show that at least one of x and y must be divisible by 3 . Can both x and y be odd?

Paper 4, Section I

2D Numbers and Sets
(a) Give the definitions of relation and equivalence relation on a set S.
(b) Let Σ be the set of ordered pairs (A, f) where A is a non-empty subset of \mathbb{R} and $f: A \rightarrow \mathbb{R}$. Let \mathcal{R} be the relation on Σ defined by requiring $(A, f) \mathcal{R}(B, g)$ if the following two conditions hold:
(i) $(A \backslash B) \cup(B \backslash A)$ is finite and
(ii) there is a finite set $F \subset A \cap B$ such that $f(x)=g(x)$ for all $x \in A \cap B \backslash F$.

Show that \mathcal{R} is an equivalence relation on Σ.

Paper 4, Section II

5D Numbers and Sets

(a) State and prove the Fermat-Euler Theorem. Deduce Fermat's Little Theorem. State Wilson's Theorem.
(b) Let p be an odd prime. Prove that $X^{2} \equiv-1(\bmod p)$ is solvable if and only if $p \equiv 1(\bmod 4)$.
(c) Let p be prime. If h and k are non-negative integers with $h+k=p-1$, prove that $h!k!+(-1)^{h} \equiv 0(\bmod p)$.

Paper 4, Section II

6D Numbers and Sets
(a) Define what it means for a set to be countable.
(b) Let A be an infinite subset of the set of natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$. Prove that there is a bijection $f: \mathbb{N} \rightarrow A$.
(c) Let A_{n} be the set of natural numbers whose decimal representation ends with exactly $n-1$ zeros. For example, $71 \in A_{1}, 70 \in A_{2}$ and $15000 \in A_{4}$. By applying the result of part (b) with $A=A_{n}$, construct a bijection $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. Deduce that the set of rationals is countable.
(d) Let A be an infinite set of positive real numbers. If every sequence $\left(a_{j}\right)_{j=1}^{\infty}$ of distinct elements with $a_{j} \in A$ for each j has the property that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} a_{j}=0,
$$

prove that A is countable.
[You may assume without proof that a countable union of countable sets is countable.]

Paper 4, Section II

7D Numbers and Sets

(a) For positive integers n, m, k with $k \leqslant n$, show that

$$
\binom{n}{k}\left(\frac{k}{n}\right)^{m}=\binom{n-1}{k-1} \sum_{\ell=0}^{m-1} a_{n, m, \ell}\left(\frac{k-1}{n-1}\right)^{m-1-\ell}
$$

giving an explicit formula for $a_{n, m, \ell}$. [You may wish to consider the expansion of $\left.\left(\frac{k-1}{n-1}+\frac{1}{n-1}\right)^{m-1}.\right]$
(b) For a function $f:[0,1] \rightarrow \mathbb{R}$ and each integer $n \geqslant 1$, the function $B_{n}(f):[0,1] \rightarrow \mathbb{R}$ is defined by

$$
B_{n}(f)(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

For any integer $m \geqslant 0$ let $f_{m}(x)=x^{m}$. Show that $B_{n}\left(f_{0}\right)(x)=1$ and $B_{n}\left(f_{1}\right)(x)=x$ for all $n \geqslant 1$ and $x \in[0,1]$.

Show that for each integer $m \geqslant 0$ and each $x \in[0,1]$,

$$
B_{n}\left(f_{m}\right)(x) \rightarrow f_{m}(x) \text { as } n \rightarrow \infty
$$

Deduce that for each integer $m \geqslant 0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{4^{n}} \sum_{k=0}^{2 n}\left(\frac{k}{n}\right)^{m}\binom{2 n}{k}=1
$$

Paper 4, Section II

8D Numbers and Sets

Let $\left(a_{k}\right)_{k=1}^{\infty}$ be a sequence of real numbers.
(a) Define what it means for $\left(a_{k}\right)_{k=1}^{\infty}$ to converge. Define what it means for the series $\sum_{k=1}^{\infty} a_{k}$ to converge.
Show that if $\sum_{k=1}^{\infty} a_{k}$ converges, then $\left(a_{k}\right)_{k=1}^{\infty}$ converges to 0 .
If $\left(a_{k}\right)_{k=1}^{\infty}$ converges to $a \in \mathbb{R}$, show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=a .
$$

(b) Suppose $a_{k}>0$ for every k. Let $u_{n}=\sum_{k=1}^{n}\left(a_{k}+\frac{1}{a_{k}}\right)$ and $v_{n}=\sum_{k=1}^{n}\left(a_{k}-\frac{1}{a_{k}}\right)$.

Show that $\left(u_{n}\right)_{n=1}^{\infty}$ does not converge.
Give an example of a sequence $\left(a_{k}\right)_{k=1}^{\infty}$ with $a_{k}>0$ and $a_{k} \neq 1$ for every k such that $\left(v_{n}\right)_{n=1}^{\infty}$ converges.
If $\left(v_{n}\right)_{n=1}^{\infty}$ converges, show that $\frac{u_{n}}{n} \rightarrow 2$.

Paper 4, Section I

1E Numbers and Sets

Find a pair of integers x and y satisfying $17 x+29 y=1$. What is the smallest positive integer congruent to 17^{138} modulo 29 ?

Paper 4, Section I

2E Numbers and Sets

Explain the meaning of the phrase least upper bound; state the least upper bound property of the real numbers. Use the least upper bound property to show that a bounded, increasing sequence of real numbers converges.

Suppose that $a_{n}, b_{n} \in \mathbb{R}$ and that $a_{n} \geqslant b_{n}>0$ for all n. If $\sum_{n=1}^{\infty} a_{n}$ converges, show that $\sum_{n=1}^{\infty} b_{n}$ converges.

Paper 4, Section II

5E Numbers and Sets

(a) Let S be a set. Show that there is no bijective map from S to the power set of S. Let $\mathcal{T}=\left\{\left(x_{n}\right) \mid x_{i} \in\{0,1\}\right.$ for all $\left.i \in \mathbb{N}\right\}$ be the set of sequences with entries in $\{0,1\}$. Show that \mathcal{T} is uncountable.
(b) Let A be a finite set with more than one element, and let B be a countably infinite set. Determine whether each of the following sets is countable. Justify your answers.
(i) $S_{1}=\{f: A \rightarrow B \mid f$ is injective $\}$.
(ii) $S_{2}=\{g: B \rightarrow A \mid g$ is surjective $\}$.
(iii) $S_{3}=\{h: B \rightarrow B \mid h$ is bijective $\}$.

Paper 4, Section II

6E Numbers and Sets

Suppose that $a, b \in \mathbb{Z}$ and that $b=b_{1} b_{2}$, where b_{1} and b_{2} are relatively prime and greater than 1 . Show that there exist unique integers $a_{1}, a_{2}, n \in \mathbb{Z}$ such that $0 \leqslant a_{i}<b_{i}$ and

$$
\frac{a}{b}=\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+n
$$

Now let $b=p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}$ be the prime factorization of b. Deduce that $\frac{a}{b}$ can be written uniquely in the form

$$
\frac{a}{b}=\frac{q_{1}}{p_{1}^{n_{1}}}+\cdots+\frac{q_{k}}{p_{k}^{n_{k}}}+n
$$

where $0 \leqslant q_{i}<p_{i}^{n_{i}}$ and $n \in \mathbb{Z}$. Express $\frac{a}{b}=\frac{1}{315}$ in this form.

Paper 4, Section II

7E Numbers and Sets

State the inclusion-exclusion principle.
Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a string of n digits, where $a_{i} \in\{0,1, \ldots, 9\}$. We say that the string A has a run of length k if there is some $j \leqslant n-k+1$ such that either $a_{j+i} \equiv a_{j}+i(\bmod 10)$ for all $0 \leqslant i<k$ or $a_{j+i} \equiv a_{j}-i(\bmod 10)$ for all $0 \leqslant i<k$. For example, the strings

$$
(\underline{0,1,2}, 8,4,9),(3, \underline{9,8,7}, 4,8) \text { and }(3, \underline{1,0,9}, 4,5)
$$

all have runs of length 3 (underlined), but no run in ($3,1,2,1,1,2$) has length >2. How many strings of length 6 have a run of length $\geqslant 3$?

Paper 4, Section II

8E Numbers and Sets

Define the binomial coefficient $\binom{n}{m}$. Prove directly from your definition that

$$
(1+z)^{n}=\sum_{m=0}^{n}\binom{n}{m} z^{m}
$$

for any complex number z.
(a) Using this formula, or otherwise, show that

$$
\sum_{k=0}^{3 n}(-3)^{k}\binom{6 n}{2 k}=2^{6 n}
$$

(b) By differentiating, or otherwise, evaluate $\sum_{m=0}^{n} m\binom{n}{m}$.

Let $S_{r}(n)=\sum_{m=0}^{n}(-1)^{m} m^{r}\binom{n}{m}$, where r is a non-negative integer. Show that $S_{r}(n)=0$ for $r<n$. Evaluate $S_{n}(n)$.

Paper 4, Section I

1E Numbers and Sets
(a) Find all integers x and y such that

$$
6 x+2 y \equiv 3 \quad(\bmod 53) \quad \text { and } \quad 17 x+4 y \equiv 7 \quad(\bmod 53) .
$$

(b) Show that if an integer $n>4$ is composite then $(n-1)!\equiv 0(\bmod n)$.

Paper 4, Section I

2E Numbers and Sets

State the Chinese remainder theorem and Fermat's theorem. Prove that

$$
p^{4} \equiv 1 \quad(\bmod 240)
$$

for any prime $p>5$.

Paper 4, Section II

5E Numbers and Sets

(i) Let \sim be an equivalence relation on a set X. What is an equivalence class of \sim ? What is a partition of X ? Prove that the equivalence classes of \sim form a partition of X.
(ii) Let \sim be the relation on the natural numbers defined by

$$
m \sim n \Longleftrightarrow \exists a, b \in \mathbb{N} \text { such that } m \text { divides } n^{a} \text { and } n \text { divides } m^{b} .
$$

Show that \sim is an equivalence relation, and show that it has infinitely many equivalence classes, all but one of which are infinite.

Paper 4, Section II

6E Numbers and Sets

Let p be a prime. A base p expansion of an integer k is an expression

$$
k=k_{0}+p \cdot k_{1}+p^{2} \cdot k_{2}+\cdots+p^{\ell} \cdot k_{\ell}
$$

for some natural number ℓ, with $0 \leqslant k_{i}<p$ for $i=0,1, \ldots, \ell$.
(i) Show that the sequence of coefficients $k_{0}, k_{1}, k_{2}, \ldots, k_{\ell}$ appearing in a base p expansion of k is unique, up to extending the sequence by zeroes.
(ii) Show that

$$
\binom{p}{j} \equiv 0 \quad(\bmod p), \quad 0<j<p
$$

and hence, by considering the polynomial $(1+x)^{p}$ or otherwise, deduce that

$$
\binom{p^{i}}{j} \equiv 0 \quad(\bmod p), \quad 0<j<p^{i}
$$

(iii) If $n_{0}+p \cdot n_{1}+p^{2} \cdot n_{2}+\cdots+p^{\ell} \cdot n_{\ell}$ is a base p expansion of n, then, by considering the polynomial $(1+x)^{n}$ or otherwise, show that

$$
\binom{n}{k} \equiv\binom{n_{0}}{k_{0}}\binom{n_{1}}{k_{1}} \cdots\binom{n_{\ell}}{k_{\ell}} \quad(\bmod p)
$$

Paper 4, Section II

7E Numbers and Sets

State the inclusion-exclusion principle.
Let $n \in \mathbb{N}$. A permutation σ of the set $\{1,2,3, \ldots, n\}$ is said to contain a transposition if there exist i, j with $1 \leqslant i<j \leqslant n$ such that $\sigma(i)=j$ and $\sigma(j)=i$. Derive a formula for the number, $f(n)$, of permutations which do not contain a transposition, and show that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{n!}=e^{-\frac{1}{2}}
$$

Paper 4, Section II

8E Numbers and Sets

What does it mean for a set to be countable? Prove that
(a) if B is countable and $f: A \rightarrow B$ is injective, then A is countable;
(b) if A is countable and $f: A \rightarrow B$ is surjective, then B is countable.

Prove that $\mathbb{N} \times \mathbb{N}$ is countable, and deduce that
(i) if X and Y are countable, then so is $X \times Y$;
(ii) \mathbb{Q} is countable.

Let \mathcal{C} be a collection of circles in the plane such that for each point a on the x-axis, there is a circle in \mathcal{C} passing through the point a which has the x-axis tangent to the circle at a. Show that \mathcal{C} contains a pair of circles that intersect.

Paper 4, Section I

1E Numbers and Sets

Use Euclid's algorithm to determine d, the greatest common divisor of 203 and 147, and to express it in the form $203 x+147 y$ for integers x, y. Hence find all solutions in integers x, y of the equation $203 x+147 y=d$.

How many integers n are there with $1 \leqslant n \leqslant 2014$ and $21 n \equiv 25(\bmod 29) ?$

Paper 4, Section I

2E Numbers and Sets

Define the binomial coefficients $\binom{n}{k}$, for integers n, k satisfying $n \geqslant k \geqslant 0$. Prove directly from your definition that if $n>k \geqslant 0$ then

$$
\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}
$$

and that for every $m \geqslant 0$ and $n \geqslant 0$,

$$
\sum_{k=0}^{m}\binom{n+k}{k}=\binom{n+m+1}{m}
$$

Paper 4, Section II

5E Numbers and Sets

What does it mean to say that the sequence of real numbers $\left(x_{n}\right)$ converges to the limit x ? What does it mean to say that the series $\sum_{n=1}^{\infty} x_{n}$ converges to s ?

Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be convergent series of positive real numbers. Suppose that $\left(x_{n}\right)$ is a sequence of positive real numbers such that for every $n \geqslant 1$, either $x_{n} \leqslant a_{n}$ or $x_{n} \leqslant b_{n}$. Show that $\sum_{n=1}^{\infty} x_{n}$ is convergent.

Show that $\sum_{n=1}^{\infty} 1 / n^{2}$ is convergent, and that $\sum_{n=1}^{\infty} 1 / n^{\alpha}$ is divergent if $\alpha \leqslant 1$.
Let $\left(x_{n}\right)$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} n^{2} x_{n}^{2}$ is convergent. Show that $\sum_{n=1}^{\infty} x_{n}$ is convergent. Determine (with proof or counterexample) whether or not the converse statement holds.

Paper 4, Section II

6E Numbers and Sets

(i) State and prove the Fermat-Euler Theorem.
(ii) Let p be an odd prime number, and x an integer coprime to p. Show that $x^{(p-1) / 2} \equiv \pm 1(\bmod p)$, and that if the congruence $y^{2} \equiv x(\bmod p)$ has a solution then $x^{(p-1) / 2} \equiv 1(\bmod p)$.
(iii) By arranging the residue classes coprime to p into pairs $\{a, b x\}$ with $a b \equiv 1(\bmod p)$, or otherwise, show that if the congruence $y^{2} \equiv x(\bmod p)$ has no solution then $x^{(p-1) / 2} \equiv-1(\bmod p)$.
(iv) Show that $5^{5^{5}} \equiv 5(\bmod 23)$.

Paper 4, Section II

7E Numbers and Sets

(i) What does it mean to say that a set X is countable? Show directly that the set of sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$, with $x_{n} \in\{0,1\}$ for all n, is uncountable.
(ii) Let S be any subset of \mathbb{N}. Show that there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(S)=2 \mathbb{N}$ (the set of even natural numbers) if and only if both S and its complement are infinite.
(iii) Let $\sqrt{2}=1 \cdot a_{1} a_{2} a_{3} \ldots$ be the binary expansion of $\sqrt{2}$. Let X be the set of all sequences $\left(x_{n}\right)$ with $x_{n} \in\{0,1\}$ such that for infinitely many $n, x_{n}=0$. Let Y be the set of all $\left(x_{n}\right) \in X$ such that for infinitely many $n, x_{n}=a_{n}$. Show that Y is uncountable.

Paper 4, Section II

8E Numbers and Sets

(i) State and prove the Inclusion-Exclusion Principle.
(ii) Let $n>1$ be an integer. Denote by $\mathbb{Z} / n \mathbb{Z}$ the integers modulo n. Let X be the set of all functions $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ such that for every $j \in \mathbb{Z} / n \mathbb{Z}, f(j)-f(j-1) \not \equiv j$ $(\bmod n)$. Show that

$$
|X|= \begin{cases}(n-1)^{n}+1-n & \text { if } n \text { is odd } \\ (n-1)^{n}-1 & \text { if } n \text { is even }\end{cases}
$$

Paper 4, Section I

1E Numbers and Sets

Let m and n be positive integers. State what is meant by the greatest common divisor $\operatorname{gcd}(m, n)$ of m and n, and show that there exist integers a and b such that $\operatorname{gcd}(m, n)=a m+b n$. Deduce that an integer k divides both m and n only if k divides $\operatorname{gcd}(m, n)$.

Prove (without using the Fundamental Theorem of Arithmetic) that for any positive integer $k, \operatorname{gcd}(k m, k n)=k \operatorname{gcd}(m, n)$.

Paper 4, Section I

2E Numbers and Sets

Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. What does it mean to say that the sequence $\left(x_{n}\right)$ is convergent? What does it mean to say the series $\sum x_{n}$ is convergent? Show that if $\sum x_{n}$ is convergent, then the sequence $\left(x_{n}\right)$ converges to zero. Show that the converse is not necessarily true.

Paper 4, Section II

5E Numbers and Sets

(i) What does it mean to say that a function $f: X \rightarrow Y$ is injective? What does it mean to say that f is surjective? Let $g: Y \rightarrow Z$ be a function. Show that if $g \circ f$ is injective, then so is f, and that if $g \circ f$ is surjective, then so is g.
(ii) Let X_{1}, X_{2} be two sets. Their product $X_{1} \times X_{2}$ is the set of ordered pairs $\left(x_{1}, x_{2}\right)$ with $x_{i} \in X_{i}(i=1,2)$. Let p_{i} (for $\left.i=1,2\right)$ be the function

$$
p_{i}: X_{1} \times X_{2} \rightarrow X_{i}, \quad p_{i}\left(x_{1}, x_{2}\right)=x_{i} .
$$

When is p_{i} surjective? When is p_{i} injective?
(iii) Now let Y be any set, and let $f_{1}: Y \rightarrow X_{1}, f_{2}: Y \rightarrow X_{2}$ be functions. Show that there exists a unique $g: Y \rightarrow X_{1} \times X_{2}$ such that $f_{1}=p_{1} \circ g$ and $f_{2}=p_{2} \circ g$.

Show that if f_{1} or f_{2} is injective, then g is injective. Is the converse true? Justify your answer.

Show that if g is surjective then both f_{1} and f_{2} are surjective. Is the converse true? Justify your answer.

Paper 4, Section II

6E Numbers and Sets

(i) Let N and r be integers with $N \geqslant 0, r \geqslant 1$. Let S be the set of $(r+1)$-tuples $\left(n_{0}, n_{1}, \ldots, n_{r}\right)$ of non-negative integers satisfying the equation $n_{0}+\cdots+n_{r}=N$. By mapping elements of S to suitable subsets of $\{1, \ldots, N+r\}$ of size r, or otherwise, show that the number of elements of S equals

$$
\binom{N+r}{r}
$$

(ii) State the Inclusion-Exclusion principle.
(iii) Let a_{0}, \ldots, a_{r} be positive integers. Show that the number of $(r+1)$-tuples $\left(n_{i}\right)$ of integers satisfying

$$
n_{0}+\cdots+n_{r}=N, \quad 0 \leqslant n_{i}<a_{i} \text { for all } i
$$

is

$$
\begin{aligned}
\binom{N+r}{r} & -\sum_{0 \leqslant i \leqslant r}\binom{N+r-a_{i}}{r}+\sum_{0 \leqslant i<j \leqslant r}\binom{N+r-a_{i}-a_{j}}{r} \\
& -\sum_{0 \leqslant i<j<k \leqslant r}\binom{N+r-a_{i}-a_{j}-a_{k}}{r}+\cdots
\end{aligned}
$$

where the binomial coefficient $\binom{m}{r}$ is defined to be zero if $m<r$.

Paper 4, Section II

7E Numbers and Sets

(i) What does it mean to say that a set is countable? Show directly from your definition that any subset of a countable set is countable, and that a countable union of countable sets is countable.
(ii) Let X be either \mathbb{Z} or \mathbb{Q}. A function $f: X \rightarrow \mathbb{Z}$ is said to be periodic if there exists a positive integer n such that for every $x \in X, f(x+n)=f(x)$. Show that the set of periodic functions from \mathbb{Z} to itself is countable. Is the set of periodic functions $f: \mathbb{Q} \rightarrow \mathbb{Z}$ countable? Justify your answer.
(iii) Show that \mathbb{R}^{2} is not the union of a countable collection of lines.
[You may assume that \mathbb{R} and the power set of \mathbb{N} are uncountable.]

Paper 4, Section II

8E Numbers and Sets

Let p be a prime number, and x, n integers with $n \geqslant 1$.
(i) Prove Fermat's Little Theorem: for any integer $x, x^{p} \equiv x(\bmod p)$.
(ii) Show that if y is an integer such that $x \equiv y\left(\bmod p^{n}\right)$, then for every integer $r \geqslant 0$,

$$
x^{p^{r}} \equiv y^{p^{r}} \quad\left(\bmod p^{n+r}\right) .
$$

Deduce that $x^{p^{n}} \equiv x^{p^{n-1}}\left(\bmod p^{n}\right)$.
(iii) Show that there exists a unique integer $y \in\left\{0,1, \ldots, p^{n}-1\right\}$ such that

$$
y \equiv x \quad(\bmod p) \quad \text { and } \quad y^{p} \equiv y \quad\left(\bmod p^{n}\right)
$$

Paper 4, Section I

1D Numbers and Sets

(i) Find integers x and y such that $18 x+23 y=101$.
(ii) Find an integer x such that $x \equiv 3(\bmod 18)$ and $x \equiv 2(\bmod 23)$.

Paper 4, Section I

2D Numbers and Sets

What is an equivalence relation on a set X ? If R is an equivalence relation on X, what is an equivalence class of R ? Prove that the equivalence classes of R form a partition of X.

Let R and S be equivalence relations on a set X. Which of the following are always equivalence relations? Give proofs or counterexamples as appropriate.
(i) The relation V on X given by $x V y$ if both $x R y$ and $x S y$.
(ii) The relation W on X given by $x W y$ if $x R y$ or $x S y$.

Paper 4, Section II

5D Numbers and Sets

Let X be a set, and let f and g be functions from X to X. Which of the following are always true and which can be false? Give proofs or counterexamples as appropriate.
(i) If $f g$ is the identity map then $g f$ is the identity map.
(ii) If $f g=g$ then f is the identity map.
(iii) If $f g=f$ then g is the identity map.

How (if at all) do your answers change if we are given that X is finite?
Determine which sets X have the following property: if f is a function from X to X such that for every $x \in X$ there exists a positive integer n with $f^{n}(x)=x$, then there exists a positive integer n such that f^{n} is the identity map. [Here f^{n} denotes the n-fold composition of f with itself.]

Paper 4, Section II

6D Numbers and Sets

State Fermat's Theorem and Wilson's Theorem.
For which prime numbers p does the equation $x^{2} \equiv-1(\bmod p)$ have a solution? Justify your answer.

For a prime number p, and an integer x that is not a multiple of p, the order of x $(\bmod p)$ is the least positive integer d such that $x^{d} \equiv 1(\bmod p)$. Show that if x has order d and also $x^{k} \equiv 1(\bmod p)$ then d must divide k.

For a positive integer n, let $F_{n}=2^{2^{n}}+1$. If p is a prime factor of F_{n}, determine the order of $2(\bmod p)$. Hence show that the F_{n} are pairwise coprime.

Show that if p is a prime of the form $4 k+3$ then p cannot be a factor of any F_{n}. Give, with justification, a prime p of the form $4 k+1$ such that p is not a factor of any F_{n}.

Paper 4, Section II

7D Numbers and Sets

Prove that each of the following numbers is irrational:
(i) $\sqrt{2}+\sqrt{3}$
(ii) e
(iii) The real root of the equation $x^{3}+4 x-7=0$
(iv) $\log _{2} 3$.

Paper 4, Section II

8D Numbers and Sets

Show that there is no injection from the power-set of \mathbb{R} to \mathbb{R}. Show also that there is an injection from \mathbb{R}^{2} to \mathbb{R}.

Let X be the set of all functions f from \mathbb{R} to \mathbb{R} such that $f(x)=x$ for all but finitely many x. Determine whether or not there exists an injection from X to \mathbb{R}.

Paper 4, Section I

1E Numbers and Sets

What does it mean to say that a function $f: X \rightarrow Y$ has an inverse? Show that a function has an inverse if and only if it is a bijection.

Let f and g be functions from a set X to itself. Which of the following are always true, and which can be false? Give proofs or counterexamples as appropriate.
(i) If f and g are bijections then $f \circ g$ is a bijection.
(ii) If $f \circ g$ is a bijection then f and g are bijections.

Paper 4, Section I

2E Numbers and Sets

What is an equivalence relation on a set X ? If \sim is an equivalence relation on X, what is an equivalence class of \sim ? Prove that the equivalence classes of \sim form a partition of X.

Let \sim be the relation on the positive integers defined by $x \sim y$ if either x divides y or y divides x. Is \sim an equivalence relation? Justify your answer.

Write down an equivalence relation on the positive integers that has exactly four equivalence classes, of which two are infinite and two are finite.

Paper 4, Section II

5E Numbers and Sets

(a) What is the highest common factor of two positive integers a and b ? Show that the highest common factor may always be expressed in the form $\lambda a+\mu b$, where λ and μ are integers.

Which positive integers n have the property that, for any positive integers a and b, if n divides $a b$ then n divides a or n divides b ? Justify your answer.

Let a, b, c, d be distinct prime numbers. Explain carefully why $a b$ cannot equal $c d$.
[No form of the Fundamental Theorem of Arithmetic may be assumed without proof.]
(b) Now let S be the set of positive integers that are congruent to $1 \bmod 10$. We say that $x \in S$ is irreducible if $x>1$ and whenever $a, b \in S$ satisfy $a b=x$ then $a=1$ or $b=1$. Do there exist distinct irreducibles a, b, c, d with $a b=c d$?

Paper 4, Section II

6E Numbers and Sets

State Fermat's Theorem and Wilson's Theorem.
Let p be a prime.
(a) Show that if $p \equiv 3(\bmod 4)$ then the equation $x^{2} \equiv-1(\bmod p)$ has no solution.
(b) By considering $\left(\frac{p-1}{2}\right)$!, or otherwise, show that if $p \equiv 1(\bmod 4)$ then the equation $x^{2} \equiv-1(\bmod p)$ does have a solution.
(c) Show that if $p \equiv 2(\bmod 3)$ then the equation $x^{3} \equiv-1(\bmod p)$ has no solution other than $-1(\bmod p)$.
(d) Using the fact that $14^{2} \equiv-3(\bmod 199)$, find a solution of $x^{3} \equiv-1(\bmod 199)$ that is not $-1(\bmod 199)$.
[Hint: how are the complex numbers $\sqrt{-3}$ and $\sqrt[3]{-1}$ related?]

Paper 4, Section II

7E Numbers and Sets

Define the binomial coefficient $\binom{n}{i}$, where n is a positive integer and i is an integer with $0 \leqslant i \leqslant n$. Arguing from your definition, show that $\sum_{i=0}^{n}\binom{n}{i}=2^{n}$.

Prove the binomial theorem, that $(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}$ for any real number x.
By differentiating this expression, or otherwise, evaluate $\sum_{i=0}^{n} i\binom{n}{i}$ and $\sum_{i=0}^{n} i^{2}\binom{n}{i}$.
By considering the identity $(1+x)^{n}(1+x)^{n}=(1+x)^{2 n}$, or otherwise, show that

$$
\sum_{i=0}^{n}\binom{n}{i}^{2}=\binom{2 n}{n}
$$

Show that $\sum_{i=0}^{n} i\binom{n}{i}^{2}=\frac{n}{2}\binom{2 n}{n}$.

Paper 4, Section II

8E Numbers and Sets

Show that, for any set X, there is no surjection from X to the power-set of X.
Show that there exists an injection from \mathbb{R}^{2} to \mathbb{R}.
Let A be a subset of \mathbb{R}^{2}. A section of A is a subset of \mathbb{R} of the form

$$
\{t \in \mathbb{R}: a+t b \in A\}
$$

where $a \in \mathbb{R}^{2}$ and $b \in \mathbb{R}^{2}$ with $b \neq 0$. Prove that there does not exist a set $A \subset \mathbb{R}^{2}$ such that every set $S \subset \mathbb{R}$ is a section of A.

Does there exist a set $A \subset \mathbb{R}^{2}$ such that every countable set $S \subset \mathbb{R}$ is a section of A ? [There is no requirement that every section of A should be countable.] Justify your answer.

Paper 4, Section I

1E Numbers and Sets

(a) Find the smallest residue x which equals $28!13^{28}(\bmod 31)$.
[You may use any standard theorems provided you state them correctly.]
(b) Find all integers x which satisfy the system of congruences

$$
\begin{aligned}
x & \equiv 1(\bmod 2), \\
2 x & \equiv 1(\bmod 3), \\
2 x & \equiv 4(\bmod 10), \\
x & \equiv 10(\bmod 67) .
\end{aligned}
$$

Paper 4, Section I

2E Numbers and Sets

(a) Let r be a real root of the polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, with integer coefficients a_{i} and leading coefficient 1 . Show that if r is rational, then r is an integer.
(b) Write down a series for e. By considering $q!e$ for every natural number q, show that e is irrational.

Paper 4, Section II

5E Numbers and Sets

The Fibonacci numbers F_{n} are defined for all natural numbers n by the rules

$$
F_{1}=1, \quad F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \quad \text { for } n \geqslant 3 .
$$

Prove by induction on k that, for any n,

$$
F_{n+k}=F_{k} F_{n+1}+F_{k-1} F_{n} \text { for all } k \geqslant 2 .
$$

Deduce that

$$
F_{2 n}=F_{n}\left(F_{n+1}+F_{n-1}\right) \quad \text { for all } n \geqslant 2 .
$$

Put $L_{1}=1$ and $L_{n}=F_{n+1}+F_{n-1}$ for $n>1$. Show that these (Lucas) numbers L_{n} satisfy

$$
L_{1}=1, \quad L_{2}=3, \quad L_{n}=L_{n-1}+L_{n-2} \quad \text { for } n \geqslant 3 .
$$

Show also that, for all n, the greatest common divisor $\left(F_{n}, F_{n+1}\right)$ is 1 , and that the greatest common divisor $\left(F_{n}, L_{n}\right)$ is at most 2 .

Paper 4, Section II

6E Numbers and Sets

State and prove Fermat's Little Theorem.
Let p be an odd prime. If $p \neq 5$, show that p divides $10^{n}-1$ for infinitely many natural numbers n.

Hence show that p divides infinitely many of the integers

$$
5, \quad 55, \quad 555, \quad 5555, \quad \ldots .
$$

Paper 4, Section II

7E Numbers and Sets

(a) Let A, B be finite non-empty sets, with $|A|=a,|B|=b$. Show that there are b^{a} mappings from A to B. How many of these are injective ?
(b) State the Inclusion-Exclusion principle.
(c) Prove that the number of surjective mappings from a set of size n onto a set of size k is

$$
\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n} \quad \text { for } n \geqslant k \geqslant 1
$$

Deduce that

$$
n!=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)^{n}
$$

Paper 4, Section II

8E Numbers and Sets

What does it mean for a set to be countable?

Show that \mathbb{Q} is countable, but \mathbb{R} is not. Show also that the union of two countable sets is countable.

A subset A of \mathbb{R} has the property that, given $\epsilon>0$ and $x \in \mathbb{R}$, there exist reals a, b with $a \in A$ and $b \notin A$ with $|x-a|<\epsilon$ and $|x-b|<\epsilon$. Can A be countable? Can A be uncountable? Justify your answers.

A subset B of \mathbb{R} has the property that given $b \in B$ there exists $\epsilon>0$ such that if $0<|b-x|<\epsilon$ for some $x \in \mathbb{R}$, then $x \notin B$. Is B countable? Justify your answer.

Paper 4, Section I

1E Numbers and Sets

Let R_{1} and R_{2} be relations on a set A. Let us say that R_{2} extends R_{1} if $x R_{1} y$ implies that $x R_{2} y$. If R_{2} extends R_{1}, then let us call R_{2} an extension of R_{1}.

Let Q be a relation on a set A. Let R be the extension of Q defined by taking $x R y$ if and only if $x Q y$ or $x=y$. Let S be the extension of R defined by taking $x S y$ if and only if $x R y$ or $y R x$. Finally, let T be the extension of S defined by taking $x T y$ if and only if there is a positive integer n and a sequence $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ such that $x_{0}=x, x_{n}=y$, and $x_{i-1} S x_{i}$ for each i from 1 to n.

Prove that R is reflexive, S is reflexive and symmetric, and T is an equivalence relation.

Let E be any equivalence relation that extends Q. Prove that E extends T.

Paper 4, Section I

2E Numbers and Sets

(a) Find integers x and y such that

$$
9 x+12 y \equiv 4 \quad(\bmod 47) \quad \text { and } \quad 6 x+7 y \equiv 14 \quad(\bmod 47) .
$$

(b) Calculate $43^{135}(\bmod 137)$.

Paper 4, Section II

5E Numbers and Sets

(a) Let A and B be non-empty sets and let $f: A \rightarrow B$.

Prove that f is an injection if and only if f has a left inverse.
Prove that f is a surjection if and only if f has a right inverse.
(b) Let A, B and C be sets and let $f: B \rightarrow A$ and $g: B \rightarrow C$ be functions. Suppose that f is a surjection. Prove that there is a function $h: A \rightarrow C$ such that for every $a \in A$ there exists $b \in B$ with $f(b)=a$ and $g(b)=h(a)$.

Prove that h is unique if and only if $g(b)=g\left(b^{\prime}\right)$ whenever $f(b)=f\left(b^{\prime}\right)$.

Paper 4, Section II

6E Numbers and Sets

(a) State and prove the inclusion-exclusion formula.
(b) Let k and m be positive integers, let $n=k m$, let A_{1}, \ldots, A_{k} be disjoint sets of size m, and let $A=A_{1} \cup \ldots \cup A_{k}$. Let \mathcal{B} be the collection of all subsets $B \subset A$ with the following two properties:
(i) $|B|=k$;
(ii) there is at least one i such that $\left|B \cap A_{i}\right|=3$.

Prove that the number of sets in \mathcal{B} is given by the formula

$$
\sum_{r=1}^{\lfloor k / 3\rfloor}(-1)^{r-1}\binom{k}{r}\binom{m}{3}^{r}\binom{n-r m}{k-3 r} .
$$

Paper 4, Section II

7E Numbers and Sets

Let p be a prime number and let \mathbb{Z}_{p} denote the set of integers modulo p. Let k be an integer with $0 \leqslant k \leqslant p$ and let A be a subset of \mathbb{Z}_{p} of size k.

Let t be a non-zero element of \mathbb{Z}_{p}. Show that if $a+t \in A$ whenever $a \in A$ then $k=0$ or $k=p$. Deduce that if $1 \leqslant k \leqslant p-1$, then the sets $A, A+1, \ldots, A+p-1$ are all distinct, where $A+t$ denotes the set $\{a+t: a \in A\}$. Deduce from this that $\binom{p}{k}$ is a multiple of p whenever $1 \leqslant k \leqslant p-1$.

Now prove that $(a+1)^{p}=a^{p}+1$ for any $a \in \mathbb{Z}_{p}$, and use this to prove Fermat's little theorem. Prove further that if $Q(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ is a polynomial in x with coefficients in \mathbb{Z}_{p}, then the polynomial $(Q(x))^{p}$ is equal to $a_{n} x^{p n}+a_{n-1} x^{p(n-1)}+\ldots+a_{1} x^{p}+a_{0}$.

Paper 4, Section II

8E Numbers and Sets

Prove that the set of all infinite sequences $\left(\epsilon_{1}, \epsilon_{2}, \ldots\right)$ with every ϵ_{i} equal to 0 or 1 is uncountable. Deduce that the closed interval $[0,1]$ is uncountable.

For an ordered set X let $\Sigma(X)$ denote the set of increasing (but not necessarily strictly increasing) sequences in X that are bounded above. For each of $\Sigma(\mathbb{Z}), \Sigma(\mathbb{Q})$ and $\Sigma(\mathbb{R})$, determine (with proof) whether it is uncountable.

4/I/1D Numbers and Sets

Let A, B and C be non-empty sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. For each of the following statements, give either a brief justification or a counterexample.
(i) If f is an injection and g is a surjection, then $g \circ f$ is a surjection.
(ii) If f is an injection and g is an injection, then there exists a function $h: C \rightarrow A$ such that $h \circ g \circ f$ is equal to the identity function on A.
(iii) If X and Y are subsets of A then $f(X \cap Y)=f(X) \cap f(Y)$.
(iv) If Z and W are subsets of B then $f^{-1}(Z \cap W)=f^{-1}(Z) \cap f^{-1}(W)$.

4/I/2D Numbers and Sets

(a) Let \sim be an equivalence relation on a set X. What is an equivalence class of \sim ? Prove that the equivalence classes of \sim form a partition of X.
(b) Let \mathbb{Z}^{+}be the set of all positive integers. Let a relation \sim be defined on \mathbb{Z}^{+}by setting $m \sim n$ if and only if $m / n=2^{k}$ for some (not necessarily positive) integer k. Prove that \sim is an equivalence relation, and give an example of a set $A \subset \mathbb{Z}^{+}$that contains precisely one element of each equivalence class.

4/II/5D Numbers and Sets

(a) Define the notion of a countable set, and prove that the set $\mathbb{N} \times \mathbb{N}$ is countable. Deduce that if X and Y are countable sets then $X \times Y$ is countable, and also that a countable union of countable sets is countable.
(b) If A is any set of real numbers, define $\phi(A)$ to be the set of all real roots of non-zero polynomials that have coefficients in A. Now suppose that A_{0} is a countable set of real numbers and define a sequence $A_{1}, A_{2}, A_{3}, \ldots$ by letting each A_{n} be equal to $\phi\left(A_{n-1}\right)$. Prove that the union $\bigcup_{n=1}^{\infty} A_{n}$ is countable.
(c) Deduce that there is a countable set X that contains the real numbers 1 and π and has the further property that if P is any non-zero polynomial with coefficients in X, then all real roots of P belong to X.

4/II/6D Numbers and Sets

(a) Let a and m be integers with $1 \leqslant a<m$ and let $d=(a, m)$ be their highest common factor. For any integer b, prove that b is a multiple of d if and only if there exists an integer r satisfying the equation $a r \equiv b(\bmod m)$, and show that in this case there are exactly d solutions to the equation that are distinct $\bmod m$.

Deduce that the equation $a r \equiv b(\bmod m)$ has a solution if and only if $b(m / d) \equiv 0$ $(\bmod m)$.
(b) Let p be a prime and let \mathbb{Z}_{p}^{*} be the multiplicative group of non-zero integers $\bmod p$. An element x of \mathbb{Z}_{p}^{*} is called a k th power $(\bmod p)$ if $x \equiv y^{k}(\bmod p)$ for some integer y. It can be shown that \mathbb{Z}_{p}^{*} has a generator : that is, an element u such that every element of \mathbb{Z}_{p}^{*} is a power of u. Assuming this result, deduce that an element x of \mathbb{Z}_{p}^{*} is a k th power $(\bmod p)$ if and only if $x^{(p-1) / d} \equiv 1(\bmod p)$, where d is now the highest common factor of k and $p-1$.
(c) How many 437th powers are there mod 1013? [You may assume that 1013 is a prime number.]

4/II/7D Numbers and Sets

(a) Let \mathbb{F} be a field such that the equation $x^{2}=-1$ has no solution in \mathbb{F}. Prove that if x and y are elements of \mathbb{F} such that $x^{2}+y^{2}=0$, then both x and y must equal 0 .

Prove that \mathbb{F}^{2} can be made into a field, with operations

$$
(x, y)+(z, w)=(x+z, y+w)
$$

and

$$
(x, y) \cdot(z, w)=(x z-y w, x w+y z) .
$$

(b) Let p be a prime of the form $4 m+3$. Prove that -1 is not a square $(\bmod p)$, and deduce that there exists a field with exactly p^{2} elements.

4/II/8D Numbers and Sets
Let q be a positive integer. For every positive integer k, define a number c_{k} by the formula

$$
c_{k}=(q+k-1) \frac{q!}{(q+k)!} .
$$

Prove by induction that

$$
\sum_{k=1}^{n} c_{k}=1-\frac{q!}{(q+n)!}
$$

for every $n \geqslant 1$, and hence evaluate the infinite $\operatorname{sum} \sum_{k=1}^{\infty} c_{k}$.
Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of integers satisfying the inequality $0 \leqslant a_{n}<n$ for every n. Prove that the series $\sum_{n=1}^{\infty} a_{n} / n$! is convergent. Prove also that its limit is irrational if and only if $a_{n} \leqslant n-2$ for infinitely many n and $a_{m}>0$ for infinitely many m.

4/I/1E Numbers and Sets

(i) Use Euclid's algorithm to find all pairs of integers x and y such that

$$
7 x+18 y=1
$$

(ii) Show that, if n is odd, then $n^{3}-n$ is divisible by 24 .

4/I/2E Numbers and Sets

For integers k and n with $0 \leqslant k \leqslant n$, define $\binom{n}{k}$. Arguing from your definition, show that

$$
\binom{n-1}{k}+\binom{n-1}{k-1}=\binom{n}{k}
$$

for all integers k and n with $1 \leqslant k \leqslant n-1$.
Use induction on k to prove that

$$
\sum_{j=0}^{k}\binom{n+j}{j}=\binom{n+k+1}{k}
$$

for all non-negative integers k and n.

4/II/5E Numbers and Sets

State and prove the Inclusion-Exclusion principle.
The keypad on a cash dispenser is broken. To withdraw money, a customer is required to key in a 4-digit number. However, the key numbered 0 will only function if either the immediately preceding two keypresses were both 1 , or the very first key pressed was 2. Explaining your reasoning clearly, use the Inclusion-Exclusion Principle to find the number of 4-digit codes which can be entered.

4/II/6E Numbers and Sets

Stating carefully any results about countability you use, show that for any $d \geq 1$ the set $\mathbb{Z}\left[X_{1}, \ldots, X_{d}\right]$ of polynomials with integer coefficients in d variables is countable. By taking $d=1$, deduce that there exist uncountably many transcendental numbers.

Show that there exists a sequence x_{1}, x_{2}, \ldots of real numbers with the property that $f\left(x_{1}, \ldots, x_{d}\right) \neq 0$ for every $d \geq 1$ and for every non-zero polynomial $f \in \mathbb{Z}\left[X_{1}, \ldots, X_{d}\right]$.
[You may assume without proof that \mathbb{R} is uncountable.]

4/II/7E Numbers and Sets

Let $x_{n}(n=1,2, \ldots)$ be real numbers.
What does it mean to say that the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ converges?
What does it mean to say that the series $\sum_{n=1}^{\infty} x_{n}$ converges?
Show that if $\sum_{n=1}^{\infty} x_{n}$ is convergent, then $x_{n} \rightarrow 0$. Show that the converse can be false.

Sequences of positive real numbers $x_{n}, y_{n}(n \geq 1)$ are given, such that the inequality

$$
y_{n+1} \leq y_{n}-\frac{1}{2} \min \left(x_{n}, y_{n}\right)
$$

holds for all $n \geq 1$. Show that, if $\sum_{n=1}^{\infty} x_{n}$ diverges, then $y_{n} \rightarrow 0$.

4/II/8E Numbers and Sets

(i) Let p be a prime number, and let x and y be integers such that p divides $x y$. Show that at least one of x and y is divisible by p. Explain how this enables one to prove the Fundamental Theorem of Arithmetic.
[Standard properties of highest common factors may be assumed without proof.]
(ii) State and prove the Fermat-Euler Theorem.

Let $1 / 359$ have decimal expansion $0 \cdot a_{1} a_{2} \ldots$ with $a_{n} \in\{0,1, \ldots, 9\}$. Use the fact that $60^{2} \equiv 10(\bmod 359)$ to show that, for every $n, a_{n}=a_{n+179}$.

4/I/1E Numbers and Sets

Explain what is meant by a prime number.
By considering numbers of the form $6 p_{1} p_{2} \cdots p_{n}-1$, show that there are infinitely many prime numbers of the form $6 k-1$.

By considering numbers of the form $\left(2 p_{1} p_{2} \cdots p_{n}\right)^{2}+3$, show that there are infinitely many prime numbers of the form $6 k+1$. [You may assume the result that, for a prime $p>3$, the congruence $x^{2} \equiv-3(\bmod p)$ is soluble only if $p \equiv 1(\bmod 6)$.]

4/I/2E Numbers and Sets

Define the binomial coefficient $\binom{n}{r}$ and prove that

$$
\binom{n+1}{r}=\binom{n}{r}+\binom{n}{r-1} \quad \text { for } 0<r \leqslant n .
$$

Show also that if p is prime then $\binom{p}{r}$ is divisible by p for $0<r<p$.
Deduce that if $0 \leqslant k<p$ and $0 \leqslant r \leqslant k$ then

$$
\binom{p+k}{r} \equiv\binom{k}{r} \quad(\bmod p) .
$$

4/II/5E Numbers and Sets

Explain what is meant by an equivalence relation on a set A.
If R and S are two equivalence relations on the same set A, we define

$$
R \circ S=\{(x, z) \in A \times A \text { : there exists } y \in A \text { such that }(x, y) \in R \text { and }(y, z) \in S\} .
$$

Show that the following conditions are equivalent:
(i) $R \circ S$ is a symmetric relation on A;
(ii) $R \circ S$ is a transitive relation on A;
(iii) $S \circ R \subseteq R \circ S$;
(iv) $R \circ S$ is the unique smallest equivalence relation on A containing both R and S.

Show also that these conditions hold if $A=\mathbb{Z}$ and R and S are the relations of congruence modulo m and modulo n, for some positive integers m and n.

4/II/6E Numbers and Sets

State and prove the Inclusion-Exclusion Principle.
A permutation σ of $\{1,2, \ldots, n\}$ is called a derangement if $\sigma(j) \neq j$ for every $j \leqslant n$. Use the Inclusion-Exclusion Principle to find a formula for the number $f(n)$ of derangements of $\{1,2, \ldots, n\}$. Show also that $f(n) / n!$ converges to $1 / e$ as $n \rightarrow \infty$.

4/II/7E Numbers and Sets

State and prove Fermat's Little Theorem.
An odd number n is called a Carmichael number if it is not prime, but every positive integer a satisfies $a^{n} \equiv a(\bmod n)$. Show that a Carmichael number cannot be divisible by the square of a prime. Show also that a product of two distinct odd primes cannot be a Carmichael number, and that a product of three distinct odd primes p, q, r is a Carmichael number if and only if $p-1$ divides $q r-1, q-1$ divides $p r-1$ and $r-1$ divides $p q-1$. Deduce that 1729 is a Carmichael number.
[You may assume the result that, for any prime p, there exists a number g prime to p such that the congruence $g^{d} \equiv 1(\bmod p)$ holds only when d is a multiple of $p-1$. The prime factors of 1729 are 7, 13 and 19.]

4/II/8E Numbers and Sets

Explain what it means for a set to be countable. Prove that a countable union of countable sets is countable, and that the set of all subsets of \mathbb{N} is uncountable.

A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is said to be increasing if $f(m) \leqslant f(n)$ whenever $m \leqslant n$, and decreasing if $f(m) \geqslant f(n)$ whenever $m \leqslant n$. Show that the set of all increasing functions $\mathbb{N} \rightarrow \mathbb{N}$ is uncountable, but that the set of decreasing functions is countable.
[Standard results on countability, other than those you are asked to prove, may be assumed.]

4/I/1E Numbers and Sets

Find the unique positive integer a with $a \leq 19$, for which

$$
17!\cdot 3^{16} \equiv a(\bmod 19)
$$

Results used should be stated but need not be proved.

Solve the system of simultaneous congruences

$$
\begin{aligned}
& x \equiv 1(\bmod 2), \\
& x \equiv 1(\bmod 3), \\
& x \equiv 3(\bmod 4), \\
& x \equiv 4(\bmod 5) .
\end{aligned}
$$

Explain very briefly your reasoning.

4/I/2E Numbers and Sets

Give a combinatorial definition of the binomial coefficient $\binom{n}{m}$ for any non-negative integers n, m.

Prove that $\binom{n}{m}=\binom{n}{n-m}$ for $0 \leq m \leq n$.
Prove the identities

$$
\binom{n}{k}\binom{k}{l}=\binom{n}{l}\binom{n-l}{k-l}
$$

and

$$
\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i}=\binom{n+m}{k} .
$$

4/II/5E Numbers and Sets

What does it mean for a set to be countable? Show that $\mathbb{Q} \times \mathbb{Q}$ is countable, and \mathbb{R} is not countable.

Let D be any set of non-trivial discs in a plane, any two discs being disjoint. Show that D is countable.

Give an example of a set C of non-trivial circles in a plane, any two circles being disjoint, which is not countable.

4/II/6E Numbers and Sets

Let R be a relation on the set S. What does it mean for R to be an equivalence relation on S ? Show that if R is an equivalence relation on S, the set of equivalence classes forms a partition of S.

Let G be a group, and let H be a subgroup of G. Define a relation R on G by $a R b$ if $a^{-1} b \in H$. Show that R is an equivalence relation on G, and that the equivalence classes are precisely the left cosets $g H$ of H in G. Find a bijection from H to any other coset $g H$. Deduce that if G is finite then the order of H divides the order of G.

Let g be an element of the finite group G. The order $o(g)$ of g is the least positive integer n for which $g^{n}=1$, the identity of G. If $o(g)=n$, then G has a subgroup of order n; deduce that $g^{|G|}=1$ for all $g \in G$.

Let m be a natural number. Show that the set of integers in $\{1,2, \ldots, m\}$ which are prime to m is a group under multiplication modulo m. [You may use any properties of multiplication and divisibility of integers without proof, provided you state them clearly.]

Deduce that if a is any integer prime to m then $a^{\phi(m)} \equiv 1(\bmod m)$, where ϕ is the Euler totient function.

4/II/7E Numbers and Sets

State and prove the Principle of Inclusion and Exclusion.
Use the Principle to show that the Euler totient function ϕ satisfies

$$
\phi\left(p_{1}^{c_{1}} \cdots p_{r}^{c_{r}}\right)=p_{1}^{c_{1}-1}\left(p_{1}-1\right) \cdots p_{r}^{c_{r}-1}\left(p_{r}-1\right)
$$

Deduce that if a and b are coprime integers, then $\phi(a b)=\phi(a) \phi(b)$, and more generally, that if d is any divisor of n then $\phi(d)$ divides $\phi(n)$.

Show that if $\phi(n)$ divides n then $n=2^{c} 3^{d}$ for some non-negative integers c, d.

4/II/8E Numbers and Sets

The Fibonacci numbers are defined by the equations $F_{0}=0, F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for any positive integer n. Show that the highest common factor $\left(F_{n+1}, F_{n}\right)$ is 1 .

Let n be a natural number. Prove by induction on k that for all positive integers k,

$$
F_{n+k}=F_{k} F_{n+1}+F_{k-1} F_{n} .
$$

Deduce that F_{n} divides $F_{n l}$ for all positive integers l. Deduce also that if $m \geq n$ then

$$
\left(F_{m}, F_{n}\right)=\left(F_{m-n}, F_{n}\right) .
$$

4/I/1E Numbers and Sets

(a) Use Euclid's algorithm to find positive integers m, n such that $79 m-100 n=1$.
(b) Determine all integer solutions of the congruence

$$
237 x \equiv 21(\bmod 300) .
$$

(c) Find the set of all integers x satisfying the simultaneous congruences

$$
\begin{aligned}
& x \equiv 8(\bmod 79) \\
& x \equiv 11(\bmod 100) .
\end{aligned}
$$

4/I/2E Numbers and Sets

Prove by induction the following statements:
i) For every integer $n \geq 1$,

$$
1^{2}+3^{2}+\cdots+(2 n-1)^{2}=\frac{1}{3}\left(4 n^{3}-n\right) .
$$

ii) For every integer $n \geq 1, n^{3}+5 n$ is divisible by 6 .

4/II/5E Numbers and Sets

Show that the set of all subsets of \mathbb{N} is uncountable, and that the set of all finite subsets of \mathbb{N} is countable.

Let X be the set of all bijections from \mathbb{N} to \mathbb{N}, and let $Y \subset X$ be the set

$$
Y=\{f \in X \mid \text { for all but finitely many } n \in \mathbb{N}, f(n)=n\} .
$$

Show that X is uncountable, but that Y is countable.

4/II/6E Numbers and Sets

Prove Fermat's Theorem: if p is prime and $(x, p)=1$ then $x^{p-1} \equiv 1(\bmod p)$.
Let n and x be positive integers with $(x, n)=1$. Show that if $n=m p$ where p is prime and $(m, p)=1$, then

$$
x^{n-1} \equiv 1 \quad(\bmod p) \quad \text { if and only if } \quad x^{m-1} \equiv 1 \quad(\bmod p) .
$$

Now assume that n is a product of distinct primes. Show that $x^{n-1} \equiv 1(\bmod n)$ if and only if, for every prime divisor p of n,

$$
x^{(n / p)-1} \equiv 1 \quad(\bmod p) .
$$

Deduce that if every prime divisor p of n satisfies $(p-1) \mid(n-1)$, then for every x with $(x, n)=1$, the congruence

$$
x^{n-1} \equiv 1 \quad(\bmod n)
$$

holds.

4/II/7E Numbers and Sets

Polynomials $P_{r}(X)$ for $r \geq 0$ are defined by

$$
\begin{aligned}
& P_{0}(X)=1 \\
& P_{r}(X)=\frac{X(X-1) \cdots(X-r+1)}{r!}=\prod_{i=1}^{r} \frac{X-i+1}{i} \quad \text { for } r \geq 1 .
\end{aligned}
$$

Show that $P_{r}(n) \in \mathbb{Z}$ for every $n \in \mathbb{Z}$, and that if $r \geq 1$ then $P_{r}(X)-P_{r}(X-1)=$ $P_{r-1}(X-1)$.

Prove that if F is any polynomial of degree d with rational coefficients, then there are unique rational numbers $c_{r}(F)(0 \leq r \leq d)$ for which

$$
F(X)=\sum_{r=0}^{d} c_{r}(F) P_{r}(X) .
$$

Let $\Delta F(X)=F(X+1)-F(X)$. Show that

$$
\Delta F(X)=\sum_{r=0}^{d-1} c_{r+1}(F) P_{r}(X) .
$$

Show also that, if F and G are polynomials such that $\Delta F=\Delta G$, then $F-G$ is a constant.
By induction on the degree of F, or otherwise, show that if $F(n) \in \mathbb{Z}$ for every $n \in \mathbb{Z}$, then $c_{r}(F) \in \mathbb{Z}$ for all r.

4/II/8E Numbers and Sets

Let X be a finite set, X_{1}, \ldots, X_{m} subsets of X and $Y=X \backslash \bigcup X_{i}$. Let g_{i} be the characteristic function of X_{i}, so that

$$
g_{i}(x)= \begin{cases}1 & \text { if } x \in X_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Let $f: X \rightarrow \mathbb{R}$ be any function. By considering the expression

$$
\sum_{x \in X} f(x) \prod_{i=1}^{m}\left(1-g_{i}(x)\right)
$$

or otherwise, prove the Inclusion-Exclusion Principle in the form

$$
\sum_{x \in Y} f(x)=\sum_{r \geq 0}(-1)^{r} \sum_{i_{1}<\cdots<i_{r}}\left(\sum_{x \in X_{i_{1}} \cap \cdots \cap X_{i_{r}}} f(x)\right)
$$

Let $n>1$ be an integer. For an integer m dividing n let

$$
X_{m}=\{0 \leq x<n \mid x \equiv 0(\bmod m)\} .
$$

By considering the sets X_{p} for prime divisors p of n, show that

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

(where ϕ is Euler's function) and

$$
\sum_{\substack{0<x<n \\(x, n)=1}} x=\frac{n^{2}}{2} \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
$$

4/I/1C Numbers and Sets

(i) Prove by induction or otherwise that for every $n \geqslant 1$,

$$
\sum_{r=1}^{n} r^{3}=\left(\sum_{r=1}^{n} r\right)^{2}
$$

(ii) Show that the sum of the first n positive cubes is divisible by 4 if and only if $n \equiv 0$ or $3(\bmod 4)$.

4/I/2C Numbers and Sets

What is an equivalence relation? For each of the following pairs (X, \sim), determine whether or not \sim is an equivalence relation on X :
(i) $X=\mathbb{R}, x \sim y$ iff $x-y$ is an even integer;
(ii) $X=\mathbb{C} \backslash\{0\}, x \sim y$ iff $x \bar{y} \in \mathbb{R}$;
(iii) $X=\mathbb{C} \backslash\{0\}, x \sim y$ iff $x \bar{y} \in \mathbb{Z}$;
(iv) $X=\mathbb{Z} \backslash\{0\}, x \sim y$ iff $x^{2}-y^{2}$ is ± 1 times a perfect square.

4/II/5C Numbers and Sets

Define what is meant by the term countable. Show directly from your definition that if X is countable, then so is any subset of X.

Show that $\mathbb{N} \times \mathbb{N}$ is countable. Hence or otherwise, show that a countable union of countable sets is countable. Show also that for any $n \geqslant 1, \mathbb{N}^{n}$ is countable.

A function $f: \mathbb{Z} \rightarrow \mathbb{N}$ is periodic if there exists a positive integer m such that, for every $x \in \mathbb{Z}, f(x+m)=f(x)$. Show that the set of periodic functions $f: \mathbb{Z} \rightarrow \mathbb{N}$ is countable.

4/II/6C Numbers and Sets

(i) Prove Wilson's theorem: if p is prime then $(p-1)!\equiv-1(\bmod p)$.

Deduce that if $p \equiv 1(\bmod 4)$ then

$$
\left(\left(\frac{p-1}{2}\right)!\right)^{2} \equiv-1 \quad(\bmod p)
$$

(ii) Suppose that p is a prime of the form $4 k+3$. Show that if $x^{4} \equiv 1(\bmod p)$ then $x^{2} \equiv 1(\bmod p)$.
(iii) Deduce that if p is an odd prime, then the congruence

$$
x^{2} \equiv-1 \quad(\bmod p)
$$

has exactly two solutions (modulo $p)$ if $p \equiv 1(\bmod 4)$, and none otherwise.

4/II/7C Numbers and Sets

Let m, n be integers. Explain what is their greatest common divisor (m, n). Show from your definition that, for any integer $k,(m, n)=(m+k n, n)$.

State Bezout's theorem, and use it to show that if p is prime and p divides $m n$, then p divides at least one of m and n.

The Fibonacci sequence $0,1,1,2,3,5,8, \ldots$ is defined by $x_{0}=0, x_{1}=1$ and $x_{n+1}=x_{n}+x_{n-1}$ for $n \geqslant 1$. Prove:
(i) $\left(x_{n+1}, x_{n}\right)=1$ and $\left(x_{n+2}, x_{n}\right)=1$ for every $n \geqslant 0$;
(ii) $x_{n+3} \equiv x_{n}(\bmod 2)$ and $x_{n+8} \equiv x_{n}(\bmod 3)$ for every $n \geqslant 0$;
(iii) if $n \equiv 0(\bmod 5)$ then $x_{n} \equiv 0(\bmod 5)$.

4/II/8C Numbers and Sets

Let X be a finite set with n elements. How many functions are there from X to X ? How many relations are there on X ?

Show that the number of relations R on X such that, for each $y \in X$, there exists at least one $x \in X$ with $x R y$, is $\left(2^{n}-1\right)^{n}$.

Using the inclusion-exclusion principle or otherwise, deduce that the number of such relations R for which, in addition, for each $x \in X$, there exists at least one $y \in X$ with $x R y$, is

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left(2^{n-k}-1\right)^{n}
$$

4/I/1C Numbers and Sets

What does it mean to say that a function $f: A \rightarrow B$ is injective? What does it mean to say that a function $g: A \rightarrow B$ is surjective?

Consider the functions $f: A \rightarrow B, g: B \rightarrow C$ and their composition $g \circ f: A \rightarrow C$ given by $g \circ f(a)=g(f(a))$. Prove the following results.
(i) If f and g are surjective, then so is $g \circ f$.
(ii) If f and g are injective, then so is $g \circ f$.
(iii) If $g \circ f$ is injective, then so is f.
(iv) If $g \circ f$ is surjective, then so is g.

Give an example where $g \circ f$ is injective and surjective but f is not surjective and g is not injective.

4/I/2C Numbers and Sets

If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are infinitely differentiable, Leibniz's rule states that, if $n \geqslant 1$,

$$
\frac{d^{n}}{d x^{n}}(f(x) g(x))=\sum_{r=0}^{n}\binom{n}{r} f^{(n-r)}(x) g^{(r)}(x)
$$

Prove this result by induction. (You should prove any results on binomial coefficients that you need.)

4/II/5F Numbers and Sets

What is meant by saying that a set is countable?
Prove that the union of countably many countable sets is itself countable.
Let $\left\{J_{i}: i \in I\right\}$ be a collection of disjoint intervals of the real line, each having strictly positive length. Prove that the index set I is countable.

4/II/6F Numbers and Sets

(a) Let S be a finite set, and let $\mathbb{P}(S)$ be the power set of S, that is, the set of all subsets of S. Let $f: \mathbb{P}(S) \rightarrow \mathbb{R}$ be additive in the sense that $f(A \cup B)=f(A)+f(B)$ whenever $A \cap B=\varnothing$. Show that, for $A_{1}, A_{2}, \ldots, A_{n} \in \mathbb{P}(S)$,

$$
\begin{aligned}
f\left(\bigcup_{i} A_{i}\right)=\sum_{i} f\left(A_{i}\right)-\sum_{i<j} f\left(A_{i} \cap A_{j}\right) & +\sum_{i<j<k} f\left(A_{i} \cap A_{j} \cap A_{k}\right) \\
& -\cdots+(-1)^{n+1} f\left(\bigcap_{i} A_{i}\right)
\end{aligned}
$$

(b) Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Deduce from part (a) the inclusion-exclusion formula for the size (or cardinality) of $\bigcup_{i} A_{i}$.
(c) A derangement of the set $S=\{1,2, \ldots, n\}$ is a permutation π (that is, a bijection from S to itself) in which no member of the set is fixed (that is, $\pi(i) \neq i$ for all i). Using the inclusion-exclusion formula, show that the number d_{n} of derangements satisfies $d_{n} / n!\rightarrow e^{-1}$ as $n \rightarrow \infty$.

4/II/7B Numbers and Sets

(a) Suppose that p is an odd prime. Find $1^{p}+2^{p}+\ldots+(p-1)^{p}$ modulo p.
(b) Find $(p-1)$! modulo $(1+2+\ldots+(p-1))$, when p is an odd prime.

4/II/8B Numbers and Sets

Suppose that a, b are coprime positive integers. Write down an integer $d>0$ such that $a^{d} \equiv 1$ modulo b. The least such d is the order of a modulo b. Show that if the order of a modulo b is y, and $a^{x} \equiv 1$ modulo b, then y divides x.

Let $n \geqslant 2$ and $F_{n}=2^{2^{n}}+1$. Suppose that p is a prime factor of F_{n}. Find the order of 2 modulo p, and show that $p \equiv 1$ modulo 2^{n+1}.

4/I/1E Numbers and Sets

(a) Show that, given a set X, there is no bijection between X and its power set.
(b) Does there exist a set whose members are precisely those sets that are not members of themselves? Justify your answer.

4/I/2E Numbers and Sets

Prove, by induction or otherwise, that

$$
\binom{n}{0}+\binom{n+1}{1}+\cdots+\binom{n+m}{m}=\binom{n+m+1}{m} .
$$

Find the number of sequences consisting of zeroes and ones that contain exactly n zeroes and at most m ones.

4/II/5E Numbers and Sets

(a) Prove Wilson's theorem, that $(p-1)$! $\equiv-1(\bmod p)$, where p is prime.
(b) Suppose that p is an odd prime. Express $1^{2} \cdot 3^{2} \cdot 5^{2} \ldots(p-2)^{2}(\bmod p)$ as a power of -1 .
[Hint: $k \equiv-(p-k)(\bmod p)$.]

4/II/6E Numbers and Sets

State and prove the principle of inclusion-exclusion. Use it to calculate $\phi(4199)$, where ϕ is Euler's ϕ-function.

In a certain large college, a survey revealed that 90% of the fellows detest at least one of the pop stars Hairy, Dirty and Screamer. 45% detest Hairy, 28% detest Dirty and 46% detest Screamer. If 27% detest only Screamer and 6% detest all three, what proportion detest Hairy and Dirty but not Screamer?

4/II/7E Numbers and Sets

(a) Prove that, if p is prime and a is not a multiple of p, then $a^{p-1} \equiv 1(\bmod p)$.
(b) The order of $a(\bmod p)$ is the least positive integer d such that $a^{d} \equiv 1(\bmod p)$. Suppose now that $a^{x} \equiv 1(\bmod p)$; what can you say about x in terms of d ? Show that $p \equiv 1(\bmod d)$.
(c) Suppose that p is an odd prime. What is the order of $x(\bmod p)$ if $x^{2} \equiv-1(\bmod p)$? Find a condition on $p(\bmod 4)$ that is equivalent to the existence of an integer x with $x^{2} \equiv-1(\bmod p)$.

4/II/8E Numbers and Sets

What is the Principle of Mathematical Induction? Derive it from the statement that every non-empty set of positive integers has a least element.

Prove, by induction on n, that $9^{n} \equiv 2^{n}(\bmod 7)$ for all $n \geq 1$.
What is wrong with the following argument?
"Theorem: $\sum_{i=1}^{n} i=n(n+1) / 2+126$.
Proof: Assume that $m \geq 1$ and $\sum_{i=1}^{m} i=m(m+1) / 2+126$. Add $m+1$ to both sides to get

$$
\sum_{i=1}^{m+1} i=m(m+1) / 2+m+1+126=(m+1)(m+2) / 2+126 .
$$

So, by induction, the theorem is proved."

