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Paper 4, Section I

3C Dynamics and Relativity
A rocket moves vertically upwards in a uniform gravitational field and emits exhaust

gas downwards with time-dependent speed U(t) relative to the rocket. Derive the rocket
equation

m(t)
dv

dt
+ U(t)

dm

dt
= −m(t)g ,

where m(t) and v(t) are respectively the rocket’s mass and upward speed at time t.

Suppose now that m(t) = m0−αt and U(t) = U0m0/m(t), where m0, U0 and α are
constants. What is the condition for the rocket to lift off from rest at t = 0? Assuming
that this condition is satisfied, find v(t).

State the dimensions of all the quantities involved in your expression for v(t), and
verify that the expression is dimensionally consistent.

[You may neglect any relativistic effects.]

Paper 4, Section I

4C Dynamics and Relativity
In two-dimensional space-time an inertial frame S′ has velocity v relative to another

inertial frame S. State the Lorentz transformation that relates coordinates (x′, t′) in S′ to
coordinates (x, t) in S, assuming that the frames coincide when t = t′ = 0.

Show that if x± = x± ct and x′± = x′ ± ct′ then the Lorentz transformation can be
expressed in the form

x′+ = λ(v)x+ and x′− = λ(−v)x− , where λ(v) =

(
c− v

c+ v

)1/2

. (∗)

Deduce that x2 − c2t2 = x′2 − c2t′2.

Use (∗) to verify that successive Lorentz transformations with velocities v1 and v2
result in another Lorentz transformation with velocity v3, to be determined in terms of v1
and v2.
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Paper 4, Section II

9C Dynamics and Relativity
Find the moment of inertia of a uniform-density sphere with mass M and radius a

with respect to an axis passing through its centre.

Such a sphere is released from rest on a plane inclined at an angle α to the horizontal.
Let ts and tr be the times taken for the sphere to travel a distance l along the plane
assuming either sliding without friction or rolling without slipping, respectively. Discuss
whether energy is conserved in each of the two cases. Show that ts/tr =

√
5/7.

The uniform-density sphere is replaced by a sphere of the same mass whose density
varies radially such that its moment of inertia is γMa2 for some constant γ. Determine
the new value for ts/tr.

Paper 4, Section II

10C Dynamics and Relativity
(a) Write down the 4-momentum of a particle of rest mass m and 3-velocity v,

and the 4-momentum of a photon of frequency ω (having zero rest mass) moving in the
direction of the unit 3-vector e.

Show that if P1 and P2 are timelike future-pointing 4-vectors then P1 · P2 > 0
(where the dot denotes the Lorentz-invariant scalar product). Hence or otherwise show
that the law of conservation of 4-momentum forbids a photon to spontaneously decay into
an electron–positron pair. [Electrons and positrons have equal and non-zero rest masses.]

(b) In the laboratory frame an electron travelling with 3-velocity u collides with a
positron at rest. They annihilate, producing two photons of frequencies ω1 and ω2 that
move off at angles θ1 and θ2 to u, respectively. Explain why the 3-momenta of the photons
and u lie in a plane.

By considering energy and two components of 3-momentum in the laboratory frame,
or otherwise, show that

1 + cos(θ1 + θ2)

cos θ1 + cos θ2
=

√
γ − 1

γ + 1

where γ = 1/
√

1 − u2/c2.
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Paper 4, Section II

11C Dynamics and Relativity
Consider a system of N particles with position vectors ri(t) and masses mi, where

i = 1, 2, . . . , N . Particle i experiences an external force Fi and an internal force Fij from
particle j, for each j 6= i. Stating clearly any assumptions you need, show that

dP

dt
= F and

dL

dt
= G ,

where P is the total momentum, F is the total external force, L is the total angular
momentum about a fixed point a, and G is the total external torque about a.

Does the result
dL

dt
= G still hold if the fixed point a is replaced by the moving

centre of mass of the system? Justify your answer.

Suppose now that all the particles have the same mass m and that the external

force on particle i is −kdri
dt

, where k is a constant. Show that

L(t) = L(0)e−kt/m .
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Paper 4, Section II

12C Dynamics and Relativity
A particle of mass m moves in a plane under an attractive force of magnitude mf(r)

towards the origin O. You may assume that the acceleration a in polar coordinates (r, θ)
is given by

a = (r̈ − rθ̇2)r̂ +
1

r

d

dt
(r2θ̇)θ̂ ,

where r̂ and θ̂ are the unit vectors in the directions of increasing r and θ respectively, and
the dot denotes d/dt.

(a) Show that l = r2θ̇ is a constant of the motion. Introducing u = 1/r, show that

ṙ = −l du
dθ

and derive the geometric orbit equation

l2u2
(
d2u

dθ2
+ u

)
= f

(
1

u

)
.

(b) Suppose now that

f(r) =
3r + 9

r3
,

and that initially the particle is at distance r0 = 1 from O, and moving with speed v0 = 4
in the direction of decreasing r and increasing θ that makes an angle π/3 with the radial
vector pointing towards O.

Show that l = 2
√

3 and find u as a function of θ. Hence, or otherwise, show that
the particle returns to its original position after one revolution about O and then flies off
to infinity.

Part IA, Paper 1
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Paper 4, Section I
3C Dynamics and Relativity

A particle of mass m, charge q, and position vector x moves in a constant non-zero
electric field E and a constant non-zero magnetic field B, with E perpendicular to B. The
particle’s motion is described by mẍ = q(E+ ẋ×B). At time t = 0 the particle is located
at x = x0 and has velocity ẋ = v, where v is perpendicular to both E and B.

(a) Using vector methods, show that the motion lies in a plane and give the vector
equation of that plane.

(b) Adopt a Cartesian coordinate system centred on x0 with the x-axis directed
along E and the y-axis along B. Assume v = 0. Find an expression for x as a function of
t.

Paper 4, Section I
4C Dynamics and Relativity

Consider space-time with only one spatial dimension, and two inertial frames S and
S′. Frame S′ moves relative to frame S with speed u, and their origins coincide when
clocks in the two frames read t = t′ = 0.

According to an observer at the origin of frame S, an event has coordinates (ct, x).
According to an observer at the origin of frame S′, its coordinates are (ct′, x′), which are
given by (

ct′

x′

)
= A

(
ct
x

)
,

where c is the speed of light and A is a 2× 2 matrix.

(a) Write down the matrix A in terms of β = u/c when working in:

(i) Newtonian dynamics;

(ii) special relativity.

Show that the two transformations agree in an appropriate limit, assuming |x| < c|t|.

(b) Calculate the eigenvalues and eigenvectors of A in special relativity, and interpret the
eigenvectors.

Part IA, Paper 1
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Paper 4, Section II
9C Dynamics and Relativity

Consider two particles of masses m1 and m2, and locations x1 and x2, that exert
forces F12 and F21 upon each other. There are no external forces. The particles’ equations
of motion are m1ẍ1 = F12, and m2ẍ2 = F21.

(a) Define the centre of mass R. Prove that the centre of mass moves at a constant
velocity. If r = x1 − x2, show that µr̈ = F12, where you must give an expression for
µ.

(b) For the remainder of the question, assume the force law

Fij = −kmimj
xi − xj

|xi − xj |3
,

with k a positive constant.

Let m1 = m2 = m. In a Cartesian coordinate system whose origin is at the centre of
mass, verify that

x1 = a(cosωt, sinωt , 0), x2 = −a(cosωt, sinωt, 0), (†)

is a solution to the equations of motion, where a is a fixed constant and ω is a frequency
that you should find.

(c) A third particle is now placed upon the z-axis. Its mass m3 is negligible compared to
m, and its position vector x3 obeys m3ẍ3 = F31 + F32, while the motion of particles
1 and 2 is given by (†).

(i) If the initial velocity of the third particle is parallel to the z-axis, show that it
remains on that axis and that its location z(t) obeys

z̈ = − 2mkz

(z2 + a2)3/2
.

(ii) What is the effective potential governing the particle’s motion? Describe the
different kinds of behaviour possible.

(iii) Assume that at t = 0, z = z0, and ż = 0. If z0 is very small, show that the
motion is oscillatory and find the period of the oscillations.

(iv) Now assume that at t = 0, z = 0, and ż = u. What is the criterion for the
particle to escape to infinity?
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Paper 4, Section II
10C Dynamics and Relativity

Consider an infinitely long ramp with semi-circular cross-section of radius R, as
shown in the figure. Adopt a Cartesian coordinate system with the y-axis directed along
the ramp, pointing out of the page, and the z-axis directed vertically downwards. The
ramp rotates about the z-axis with constant angular velocity Ω = −Ωẑ and the coordinate
system rotates with the ramp.

A ball of mass m and negligible
size slides along the surface of the ramp
without any friction but experiences a con-
stant gravitational acceleration g = gẑ. A
line from the ball to the origin projected
on to the xz-plane makes an angle θ with
the z-axis, as shown in the figure.

	 	 	 	 	 	 	 	 	

x

Z

θ

Ω

(a) If x = (x, y, z) is the ball’s position vector, its equation of motion is

ẍ = −2Ω × ẋ − Ω × (Ω × x) + g +
1

m
N,

where N is the normal force due to the ramp. What do the first two terms on the
right side correspond to? Write down the equation’s three Cartesian components.

(b) Using your results from part (a), or otherwise, show that

Rθ̈ = −g sin θ + Ω2R cos θ sin θ − 2Ωẏ cos θ,

ÿ = Ω2y + 2ΩR θ̇ cos θ.

Find all the solutions for which the ball is at rest in the rotating frame.

(c) Suppose that Ω is sufficiently small so that terms of order Ω2 may be neglected and
that at time t = 0, θ = θ0, θ̇ = 0, and y = ẏ = 0.

To linear order in small θ, show that the ball undergoes oscillations in θ and find their
frequency. Determine the associated motion in y.

Part IA, Paper 1

2022



11

Paper 4, Section II
11C Dynamics and Relativity

(a) Define the moment of inertia of a rigid body V , of density ρ, rotating about a given
axis.

A thin circular disc has radius r, thickness δ � r, and uniform density ρ. Its centre of
mass is at the origin of a Cartesian coordinate system whose z-axis is perpendicular to
the disc’s circular face. To leading order in small δ, find the disc’s moment of inertia
when it is rotating about:

(i) the x-axis,

(ii) a line of the form y = 0, z = h.

(b) Consider a cone with circular cross-section, base of radius R, height H, and uniform
density ρ. The cone rotates about an axis that passes through its apex and which is
perpendicular to its axis of symmetry.

(i) Using part (a)(ii), or otherwise, show that the cone’s moment of inertia is
I = M(αR2 +βH2), where M is the cone’s mass, and α and β are constants you
need to find.

[You may assume that the volume of the cone is 1
3πR

2H.]

(ii) If there is no friction and initially the cone has kinetic energy K0, how long does
it take to execute one full rotation?

(iii) Now suppose there is friction so that if the cone rotates by an angle ∆θ the work
done by the friction is equal to W∆θ, where W is a constant.

If the cone initially has kinetic energy K0, show that it comes to rest after a time

t =

√
2K0I

W 2
.
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Paper 4, Section II
12C Dynamics and Relativity

(a) State the definition of a four-vector U . Prove that U · U is the same in all inertial
frames.

(b) Relative to an inertial reference frame S, a second inertial frame S′ moves with
constant three-velocity V = (V, 0, 0), and the two frames coincide when t = t′ = 0.

A particle is travelling with a constant three-velocity u = (ux, uy, 0), as measured in
frame S, and passes through the origin of S at t = 0.

(i) By considering the transformation of the particle’s position vector in space-time,
calculate u′, the particle’s three-velocity in S′.

(ii) Suppose that V/c is small. To leading order in V/c, show that

u′ = u−V +
(V · u)

c2
u.

(iii) A light source at the origin of frame S emits photons at an angle θ relative to
the x-axis. According to an observer in frame S′, the photons are emitted at an
angle θ′ relative to the x′-axis. Show

θ′ − θ =
V

c
sin θ,

to leading order in small V/c.

(c) In the laboratory frame, a photon of wavelength λ collides with an electron of mass
m, initially at rest. After the collision, the three-momenta of the photon and electron
are collinear. Find the wavelength of the photon after the collision.

Part IA, Paper 1
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Paper 4, Section I

3C Dynamics and Relativity
A trolley travels with initial speed v0 along a frictionless, horizontal, linear track.

It slows down by ejecting gas in the direction of motion. The gas is emitted at a constant
mass ejection rate α and with constant speed u relative to the trolley. The trolley and its
supply of gas initially have a combined mass of m0. How much time is spent ejecting gas
before the trolley stops? [Assume that the trolley carries sufficient gas.]

Paper 4, Section I

4C Dynamics and Relativity
A rigid body composed of N particles with positions xi, and masses mi (i =

1, 2, . . . , N), rotates about the z-axis with constant angular speed ω. Show that the
body’s kinetic energy is T = 1

2Iω
2, where you should give an expression for the moment

of inertia I in terms of the particle masses and positions.

Consider a solid cuboid of uniform density, mass M , and dimensions 2a × 2b × 2c.
Choose coordinate axes so that the cuboid is described by the points (x, y, z) with
−a 6 x 6 a, −b 6 y 6 b, and −c 6 z 6 c. In terms of M , a, b, and c, find the
cuboid’s moment of inertia I for rotations about the z-axis.
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Paper 4, Section II

9C Dynamics and Relativity
A particle of mass m follows a one-dimensional trajectory x(t) in the presence of a

variable force F (x, t). Write down an expression for the work done by this force as the
particle moves from x(ta) = a to x(tb) = b. Assuming that this is the only force acting on
the particle, show that the work done by the force is equal to the change in the particle’s
kinetic energy.

What does it mean if a force is said to be conservative?

A particle moves in a force field given by

F (x) =

{
−F0 e

−x/λ x > 0

F0 e
x/λ x < 0

where F0 and λ are positive constants. The particle starts at the origin x = 0 with initial
velocity v0 > 0. Show that, as the particle’s position increases from x = 0 to larger x > 0,
the particle’s velocity v at position x is given by

v(x) =
√
v20 + v2e

(
e−|x|/λ − 1

)

where you should determine ve. What determines whether the particle will escape to
infinity or oscillate about the origin? Sketch v(x) versus x for each of these cases, carefully
identifying any significant velocities or positions.

In the case of oscillatory motion, find the period of oscillation in terms of v0, ve,
and λ. [Hint: You may use the fact that

∫ 1

w

du

u
√
u− w =

2 cos−1
√
w√

w

for 0 < w < 1.]
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Paper 4, Section II

10C Dynamics and Relativity
(a) A mass m is acted upon by a central force

F = −km
r3

r

where k is a positive constant and r is the displacement of the mass from the origin. Show
that the angular momentum and energy of the mass are conserved.

(b) Working in plane polar coordinates (r, θ), or otherwise, show that the distance
r = |r| between the mass and the origin obeys the following differential equation

r̈ = − k

r2
+
h2

r3

where h is the angular momentum per unit mass.
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(c) A satellite is initially in a circular orbit of radius r1 and
experiences the force described above. At θ = 0 and time t1, the
satellite emits a short rocket burst putting it on an elliptical orbit with
its closest distance to the centre r1 and farthest distance r2. When
θ = π and the time is t2, the satellite reaches the farthest distance
and a second short rocket burst puts the rocket on a circular orbit of
radius r2. (See figure.) [Assume that the duration of the rocket bursts
is negligible.]

(i) Show that the satellite’s angular momentum per unit
mass while in the elliptical orbit is

h =

√
Ckr1r2
r1 + r2

where C is a number you should determine.

(ii) What is the change in speed as a result of the rocket
burst at time t1? And what is the change in speed at
t2?

(iii) Given that the elliptical orbit can be described by

r =
h2

k(1 + e cos θ)

where e is the eccentricity of the orbit, find t2 − t1 in
terms of r1, r2, and k. [Hint: The area of an ellipse
is equal to πab, where a and b are its semi-major and
semi-minor axes; these are related to the eccentricity by

e =
√

1− b2

a2
.]
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Paper 4, Section II

11C Dynamics and Relativity
Consider an inertial frame of reference S and a frame of reference S′ which is rotating

with constant angular velocity ω relative to S. Assume that the two frames have a common
origin O.

Let A be any vector. Explain why the derivative of A in frame S is related to its
derivative in S′ by the following equation

(
dA

dt

)

S

=

(
dA

dt

)

S′
+ ω ×A .

[Hint: It may be useful to use Cartesian basis vectors in both frames.]

Let r(t) be the position vector of a particle, measured from O. Derive the expression

relating the particle’s acceleration as observed in S,
(
d2r
dt2

)
S

, to the acceleration observed

in S′,
(
d2r
dt2

)
S′ , written in terms of r, ω and

(
dr
dt

)
S′ .

A small bead of mass m is threaded on a smooth, rigid, circular wire of radius
R. At any given instant, the wire hangs in a vertical plane with respect to a downward
gravitational acceleration g. The wire is rotating with constant angular velocity ω about
its vertical diameter. Let θ(t) be the angle between the downward vertical and the radial
line going from the centre of the hoop to the bead.

(i) Show that θ(t) satisfies the following equation of motion

θ̈ =
(
ω2 cos θ − g

R

)
sin θ .

(ii) Find any equilibrium angles and determine their stability.

(iii) Find the force of the wire on the bead as a function of θ and θ̇.
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Paper 4, Section II

12C Dynamics and Relativity
Write down the expression for the momentum of a particle of rest mass m, moving

with velocity v where v = |v| is near the speed of light c. Write down the corresponding
4-momentum.

Such a particle experiences a force F. Why is the following expression for the
particle’s acceleration,

a =
F

m
,

not generally correct? Show that the force can be written as follows

F = mγ

(
γ2

c2
(v · a)v + a

)
.

Invert this expression to find the particle’s acceleration as the sum of two vectors, one
parallel to F and one parallel to v.

A particle with rest mass m and charge q is in the presence of a constant electric
field E which exerts a force F = qE on the particle. If the particle is at rest at t = 0, its
motion will be in the direction of E for t > 0. Determine the particle’s speed for t > 0.
How does the velocity behave as t→∞?

[Hint: You may find that trigonometric substitution is helpful in evaluating an
integral.]

Part IA, 2021 List of Questions [TURN OVER]

2021



5

Paper 2, Section I

4C Dynamics and Relativity
A particle P with unit mass moves in a central potential Φ(r) = −k/r where k > 0.

Initially P is a distance R away from the origin moving with speed u on a trajectory
which, in the absence of any force, would be a straight line whose shortest distance from
the origin is b. The shortest distance between P ’s actual trajectory and the origin is p,
with 0 < p < b, at which point it is moving with speed w.

(i) Assuming u2 � 2k/R, find w2/k in terms of b and p.

(ii) Assuming u2 < 2k/R, find an expression for P ’s farthest distance from the origin q
in the form

Aq2 + Bq + C = 0

where A, B, and C depend only on R, b, k, and the angular momentum L.

[You do not need to prove that energy and angular momentum are conserved.]

Paper 2, Section II

11C Dynamics and Relativity
An axially symmetric pulley of mass M rotates about a

fixed, horizontal axis, say the x-axis. A string of fixed length
and negligible mass connects two blocks with masses m1 = M and
m2 = 2M . The string is hung over the pulley, with one mass on
each side. The tensions in the string due to masses m1 and m2 can
respectively be labelled T1 and T2. The moment of inertia of the
pulley is I = qMa2, where q is a number and a is the radius of the
pulley at the points touching the string.

m1

<latexit sha1_base64="Tjl8xDj9QkgoM+H9BE2qaZRZpYQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoseAF48RzQOSJcxOepMhM7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqmiTTDBssEYluR9Sg4AoblluB7VQjlZHAVjS6nfmtJ9SGJ+rRjlMMJR0oHnNGrZMeZC/olSt+1Z+DrJIgJxXIUe+Vv7r9hGUSlWWCGtMJ/NSGE6otZwKnpW5mMKVsRAfYcVRRiSaczE+dkjOn9EmcaFfKkrn6e2JCpTFjGblOSe3QLHsz8T+vk9n4JpxwlWYWFVssijNBbEJmf5M+18isGDtCmebuVsKGVFNmXTolF0Kw/PIqaV5Ug8vq1f1lpVbL4yjCCZzCOQRwDTW4gzo0gMEAnuEV3jzhvXjv3seiteDlM8fwB97nD/zdjZs=</latexit>

m2

<latexit sha1_base64="8VBJFFJiIbxtV3F4G/ZIZO3Pou4=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWih4LXjxWtB/QLiWbZtvQJLskWaEs/QlePCji1V/kzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pmzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNObud+54lpw2P1aKcJCyQZKR5xSqyTHuSgNihXvKq3AF4nfk4qkKM5KH/1hzFNJVOWCmJMz/cSG2REW04Fm5X6qWEJoRMyYj1HFZHMBNni1Bm+cMoQR7F2pSxeqL8nMiKNmcrQdUpix2bVm4v/eb3URjdBxlWSWqboclGUCmxjPP8bD7lm1IqpI4Rq7m7FdEw0odalU3Ih+Ksvr5N2rerXq1f39UqjkcdRhDM4h0vw4RoacAdNaAGFETzDK7whgV7QO/pYthZQPnMKf4A+fwD+YY2c</latexit>

T2

<latexit sha1_base64="+rMzBLG7k68Bzb9M+P9cmUTs0zU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY8FLx4rtrXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJR8epYthmsYhVN6AaBZfYNtwI7CYKaRQIfAwmt3P/8QmV5rFsmWmCfkRHkoecUWOlh9agNihX3Kq7AFknXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkr9VGNC2YSOsGeppBFqP1ucOiMXVhmSMFa2pCEL9fdERiOtp1FgOyNqxnrVm4v/eb3UhDd+xmWSGpRsuShMBTExmf9NhlwhM2JqCWWK21sJG1NFmbHplGwI3urL66RTq3r16tV9vdJo5HEU4QzO4RI8uIYG3EET2sBgBM/wCm+OcF6cd+dj2Vpw8plT+APn8wfYS42D</latexit>

T1

<latexit sha1_base64="Xs9Vgy9/5iAm0GGL0AhXYOeSj0g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48V+wVtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vp7CxubW9U9wt7e0fHB6Vj0/aJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJ3dzvPHFtRKyaOE24H9GREqFgFK302Bx4g3LFrboLkHXi5aQCORqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxanzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxvPUzoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSfuq6tWq1w+1Sr2ex1GEMziHS/DgBupwDw1oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH9bHjYI=</latexit> <latexit sha1_base64="CZq9iwiq7P9tGzaBoZZzjHz1PPI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORqUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6tep1s1ap1/M4inAG53AJHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDznOM8Q==</latexit>

I

<latexit sha1_base64="0sXf2MDhXijt0k1eVCYJ+PXI6eI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF721YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2b+wxMqzWN5byYJ+hEdSh5yRo2Vmnf9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdVr1a9bNYq9XoeRxFO4BTOwYMrqMMtNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AKD7jNM=</latexit>

The motion of the pulley is opposed by a frictional torque of magnitude λMω, where
ω is the angular velocity of the pulley and λ is a real positive constant. Obtain a first-order
differential equation for ω and, from it, find ω(t) given that the system is released from
rest.

The surface of the pulley is defined by revolving the function b(x) about the x-axis,
with

b(x) =

{
a(1 + |x|) −1 6 x 6 1,

0 otherwise.

Find a value for the constant q given that the pulley has uniform mass density ρ.
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Paper 2, Section II

12C Dynamics and Relativity
(a) A moving particle with rest mass M decays into two particles (photons) with

zero rest mass. Derive an expression for sin θ
2 , where θ is the angle between the spatial

momenta of the final state particles, and show that it depends only on Mc2 and the
energies of the massless particles. (c is the speed of light in vacuum.)

(b) A particle P with rest mass M decays into two particles: a particle R with rest
mass 0 < m < M and another particle with zero rest mass. Using dimensional analysis
explain why the speed v of R in the rest frame of P can be expressed as

v = cf(r), with r =
m

M
,

and f a dimensionless function of r. Determine the function f(r).

Choose coordinates in the rest frame of P such that R is emitted at t = 0 from the
origin in the x-direction. The particle R decays after a time τ , measured in its own rest
frame. Determine the spacetime coordinates (ct, x), in the rest frame of P , corresponding
to this event.

Part IA, 2020 List of Questions
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Paper 4, Section I

3A Dynamics and Relativity
A rocket of mass m(t) moving at speed v(t) and ejecting fuel behind it at a constant

speed u relative to the rocket, is subject to an external force F . Considering a small time
interval δt, derive the rocket equation

m
dv

dt
+ u

dm

dt
= F.

In deep space where F = 0, how much faster does the rocket go if it burns half of its mass
in fuel?

Paper 4, Section I

4A Dynamics and Relativity
Galileo releases a cannonball of mass m from the top of the leaning tower of Pisa, a

vertical height h above the ground. Ignoring the rotation of the Earth but assuming that
the cannonball experiences a quadratic drag force whose magnitude is γv2 (where v is the
speed of the cannonball), find the time for it to hit the ground in terms of h, m, γ and g,
the acceleration due to gravity. [You may assume that g is constant.]

Part IA, 2019 List of Questions
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Paper 4, Section II

9A Dynamics and Relativity
In an alien invasion, a flying saucer hovers at a fixed point S, a height l far above

the White House, which is at point W . A wrecking ball of mass m is attached to one end
of a light inextensible rod, also of length l. The other end of the rod is attached to the
flying saucer. The wrecking ball is initially at rest at point B, and the angle WSB is θ0.
At W , the acceleration due to gravity is g. Assume that the rotation of the Earth can be
neglected and that the only force acting is Earth’s gravity.

(a) Under the approximations that gravity acts everywhere parallel to the line SW
and that the acceleration due to Earth’s gravity is constant throughout the space through
which the wrecking ball is travelling, find the speed v1 with which the wrecking ball hits
the White House, in terms of the constants introduced above.

(b) Taking into account the fact that gravity is non-uniform and acts toward the
centre of the Earth, find the speed v2 with which the wrecking ball hits the White House
in terms of the constants introduced above and R, where R is the radius of the Earth,
which you may assume is exactly spherical.

(c) Finally, show that

v2 = v1

(
1 + (A+B cos θ0)

l

R
+O

(
l2

R2

))
,

where A and B are constants, which you should determine.
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Paper 4, Section II

10A Dynamics and Relativity
(a) A particle of mass m and positive charge q moves with velocity ẋ in a region in

which the magnetic field B = (0, 0, B) is constant and no other forces act, where B > 0.
Initially, the particle is at position x = (1, 0, 0) and ẋ = (0, v, v). Write the equation of
motion of the particle and then solve it to find x as a function of time t. Sketch its path
in (x, y, z).

(b) For B = 0, three point particles, each of charge q, are fixed at (0, a/
√
3, 0),

(a/2,−a/(2
√
3), 0) and (−a/2,−a/(2

√
3), 0), respectively. Another point particle of mass

m and charge q is constrained to move in the z = 0 plane and suffers Coulomb repulsion
from each fixed charge. Neglecting any magnetic fields,

(i) Find the position of an equilibrium point.

(ii) By finding the form of the electric potential near this point, deduce that the
equilibrium is stable.

(iii) Consider small displacements of the point particle from the equilibrium point.
By resolving forces in the directions (1, 0, 0) and (0, 1, 0), show that the frequency of
oscillation is

ω = A
|q|√
mǫ0a3

,

where A is a constant which you should find.

[You may assume that if two identical charges q are separated by a distance d then
the repulsive Coulomb force experienced by each of the charges is q2/(4πǫ0d

2), where ǫ0 is
a constant.]
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Paper 4, Section II

11A Dynamics and Relativity
(a) Writing a mass dimension as M , a time dimension as T , a length dimension as

L and a charge dimension as Q, write, using relations that you know, the dimensions of:
(i) force
(ii) electric field

(b) In the Large Hadron Collider at CERN, a proton of rest mass m and charge
q > 0 is accelerated by a constant electric field E 6= 0. At time t = 0, the particle is at
rest at the origin.

Writing the proton’s position as x(t) and including relativistic effects, calculate ẋ(t).
Use your answers to part (a) to check that the dimensions in your expression are correct.

Sketch a graph of |ẋ(t)| versus t, commenting on the t → ∞ limit.

Calculate |x(t)| as an explicit function of t and find the non-relativistic limit at
small times t. What kind of motion is this?

(c) At a later time t0, an observer in the laboratory frame sees a cosmic microwave
photon of energy Eγ hit the accelerated proton, leaving only a ∆+ particle of mass m∆ in
the final state. In its rest frame, the ∆+ takes a time t∆ to decay. How long does it take
to decay in the laboratory frame as a function of q,E, t0,m,Eγ ,m∆, t∆ and c, the speed
of light in a vacuum?

Paper 4, Section II

12A Dynamics and Relativity
An inertial frame S and another reference frame S′ have a common origin O, and

S′ rotates with angular velocity vector ω(t) with respect to S. Derive the results (a) and
(b) below, where dot denotes a derivative with respect to time t:

(a) The rates of change of an arbitrary vector a(t) in frames S and S′ are related
by

(ȧ)S = (ȧ)S′ + ω × a.

(b) The accelerations in S and S′ are related by

(r̈)S = (r̈)S′ + 2ω × (ṙ)S′ + (ω̇)S′ × r+ ω × (ω × r),

where r(t) is the position vector relative to O.

Just after passing the South Pole, a ski-doo of mass m is travelling on a constant
longitude with speed v. Find the magnitude and direction of the sideways component of
apparent force experienced by the ski-doo. [The sideways component is locally along the
surface of the Earth and perpendicular to the motion of the ski-doo.]
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Paper 4, Section I

3A Dynamics and Relativity
(a) Define an inertial frame.

(b) Specify three different types of Galilean transformation on inertial frames whose
space coordinates are x and whose time coordinate is t.

(c) State the Principle of Galilean Relativity.

(d) Write down the equation of motion for a particle in one dimension x in a potential
V (x). Prove that energy is conserved. A particle is at position x0 at time t0. Find an
expression for time t as a function of x in terms of an integral involving V .

(e) Write down the x values of any equilibria and state (without justification)
whether they are stable or unstable for:

(i) V (x) = (x2 − 4)2

(ii) V (x) = e−1/x2
for x 6= 0 and V (0) = 0.

Paper 4, Section I

4A Dynamics and Relativity
Explain what is meant by a central force acting on a particle moving in three

dimensions.

Show that the angular momentum of a particle about the origin for a central force
is conserved, and hence that its path lies in a plane.

Show that, in the approximation in which the Sun is regarded as fixed and only
its gravitational field is considered, a straight line joining the Sun and an orbiting planet
sweeps out equal areas in equal time (Kepler’s second law).
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Paper 4, Section II

9A Dynamics and Relativity
Consider a rigid body, whose shape and density distribution are rotationally

symmetric about a horizontal axis. The body has mass M , radius a and moment of inertia
I about its axis of rotational symmetry and is rolling down a non-slip slope inclined at an
angle α to the horizontal. By considering its energy, calculate the acceleration of the disc
down the slope in terms of the quantities introduced above and g, the acceleration due to
gravity.

(a) A sphere with density proportional to rc (where r is distance to the sphere’s
centre and c is a positive constant) is launched up a non-slip slope of constant incline at
the same time, level and speed as a vertical disc of constant density. Find c such that the
sphere and the disc return to their launch points at the same time.

(b) Two spherical glass marbles of equal radius are released from rest at time t = 0
on an inclined non-slip slope of constant incline from the same level. The glass in each
marble is of constant and equal density, but the second marble has two spherical air
bubbles in it whose radii are half the radius of the marbles, initially centred directly above
and below the marble’s centre, respectively. Each bubble is centred half-way between the
centre of the marble and its surface. At a later time t, find the ratio of the distance
travelled by the first marble and the second. [ You may state without proof any theorems
that you use and neglect the mass of air in the bubbles. ]

Part IA, 2018 List of Questions

2018



11

Paper 4, Section II

10A Dynamics and Relativity
Define the 4-momentum P of a particle of rest mass m and velocity u. Calculate

the power series expansion of the component P 0 for small |u|/c (where c is the speed of
light in vacuo) up to and including terms of order |u|4, and interpret the first two terms.

(a) At CERN, anti-protons are made by colliding a moving proton with another
proton at rest in a fixed target. The collision in question produces three protons and an
anti-proton. Assume that the rest mass of a proton is identical to the rest mass of an
anti-proton. What is the smallest possible speed of the incoming proton (measured in the
laboratory frame)?

(b) A moving particle of rest mass M decays into N particles with 4-momenta Qi,
and rest masses mi, where i = 1, 2, . . . , N . Show that

M =
1

c

√√√√√
(

N∑

i=1

Qi

)
·




N∑

j=1

Qj


.

Thus, show that

M >
N∑

i=1

mi.

(c) A particle A decays into particle B and a massless particle 1. Particle B
subsequently decays into particle C and a massless particle 2. Show that

0 6 (Q1 +Q2) · (Q1 +Q2) 6
(m2

A −m2
B)(m

2
B −m2

C)c
2

m2
B

,

where Q1 and Q2 are the 4-momenta of particles 1 and 2 respectively and mA,mB ,mC

are the masses of particles A, B and C respectively.
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Paper 4, Section II

11A Dynamics and Relativity
Write down the Lorentz force law for a charge q travelling at velocity v in an electric

field E and magnetic field B.

In a space station which is in an inertial frame, an experiment is performed in vacuo
where a ball is released from rest a distance h from a wall. The ball has charge q > 0
and at time t, it is a distance z(t) from the wall. A constant electric field of magnitude E
points toward the wall in a perpendicular direction, but there is no magnetic field. Find
the speed of the ball on its first impact.

Every time the ball bounces, its speed is reduced by a factor γ < 1. Show that the
total distance travelled by the ball before it comes to rest is

L = h
q1(γ)

q2(γ)

where q1 and q2 are quadratic functions which you should find explicitly.

A gas leak fills the apparatus with an atmosphere and the experiment is repeated.
The ball now experiences an additional drag force D = −α|v|v, where v is the instanta-
neous velocity of the ball and α > 0. Solve the system before the first bounce, finding an
explicit solution for the distance z(t) between the ball and the wall as a function of time
of the form

z(t) = h−Af(Bt)

where f is a function and A and B are dimensional constants, all of which you should find
explicitly.

Paper 4, Section II

12A Dynamics and Relativity
The position x = (x, y, z) and velocity ẋ of a particle of mass m are measured in

a frame which rotates at constant angular velocity ω with respect to an inertial frame.
The particle is subject to a force F = −9m|ω|2x. What is the equation of motion of the
particle?

Find the trajectory of the particle in the coordinates (x, y, z) if ω = (0, 0, ω) and at
t = 0, x = (1, 0, 0) and ẋ = (0, 0, 0).

Find the maximum value of the speed |ẋ| of the particle and the times at which it
travels at this speed.

[Hint: You may find using the variable ξ = x+ iy helpful.]
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Paper 4, Section I

3A Dynamics and Relativity
Consider a system of particles with masses mi and position vectors xi. Write down

the definition of the position of the centre of mass R of the system. Let T be the total
kinetic energy of the system. Show that

T =
1

2
MṘ · Ṙ+

1

2

∑

i

miẏi · ẏi ,

where M is the total mass and yi is the position vector of particle i with respect to R.

The particles are connected to form a rigid body which rotates with angular speed ω
about an axis n through R, where n · n = 1. Show that

T =
1

2
MṘ · Ṙ+

1

2
Iω2 ,

where I =
∑

i Ii and Ii is the moment of inertia of particle i about n.

Paper 4, Section I

4A Dynamics and Relativity
A tennis ball of mass m is projected vertically upwards with initial speed u0 and

reaches its highest point at time T . In addition to uniform gravity, the ball experiences air
resistance, which produces a frictional force of magnitude αv, where v is the ball’s speed
and α is a positive constant. Show by dimensional analysis that T can be written in the
form

T =
m

α
f(λ)

for some function f of a dimensionless quantity λ.

Use the equation of motion of the ball to find f(λ).
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Paper 4, Section II

9A Dynamics and Relativity

(a) A photon with energy E1 in the laboratory frame collides with an electron of rest
mass m that is initially at rest in the laboratory frame. As a result of the collision
the photon is deflected through an angle θ as measured in the laboratory frame and
its energy changes to E2.

Derive an expression for
1

E2
− 1

E1
in terms of θ, m and c.

(b) A deuterium atom with rest mass m1 and energy E1 in the laboratory frame collides
with another deuterium atom that is initially at rest in the laboratory frame. The
result of this collision is a proton of rest mass m2 and energy E2, and a tritium atom
of rest mass m3. Show that, if the proton is emitted perpendicular to the incoming
trajectory of the deuterium atom as measured in the laboratory frame, then

m2
3 = m2

2 + 2

(
m1 +

E1

c2

)(
m1 −

E2

c2

)
.
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Paper 4, Section II

10A Dynamics and Relativity
A particle of unit mass moves under the influence of a central force. By considering

the components of the acceleration in polar coordinates (r, θ) prove that the magnitude
of the angular momentum is conserved. [You may use r̈ = (r̈ − rθ̇2)r̂+ (2ṙθ̇ + rθ̈)θ̂. ]

Now suppose that the central force is derived from the potential k/r, where k is a constant.

(a) Show that the total energy of the particle can be written in the form

E = 1
2 ṙ

2 + Veff(r).

Sketch Veff(r) in the cases k > 0 and k < 0.

(b) The particle is projected from a very large distance from the origin with speed v and
impact parameter b. [The impact parameter is the distance of closest approach to the
origin in absence of any force.]

(i) In the case k < 0, sketch the particle’s trajectory and find the shortest distance p
between the particle and the origin, and the speed u of the particle when r = p.

(ii) In the case k > 0, sketch the particle’s trajectory and find the corresponding
shortest distance p̃ between the particle and the origin, and the speed ũ of the
particle when r = p̃.

(iii) Find pp̃ and uũ in terms of b and v. [ In answering part (iii) you should assume
that |k| is the same in parts (i) and (ii). ]
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Paper 4, Section II

11A Dynamics and Relativity

(a) Consider an inertial frame S, and a frame S′ which rotates with constant angular
velocity ω relative to S. The two frames share a common origin. Identify each term
in the equation

(
d2r

dt2

)

S′
=

(
d2r

dt2

)

S

− 2ω ×
(
dr

dt

)

S′
− ω × (ω × r).

(b) A small bead P of unit mass can slide without friction on a circular hoop of radius a.
The hoop is horizontal and rotating with constant angular speed ω about a fixed
vertical axis through a point O on its circumference.

(i) Using Cartesian axes in the rotating frame S′, with origin at O and x′-axis along
the diameter of the hoop through O, write down the position vector of P in
terms of a and the angle θ shown in the diagram (−1

2π 6 θ 6 1
2π).

O

P

x

y

θ

(ii) Working again in the rotating frame, find, in terms of a, θ, θ̇ and ω, an expression
for the horizontal component of the force exerted by the hoop on the bead.

(iii) For what value of θ is the bead in stable equilibrium? Find the frequency of
small oscillations of the bead about that point.
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Paper 4, Section II

12A Dynamics and Relativity

(a) A rocket moves in a straight line with speed v(t) and is subject to no external forces.
The rocket is composed of a body of mass M and fuel of mass m(t), which is burnt
at constant rate α and the exhaust is ejected with constant speed u relative to the
rocket. Show that

(M +m)
dv

dt
− αu = 0 .

Show that the speed of the rocket when all its fuel is burnt is

v0 + u log
(
1 +

m0

M

)
,

where v0 and m0 are the speed of the rocket and the mass of the fuel at t = 0.

(b) A two-stage rocket moves in a straight line and is subject to no external forces. The
rocket is initially at rest. The masses of the bodies of the two stages are kM and
(1− k)M , with 0 6 k 6 1, and they initially carry masses km0 and (1− k)m0 of fuel.
Both stages burn fuel at a constant rate α when operating and the exhaust is ejected
with constant speed u relative to the rocket. The first stage operates first, until all its
fuel is burnt. The body of the first stage is then detached with negligible force and
the second stage ignites.

Find the speed of the second stage when all its fuel is burnt. For 0 6 k < 1 compare
it with the speed of the rocket in part (a) in the case v0 = 0. Comment on the case
k = 1.
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Paper 4, Section I

3B Dynamics and Relativity
With the help of definitions or equations of your choice, determine the dimensions,

in terms of mass (M), length (L), time (T ) and charge (Q), of the following quantities:

(i) force;

(ii) moment of a force (i.e. torque);

(iii) energy;

(iv) Newton’s gravitational constant G;

(v) electric field E;

(vi) magnetic field B;

(vii) the vacuum permittivity ǫ0.

Paper 4, Section I

4B Dynamics and Relativity
The radial equation of motion of a particle moving under the influence of a central

force is

r̈ − h2

r3
= −krn,

where h is the angular momentum per unit mass of the particle, n is a constant, and k is
a positive constant.

Show that circular orbits with r = a are possible for any positive value of a, and
that they are stable to small perturbations that leave h unchanged if n > −3.

Part IA, 2016 List of Questions [TURN OVER

2016



10

Paper 4, Section II

9B Dynamics and Relativity

(a) A rocket, moving non-relativistically, has speed v(t) and mass m(t) at a time t after
it was fired. It ejects mass with constant speed u relative to the rocket. Let the total
momentum, at time t, of the system (rocket and ejected mass) in the direction of the
motion of the rocket be P (t). Explain carefully why P (t) can be written in the form

P (t) = m(t) v(t) −
∫ t

0

(
v(τ)− u

)dm(τ)

dτ
dτ . (∗)

If the rocket experiences no external force, show that

m
dv

dt
+ u

dm

dt
= 0 . (†)

Derive the expression corresponding to (∗) for the total kinetic energy of the system
at time t. Show that kinetic energy is not necessarily conserved.

(b) Explain carefully how (∗) should be modified for a rocket moving relativistically, given
that there are no external forces. Deduce that

d(mγv)

dt
=

(
v − u

1− uv/c2

)
d(mγ)

dt
,

where γ = (1− v2/c2)−
1
2 and hence that

mγ2
dv

dt
+ u

dm

dt
= 0 . (‡)

(c) Show that (†) and (‡) agree in the limit c → ∞. Briefly explain the fact that
kinetic energy is not conserved for the non-relativistic rocket, but relativistic energy
is conserved for the relativistic rocket.
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Paper 4, Section II

10B Dynamics and Relativity
A particle of unit mass moves with angular momentum h in an attractive central

force field of magnitude
k

r2
, where r is the distance from the particle to the centre and k is

a constant. You may assume that the equation of its orbit can be written in plane polar
coordinates in the form

r =
ℓ

1 + e cos θ
,

where ℓ =
h2

k
and e is the eccentricity. Show that the energy of the particle is

h2(e2 − 1)

2ℓ2
.

A comet moves in a parabolic orbit about the Sun. When it is at its perihelion, a
distance d from the Sun, and moving with speed V , it receives an impulse which imparts
an additional velocity of magnitude αV directly away from the Sun. Show that the
eccentricity of its new orbit is

√
1 + 4α2 , and sketch the two orbits on the same axes.

Paper 4, Section II

11B Dynamics and Relativity

(a) Alice travels at constant speed v to Alpha Centauri, which is at distance d from Earth.
She then turns around (taking very little time to do so), and returns at speed v. Bob
stays at home. By how much has Bob aged during the journey? By how much has
Alice aged? [No justification is required.]

Briefly explain what is meant by the twin paradox in this context. Why is it not a
paradox?

(b) Suppose instead that Alice’s world line is given by

−c2t2 + x2 = c2t20 ,

where t0 is a positive constant. Bob stays at home, at x = αct0, where α > 1. Alice
and Bob compare their ages on both occasions when they meet. By how much does
Bob age? Show that Alice ages by 2t0 cosh

−1 α.
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Paper 4, Section II

12B Dynamics and Relativity
State what the vectors a, r, v and ω represent in the following equation:

a = g − 2ω × v− ω × (ω × r) , (∗)

where g is the acceleration due to gravity.

Assume that the radius of the Earth is 6×106 m, that |g| = 10ms−2, and that there
are 9× 104 seconds in a day. Use these data to determine roughly the order of magnitude
of each term on the right hand side of (∗) in the case of a particle dropped from a point
at height 20m above the surface of the Earth.

Taking again |g| = 10ms−2, find the time T of the particle’s fall in the absence of
rotation.

Use a suitable approximation scheme to show that

R ≈ R0 −
1

3
ω × g T 3 − 1

2
ω × (ω ×R0)T

2 ,

where R is the position vector of the point at which the particle lands, and R0 is the
position vector of the point at which the particle would have landed in the absence of
rotation.

The particle is dropped at latitude 45◦. Find expressions for the approximate
northerly and easterly displacements of R from R0 in terms of ω, g, R0 (the magnitudes
of ω, g and R0, respectively), and T . You should ignore the curvature of the Earth’s
surface.
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Paper 4, Section I

3C Dynamics and Relativity
Find the moment of inertia of a uniform sphere of mass M and radius a about an

axis through its centre.

The kinetic energy T of any rigid body with total massM, centre of massR, moment
of inertia I about an axis of rotation through R, and angular velocity ω about that same
axis, is given by T = 1

2MṘ2 + 1
2Iω

2. What physical interpretation can be given to the
two parts of this expression?

A spherical marble of uniform density and mass M rolls without slipping at speed V
along a flat surface. Explaining any relationship that you use between its speed and angular
velocity, show that the kinetic energy of the marble is 7

10MV 2.

Paper 4, Section I

4C Dynamics and Relativity
Write down the 4-momentum of a particle with energy E and 3-momentum p. State

the relationship between the energy E and wavelength λ of a photon.

An electron of mass m is at rest at the origin of the laboratory frame: write down
its 4-momentum. The electron is scattered by a photon of wavelength λ1 travelling along
the x-axis: write down the initial 4-momentum of the photon. Afterwards, the photon has
wavelength λ2 and has been deflected through an angle θ. Show that

λ2 − λ1 =
2h

mc
sin2(12θ)

where c is the speed of light and h is Planck’s constant.
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Paper 4, Section II

9C Dynamics and Relativity
A particle is projected vertically upwards at speed V from the surface of the Earth,

which may be treated as a perfect sphere. The variation of gravity with height should
not be ignored, but the rotation of the Earth should be. Show that the height z(t) of the
particle obeys

z̈ = − gR2

(R+ z)2
,

where R is the radius of the Earth and g is the acceleration due to gravity measured at
the Earth’s surface.

Using dimensional analysis, show that the maximum height H of the particle and
the time T taken to reach that height are given by

H = RF (λ) and T =
V

g
G(λ),

where F and G are functions of λ = V 2/gR.

Write down the equation of conservation of energy and deduce that

T =

∫ H

0

√
R+ z

V 2R− (2gR − V 2)z
dz.

Hence or otherwise show that

F (λ) =
λ

2− λ
and G(λ) =

∫ 1

0

√
2− λ+ λx

(2− λ)3(1− x)
dx.
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Paper 4, Section II

10C Dynamics and Relativity
A particle of mass m and charge q has position vector r(t) and moves in a constant,

uniform magnetic field B so that its equation of motion is

mr̈ = qṙ×B.

Let L = mr× ṙ be the particle’s angular momentum. Show that

L ·B+ 1
2q|r×B|2

is a constant of the motion. Explain why the kinetic energy T is also constant, and show
that it may be written in the form

T = 1
2mu ·

(
(u · v)v − r2ü

)
,

where v = ṙ, r = |r| and u = r/r.

[Hint: Consider u · u̇.]
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Paper 4, Section II

11C Dynamics and Relativity
Consider a particle with position vector r(t) moving in a plane described by polar

coordinates (r, θ). Obtain expressions for the radial (r) and transverse (θ) components of
the velocity ṙ and acceleration r̈.

A charged particle of unit mass moves in the electric field of another charge that is
fixed at the origin. The electrostatic force on the particle is −p/r2 in the radial direction,
where p is a positive constant. The motion takes place in an unusual medium that resists
radial motion but not tangential motion, so there is an additional radial force −kṙ/r2

where k is a positive constant. Show that the particle’s motion lies in a plane. Using polar
coordinates in that plane, show also that its angular momentum h = r2θ̇ is constant.

Obtain the equation of motion

d2u

dθ2
+

k

h

du

dθ
+ u =

p

h2
,

where u = r−1, and find its general solution assuming that k/|h| < 2. Show that so long
as the motion remains bounded it eventually becomes circular with radius h2/p.

Obtain the expression

E = 1
2h

2

(
u2 +

(du
dθ

)2
)
− pu

for the particle’s total energy, that is, its kinetic energy plus its electrostatic potential
energy. Hence, or otherwise, show that the energy is a decreasing function of time.
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Paper 4, Section II

12C Dynamics and Relativity
Write down the Lorentz transform relating the components of a 4-vector between

two inertial frames.

A particle moves along the x-axis of an inertial frame. Its position at time t is x(t),
its velocity is u = dx/dt, and its 4-position is X = (ct, x), where c is the speed of light.
The particle’s 4-velocity is given by U = dX/dτ and its 4-acceleration is A = dU/dτ ,
where proper time τ is defined by c2dτ2 = c2dt2 − dx2. Show that

U = γ (c, u) and A = γ4u̇ (u/c, 1)

where γ = (1− u2/c2)−
1
2 and u̇ = du/dt.

The proper 3-acceleration a of the particle is defined to be the spatial component
of its 4-acceleration measured in the particle’s instantaneous rest frame. By transforming
A to the rest frame, or otherwise, show that

a = γ3u̇ =
d

dt
(γu).

Given that the particle moves with constant proper 3-acceleration starting from rest
at the origin, show that

x(t) =
c2

a

(√
1 +

a2t2

c2
− 1

)
,

and that, if at ≪ c, then x ≈ 1
2at

2.
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Paper 4, Section I

3C Dynamics and Relativity
A particle of mass m has charge q and moves in a constant magnetic field B. Show

that the particle’s path describes a helix. In which direction is the axis of the helix, and
what is the particle’s rotational angular frequency about that axis?

Paper 4, Section I

4C Dynamics and Relativity
What is a 4-vector? Define the inner product of two 4-vectors and give the meanings

of the terms timelike, null and spacelike. How do the four components of a 4-vector change
under a Lorentz transformation of speed v? [Without loss of generality, you may take the
velocity of the transformation to be along the positive x-axis.]

Show that a 4-vector that is timelike in one frame of reference is also timelike in a
second frame of reference related by a Lorentz transformation. [Again, you may without
loss of generality take the velocity of the transformation to be along the positive x-axis.]

Show that any null 4-vector may be written in the form a(1, n̂) where a is real and
n̂ is a unit 3-vector. Given any two null 4-vectors that are future-pointing, that is, which
have positive time-components, show that their sum is either null or timelike.
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Paper 4, Section II

9C Dynamics and Relativity
A rocket of mass m(t), which includes the mass of its fuel and everything on board,

moves through free space in a straight line at speed v(t). When its engines are operational,
they burn fuel at a constant mass rate α and eject the waste gases behind the rocket at a
constant speed u relative to the rocket. Obtain the rocket equation

m
dv

dt
− αu = 0.

The rocket is initially at rest in a cloud of space dust which is also at rest. The
engines are started and, as the rocket travels through the cloud, it collects dust which it
stores on board for research purposes. The mass of dust collected in a time δt is given by
β δx, where δx is the distance travelled in that time and β is a constant. Obtain the new
equations

dm

dt
= βv − α,

m
dv

dt
= αu− βv2.

By eliminating t, or otherwise, obtain the relationship

m = λm0u

√
(λu− v)λ−1

(λu+ v)λ+1
,

where m0 is the initial mass of the rocket and λ =
√

α/βu.

If λ > 1, show that the fuel will be exhausted before the speed of the rocket can
reach λu. Comment on the case when λ < 1, giving a physical interpretation of your
answer.
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Paper 4, Section II

10C Dynamics and Relativity
A reference frame S′ rotates with constant angular velocity ω relative to an inertial

frame S that has the same origin as S′. A particle of mass m at position vector x is
subject to a force F. Derive the equation of motion for the particle in S′.

A marble moves on a smooth plane which is inclined at an angle θ to the horizontal.
The whole plane rotates at constant angular speed ω about a vertical axis through a point
O fixed in the plane. Coordinates (ξ, η) are defined with respect to axes fixed in the plane:
Oξ horizontal and Oη up the line of greatest slope in the plane. Ensuring that you account
for the normal reaction force, show that the motion of the marble obeys

ξ̈ = ω2ξ + 2ωη̇ cos θ,

η̈ = ω2η cos2 θ − 2ωξ̇ cos θ − g sin θ.

By considering the marble’s kinetic energy as measured on the plane in the rotating frame,
or otherwise, find a constant of the motion.

[You may assume that the marble never leaves the plane.]

Paper 4, Section II

11C Dynamics and Relativity
A thin flat disc of radius a has density (mass per unit area) ρ(r, θ) = ρ0(a − r)

where (r, θ) are plane polar coordinates on the disc and ρ0 is a constant. The disc is free
to rotate about a light, thin rod that is rigidly fixed in space, passing through the centre
of the disc orthogonal to it. Find the moment of inertia of the disc about the rod.

The section of the disc lying in r > 1
2a, − π

13 6 θ 6 π
13 is cut out and removed.

Starting from rest, a constant torque τ is applied to the remaining part of the disc until
its angular speed about the axis reaches Ω. Show that this takes a time

3πρ0a
5Ω

32τ
.

After this time, no further torque is applied and the partial disc continues to rotate
at constant angular speed Ω. Given that the total mass of the partial disc is kρ0a

3, where
k is a constant that you need not determine, find the position of the centre of mass, and
hence its acceleration. From where does the force required to produce this acceleration
arise?
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Paper 4, Section II

12C Dynamics and Relativity
Define the 4-momentum of a particle and describe briefly the principle of conserva-

tion of 4-momentum.

A photon of angular frequency ω is absorbed by a particle of rest mass m that is
stationary in the laboratory frame of reference. The particle then splits into two equal
particles, each of rest mass αm.

Find the maximum possible value of α as a function of µ = ~ω/mc2. Verify that
as µ → 0, this maximum value tends to 1

2 . For general µ, show that when the maximum
value of α is achieved, the resulting particles are each travelling at speed c/(1 + µ−1) in
the laboratory frame.
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Paper 4, Section I

3B Dynamics and Relativity
A hot air balloon of mass M is equipped with a bag of sand of mass m = m(t)

which decreases in time as the sand is gradually released. In addition to gravity the
balloon experiences a constant upwards buoyancy force T and we neglect air resistance
effects. Show that if v(t) is the upward speed of the balloon then

(M +m)
dv

dt
= T − (M +m)g.

Initially at t = 0 the mass of sand is m(0) = m0 and the balloon is at rest in equilibrium.
Subsequently the sand is released at a constant rate and is depleted in a time t0. Show
that the speed of the balloon at time t0 is

gt0

((
1 +

M

m0

)
ln

(
1 +

m0

M

)
− 1

)
.

[You may use without proof the indefinite integral
∫
t/(A− t) dt = −t−A ln |A− t|+C.]

Paper 4, Section I

4B Dynamics and Relativity
A frame S′ moves with constant velocity v along the x axis of an inertial frame S

of Minkowski space. A particle P moves with constant velocity u′ along the x′ axis of S′.
Find the velocity u of P in S.
The rapidity ϕ of any velocity w is defined by tanhϕ = w/c. Find a relation between the
rapidities of u, u′ and v.
Suppose now that P is initially at rest in S and is subsequently given n successive velocity
increments of c/2 (each delivered in the instantaneous rest frame of the particle). Show
that the resulting velocity of P in S is

c

(
e2nα − 1

e2nα + 1

)

where tanhα = 1/2.
[You may use without proof the addition formulae sinh(a+b) = sinh a cosh b+cosh a sinh b
and cosh(a+ b) = cosh a cosh b+ sinh a sinh b.]
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Paper 4, Section II

9B Dynamics and Relativity

(a) A particle P of unit mass moves in a plane with polar coordinates (r, θ). You may
assume that the radial and angular components of the acceleration are given by
(r̈ − rθ̇2, rθ̈ + 2ṙθ̇), where the dot denotes d/dt. The particle experiences a central
force corresponding to a potential V = V (r).

(i) Prove that l = r2θ̇ is constant in time and show that the time dependence
of the radial coordinate r(t) is equivalent to the motion of a particle in one
dimension x in a potential Veff given by

Veff = V (x) +
l2

2x2
.

(ii) Now suppose that V (r) = −e−r. Show that if l2 < 27/e3 then two circular
orbits are possible with radii r1 < 3 and r2 > 3. Determine whether each
orbit is stable or unstable.

(b) Kepler’s first and second laws for planetary motion are the following statements:
K1: the planet moves on an ellipse with a focus at the Sun;
K2: the line between the planet and the Sun sweeps out equal areas in equal times.
Show that K2 implies that the force acting on the planet is a central force.
Show that K2 together with K1 implies that the force is given by the inverse square
law.
[You may assume that an ellipse with a focus at the origin has polar equation
A
r = 1 + ε cos θ with A > 0 and 0 < ε < 1.]
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Paper 4, Section II

10B Dynamics and Relativity

(a) A rigid body Q is made up of N particles of masses mi at positions ri(t). Let R(t)
denote the position of its centre of mass. Show that the total kinetic energy of Q
may be decomposed into T1, the kinetic energy of the centre of mass, plus a term
T2 representing the kinetic energy about the centre of mass.
Suppose now that Q is rotating with angular velocity ω about its centre of mass.
Define the moment of inertia I of Q (about the axis defined by ω) and derive an
expression for T2 in terms of I and ω = |ω|.

(b) Consider a uniform rod AB of length 2l and mass M . Two such rods AB and BC
are freely hinged together at B. The end A is attached to a fixed point O on a
perfectly smooth horizontal floor and AB is able to rotate freely about O. The rods
are initially at rest, lying in a vertical plane with C resting on the floor and each
rod making angle α with the horizontal. The rods subsequently move under gravity
in their vertical plane.
Find an expression for the angular velocity of rod AB when it makes angle θ with
the floor. Determine the speed at which the hinge strikes the floor.

Paper 4, Section II

11B Dynamics and Relativity

(i) An inertial frame S has orthonormal coordinate basis vectors e1, e2, e3. A second
frame S′ rotates with angular velocity ω relative to S and has coordinate basis
vectors e′1, e

′
2, e

′
3. The motion of S′ is characterised by the equations de′i/dt = ω×e′i

and at t = 0 the two coordinate frames coincide.
If a particle P has position vector r show that v = v′ + ω × r where v and v′ are
the velocity vectors of P as seen by observers fixed respectively in S and S′.

(ii) For the remainder of this question you may assume that a = a′+2ω×v′+ω×(ω×r)
where a and a′ are the acceleration vectors of P as seen by observers fixed
respectively in S and S′, and that ω is constant.

Consider again the frames S and S′ in (i). Suppose that ω = ω e3 with ω constant. A
particle of massmmoves under a force F = −4mω2r. When viewed in S′ its position
and velocity at time t = 0 are (x′, y′, z′) = (1, 0, 0) and (ẋ′, ẏ′, ż′) = (0, 0, 0). Find
the motion of the particle in the coordinates of S′. Show that for an observer fixed
in S′, the particle achieves its maximum speed at time t = π/(4ω) and determine
that speed. [Hint: you may find it useful to consider the combination ζ = x′ + iy′.]
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Paper 4, Section II

12B Dynamics and Relativity

(a) Let S with coordinates (ct, x, y) and S′ with coordinates (ct′, x′, y′) be inertial frames
in Minkowski space with two spatial dimensions. S′ moves with velocity v along the
x-axis of S and they are related by the standard Lorentz transformation:




ct
x
y


 =




γ γv/c 0
γv/c γ 0
0 0 1







ct′

x′

y′


 , where γ =

1√
1− v2/c2

.

A photon is emitted at the spacetime origin. In S′ it has frequency ν ′ and propagates
at angle θ′ to the x′-axis.
Write down the 4-momentum of the photon in the frame S′.
Hence or otherwise find the frequency of the photon as seen in S. Show that it
propagates at angle θ to the x-axis in S, where

tan θ =
tan θ′

γ
(
1 +

v

c
sec θ′

) .

A light source in S′ emits photons uniformly in all directions in the x′y′-plane.
Show that for large v, in S half of the light is concentrated into a narrow cone
whose semi-angle α is given by cosα = v/c.

(b) The centre-of-mass frame for a system of relativistic particles in Minkowski space is
the frame in which the total relativistic 3-momentum is zero.
Two particles A1 and A2 of rest masses m1 and m2 move collinearly with uniform
velocities u1 and u2 respectively, along the x-axis of a frame S. They collide,
coalescing to form a single particle A3.
Determine the velocity of the centre-of-mass frame of the system comprising A1 and
A2.
Find the speed of A3 in S and show that its rest mass m3 is given by

m2
3 = m2

1 +m2
2 + 2m1m2γ1γ2

(
1− u1u2

c2

)
,

where γi = (1− u2i /c
2)−1/2.
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Paper 4, Section I

3B Dynamics and Relativity
Two particles of masses m1 and m2 have position vectors r1 and r2 respectively.

Particle 2 exerts a force F12(r) on particle 1 (where r = r1− r2) and there are no external
forces.

Prove that the centre of mass of the two-particle system will move at constant speed
along a straight line.

Explain how the two-body problem of determining the motion of the system may
be reduced to that of a single particle moving under the force F12.

Suppose now that m1 = m2 = m and that

F12 = −Gm2

r3
r

is gravitational attraction. Let C be a circle fixed in space. Is it possible (by suitable
choice of initial conditions) for the two particles to be traversing C at the same constant
angular speed? Give a brief reason for your answer.

Paper 4, Section I

4B Dynamics and Relativity
Let S and S′ be inertial frames in 2-dimensional spacetime with coordinate systems

(t, x) and (t′, x′) respectively. Suppose that S′ moves with positive velocity v relative to
S and the spacetime origins of S and S′ coincide. Write down the Lorentz transformation
relating the coordinates of any event relative to the two frames.

Show that events which occur simultaneously in S are not generally seen to be
simultaneous when viewed in S′.

In S two light sources A and B are at rest and placed a distance d apart. They
simultaneously each emit a photon in the positive x direction. Show that in S′ the photons

are separated by a constant distance d

√
c+ v

c− v
.
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Paper 4, Section II

9B Dynamics and Relativity
Let (r, θ) be polar coordinates in the plane. A particle of mass m moves in the

plane under an attractive force of mf(r) towards the origin O. You may assume that the
acceleration a is given by

a = (r̈ − rθ̇2)r̂+
1

r

d

dt
(r2θ̇)θ̂

where r̂ and θ̂ are the unit vectors in the directions of increasing r and θ respectively, and
the dot denotes d/dt.

(a) Show that l = r2θ̇ is a constant of the motion. Introducing u = 1/r show that

ṙ = −l
du

dθ
and derive the geometric orbit equation

l2u2
(
d2u

dθ2
+ u

)
= f

(1
u

)
.

(b) Suppose now that

f(r) =
3r + 9

r3

and that initially the particle is at distance r0 = 1 from O, moving with speed v0 = 4 in
a direction making angle π/3 with the radial vector pointing towards O.

Show that l = 2
√
3 and find u as a function of θ. Hence or otherwise show that the

particle returns to its original position after one revolution about O and then flies off to
infinity.
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Paper 4, Section II

10B Dynamics and Relativity

For any frame S and vector A, let
[dA
dt

]
S
denote the derivative of A relative to

S. A frame of reference S′ rotates with constant angular velocity ω with respect to an
inertial frame S and the two frames have a common origin O. [You may assume that for

any vector A,
[dA
dt

]
S
=

[dA
dt

]
S′

+ ω ×A.]

(a) If r(t) is the position vector of a point P from O, show that

[
d2r

dt2

]

S

=

[
d2r

dt2

]

S′
+ 2ω × v′ + ω × (ω × r)

where v′ =
[dr
dt

]
S′

is the velocity in S′.

Suppose now that r(t) is the position vector of a particle of mass m moving under
a conservative force F = −∇φ and a force G that is always orthogonal to the velocity v′

in S′. Show that the quantity

E =
1

2
mv′.v′ + φ− m

2
(ω × r).(ω × r)

is a constant of the motion. [You may assume that ∇ [(ω × r).(ω × r)] = −2ω× (ω × r).]

(b) A bead slides on a frictionless circular hoop of radius a which is forced to rotate
with constant angular speed ω about a vertical diameter. Let θ(t) denote the angle between
the line from the centre of the hoop to the bead and the downward vertical. Using the
results of (a), or otherwise, show that

θ̈ +
(g
a
− ω2 cos θ

)
sin θ = 0.

Deduce that if ω2 > g/a there are two equilibrium positions θ = θ0 off the axis of rotation,
and show that these are stable equilibria.
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Paper 4, Section II

11B Dynamics and Relativity
(a) State the parallel axis theorem for moments of inertia.

(b) A uniform circular disc D of radius a and total mass m can turn frictionlessly
about a fixed horizontal axis that passes through a point A on its circumference and is
perpendicular to its plane. Initially the disc hangs at rest (in constant gravity g) with
its centre O being vertically below A. Suppose the disc is disturbed and executes free

oscillations. Show that the period of small oscillations is 2π

√
3a

2g
.

(c) Suppose now that the disc is released from rest when the radius OA is vertical
with O directly above A. Find the angular velocity and angular acceleration of O about
A when the disc has turned through angle θ. Let R denote the reaction force at A on the
disc. Find the acceleration of the centre of mass of the disc. Hence, or otherwise, show
that the component of R parallel to OA is mg(7 cos θ − 4)/3.

Paper 4, Section II

12B Dynamics and Relativity
(a) Define the 4-momentum P of a particle of rest mass m and 3-velocity v, and the

4-momentum of a photon of frequency ν (having zero rest mass) moving in the direction
of the unit vector e.

Show that if P1 and P2 are timelike future-pointing 4-vectors then P1.P2 > 0
(where the dot denotes the Lorentz-invariant scalar product). Hence or otherwise show
that the law of conservation of 4-momentum forbids a photon to spontaneously decay into
an electron-positron pair. [Electrons and positrons have equal rest masses m > 0.]

(b) In the laboratory frame an electron travelling with velocity u collides with a
positron at rest. They annihilate, producing two photons of frequencies ν1 and ν2 that
move off at angles θ1 and θ2 to u, in the directions of the unit vectors e1 and e2 respectively.
By considering 4-momenta in the laboratory frame, or otherwise, show that

1 + cos(θ1 + θ2)

cos θ1 + cos θ2
=

√
γ − 1

γ + 1

where γ =

(
1− u2

c2

)−1/2

.
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Paper 4, Section I

3B Dynamics and Relativity

The motion of a planet in the gravitational field of a star of mass M obeys

d2r

dt2
− h2

r3
= −GM

r2
, r2

dθ

dt
= h ,

where r(t) and θ(t) are polar coordinates in a plane and h is a constant. Explain one of
Kepler’s Laws by giving a geometrical interpretation of h.

Show that circular orbits are possible, and derive another of Kepler’s Laws relating
the radius a and the period T of such an orbit. Show that any circular orbit is stable
under small perturbations that leave h unchanged.

Paper 4, Section I

4B Dynamics and Relativity

Inertial frames S and S′ in two-dimensional space-time have coordinates (x, t) and
(x′, t′), respectively. These coordinates are related by a Lorentz transformation with v the
velocity of S′ relative to S. Show that if x± = x± ct and x′± = x′ ± ct′ then the Lorentz
transformation can be expressed in the form

x′+ = λ(v)x+ and x′− = λ(−v)x− , where λ(v) =
(c−v

c+v

)1/2
. (∗)

Deduce that x2 − c2t2 = x′ 2 − c2t′ 2 .

Use the form (∗) to verify that successive Lorentz transformations with velocities
v1 and v2 result in another Lorentz transformation with velocity v3, to be determined in
terms of v1 and v2.
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Paper 4, Section II

9B Dynamics and Relativity

A particle with mass m and position r(t) is subject to a force

F = A(r) + ṙ×B(r) .

(a) Suppose that A = −∇φ. Show that

E =
1

2
m ṙ2 + φ(r)

is constant, and interpret this result, explaining why the field B plays no role.

(b) Suppose, in addition, that B = −∇ψ and that both φ and ψ depend only on
r = |r|. Show that

L = m r×ṙ − ψr

is independent of time if ψ(r) = µ/r, for any constant µ.

(c) Now specialise further to the case ψ = 0. Explain why the result in (b) implies
that the motion of the particle is confined to a plane. Show also that

K = L×ṙ − φr

is constant provided φ(r) takes a certain form, to be determined.

[ Recall that r·ṙ = rṙ and that if f depends only on r = |r| then ∇f = f ′(r)r̂ . ]
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Paper 4, Section II

10B Dynamics and Relativity

The trajectory of a particle r(t) is observed in a frame S which rotates with constant
angular velocity ω relative to an inertial frame I. Given that the time derivative in I of
any vector u is (du

dt

)
I
= u̇ + ω×u ,

where a dot denotes a time derivative in S, show that

m r̈ = F − 2mω×ṙ − mω×(ω×r) ,

where F is the force on the particle and m is its mass.

Let S be the frame that rotates with the Earth. Assume that the Earth is a sphere
of radius R. Let P be a point on its surface at latitude π/2− θ, and define vertical to be
the direction normal to the Earth’s surface at P .

(a) A particle at P is released from rest in S and is acted on only by gravity. Show
that its initial acceleration makes an angle with the vertical of approximately

ω2R

g
sin θ cos θ ,

working to lowest non-trivial order in ω.

(b) Now consider a particle fired vertically upwards from P with speed v. Assuming
that terms of order ω2 and higher can be neglected, show that it falls back to Earth under
gravity at a distance

4

3

ωv3

g2
sin θ

from P . [You may neglect the curvature of the Earth’s surface and the vertical variation
of gravity.]
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Paper 4, Section II

11B Dynamics and Relativity

A rocket carries equipment to collect samples from a stationary cloud of cosmic
dust. The rocket moves in a straight line, burning fuel and ejecting gas at constant speed
u relative to itself. Let v(t) be the speed of the rocket, M(t) its total mass, including fuel
and any dust collected, and m(t) the total mass of gas that has been ejected. Show that

M
dv

dt
+ v

dM

dt
+ (v − u)

dm

dt
= 0 ,

assuming that all external forces are negligible.

(a) If no dust is collected and the rocket starts from rest with mass M0, deduce that

v = u log(M0/M) .

(b) If cosmic dust is collected at a constant rate of α units of mass per unit time
and fuel is consumed at a constant rate dm/dt = β, show that, with the same initial
conditions as in (a),

v =
uβ

α

(
1 − (M/M0)

α/(β−α)
)
.

Verify that the solution in (a) is recovered in the limit α → 0.

Paper 4, Section II

12B Dynamics and Relativity

(a) Write down the relativistic energy E of a particle of rest mass m and speed
v. Find the approximate form for E when v is small compared to c, keeping all terms
up to order (v/c)2. What new physical idea (when compared to Newtonian Dynamics) is
revealed in this approximation?

(b) A particle of rest mass m is fired at an identical particle which is at rest in the
laboratory frame. Let E be the relativistic energy and v the speed of the incident particle
in this frame. After the collision, there are N particles in total, each with rest mass m.
Assuming that four-momentum is conserved, find a lower bound on E and hence show
that

v > N(N2−4)1/2

N2−2
c .
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Paper 4, Section I

3B Dynamics and Relativity

A particle of mass m and charge q moves with trajectory r(t) in a constant magnetic

field B = Bẑ. Write down the Lorentz force on the particle and use Newton’s Second Law

to deduce that

ṙ − ω r× ẑ = c ,

where c is a constant vector and ω is to be determined. Find c and hence r(t) for the

initial conditions

r(0) = ax̂ and ṙ(0) = uŷ + vẑ

where a, u and v are constants. Sketch the particle’s trajectory in the case aω + u = 0.

[Unit vectors x̂, ŷ, ẑ correspond to a set of Cartesian coordinates. ]

Paper 4, Section I

4B Dynamics and Relativity

Let S be an inertial frame with coordinates (t, x) in two-dimensional spacetime.

Write down the Lorentz transformation giving the coordinates (t′, x′) in a second inertial

frame S′ moving with velocity v relative to S. If a particle has constant velocity u in S,

find its velocity u′ in S′. Given that |u| < c and |v| < c, show that |u′| < c.

Paper 4, Section II

9B Dynamics and Relativity

A sphere of uniform density has mass m and radius a. Find its moment of inertia

about an axis through its centre.

A marble of uniform density is released from rest on a plane inclined at an angle α

to the horizontal. Let the time taken for the marble to travel a distance ℓ down the plane

be: (i) t1 if the plane is perfectly smooth; or (ii) t2 if the plane is rough and the marble

rolls without slipping.

Explain, with a clear discussion of the forces acting on the marble, whether or not

its energy is conserved in each of the cases (i) and (ii). Show that t1/t2 =
√

5/7.

Suppose that the original marble is replaced by a new one with the same mass and

radius but with a hollow centre, so that its moment of inertia is λma2 for some constant

λ . What is the new value for t1/t2?
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Paper 4, Section II

10B Dynamics and Relativity

A particle of unit mass moves in a plane with polar coordinates (r, θ) and compo-

nents of acceleration (r̈ − rθ̇2, rθ̈ + 2ṙθ̇). The particle experiences a force corresponding

to a potential −Q/r . Show that

E =
1

2
ṙ2 + U(r) and h = r2θ̇

are constants of the motion, where

U(r) =
h2

2r2
− Q

r
.

Sketch the graph of U(r) in the cases Q > 0 and Q < 0 .

(a) Assuming Q > 0 and h > 0, for what range of values of E do bounded orbits

exist? Find the minimum and maximum distances from the origin, rmin and rmax, on such

an orbit and show that

rmin + rmax =
Q

|E| .

Prove that the minimum and maximum values of the particle’s speed, vmin and vmax, obey

vmin + vmax =
2Q

h
.

(b) Now consider trajectories with E > 0 and Q of either sign. Find the distance

of closest approach, rmin, in terms of the impact parameter, b, and v∞, the limiting value

of the speed as r → ∞. Deduce that if b ≪ |Q|/v2∞ then, to leading order,

rmin ≈ 2|Q|
v2∞

for Q < 0 , rmin ≈ b2v2∞
2Q

for Q > 0 .
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Paper 4, Section II

11B Dynamics and Relativity

Consider a set of particles with position vectors ri(t) and masses mi, where

i = 1, 2, . . . , N . Particle i experiences an external force Fi and an internal force Fij

from particle j, for each j 6= i. Stating clearly any assumptions you need, show that

dP

dt
= F and

dL

dt
= G,

where P is the total momentum, F is the total external force, L is the total angular

momentum about a fixed point a, and G is the total external torque about a.

Does the result
dL

dt
= G still hold if the fixed point a is replaced by the centre of

mass of the system? Justify your answer.

Suppose now that the external force on particle i is −k
dri
dt

and that all the particles

have the same mass m. Show that

L(t) = L(0) e−kt/m .

Paper 4, Section II

12B Dynamics and Relativity

A particle A of rest mass m is fired at an identical particle B which is stationary

in the laboratory. On impact, A and B annihilate and produce two massless photons

whose energies are equal. Assuming conservation of four-momentum, show that the angle

θ between the photon trajectories is given by

cos θ =
E − 3mc2

E +mc2

where E is the relativistic energy of A.

Let v be the speed of the incident particle A. For what value of v/c will the photons

move in perpendicular directions? If v is very small compared with c, show that

θ ≈ π − v/c .

[All quantities referred to are measured in the laboratory frame.]
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Paper 4, Section I

3A Dynamics and Relativity
A rocket moves vertically upwards in a uniform gravitational field and emits exhaust

gas downwards with time-dependent speed U(t) relative to the rocket. Derive the rocket
equation

m(t)
dv

dt
+ U(t)

dm

dt
= −m(t)g ,

wherem(t) and v(t) are respectively the rocket’s mass and upward vertical speed at time t.
Suppose now that m(t) = m0−αt, U(t) = U0m0/m(t) and v(0) = 0. What is the condition
for the rocket to lift off at t = 0? Assuming that this condition is satisfied, find v(t).

State the dimensions of all the quantities involved in your expression for v(t), and
verify that the expression is dimensionally consistent.

[ You may assume that all speeds are small compared with the speed of light and neg-
lect any relativistic effects. ]

Paper 4, Section I

4A Dynamics and Relativity

(a) Explain what is meant by a central force acting on a particle moving in three
dimensions.

(b) Show that the orbit of a particle experiencing a central force lies in a plane.

(c) Show that, in the approximation in which the Sun is regarded as fixed and only
its gravitational field is considered, a straight line joining the Sun and an orbiting
planet sweeps out equal areas in equal times (Kepler’s second law).

[With respect to the basis vectors (er, eθ) of plane polar coordinates, the velocity ẋ and
acceleration ẍ of a particle are given by ẋ = (ṙ, rθ̇) and ẍ = (r̈ − rθ̇2, rθ̈ + 2ṙθ̇).]
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Paper 4, Section II

9A Dynamics and Relativity
Davros departs on a rocket voyage from the planet Skaro, travelling at speed u

(where 0 < u < c) in the positive x direction in Skaro’s rest frame. After travelling a
distance L in Skaro’s rest frame, he jumps onto another rocket travelling at speed v′ (where
0 < v′ < c) in the positive x direction in the first rocket’s rest frame. After travelling a
further distance L in Skaro’s rest frame, he jumps onto a third rocket, travelling at speed
w′′ (where 0 < w′′ < c) in the negative x direction in the second rocket’s rest frame.

Let v and w be Davros’ speed on the second and third rockets, respectively, in
Skaro’s rest frame. Show that

v = (u+ v′)
(
1 +

uv′

c2

)−1

.

Express w in terms of u, v′, w′′ and c.

How large must w′′ be, expressed in terms of u, v′ and c, to ensure that Davros
eventually returns to Skaro?

Supposing that w′′ satisfies this condition, draw a spacetime diagram illustrating
Davros’ journey. Label clearly each point where he boards a rocket and the point of his
return to Skaro, and give the coordinates of each point in Skaro’s rest frame, expressed in
terms of u, v, w, c and L.

Hence, or otherwise, calculate how much older Davros will be on his return, and
how much time will have elapsed on Skaro during his voyage, giving your answers in terms
of u, v, w, c and L.

[ You may neglect any effects due to gravity and any corrections arising from Davros’
brief accelerations when getting onto or leaving rockets. ]
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Paper 4, Section II

10A Dynamics and Relativity

(a) Write down expressions for the relativistic 3-momentum p and energy E of a particle
of rest mass m and velocity v. Show that these expressions are consistent with

E2 = p.p c2 +m2c4 . (∗)

Define the 4-momentum P for such a particle and obtain (∗) by considering the
invariance properties of P.

(b) Two particles, each with rest mass m and energy E, moving in opposite directions,
collide head on. Show that it is consistent with the conservation of 4-momentum
for the collision to result in a set of n particles of rest masses µi (for 1 6 i 6 n) only
if

E > 1

2

(
n∑

i=1

µi

)
c2 .

(c) A particle of rest mass m1 and energy E1 is fired at a stationary particle of rest
mass m2. Show that it is consistent with the conservation of 4-momentum for the
collision to result in a set of n particles of rest masses µi (for 1 6 i 6 n) only if

E1 >
(
∑n

i=1 µi)
2 −m2

1 −m2
2

2m2
c2 .

Deduce the minimum frequency required for a photon fired at a stationary particle of
rest mass m2 to result in the same set of n particles, assuming that the conservation
of 4-momentum is the only relevant constraint.

Paper 4, Section II

11A Dynamics and Relativity
Obtain the moment of inertia of a uniform disc of radius a and mass M about its

axis of rotational symmetry. A uniform rigid body of mass 3M/4 takes the form of a disc
of radius a with a concentric circular hole of radius a/2 cut out. Calculate the body’s
moment of inertia about its axis of rotational symmetry.

The body rolls without slipping, with its axis of symmetry horizontal, down a plane
inclined at angle α to the horizontal. Determine its acceleration and the frictional and
normal-reaction forces resulting from contact with the plane.
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Paper 4, Section II

12A Dynamics and Relativity

(a) A particle of charge q moves with velocity v in a constant magnetic field B. Give
an expression for the Lorentz force F experienced by the particle. If no other forces
act on the particle, show that its kinetic energy is independent of time.

(b) Four point particles, each of positive charge Q, are fixed at the four corners of
a square with sides of length 2a. Another point particle, of positive charge q, is
constrained to move in the plane of the square but is otherwise free.

By considering the form of the electrostatic potential near the centre of the square,
show that the state in which the particle of charge q is stationary at the centre of
the square is a stable equilibrium. Obtain the frequency of small oscillations about
this equilibrium.

[The Coulomb potential for two point particles of charges Q and q separated by distance r is
Qq/4πǫ0r.]
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4/I/3B Dynamics

Two particles of masses m1 and m2 have position vectors r1(t) and r2(t) at time t.
The particle of mass m1 experiences a force f and the particle of mass m2 experiences
a force −f . Show that the centre of mass moves at a constant velocity, and derive an
equation of motion for the relative separation r = r1 − r2.

Now suppose that f = −kr, where k is a positive constant. The particles are
initially at rest a distance d apart. Calculate how long it takes before they collide.

4/I/4B Dynamics

A damped pendulum is described by the equation

ẍ+ 2kẋ+ ω2 sinx = 0 ,

where k and ω are real positive constants. Determine the location of all the equilibrium
points of the system. Classify the equilibrium points in the two cases k > ω and k < ω.

4/II/9B Dynamics

An octopus of mass mo swims horizontally in a straight line by jet propulsion. At
time t = 0 the octopus is at rest, and its internal cavity contains a mass mw of water (so
that the mass of the octopus plus water is mo + mw). It then starts to move by ejecting
the water backwards at a constant rate Q units of mass per unit time and at a constant
speed V relative to itself. The speed of the octopus at time t is u(t), and the mass of the
octopus plus remaining water is m(t). The drag force exerted by the surrounding water
on the octopus is αu2, where α is a positive constant.

Show that, during ejection of water, the equation of motion is

m
du

dt
= QV − αu2 . (1)

Once all the water has been ejected, at time t = tc, the octopus has attained a
velocity uc. Use dimensional analysis to show that

uc = V f(λ, µ) , (2)

where λ and µ are two dimensionless quantities and f is an unknown function. Solve
equation (1) to find an explicit expression for uc, and verify that your answer is of the
form given in equation (2).
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4/II/10B Dynamics

A body of mass m moves in the gravitational field of a much larger spherical object
of mass M located at the origin. Starting from the equations of motion

r̈ − rθ̇2 = −GM
r2

,

rθ̈ + 2ṙθ̇ = 0,

show that:

(i) the body moves in an orbit of the form

h2u

GM
= 1 + e cos(θ − θ0) , (∗)

where u = 1/r, h is the constant angular momentum per unit mass, and e and θ0
are constants;

(ii) the total energy of the body is

E =
mG2M2

2h2
(
e2 − 1

)
.

A meteorite is moving very far from the Earth with speed V , and in the absence of
the effect of the Earth’s gravitational field would miss the Earth by a shortest distance b
(measured from the Earth’s centre). Show that in the subsequent motion

h = bV,

and

e =

[
1 +

b2V 4

G2M2

] 1
2

.

Use equation (∗) to find the distance of closest approach, and show that the meteorite will
collide with the Earth if

b <

[
R2 +

2GMR

V 2

] 1
2

,

where R is the radius of the Earth.
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4/II/11B Dynamics

An inertial reference frame S and another reference frame S′ have a common
origin O, and S′ rotates with angular velocity ω(t) with respect to S. Show the following:

(i) the rates of change of an arbitrary vector a(t) in frames S and S′ are related by

(
da

dt

)

S

=

(
da

dt

)

S′
+ ω × a ;

(ii) the accelerations in S and S′ are related by

(
d2r

dt2

)

S

=

(
d2r

dt2

)

S′
+ 2ω ×

(
dr

dt

)

S′
+

(
dω

dt

)

S′
× r + ω × (ω × r) ,

where r(t) is the position vector relative to O.

A train of mass m at latitude λ in the Northern hemisphere travels North with
constant speed V along a track which runs North–South. Find the magnitude and direction
of the sideways force exerted on the train by the track.

Part IA 2008

20082008



18

4/II/12B Dynamics

A uniform solid sphere has mass m and radius R0. Calculate the moment of inertia
of the sphere about an axis through its centre.

A long hollow circular cylinder of radius R1 (where R1 > 2R0) is held fixed with its
axis horizontal. The sphere is held initially at rest in contact with the inner surface of the
cylinder at θ = α, where α < π/2 and θ is the angle between the line joining the centre of
the sphere to the cylinder axis and the downward vertical, as shown in the figure.

R1

R0

θ

The sphere is then released, and rolls without slipping. Show that the angular
velocity of the sphere is (

R1 −R0

R0

)
θ̇.

Show further that the time, TR, it takes the sphere to reach θ = 0 is

TR =

√
7 (R1 −R0)

10g

∫ α

0

dθ

(cos θ − cosα)
1
2

.

If, instead, the cylinder and sphere surfaces are highly polished, so that the sphere
now slides without rolling, find the time, TS , it takes to reach θ = 0.

Without further calculation, explain qualitatively how your answers for TR and TS
would be affected if the solid sphere were replaced by a hollow spherical shell of the same
radius and mass.
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4/I/3C Dynamics

A rocket, moving vertically upwards, ejects gas vertically downwards at speed u
relative to the rocket. Derive, giving careful explanations, the equation of motion

m
dv

dt
= −udm

dt
− gm ,

where v and m are the speed and total mass of the rocket (including fuel) at time t.

If u is constant and the rocket starts from rest with total mass m0, show that

m = m0e
−(gt+v)/u .

4/I/4C Dynamics

Sketch the graph of y = 3x2 − 2x3.

A particle of unit mass moves along the x axis in the potential V (x) = 3x2 − 2x3.
Sketch the phase plane, and describe briefly the motion of the particle on the different
trajectories.

4/II/9C Dynamics

A small ring of massm is threaded on a smooth rigid wire in the shape of a parabola
given by x2 = 4az, where xmeasures horizontal distance and z measures distance vertically
upwards. The ring is held at height z = h, then released.

(i) Show by dimensional analysis that the period of oscillations, T , can be written
in the form

T = (a/g)1/2G(h/a)

for some function G.

(ii) Show that G is given by

G(β) = 2
√
2

∫ 1

−1

(
1 + βu2

1− u2

)1
2

du ,

and find, to first order in h/a, the period of small oscillations.
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4/II/10C Dynamics

A particle of mass m experiences, at the point with position vector r, a force F
given by

F = −kr− eṙ×B ,

where k and e are positive constants and B is a constant, uniform, vector field.

(i) Show that mṙ · ṙ+kr · r is constant. Give a physical interpretation of each term
and a physical explanation of the fact that B does not arise in this expression.

(ii) Show that m(ṙ× r) ·B+ 1
2e(r×B) · (r×B) is constant.

(iii) Given that the particle was initially at rest at r0, derive an expression for r ·B
at time t.

4/II/11C Dynamics

A particle moves in the gravitational field of the Sun. The angular momentum per
unit mass of the particle is h and the mass of the Sun is M . Assuming that the particle
moves in a plane, write down the equations of motion in polar coordinates, and derive the
equation

d2u

dθ2
+ u = k ,

where u = 1/r and k = GM/h2.

Write down the equation of the orbit (u as a function of θ), given that the particle
moves with the escape velocity and is at the perihelion of its orbit, a distance r0 from the
Sun, when θ = 0. Show that

sec4(θ/2)
dθ

dt
=

h

r20

and hence that the particle reaches a distance 2r0 from the Sun at time 8r20/(3h).
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4/II/12C Dynamics

The ith particle of a system of N particles has mass mi and, at time t, position
vector ri with respect to an origin O. It experiences an external force Fe

i , and also an
internal force Fij due to the jth particle (for each j = 1, ..., N , j 6= i), where Fij is parallel
to ri − rj and Newton’s third law applies.

(i) Show that the position of the centre of mass, X, satisfies

M
d2X

dt2
= Fe ,

where M is the total mass of the system and Fe is the sum of the external forces.

(ii) Show that the total angular momentum of the system about the origin, L,
satisfies

dL

dt
= N ,

where N is the total moment about the origin of the external forces.

(iii) Show that L can be expressed in the form

L =MX×V +
∑
i

mir
′
i × v′

i ,

where V is the velocity of the centre of mass, r′i is the position vector of the ith particle
relative to the centre of mass, and v′

i is the velocity of the ith particle relative to the
centre of mass.

(iv) In the case N = 2 when the internal forces are derived from a potential U(|r|),
where r = r1 − r2, and there are no external forces, show that

dT

dt
+
dU

dt
= 0 ,

where T is the total kinetic energy of the system.
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4/I/3C Dynamics

A car is at rest on a horizontal surface. The engine is switched on and suddenly
sets the wheels spinning at a constant angular velocity Ω. The wheels have radius r and
the coefficient of friction between the ground and the surface of the wheels is µ. Calculate
the time T when the wheels start rolling without slipping. If the car is started on an
upward slope in a similar manner, explain whether T is increased or decreased relative to
the case where the car starts on a horizontal surface.

4/I/4C Dynamics

For the dynamical system
ẍ = − sinx,

find the stable and unstable fixed points and the equation determining the separatrix.
Sketch the phase diagram. If the system starts on the separatrix at x = 0, write down
an integral determining the time taken for the velocity ẋ to reach zero. Show that the
integral is infinite.
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4/II/9C Dynamics

A motorcycle of mass M moves on a bowl-shaped surface specified by its height
h(r) where r =

√
x2 + y2 is the radius in cylindrical polar coordinates (r, φ, z). The

torque exerted by the motorcycle engine on the rear wheel results in a force F(t) pushing
the motorcycle forward. Assuming F(t) is directed along the motorcycle’s velocity and
that the motorcycle’s vertical velocity and acceleration are small, show that the motion is
described by

r̈ − rφ̇2 = −g dh
dr

+
F (t)

M

ṙ√
ṙ2 + r2φ̇2

,

rφ̈+ 2ṙφ̇ =
F (t)

M

rφ̇√
ṙ2 + r2φ̇2

,

where dots denote time derivatives, F (t) = |F(t)| and g is the acceleration due to gravity.

The motorcycle rider can adjust F (t) to produce the desired trajectory. If the rider
wants to move on a curve r(φ), show that φ(t) must obey

φ̇2 = g
dh

dr

/(
r +

2

r

(
dr

dφ

)2

− d2r

dφ2

)
.

Now assume that h(r) = r2/`, with ` a constant, and r(φ) = εφ with ε a positive constant,
and 0 6 φ <∞ so that the desired trajectory is a spiral curve. Assuming that φ(t) tends
to infinity as t tends to infinity, show that φ̇(t) tends to

√
2g/` and F (t) tends to 4εMg/`

as t tends to infinity.
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4/II/10C Dynamics

A particle of mass m bounces back and forth between two walls of mass M moving
towards each other in one dimension. The walls are separated by a distance `(t). The wall
on the left has velocity +V (t) and the wall on the right has velocity −V (t). The particle
has speed υ(t). Friction is negligible and the particle–wall collisions are elastic.

Consider a collision between the particle and the wall on the right. Show that
the centre–of–mass velocity of the particle–wall system is υcm = (mυ −MV )/(m +M).
Calculate the particle’s speed following the collision.

Assume that the particle is much lighter than the walls, i.e., m � M . Show that
the particle’s speed increases by approximately 2V every time it collides with a wall.

Assume also that υ � V (so that particle–wall collisions are frequent) and that the
velocities of the two walls remain nearly equal and opposite. Show that in a time interval
∆t, over which the change in V is negligible, the wall separation changes by ∆` ≈ −2V∆t.
Show that the number of particle–wall collisions during ∆t is approximately υ∆t/` and
that the particle’s speed increases by ∆υ ≈ −(∆`/`)υ during this time interval.

Hence show that under the given conditions the particle speed υ is approximately
proportional to `−1.

4/II/11C Dynamics

Two light, rigid rods of length 2` have a mass m attached to each end. Both are
free to move in two dimensions. The two rods are placed so that their two ends are located
at (−d,+2`), (−d, 0), and (+d, 0), (+d,−2`) respectively, where d is positive. They are
set in motion with no rotation, with centre–of–mass velocities (+V, 0) and (−V, 0), so that
the lower mass on the first rod collides head on with the upper mass on the second rod at
the origin (0, 0). [You may assume that the impulse is directed along the x-axis.]

Assuming the collision is elastic, calculate the centre–of–mass velocity υ and the
angular velocity ω of each rod immediately after the collision.

Assuming a coefficient of restitution e, compute υ and ω for each rod after the
collision.
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4/II/12C Dynamics

A particle of mass m and charge q > 0 moves in a time-dependent magnetic field
B = (0, 0, Bz(t)).

Write down the equations of motion governing the particle’s x, y and z coordinates.

Show that the speed of the particle in the (x, y) plane, V =
√
ẋ2 + ẏ2, is a constant.

Show that the general solution of the equations of motion is

x(t) = x0 + V

∫ t

0

dt′ cos

(
−
∫ t′

0

dt′′q
Bz(t

′′)
m

+ φ

)
,

y(t) = y0 + V

∫ t

0

dt′ sin

(
−
∫ t′

0

dt′′q
Bz(t

′′)
m

+ φ

)
,

z(t) = z0 + υzt,

and interpret each of the six constants of integration, x0, y0, z0, vz, V and φ. [Hint: Solve
the equations for the particle’s velocity in cylindrical polars.]

Let Bz(t) = βt, where β is a positive constant. Assuming that x0 = y0 = z0 =
vz = φ = 0 and V = 1, calculate the position of the particle in the limit t→ ∞ (you may
assume this limit exists). [Hint: You may use the results

∫∞
0
dx cos(x2) =

∫∞
0
dx sin(x2) =√

π/8.]
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4/I/3C Dynamics

Planetary Explorers Ltd. want to put a communications satellite of mass m into
geostationary orbit around the spherical planet Zog (i.e. with the satellite always above
the same point on the surface of Zog). The mass of Zog is M , the length of its day is T
and G is the gravitational constant.

Write down the equations of motion for a general orbit of the satellite and determine
the radius and speed of the geostationary orbit.

Describe briefly how the orbit is modified if the satellite is released at the correct
radius and on the correct trajectory for a geostationary orbit, but with a little too much
speed. Comment on how the satellite’s speed varies around such an orbit.

4/I/4C Dynamics

A car of mass M travelling at speed U on a smooth, horizontal road attempts an
emergency stop. The car skids in a straight line with none of its wheels able to rotate.

Calculate the stopping distance and time on a dry road where the dry friction
coefficient between the tyres and the road is µ.

At high speed on a wet road the grip of each of the four tyres changes from dry
friction to a lubricated drag equal to 1

4λu for each tyre, where λ is the drag coefficient
and u the instantaneous speed of the car. However, the tyres regain their dry-weather
grip when the speed falls below 1

4U . Calculate the stopping distance and time under these
conditions.

4/II/9C Dynamics

A particle of mass m and charge q moving in a vacuum through a magnetic field B
and subject to no other forces obeys

m r̈ = q ṙ×B,

where r(t) is the location of the particle.

For B = (0, 0, B) with constant B, and using cylindrical polar coordinates r =
(r, θ, z), or otherwise, determine the motion of the particle in the z = 0 plane if its initial
speed is u0 with ż = 0. [Hint: Choose the origin so that ṙ = 0 and r̈ = 0 at t = 0.]

Due to a leak, a small amount of gas enters the system, causing the particle to
experience a drag forceD = −µṙ, where µ� qB. Write down the new governing equations
and show that the speed of the particle decays exponentially. Sketch the path followed by
the particle. [Hint: Consider the equations for the velocity in Cartesian coordinates; you
need not apply any initial conditions.]
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4/II/10C Dynamics

A keen cyclist wishes to analyse her performance on training rollers. She decides
that the key components are her bicycle’s rear wheel and the roller on which the wheel
sits. The wheel, of radius R, has its mass M entirely at its outer edge. The roller, which
is driven by the wheel without any slippage, is a solid cylinder of radius S and mass M/2.
The angular velocities of the wheel and roller are ω and σ, respectively.

Determine I and J , the moments of inertia of the wheel and roller, respectively.
Find the ratio of the angular velocities of the wheel and roller. Show that the combined
total kinetic energy of the wheel and roller is 1

2Kω
2, where

K =
5

4
MR2

is the effective combined moment of inertia of the wheel and roller.

Why should K be used instead of just I or J in the equation connecting torque with
angular acceleration? The cyclist believes the torque she can produce at the back wheel
is T = Q(1 − ω/Ω) where Q and Ω are dimensional constants. Determine the angular
velocity of the wheel, starting from rest, as a function of time.

In an attempt to make the ride more realistic, the cyclist adds a fan (of negligible
mass) to the roller. The fan imposes a frictional torque −γσ2 on the roller, where γ is a
dimensional constant. Determine the new maximum speed for the wheel.
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4/II/11C Dynamics

A puck of mass m located at r = (x, y) slides without friction under the influence
of gravity on a surface of height z = h(x, y). Show that the equations of motion can be
approximated by

r̈ = −g∇h ,
where g is the gravitational acceleration and the small slope approximation sinφ ≈ tanφ
is used.

Determine the motion of the puck when h(x, y) = αx2.

Sketch the surface

h(x, y) = h(r) =
1

r2
− 1

r

as a function of r, where r2 = x2 + y2. Write down the equations of motion of the puck
on this surface in polar coordinates r = (r, θ) under the assumption that the small slope
approximation can be used. Show that L, the angular momentum per unit mass about the
origin, is conserved. Show also that the initial kinetic energy per unit mass of the puck is
E0 = 1

2L
2/r20 if the puck is released at radius r0 with negligible radial velocity. Determine

and sketch ṙ2 as a function of r for this release condition. What condition relating L, r0
and g must be satisfied for the orbit to be bounded?

4/II/12C Dynamics

In an experiment a ball of mass m is released from a height h0 above a flat,
horizontal plate. Assuming the gravitational acceleration g is constant and the ball falls
through a vacuum, find the speed u0 of the ball on impact.

Determine the speed u1 at which the ball rebounds if the coefficient of restitution
for the collision is γ. What fraction of the impact energy is dissipated during the collision?
Determine also the maximum height hn the ball reaches after the nth bounce, and the time
Tn between the nth and (n+1)th bounce. What is the total distance travelled by the ball
before it comes to rest if γ < 1?

If the experiment is repeated in an atmosphere then the ball experiences a drag
force D = −α |u|u, where α is a dimensional constant and u the instantaneous velocity of
the ball. Write down and solve the modified equation for u(t) before the ball first hits the
plate.
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4/I/3A Dynamics

A lecturer driving his car of mass m1 along the flat at speed U1 accidentally collides
with a stationary vehicle of mass m2. As both vehicles are old and very solidly built,
neither suffers damage in the collision: they simply bounce elastically off each other in a
straight line. Determine how both vehicles are moving after the collision if neither driver
applied their brakes. State any assumptions made and consider all possible values of the
mass ratio R = m1/m2. You may neglect friction and other such losses.

An undergraduate drives into a rigid rock wall at speed V . The undergraduate’s
car of mass M is modern and has a crumple zone of length L at its front. As this zone
crumples upon impact, it exerts a net force F = (L − y)−1/2 on the car, where y is the
amount the zone has crumpled. Determine the value of y at the point the car stops moving
forwards as a function of V , where V < 2L

1
4 /M

1
2 .

4/I/4A Dynamics

A small spherical bubble of radius a containing carbon dioxide rises in water due
to a buoyancy force ρgV , where ρ is the density of water, g is gravitational attraction and
V is the volume of the bubble. The drag on a bubble moving at speed u is 6πµau, where
µ is the dynamic viscosity of water, and an accelerating bubble acts like a particle of mass
αρV , for some constant α. Find the location at time t of a bubble released from rest at
t = 0 and show the bubble approaches a steady rise speed

U =
2

9

ρg

µ
a2. (∗)

Under some circumstances the carbon dioxide gradually dissolves in the water,
which leads to the bubble radius varying as a2 = a20 − βt, where a0 is the bubble radius
at t = 0 and β is a constant. Under the assumption that the bubble rises at speed given
by (∗), determine the height to which it rises before it disappears.
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4/II/9A Dynamics

A horizontal table oscillates with a displacement A sinωt , where A = (Ax, 0, Az)
is the amplitude vector and ω the angular frequency in an inertial frame of reference with
the z axis vertically upwards, normal to the table. A block sitting on the table has mass
m and linear friction that results in a force F = −λu, where λ is a constant and u is the
velocity difference between the block and the table. Derive the equations of motion for
this block in the frame of reference of the table using axes (ξ, η, ζ) on the table parallel to
the axes (x, y, z) in the inertial frame.

For the case where Az = 0, show that at late time the block will approach the
steady orbit

ξ = ξ0 −Ax sin θ cos(ωt− θ),

where

sin2 θ =
m2ω2

λ2 +m2ω2

and ξ0 is a constant.

Given that there are no attractive forces between block and table, show that the
block will only remain in contact with the table if ω2Az < g.

4/II/10A Dynamics

A small probe of mass m is in low orbit about a planet of mass M . If there is no
drag on the probe then its orbit is governed by

r̈ = −GM
|r|3

r,

where r is the location of the probe relative to the centre of the planet and G is the
gravitational constant. Show that the basic orbital trajectory is elliptical. Determine the
orbital period for the probe if it is in a circular orbit at a distance r0 from the centre of
the planet.

Data returned by the probe shows that the planet has a very extensive but diffuse
atmosphere. This atmosphere induces a drag on the probe that may be approximated by
the linear law D = −Aṙ, where D is the drag force and A is a constant. Show that the
angular momentum of the probe about the planet decays exponentially.
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4/II/11A Dynamics

A particle of mass m and charge q moves through a magnetic field B. There is no
electric field or external force so that the particle obeys

mr̈ = q ṙ×B,

where r is the location of the particle. Prove that the kinetic energy of the particle is
preserved.

Consider an axisymmetric magnetic field described byB = (0, 0, B(r)) in cylindrical
polar coordinates r = (r, θ, z). Determine the angular velocity of a circular orbit centred
on r = 0.

For a general orbit when B(r) = B0/r, show that the angular momentum about
the z-axis varies as L = L0 − qB0(r − r0), where L0 is the angular momentum at radius
r0. Determine and sketch the relationship between ṙ2 and r. [Hint: Use conservation of
energy.] What is the escape velocity for the particle?

4/II/12A Dynamics

A circular cylinder of radius a, length L and mass m is rolling along a surface.
Show that its moment of inertia is given by 1

2ma
2.

At t = 0 the cylinder is at the bottom of a slope making an angle α to the horizontal,
and is rolling with velocity V and angular velocity V/a. Assuming slippage does not occur,
determine the position of the cylinder as a function of time. What is the maximum height
that the cylinder reaches?

The frictional force between the cylinder and surface is given by µmg cosα, where
µ is the friction coefficient. Show that the cylinder begins to slip rather than roll if
tanα > 3µ. Determine as a function of time the location, speed and angular velocity of
the cylinder on the slope if this condition is satisfied. Show that slipping continues as
the cylinder ascends and descends the slope. Find also the maximum height the cylinder
reaches, and its speed and angular velocity when it returns to the bottom of the slope.
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4/I/3E Dynamics

Because of an accident on launching, a rocket of unladen massM lies horizontally on
the ground. It initially contains fuel of mass m0, which ignites and is emitted horizontally
at a constant rate and at uniform speed u relative to the rocket. The rocket is initially at
rest. If the coefficient of friction between the rocket and the ground is µ, and the fuel is
completely burnt in a total time T , show that the final speed of the rocket is

u log

(
M +m0

M

)
− µgT.

4/I/4E Dynamics

Write down an expression for the total momentum P and angular momentum L
with respect to an origin O of a system of n point particles of masses mi, position vectors
(with respect to O) xi, and velocities vi, i = 1, . . . , n.

Show that with respect to a new origin O′ the total momentum P′ and total angular
momentum L′ are given by

P′ = P, L′ = L− b×P,

and hence
L′ ·P′ = L ·P,

where b is the constant vector displacement of O′ with respect to O. How does L × P
change under change of origin?

Hence show that either

(1) the total momentum vanishes and the total angular momentum is independent of
origin, or

(2) by choosing b in a way that should be specified, the total angular momentum with
respect to O′ can be made parallel to the total momentum.
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4/II/9E Dynamics

Write down the equation of motion for a point particle with mass m, charge e,
and position vector x(t) moving in a time-dependent magnetic field B(x, t) with vanishing
electric field, and show that the kinetic energy of the particle is constant. If the magnetic
field is constant in direction, show that the component of velocity in the direction of B is
constant. Show that, in general, the angular momentum of the particle is not conserved.

Suppose that the magnetic field is independent of time and space and takes the
form B = (0, 0, B) and that Ȧ is the rate of change of area swept out by a radius vector
joining the origin to the projection of the particle’s path on the (x, y) plane. Obtain the
equation

d

dt

(
mȦ+

eBr2

4

)
= 0 , (∗)

where (r, θ) are plane polar coordinates. Hence obtain an equation replacing the equation
of conservation of angular momentum.

Show further, using energy conservation and (∗), that the equations of motion in
plane polar coordinates may be reduced to the first order non-linear system

ṙ =

√
v2 −

(
2c

mr
− erB

2m

)2

,

θ̇ =
2c

mr2
− eB

2m
,

where v and c are constants.
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4/II/10E Dynamics

Write down the equations of motion for a system of n gravitating particles with
masses mi, and position vectors xi, i = 1, 2, . . . , n.

The particles undergo a motion for which xi(t) = a(t)ai, where the vectors ai are
independent of time t. Show that the equations of motion will be satisfied as long as the
function a(t) satisfies

ä = − Λ

a2
, (∗)

where Λ is a constant and the vectors ai satisfy

Λmiai = Gi =
∑

j 6=i

Gmimj

(
ai − aj

)

|ai − aj |3
. (∗∗)

Show that (∗) has as first integral

ȧ

2

2

− Λ

a
=
k

2
,

where k is another constant. Show that

Gi = ∇iW ,

where ∇i is the gradient operator with respect to ai and

W = −
∑

i

∑

j<i

Gmimj

|ai − aj |
.

Using Euler’s theorem for homogeneous functions (see below), or otherwise, deduce that

∑

i

ai ·Gi = −W .

Hence show that all solutions of (∗∗) satisfy

ΛI = −W

where
I =

∑

i

mia
2
i .

Deduce that Λ must be positive and that the total kinetic energy plus potential energy of

the system of particles is equal to
k

2
I.

[Euler’s theorem states that if

f(λx, λy, λz, . . .) = λpf(x, y, z, . . .) ,

then

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
+ . . . = pf .]

Part IA 2003

20032003



17

4/II/11E Dynamics

State the parallel axis theorem and use it to calculate the moment of inertia of a
uniform hemisphere of mass m and radius a about an axis through its centre of mass and
parallel to the base.

[You may assume that the centre of mass is located at a distance 3
8a from the flat face of

the hemisphere, and that the moment of inertia of a full sphere about its centre is 2
5Ma2,

with M = 2m.]

The hemisphere initially rests on a rough horizontal plane with its base vertical. It
is then released from rest and subsequently rolls on the plane without slipping. Let θ be the
angle that the base makes with the horizontal at time t. Express the instantaneous speed
of the centre of mass in terms of b and the rate of change of θ, where b is the instantaneous
distance from the centre of mass to the point of contact with the plane. Hence write down
expressions for the kinetic energy and potential energy of the hemisphere and deduce that

(dθ
dt

)2
=

15g cos θ

(28− 15 cos θ)a
.

4/II/12E Dynamics

Let (r, θ) be plane polar coordinates and er and eθ unit vectors in the direction of
increasing r and θ respectively. Show that the velocity of a particle moving in the plane
with polar coordinates

(
r(t), θ(t)

)
is given by

ẋ = ṙer + rθ̇eθ ,

and that the unit normal n to the particle path is parallel to

rθ̇er − ṙeθ .

Deduce that the perpendicular distance p from the origin to the tangent of the curve
r = r(θ) is given by

r2

p2
= 1 +

1

r2

(dr
dθ

)2
.

The particle, whose mass is m, moves under the influence of a central force with
potential V (r). Use the conservation of energy E and angular momentum h to obtain the
equation

1

p2
=

2m
(
E − V (r)

)

h2
.

Hence express θ as a function of r as the integral

θ =

∫
hr−2dr√

2m
(
E − Veff(r)

)

where

Veff(r) = V (r) +
h2

2mr2
.

Evaluate the integral and describe the orbit when V (r) =
c

r2
, with c a positive constant.
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4/I/3E Dynamics

The position x of the leading edge of an avalanche moving down a mountain side
making a positive angle α to the horizontal satisfies the equation

d

dt

(
x
dx

dt

)
= gx sinα,

where g is the acceleration due to gravity.

By multiplying the equation by xdx
dt , obtain the first integral

x2ẋ2 =
2g

3
x3 sinα+ c,

where c is an arbitrary constant of integration and the dot denotes differentiation with
respect to time.

Sketch the positive quadrant of the (x, ẋ) phase plane. Show that all solutions
approach the trajectory

ẋ =

(
2g sinα

3

) 1
2

x
1
2 .

Hence show that, independent of initial conditions, the avalanche ultimately has acceler-
ation 1

3g sinα.
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4/I/4E Dynamics

An inertial reference frame S and another reference frame S′ have a common origin
O. S′ rotates with constant angular velocity ω with respect to S. Assuming the result
that (

da

dt

)

S

=

(
da

dt

)

S′
+ ω × a

for an arbitrary vector a(t), show that

(d2x
dt2

)
S
=
(d2x
dt2

)
S′

+ 2ω ×
(dx
dt

)
S′

+ ω × (ω × x),

where x is the position vector of a point P measured from the origin.

A system of electrically charged particles, all with equal masses m and charges e,
moves under the influence of mutual central forces Fij of the form

Fij = (xi − xj)f(|xi − xj |).

In addition each particle experiences a Lorentz force due to a constant weak magnetic field
B given by

e
dxi

dt
×B.

Transform the equations of motion to the rotating frame S ′. Show that if the
angular velocity is chosen to satisfy

ω = − e

2m
B,

and if terms of second order inB are neglected, then the equations of motion in the rotating
frame are identical to those in the non-rotating frame in the absence of the magnetic field
B.

4/II/9E Dynamics

Write down the equations of motion for a system of n gravitating point particles
with masses mi and position vectors xi = xi(t), i = 1, 2, . . . , n.

Assume that xi = t2/3ai, where the vectors ai are independent of time t. Obtain a
system of equations for the vectors ai which does not involve the time variable t.

Show that the constant vectors ai must be located at stationary points of the
function

∑

i

1

9
mi ai · ai +

1

2

∑

j

∑

i 6=j

Gmimj

|ai − aj |
.

Show that for this system, the total angular momentum about the origin and the
total momentum both vanish. What is the angular momentum about any other point?
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4/II/10E Dynamics

Derive the equation

d2u

dθ2
+ u =

f(u)

mh2u2
,

for the orbit r−1 = u(θ) of a particle of mass m and angular momentum hm moving under
a central force f(u) directed towards a fixed point O. Give an interpretation of h in terms
of the area swept out by a radius vector.

If the orbits are found to be circles passing through O, then deduce that the force
varies inversely as the fifth power of the distance, f = cu5, where c is a constant. Is the
force attractive or repulsive?

Show that, for fixed mass, the radius R of the circle varies inversely as the angular
momentum of the particle, and hence that the time taken to traverse a complete circle is
proportional to R3.

[You may assume, if you wish, the expressions for radial and transverse acceleration
in the forms r̈ − rθ̇2, 2ṙθ̇ + rθ̈.]

4/II/11E Dynamics

An electron of mass m moving with velocity ẋ in the vicinity of the North Pole
experiences a force

F = aẋ× x

|x|3 ,

where a is a constant and the position vector x of the particle is with respect to an origin
located at the North Pole. Write down the equation of motion of the electron, neglecting
gravity. By taking the dot product of the equation with ẋ show that the speed of the
electron is constant. By taking the cross product of the equation with x show that

mx× ẋ− a
x

|x| = L ,

where L is a constant vector. By taking the dot product of this equation with x, show
that the electron moves on a cone centred on the North Pole.

4/II/12E Dynamics

Calculate the moment of inertia of a uniform rod of length 2l and mass M about
an axis through its centre and perpendicular to its length. Assuming it moves in a plane,
give an expression for the kinetic energy of the rod in terms of the speed of the centre and
the angle that it makes with a fixed direction.

Two such rods are freely hinged together at one end and the other two ends slide
on a perfectly smooth horizontal floor. The rods are initially at rest and lie in a vertical
plane, each making an angle α to the horizontal. The rods subsequently move under
gravity. Calculate the speed with which the hinge strikes the ground.
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4/I/3A Dynamics

Derive the equation
d2u

dθ2
+ u =

f(u)

mh2u2

for the motion of a particle of mass m under an attractive central force f , where u = 1/r
and r is the distance of the particle from the centre of force, and where mh is the angular
momentum of the particle about the centre of force.

[Hint: you may assume the expressions for the radial and transverse accelerations
in the form r̈ − rθ̇2, 2ṙθ̇ + rθ̈.]

4/I/4A Dynamics

Two particles of masses m1 and m2 at positions x1(t) and x2(t) are subject to
forces F1 = −F2 = f(x1−x2). Show that the centre of mass moves at a constant velocity.
Obtain the equation of motion for the relative position of the particles. How does the
reduced mass

µ =
m1m2

m1 +m2

of the system enter?

4/II/9A Dynamics

The position x and velocity ẋ of a particle of massm are measured in a frame which
rotates at constant angular velocity ω with respect to an inertial frame. Write down the
equation of motion of the particle under a force F = −4mω2x.

Find the motion of the particle in (x, y, z) coordinates with initial condition

x = (1, 0, 0) and ẋ = (0, 0, 0) at t = 0,

where ω = (0, 0, ω). Show that the particle has a maximum speed at t = (2n+ 1)π/4ω,
and find this speed.

[Hint: you may find it useful to consider the combination ζ = x+ iy.]
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4/II/10A Dynamics

A spherical raindrop of radius a(t) > 0 and density ρ falls down at a velocity
v(t) > 0 through a fine stationary mist. As the raindrop falls its volume grows at the rate
cπa2v with constant c. The raindrop is subject to the gravitational force and a resistive
force −kρπa2v2 with k a positive constant. Show a and v satisfy

ȧ = 1
4cv,

v̇ = g − 3
4 (c+ k)

v2

a
.

Find an expression for d
dt (v

2/a), and deduce that as time increases v2/a tends to
the constant value g/( 78c+

3
4k), and thence the raindrop tends to a constant acceleration

which is less than 1
7g.

4/II/11A Dynamics

A spacecraft of mass m moves under the gravitational influence of the Sun of
mass M and with universal gravitation constant G. After a disastrous manoeuvre, the
unfortunate spacecraft finds itself exactly in a parabolic orbit about the Sun: the orbit
with zero total energy. Using the conservation of energy and angular momentum, or
otherwise, show that in the subsequent motion the distance of the spacecraft from the Sun
r(t) satisfies

(r − r0)(r + 2r0)
2 = 9

2GM(t− t0)
2,

with constants r0 and t0.

4/II/12A Dynamics

Find the moment of inertia of a uniform solid cylinder of radius a, length l and
total mass M about its axis.

The cylinder is released from rest at the top of an inclined plane of length L and
inclination θ to the horizontal. The first time the plane is perfectly smooth and the
cylinder slips down the plane without rotating. The experiment is then repeated after the
plane has been roughened, so that the cylinder now rolls without slipping at the point of

contact. Show that the time taken to roll down the roughened plane is
√

3
2 times the time

taken to slip down the smooth plane.
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