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5

Paper 2, Section I

1A Differential Equations
Find the general solution y(x) of the differential equation

y′′′ − 4y′′ + 4y′ = xe2x.

Paper 2, Section I

2A Differential Equations
(a) Find the solution y(x) of

x2y′ − cos(2y) = 1

subject to y → 9π/4 as x→∞. [If your answer involves inverse trigonometric functions,
then you should specify their range.]

(b) Find the general solution u(x) of the equation

xu′ = x+ u.

Paper 2, Section II

5A Differential Equations
(a) Consider the linear differential equation

y′ + p(x)y = f(x), (∗)

where p(x) and f(x) are given nonzero functions. Show how to express the general solution
y(x) in terms of two integrals involving p(x) and f(x), to be specified.

If y1(x) and y2(x) are distinct solutions of (∗), express the general solution of (∗) in
terms of y1(x) and y2(x).

(b) Find the general solution y(x) of the differential equation

xy′ − (2x2 + 1)y = x2.

Show that there is only one solution of this equation with y(x) bounded as x → ∞, and
determine its limiting value. Sketch this solution.
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Paper 2, Section II

6A Differential Equations
The function y(x, µ) satisfies

∂y

∂x
= y + µ(x+ y2) , y(0, µ) = 1 , (∗)

and the function u(x, µ) is defined by u = ∂y/∂µ. Show that

∂u

∂x
= u+ x+ y2 + 2µyu , u(0, µ) = 0 .

Determine y(x, 0) and then u(x, 0).

For small µ, the solution of (∗) can be approximated by a series

y(x, µ) = y0(x) + µy1(x) + µ2y2(x) + · · · .

Specify the functions y0(x), y1(x) and y2(x).

Part IA, Paper 1
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Paper 2, Section II

7A Differential Equations
The Dirac δ-function can be defined by the properties δ(t) = 0 for t 6= 0 and∫ b

a f(t)δ(t) dt = f(0) for any a < 0 < b and function f(t) that is continuous at t = 0. The
function H(t) is defined by

H(t) =

{
1 for t > 0

0 for t < 0 .

(a) Prove that

(i) δ(pt) = δ(t)/|p| for any nonzero real constant p ;

(ii) for any differentiable function f(t)

∫ ∞

−∞
f(t)δ′(t) dt = −f ′(0) ;

(iii) H ′(t) = δ(t).

(b) An electronic system has two time-dependent variables x(t) and y(t), and two
inputs to which a constant unit signal is applied, each starting at a particular time. The
differential equations governing the system take the form

ẋ+ 2y = H(t) ,

ẏ − 2x = H(t− π) .

At t = −π, the system has x = 1 and y = 0. Find x(t) for t < 0. Show that x(t) can be
written for t > 0 as

x(t) = a sin 2t+ b+ q(t) sin2 t ,

where the constants a and b and the function q(t) are to be specified. Sketch q(t) for
0 < t < 2π.
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Paper 2, Section II

8A Differential Equations
(a) Classify the equilibrium point of the system

dx

dt
= 4x+ 2y ,

dy

dt
= −x+ y .

Sketch the phase portrait showing both the direction of any straight-line trajectories and
the shapes of a representative selection of non-straight trajectories to indicate the direction
of motion in each part of phase space.

(b) Consider the second-order differential equation for x(t)

ẍ+ 3ẋ− 4 log
x2 + 1

2
= 0 .

(i) Rewrite the equation as a system of two first-order equations for x(t) and
y(t), where y = ẋ, and find the equilibrium points of that system.

(ii) Use linearisation to classify the equilibrium points.

(iii) On a sketch of the (x, y)-plane, show the regions where ẋ and ẏ are both
positive, both negative, or one positive and one negative.

(iv) Using the information obtained in parts (i)–(iii), sketch the trajectories of
the system, including the trajectories through (1, 0).
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Paper 2, Section I
1A Differential Equations

Consider the integral

I(x) =

∫ π

0
ex cos θdθ .

Show, by differentiating under the integral sign, that

dI

dx
=

∫ π

0
x sin2 θ ex cos θdθ .

Hence, or otherwise, show that

d2I

dx2
+

1

x

dI

dx
− I = 0 .

Paper 2, Section I
2B Differential Equations

Solve the difference equation

xn+3 − 6xn+2 + 12xn+1 − 8xn = 0 ,

given initial conditions x0 = 0, x1 = 4, x2 = 24.

Paper 2, Section II
5C Differential Equations

(a) What is meant by an ordinary point and a regular singular point of a linear
second-order ordinary differential equation?

Consider

x
d2y

dx2
+ (1− x)

dy

dx
+ λy = 0, (†)

where λ is a real constant.

Find a solution to (†) in the form of a series expansion around x = 0. Obtain the
general expression for the coefficients in the series.

For what values of λ do you obtain polynomial solutions?

(b) Determine the Wronskian of the equation (†) as a function of x.

Let λ = 1. Verify that y1 = 1−x is a solution to (†). Using the Wronskian, calculate
a second solution y2 in the form

y2 = (1− x) log x+ b1x+ b2x
2 + . . . ,

where b1 and b2 are constants you need to find.

Part IA, Paper 1 [TURN OVER]

2022



6

Paper 2, Section II
6A Differential Equations

(a) Let f(x, y) be a real-valued function depending smoothly on real variables x and
y, and g(t) = f( a+ t cos γ, b+ t sin γ ), where a, b and γ are constants. Express g′(t) and
g′′(t) in terms of partial derivatives of f .

Write down sufficient conditions for g to have a local minimum at t = 0 and deduce
that a stationary point of f at (x, y) = (a, b) is a local minimum if

∂2f

∂y2
> 0 and

∂2f

∂x2
∂2f

∂y2
>

( ∂2f

∂x∂y

)2
.

(b) Now let
f(x, y) = x4 − 3x2 + 2xy + y2 .

Find all stationary points of f and show that those at (x, y) 6= (0, 0) are local minima.

Show also that g(t) with a = b = 0 has either (i) a local minimum or (ii) a local
maximum at t = 0, depending on the value of γ. Determine carefully the ranges of values
of tan γ for which cases (i) and (ii) occur and sketch the typical behaviour of g(t) in each
of these cases.

Paper 2, Section II
7C Differential Equations

Consider the system of linear differential equations

dz

dt
−Az = f , where A =

(
3 −6
1 −2

)
. (†)

(a) Suppose f = 0. Show that the general solution to (†) takes the form

z = αu1e
λ1t + βu2e

λ2t, (?)

where α and β are arbitrary constants. Calculate u1, u2, λ1, and λ2.

(b) Suppose now that f = (1, a)T , where a is a constant parameter.

By writing f as a linear combination of u1 and u2, determine the value(s) of a for
which the particular integral depends on time.

Using matrix methods, find the general solution to (†).

(c) Consider
dnz

dtn
−Az = 0,

where n > 1 is an integer.

Show that (?) is a solution to this system of equations. How many other linearly
independent solutions must there be?

Part IA, Paper 1
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Paper 2, Section II
8B Differential Equations

(a) Consider the system

ẋ = 8x− 2x2 − 2xy2 , ẏ = xy − y , (∗)

for x(t) > 0 , y(t) > 0.

Find all the equilibrium points of (∗) and determine their type. Explain how
solutions close to each equilibrium point will evolve, sketching their trajectories. [You
may quote general results without proof.]

(b) Consider the system

ẋ = x(1 − y) , ẏ = 3y(x− 1) , (∗∗)

defined for x > 0, y > 0.

Show that it has precisely one equilibrium point in the given range. Obtain an
equation for dy/dx. Show that this equation is separable and hence obtain a solution
in the form E(x, y) = C, where C is a constant and E(x, y) is a nontrivial conserved
quantity for solutions of (∗∗). Show that E(x, y) has a single stationary point in the
quadrant x > 0, y > 0, and identify what type of stationary point it is. Hence show that
solutions close to the equilibrium point at time t = 0 remain close at all times.

Part IA, Paper 1 [TURN OVER]
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Paper 2, Section I

1A Differential Equations
Solve the difference equation

yn+2 − 4yn+1 + 4yn = n

subject to the initial conditions y0 = 1 and y1 = 0.

Paper 2, Section I

2A Differential Equations
Let y1 and y2 be two linearly independent solutions to the differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 .

Show that the Wronskian W = y1y
′
2 − y2y

′
1 satisfies

dW

dx
+ pW = 0 .

Deduce that if y2(x0) = 0 then

y2(x) = y1(x)

∫ x

x0

W (t)

y1(t)2
dt .

Given that y1(x) = x3 satisfies the equation

x2
d2y

dx2
− x

dy

dx
− 3y = 0

find the solution which satisfies y(1) = 0 and y′(1) = 1.

Part IA, 2021 List of Questions [TURN OVER]

2021



6

Paper 2, Section II

5A Differential Equations
For a linear, second order differential equation define the terms ordinary point,

singular point and regular singular point.

For a, b ∈ R and b /∈ Z consider the following differential equation

x
d2y

dx2
+ (b− x)

dy

dx
− ay = 0 . (∗)

Find coefficients cm(a, b) such that the function y1 = M(x, a, b), where

M(x, a, b) =
∞∑

m=0

cm(a, b)xm,

satisfies (∗). By making the substitution y = x1−bu(x), or otherwise, find a second linearly
independent solution of the form y2 = x1−bM(x, α, β) for suitable α, β.

Suppose now that b = 1. By considering a limit of the form

lim
b→1

y2 − y1
b− 1

,

or otherwise, obtain two linearly independent solutions to (∗) in terms of M and derivatives
thereof.

Part IA, 2021 List of Questions

2021
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Paper 2, Section II

6A Differential Equations
By means of the change of variables η = x − t and ξ = x + t, show that the wave

equation for u = u(x, t)
∂2u

∂x2
− ∂2u

∂t2
= 0 (∗)

is equivalent to the equation
∂2U

∂η ∂ξ
= 0

where U(η, ξ) = u(x, t). Hence show that the solution to (∗) on x ∈ R and t > 0, subject
to the initial conditions

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x)

is

u(x, t) =
1

2
[f(x− t) + f(x+ t)] +

1

2

∫ x+t

x−t
g(y) dy .

Deduce that if f(x) = 0 and g(x) = 0 on the interval |x − x0| > r then u(x, t) = 0 on
|x− x0| > r + t.

Suppose now that y = y(x, t) is a solution to the wave equation (∗) on the finite
interval 0 < x < L and obeys the boundary conditions

y(0, t) = y(L, t) = 0

for all t. The energy is defined by

E(t) =
1

2

∫ L

0

[(
∂y

∂x

)2

+

(
∂y

∂t

)2
]

dx .

By considering dE/dt, or otherwise, show that the energy remains constant in time.

Paper 2, Section II

7A Differential Equations
The function θ = θ(t) takes values in the interval (−π, π] and satisfies the differential

equation
d2θ

dt2
+ (λ− 2µ) sin θ +

2µ sin θ√
5 + 4 cos θ

= 0 , (∗)

where λ and µ are positive constants.

Let ω = θ̇. Express (∗) in terms of a pair of first order differential equations in
(θ, ω). Show that if 3λ < 4µ then there are three fixed points in the region 0 6 θ 6 π.

Classify all the fixed points of the system in the case 3λ < 4µ. Sketch the phase
portrait in the case λ = 1 and µ = 3/2.

Comment briefly on the case when 3λ > 4µ.

Part IA, 2021 List of Questions [TURN OVER]
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Paper 2, Section II

8A Differential Equations
For an n× n matrix A, define the matrix exponential by

exp(A) =
∞∑

m=0

Am

m!
,

where A0 ≡ I, with I being the n × n identity matrix. [You may assume that
exp((s + t)A) = exp(sA) exp(tA) for real numbers s, t and you do not need to consider
issues of convergence.] Show that

d

dt
exp(tA) = A exp(tA) .

Deduce that the unique solution to the initial value problem

dy

dt
= Ay, y(0) = y0, where y(t) =



y1(t)

...
yn(t)


 ,

is y(t) = exp(tA)y0.

Let x = x(t) and f = f(t) be vectors of length n and A a real n × n matrix. By
considering a suitable integrating factor, show that the unique solution to

dx

dt
−Ax = f , x(0) = x0 (∗)

is given by

x(t) = exp(tA)x0 +

∫ t

0
exp[(t− s)A]f(s) ds .

Hence, or otherwise, solve the system of differential equations (∗) when

A =




2 2 −2
5 1 −3
1 5 −3


 , f(t) =




sin t
3 sin t

0


 , x0 =




1
1
2


 .

[Hint: Compute A2 and show that A3 = 0.]

Part IA, 2021 List of Questions
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Paper 1, Section I

2A Differential Equations
Solve the differential equation

dy

dx
=

1

x + e2y
,

subject to the initial condition y(1) = 0.

Paper 1, Section II

7A Differential Equations
Show that for each t > 0 and x ∈ R the function

K(x, t) =
1√
4πt

exp

(
−x

2

4t

)

satisfies the heat equation
∂u

∂t
=
∂2u

∂x2
.

For t > 0 and x ∈ R define the function u = u(x, t) by the integral

u(x, t) =

∫ ∞

−∞
K(x− y, t)f(y) dy .

Show that u satisfies the heat equation and limt→0+ u(x, t) = f(x). [Hint: You may find
it helpful to consider the substitution Y = (x− y)/

√
4t. ]

Burgers’ equation is
∂w

∂t
+ w

∂w

∂x
=
∂2w

∂x2
.

By considering the transformation

w(x, t) = −2
1

u

∂u

∂x
,

solve Burgers’ equation with the initial condition limt→0+ w(x, t) = g(x).

Paper 1, Section II

8A Differential Equations
Solve the system of differential equations for x(t), y(t), z(t),

ẋ = 3z − x,

ẏ = 3x + 2y − 3z + cos t− 2 sin t,

ż = 3x− z,

subject to the initial conditions x(0) = y(0) = 0, z(0) = 1.

Part IA, 2020 List of Questions
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Paper 2, Section I

1C Differential Equations
The function y(x) satisfies the inhomogeneous second-order linear differential equa-

tion
y′′ − 2y′ − 3y = −16xe−x.

Find the solution that satisfies the conditions that y(0) = 1 and y(x) is bounded as x → ∞.

Paper 2, Section I

2C Differential Equations
Consider the first order system

dv

dt
−Bv = eλtx (1)

to be solved for v(t) = (v1(t), v2(t), ..., vn(t)) ∈ Rn, where the n×n matrix B , λ ∈ R and
x ∈ Rn are all independent of time. Show that if λ is not an eigenvalue of B then there
is a solution of the form v(t) = eλtu, with u constant.

For n = 2, given

B =

(
0 3
1 0

)
λ = 2 and x =

(
0
1

)
,

find the general solution to (1).

Part IA, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section II

5C Differential Equations
Consider the problem of solving

d2y

dt2
= t (1)

subject to the initial conditions y(0) = dy
dt (0) = 0 using a discrete approach where y

is computed at discrete times, yn = y(tn) where tn = nh (n = −1, 0, 1, . . . , N) and
0 < h = 1/N ≪ 1.

(a) By using Taylor expansions around tn, derive the centred-difference formula

yn+1 − 2yn + yn−1

h2
=

d2y

dt2

∣∣∣∣
t=tn

+O(hα)

where the value of α should be found.

(b) Find the general solution of yn+1−2yn+yn−1 = 0 and show that this is the discrete

version of the corresponding general solution to d2y
dt2

= 0.

(c) The fully discretized version of the differential equation (1) is

yn+1 − 2yn + yn−1

h2
= nh for n = 0, . . . , N − 1. (2)

By finding a particular solution first, write down the general solution to the
difference equation (2). For the solution which satisfies the discretized initial
conditions y0 = 0 and y−1 = y1, find the error in yN in terms of h only.

Part IA, 2019 List of Questions

2019
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Paper 2, Section II

6C Differential Equations
Find all power series solutions of the form y =

∑∞
n=0 anx

n to the equation

(1− x2)y′′ − xy′ + λ2y = 0

for λ a real constant. [It is sufficient to give a recurrence relationship between coefficients.]

Impose the condition y′(0) = 0 and determine those values of λ for which your power
series gives polynomial solutions (i.e., an = 0 for n sufficiently large). Give the values of
λ for which the corresponding polynomials have degree less than 6, and compute these
polynomials. Hence, or otherwise, find a polynomial solution of

(1− x2)y′′ − xy′ + y = 8x4 − 3

satisfying y′(0) = 0.

Part IA, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section II

7C Differential Equations
Two cups of tea at temperatures T1(t) and T2(t) cool in a room at ambient constant

temperature T∞. Initially T1(0) = T2(0) = T0 > T∞.

Cup 1 has cool milk added instantaneously at t = 1 and then hot water added at a
constant rate after t = 2 which is modelled as follows

dT1

dt
= −a(T1 − T∞)− δ(t− 1) +H(t− 2),

whereas cup 2 is left undisturbed and evolves as follows

dT2

dt
= −a(T2 − T∞)

where δ(t) and H(t) are the Dirac delta and Heaviside functions respectively, and a is a
positive constant.

(a) Derive expressions for T1(t) when 0 < t 6 1 and for T2(t) when t > 0.

(b) Show for 1 < t < 2 that

T1(t) = T∞ + (T0 − T∞ − ea)e−at.

(c) Derive an expression for T1(t) for t > 2.

(d) At what time t∗ is T1 = T2?

(e) Find how t∗ behaves for a → 0 and explain your result.

Part IA, 2019 List of Questions

2019
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Paper 2, Section II

8C Differential Equations
Consider the nonlinear system

ẋ = y − 2y3,

ẏ = −x.

(a) Show that H = H(x, y) = x2 + y2 − y4 is a constant of the motion.

(b) Find all the critical points of the system and analyse their stability. Sketch the phase
portrait including the special contours with value H(x, y) = 1

4 .

(c) Find an explicit expression for y = y(t) in the solution which satisfies (x, y) = (12 , 0)
at t = 0. At what time does it reach the point (x, y) = (14 ,−1

2 )?

Part IA, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section I

1B Differential Equations
Consider the following difference equation for real un:

un+1 = aun(1− u2n)

where a is a real constant.

For −∞ < a < ∞ find the steady-state solutions, i.e. those with un+1 = un for all n,
and determine their stability, making it clear how the number of solutions and the stability
properties vary with a. [You need not consider in detail particular values of a which sepa-
rate intervals with different stability properties.]

Paper 2, Section I

2B Differential Equations
Show that for given P (x, y), Q(x, y) there is a function F (x, y) such that, for any

function y(x),

P (x, y) +Q(x, y)
dy

dx
=

d

dx
F (x, y)

if and only if
∂P

∂y
=

∂Q

∂x
.

Now solve the equation

(2y + 3x)
dy

dx
+ 4x3 + 3y = 0 .

Paper 2, Section II

5B Differential Equations
By choosing a suitable basis, solve the equation

(
1 2
1 0

)(
ẋ
ẏ

)
+

(
−2 5
2 −1

)(
x
y

)
= e−4t

(
3b
2

)
+ e−t

(
−3
c− 1

)
,

subject to the initial conditions x(0) = 0, y(0) = 0.

Explain briefly what happens in the cases b = 2 or c = 2.

Part IA, 2018 List of Questions [TURN OVER
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Paper 2, Section II

6B Differential Equations
The function u(x, y) satisfies the partial differential equation

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= 0,

where a, b and c are non-zero constants.

Defining the variables ξ = αx + y and η = βx + y, where α and β are constants,
and writing v(ξ, η) = u(x, y) show that

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= A(α, β)

∂2v

∂ξ2
+B(α, β)

∂2v

∂ξ∂η
+ C(α, β)

∂2v

∂η2
,

where you should determine the functions A(α, β), B(α, β) and C(α, β).

If the quadratic as2 + bs+ c = 0 has distinct real roots then show that α and β can
be chosen such that A(α, β) = C(α, β) = 0 and B(α, β) 6= 0.

If the quadratic as2 + bs + c = 0 has a repeated root then show that α and β can
be chosen such that A(α, β) = B(α, β) = 0 and C(α, β) 6= 0.

Hence find the general solutions of the equations

(i)
∂2u

∂x2
+ 3

∂2u

∂x∂y
+ 2

∂2u

∂y2
= 0

and

(ii)
∂2u

∂x2
+ 2

∂2u

∂x∂y
+

∂2u

∂y2
= 0.

Part IA, 2018 List of Questions
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Paper 2, Section II

7B Differential Equations
Consider the differential equation

x2
d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0.

What values of x are ordinary points of the differential equation? What values of
x are singular points of the differential equation, and are they regular singular points or
irregular singular points? Give clear definitions of these terms to support your answers.

For α not equal to an integer there are two linearly independent power series
solutions about x = 0. Give the forms of the two power series and the recurrence relations
that specify the relation between successive coefficients. Give explicitly the first three
terms in each power series.

For α equal to an integer explain carefully why the forms you have specified do not
give two linearly independent power series solutions. Show that for such values of α there
is (up to multiplication by a constant) one power series solution, and give the recurrence
relation between coefficients. Give explicitly the first three terms.

If y1(x) is a solution of the above second-order differential equation then

y2(x) = y1(x)

∫ x

c

1

s[y1(s)]2
ds,

where c is an arbitrarily chosen constant, is a second solution that is linearly independent
of y1(x). For the case α = 1, taking y1(x) to be a power series, explain why the second
solution y2(x) is not a power series.

[You may assume that any power series you use are convergent.]

Part IA, 2018 List of Questions [TURN OVER

2018
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Paper 2, Section II

8B Differential Equations
The temperature T in an oven is controlled by a heater which provides heat at rate

Q(t). The temperature of a pizza in the oven is U . Room temperature is the constant
value Tr .

T and U satisfy the coupled differential equations

dT

dt
= −a(T − Tr) +Q(t)

dU

dt
= −b(U − T )

where a and b are positive constants. Briefly explain the various terms appearing in the
above equations.

Heating may be provided by a short-lived pulse at t = 0, with Q(t) = Q1(t) = δ(t) or
by constant heating over a finite period 0 < t < τ , with Q(t) = Q2(t) = τ−1(H(t)−H(t−
τ)), where δ(t) and H(t) are respectively the Dirac delta function and the Heaviside step
function. Again briefly, explain how the given formulae for Q1(t) and Q2(t) are consistent
with their description and why the total heat supplied by the two heating protocols is the
same.

For t < 0, T = U = Tr. Find the solutions for T (t) and U(t) for t > 0, for each of
Q(t) = Q1(t) and Q(t) = Q2(t), denoted respectively by T1(t) and U1(t), and T2(t) and
U2(t). Explain clearly any assumptions that you make about continuity of the solutions
in time.

Show that the solutions T2(t) and U2(t) tend respectively to T1(t) and U1(t) in the
limit as τ → 0 and explain why.

Part IA, 2018 List of Questions
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Paper 2, Section I

1C Differential Equations

(a) The numbers z1, z2, . . . satisfy

zn+1 = zn + cn (n > 1),

where c1, c2, . . . are given constants. Find zn+1 in terms of c1, c2, . . . , cn and z1.

(b) The numbers x1, x2, . . . satisfy

xn+1 = anxn + bn (n > 1),

where a1, a2, . . . are given non-zero constants and b1, b2, . . . are given constants. Let
z1 = x1 and zn+1 = xn+1/Un, where Un = a1a2 · · · an . Calculate zn+1−zn , and hence
find xn+1 in terms of x1, b1, . . . , bn and U1, . . . , Un.

Paper 2, Section I

2C Differential Equations
Consider the function

f(x, y) =
x

y
+
y

x
− (x− y)2

a2

defined for x > 0 and y > 0, where a is a non-zero real constant. Show that (λ, λ ) is a
stationary point of f for each λ > 0. Compute the Hessian and its eigenvalues at (λ, λ ).

Part IA, 2017 List of Questions
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Paper 2, Section II

5C Differential Equations
The current I(t) at time t in an electrical circuit subject to an applied voltage V (t)

obeys the equation

L
d2I

dt2
+R

dI

dt
+

1

C
I =

dV

dt
,

where R,L and C are the constant resistance, inductance and capacitance of the circuit
with R > 0, L > 0 and C > 0.

(a) In the case R = 0 and V (t) = 0, show that there exist time-periodic solutions of
frequency ω0, which you should find.

(b) In the case V (t) = H(t), the Heaviside function, calculate, subject to the condition

R2 >
4L

C
,

the current for t > 0, assuming it is zero for t < 0.

(c) If R > 0 and V (t) = sinω0t, where ω0 is as in part (a), show that there is a time-
periodic solution I0(t) of period T = 2π/ω0 and calculate its maximum value IM .

(i) Calculate the energy dissipated in each period, i.e., the quantity

D =

∫ T

0
RI0(t)

2 dt .

Show that the quantity defined by

Q =
2π

D
× LI2M

2

satisfies Qω0RC = 1.

(ii) Write down explicitly the general solution I(t) for all R > 0, and discuss the
relevance of I0(t) to the large time behaviour of I(t).

Part IA, 2017 List of Questions [TURN OVER
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Paper 2, Section II

6C Differential Equations

(a) Consider the system

dx

dt
= x(1− x)− xy

dy

dt
=

1

8
y(4x− 1)

for x(t) > 0, y(t) > 0. Find the critical points, determine their type and explain, with
the help of a diagram, the behaviour of solutions for large positive times t.

(b) Consider the system

dx

dt
= y + (1− x2 − y2)x

dy

dt
= −x+ (1− x2 − y2)y

for (x(t), y(t)) ∈ R2. Rewrite the system in polar coordinates by setting x(t) =
r(t) cos θ(t) and y(t) = r(t) sin θ(t), and hence describe the behaviour of solutions for
large positive and large negative times.

Part IA, 2017 List of Questions
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Paper 2, Section II

7C Differential Equations
Let y1 and y2 be two solutions of the differential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 , −∞ < x <∞,

where p and q are given. Show, using the Wronskian, that

• either there exist α and β, not both zero, such that αy1(x)+βy2(x) vanishes
for all x,

• or given x0, A and B, there exist a and b such that y(x) = ay1(x) + by2(x)
satisfies the conditions y(x0) = A and y′(x0) = B.

Find power series y1 and y2 such that an arbitrary solution of the equation

y′′(x) = xy(x)

can be written as a linear combination of y1 and y2.

Part IA, 2017 List of Questions [TURN OVER
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Paper 2, Section II

8C Differential Equations

(a) Solve
dz

dt
= z2 subject to z(0) = z0. For which z0 is the solution finite for all t ∈ R ?

Let a be a positive constant. By considering the lines y = a(x− x0) for constant x0,
or otherwise, show that any solution of the equation

∂f

∂x
+ a

∂f

∂y
= 0

is of the form f(x, y) = F (y − ax) for some function F .

Solve the equation
∂f

∂x
+ a

∂f

∂y
= f2

subject to f(0, y) = g(y) for a given function g . For which g is the solution bounded
on R2 ?

(b) By means of the change of variables X = αx + βy and T = γx + δy for appropriate
real numbers α, β, γ, δ , show that the equation

∂2f

∂x2
+

∂2f

∂x∂y
= 0 (∗)

can be transformed into the wave equation

1

c2
∂2F

∂T 2
− ∂2F

∂X2
= 0 ,

where F is defined by f(x, y) = F (αx + βy, γx + δy). Hence write down the general
solution of (∗).

Part IA, 2017 List of Questions
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Paper 2, Section I

1A Differential Equations

(a) Find the solution of the differential equation

y′′ − y′ − 6y = 0

that is bounded as x→ ∞ and satisfies y = 1 when x = 0.

(b) Solve the difference equation

(yn+1 − 2yn + yn−1)−
h

2
(yn+1 − yn−1)− 6h2yn = 0.

Show that if 0 < h ≪ 1, the solution that is bounded as n → ∞ and satisfies y0 = 1
is approximately (1− 2h)n.

(c) By setting x = nh, explain the relation between parts (a) and (b).

Paper 2, Section I

2A Differential Equations

(a) For each non-negative integer n and positive constant λ, let

In(λ) =

∫ ∞

0
xne−λxdx.

By differentiating In with respect to λ, find its value in terms of n and λ.

(b) By making the change of variables x = u + v, y = u − v, transform the differential
equation

∂2f

∂x∂y
= 1

into a differential equation for g, where g(u, v) = f(x, y).

Part IA, 2016 List of Questions
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Paper 2, Section II

5A Differential Equations

(a) Find and sketch the solution of

y′′ + y = δ(x − π/2),

where δ is the Dirac delta function, subject to y(0) = 1 and y′(0) = 0.

(b) A bowl of soup, which Sam has just warmed up, cools down at a rate equal to the
product of a constant k and the difference between its temperature T (t) and the
temperature T0 of its surroundings. Initially the soup is at temperature T (0) = αT0,
where α > 2.

(i) Write down and solve the differential equation satisfied by T (t).

(ii) At time t1, when the temperature reaches half of its initial value, Sam quickly
adds some hot water to the soup, so the temperature increases instantaneously
by β, where β > αT0/2. Find t1 and T (t) for t > t1.

(iii) Sketch T (t) for t > 0.

(iv) Sam wants the soup to be at temperature αT0 at time t2, where t2 > t1. What
value of β should Sam choose to achieve this? Give your answer in terms of α,
k, t2 and T0.

Part IA, 2016 List of Questions [TURN OVER
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Paper 2, Section II

6A Differential Equations

(a) The function y(x) satisfies

y′′ + p(x)y′ + q(x)y = 0.

(i) Define the Wronskian W (x) of two linearly independent solutions y1(x) and
y2(x). Derive a linear first-order differential equation satisfied by W (x).

(ii) Suppose that y1(x) is known. Use the Wronskian to write down a first-order
differential equation for y2(x). Hence express y2(x) in terms of y1(x) and W (x).

(b) Verify that y1(x) = cos(xγ) is a solution of

axαy′′ + bxα−1y′ + y = 0,

where a, b, α and γ are constants, provided that these constants satisfy certain
conditions which you should determine.

Use the method that you described in part (a) to find a solution which is linearly
independent of y1(x).

Part IA, 2016 List of Questions
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Paper 2, Section II

7A Differential Equations
The function y(x) satisfies

y′′ + p(x)y′ + q(x)y = 0.

What does it mean to say that the point x = 0 is (i) an ordinary point and (ii) a
regular singular point of this differential equation? Explain what is meant by the indicial
equation at a regular singular point. What can be said about the nature of the solutions
in the neighbourhood of a regular singular point in the different cases that arise according
to the values of the roots of the indicial equation?

State the nature of the point x = 0 of the equation

xy′′ + (x−m+ 1)y′ − (m− 1)y = 0. (∗)

Set y(x) = xσ
∑∞

n=0 anx
n, where a0 6= 0, and find the roots of the indicial equation.

(a) Show that one solution of (∗) with m 6= 0,−1,−2, · · · is

y(x) = xm

(
1 +

∞∑

n=1

(−1)n xn

(m+ n)(m+ n− 1) · · · (m+ 1)

)
,

and find a linearly independent solution in the case when m is not an integer.

(b) If m is a positive integer, show that (∗) has a polynomial solution.

(c) What is the form of the general solution of (∗) in the case m = 0? [You do not need
to find the general solution explicitly.]

Part IA, 2016 List of Questions [TURN OVER
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Paper 2, Section II

8A Differential Equations

(a) By considering eigenvectors, find the general solution of the equations

dx

dt
= 2x+ 5y,

dy

dt
= −x− 2y,

(†)

and show that it can be written in the form

(
x
y

)
= α

(
5 cos t

−2 cos t− sin t

)
+ β

(
5 sin t

cos t− 2 sin t

)
,

where α and β are constants.

(b) For any square matrix M , exp(M) is defined by

exp(M) =

∞∑

n=0

Mn

n!
.

Show that if M has constant elements, the vector equation
dx

dt
= Mx has a solution

x = exp(Mt)x0, where x0 is a constant vector. Hence solve (†) and show that your
solution is consistent with the result of part (a).

Part IA, 2016 List of Questions
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Paper 2, Section I

1B Differential Equations
Find the general solution of the equation

dy

dx
− 2y = eλx, (∗)

where λ is a constant not equal to 2.

By subtracting from the particular integral an appropriate multiple of the comple-
mentary function, obtain the limit as λ → 2 of the general solution of (∗) and confirm
that it yields the general solution for λ = 2.

Solve equation (∗) with λ = 2 and y(1) = 2.

Paper 2, Section I

2B Differential Equations
Find the general solution of the equation

2
dy

dt
= y − y3.

Compute all possible limiting values of y as t → ∞.

Find a non-zero value of y(0) such that y(t) = y(0) for all t.

Paper 2, Section II

5B Differential Equations
Write as a system of two first-order equations the second-order equation

d2θ

dt2
+ c

dθ

dt

∣∣∣∣
dθ

dt

∣∣∣∣+ sin θ = 0, (∗)

where c is a small, positive constant, and find its equilibrium points. What is the nature
of these points?

Draw the trajectories in the (θ, ω) plane, where ω = dθ/dt, in the neighbourhood of
two typical equilibrium points.

By considering the cases of ω > 0 and ω < 0 separately, find explicit expressions
for ω2 as a function of θ. Discuss how the second term in (∗) affects the nature of the
equilibrium points.

Part IA, 2015 List of Questions
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Paper 2, Section II

6B Differential Equations
Consider the equation

2
∂2u

∂x2
+ 3

∂2u

∂y2
− 7

∂2u

∂x ∂y
= 0 (∗)

for the function u(x, y), where x and y are real variables. By using the change of variables

ξ = x+ αy, η = βx+ y,

where α and β are appropriately chosen integers, transform (∗) into the equation

∂2u

∂ξ ∂η
= 0.

Hence, solve equation (∗) supplemented with the boundary conditions

u(0, y) = 4y2, u(−2y, y) = 0, for all y.

Part IA, 2015 List of Questions [TURN OVER
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Paper 2, Section II

7B Differential Equations
Suppose that u(x) satisfies the equation

d2u

dx2
− f(x)u = 0,

where f(x) is a given non-zero function. Show that under the change of coordinates
x = x(t),

d2u

dt2
− ẍ

ẋ

du

dt
− ẋ2f(x)u = 0,

where a dot denotes differentiation with respect to t. Furthermore, show that the function

U(t) = ẋ−
1
2u(x)

satisfies
d2U

dt2
−

[
ẋ2f(x) + ẋ−

1
2

(
ẍ

ẋ

d

dt

(
ẋ

1
2
)
− d2

dt2
(
ẋ

1
2
))]

U = 0.

Choosing ẋ =
(
f(x)

)− 1
2 , deduce that

d2U

dt2
−

(
1 + F (t)

)
U = 0,

for some appropriate function F (t). Assuming that F may be neglected, deduce that u(x)
can be approximated by

u(x) ≈ A(x)
(
c+e

G(x) + c−e−G(x)
)
,

where c+, c− are constants and A, G are functions that you should determine in terms
of f(x).

Part IA, 2015 List of Questions
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Paper 2, Section II

8B Differential Equations
Suppose that x(t) ∈ R3 obeys the differential equation

dx

dt
= Mx, (∗)

where M is a constant 3× 3 real matrix.

(i) Suppose that M has distinct eigenvalues λ1, λ2, λ3 with corresponding eigenvectors
e1, e2, e3. Explain why x may be expressed in the form

∑3
i=1 ai(t)ei and deduce by

substitution that the general solution of (∗) is

x =
3∑

i=1

Aie
λitei,

where A1, A2, A3 are constants.

(ii) What is the general solution of (∗) if λ2 = λ3 6= λ1, but there are still three linearly
independent eigenvectors?

(iii) Suppose again that λ2 = λ3 6= λ1, but now there are only two linearly independent
eigenvectors: e1 corresponding to λ1 and e2 corresponding to λ2. Suppose that
a vector v satisfying the equation (M − λ2I)v = e2 exists, where I denotes the
identity matrix. Show that v is linearly independent of e1 and e2, and hence or
otherwise find the general solution of (∗).

Part IA, 2015 List of Questions [TURN OVER

20152015



5

Paper 2, Section I

1B Differential Equations
The following equation arises in the theory of elastic beams:

t4
d2u

dt2
+ λ2u = 0, λ > 0, t > 0,

where u(t) is a real valued function.

By using the change of variables

t =
1

τ
, u(t) =

v(τ)

τ
,

find the general solution of the above equation.

Paper 2, Section I

2B Differential Equations
Consider the ordinary differential equation

P (x, y) +Q(x, y)
dy

dx
= 0. (∗)

State an equation to be satisfied by P and Q that ensures that equation (∗) is exact. In
this case, express the general solution of equation (∗) in terms of a function F (x, y) which
should be defined in terms of P and Q.

Consider the equation
dy

dx
= − 4x+ 3y

3x+ 3y2
,

satisfying the boundary condition y(1) = 2. Find an explicit relation between y and x.
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Paper 2, Section II

5B Differential Equations
Use the transformation

y(t) =
1

cx(t)

dx(t)

dt
,

where c is a constant, to map the Ricatti equation

dy

dt
+ cy2 + a(t)y + b(t) = 0, t > 0,

to a linear equation.

Using the above result, as well as the change of variables τ = ln t, solve the boundary
value problem

dy

dt
+ y2 +

y

t
− λ2

t2
= 0, t > 0,

y(1) = 2λ,

where λ is a positive constant. What is the value of t > 0 for which the solution is singular?

Part IA, 2014 List of Questions
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Paper 2, Section II

6B Differential Equations
The so-called “shallow water theory” is characterised by the equations

∂ζ

∂t
+

∂

∂x

[
(h+ ζ)u

]
= 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
= 0,

where g denotes the gravitational constant, the constant h denotes the undisturbed depth
of the water, u(x, t) denotes the speed in the x-direction, and ζ(x, t) denotes the elevation
of the water.

(i) Assuming that |u| and |ζ| and their gradients are small in some appropriate
dimensional considerations, show that ζ satisfies the wave equation

∂2ζ

∂t2
= c2

∂2ζ

∂x2
, (∗)

where the constant c should be determined in terms of h and g.

(ii) Using the change of variables

ξ = x+ ct, η = x− ct,

show that the general solution of (∗) satisfying the initial conditions

ζ(x, 0) = u0(x),
∂ζ

∂t
(x, 0) = v0(x),

is given by
ζ(x, t) = f(x+ ct) + g(x− ct),

where

df(x)

dx
=

1

2

[
du0(x)

dx
+

1

c
v0(x)

]
,

dg(x)

dx
=

1

2

[
du0(x)

dx
− 1

c
v0(x)

]
.

Simplify the above to find ζ in terms of u0 and v0.

(iii) Find ζ(x, t) in the particular case that

u0(x) = H(x+ 1)−H(x− 1), v0(x) = 0, −∞ < x < ∞,

where H(·) denotes the Heaviside step function.

Describe in words this solution.

Part IA, 2014 List of Questions [TURN OVER
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Paper 2, Section II

7B Differential Equations
(a) Let y1(x) be a solution of the equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0.

Assuming that the second linearly independent solution takes the form y2(x) =
v(x)y1(x), derive an ordinary differential equation for v(x).

(b) Consider the equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ 2y = 0, −1 < x < 1.

By inspection or otherwise, find an explicit solution of this equation. Use the result
in (a) to find the solution y(x) satisfying the conditions

y(0) =
dy

dx
(0) = 1.

Paper 2, Section II

8B Differential Equations
Consider the damped pendulum equation

d2θ

dt2
+ c

dθ

dt
+ sin θ = 0, (∗)

where c is a positive constant. The energy E, which is the sum of the kinetic energy and
the potential energy, is defined by

E(t) =
1

2

(
dθ

dt

)2

+ 1− cos θ.

(i) Verify that E(t) is a decreasing function.

(ii) Assuming that θ is sufficiently small, so that terms of order θ3 can be neglected, find
an approximation for the general solution of (∗) in terms of two arbitrary constants.
Discuss the dependence of this approximate solution on c.

(iii) By rewriting (∗) as a system of equations for x(t) = θ and y(t) = θ̇, find all stationary
points of (∗) and discuss their nature for all c, except c = 2.

(iv) Draw the phase plane curves for the particular case c = 1.

Part IA, 2014 List of Questions
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Paper 2, Section I

1A Differential Equations
Solve the equation

ÿ − ẏ − 2y = 3e2t + 3e−t + 3 + 6t

subject to the conditions y = ẏ = 0 at t = 0.

Paper 2, Section I

2A Differential Equations
Use the transformation z = lnx to solve

z̈ = −ż2 − 1− e−z

subject to the conditions z = 0 and ż = V at t = 0, where V is a positive constant.

Show that when ż(t) = 0

z = ln
(√

V 2 + 4− 1
)
.

Paper 2, Section II

5A Differential Equations
The function y(x) satisfies the equation

y′′ + p(x)y′ + q(x)y = 0 .

Give the definitions of the terms ordinary point, singular point, and regular singular point
for this equation.

For the equation
xy′′ + y = 0

classify the point x = 0 according to your definitions. Find the series solution about x = 0
which satisfies

y = 0 and y′ = 1 at x = 0.

For a second solution with y = 1 at x = 0, consider an expansion

y(x) = y0(x) + y1(x) + y2(x) + . . . ,

where y0 = 1 and xy′′n+1 = −yn. Find y1 and y2 which have yn(0) = 0 and y′n(1) = 0.
Comment on y′ near x = 0 for this second solution.

Part IA, 2013 List of Questions
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Paper 2, Section II

6A Differential Equations
Consider the function

f(x, y) = (x2 − y4)(1− x2 − y4).

Determine the type of each of the nine critical points.

Sketch contours of constant f(x, y).

Paper 2, Section II

7A Differential Equations
Find x(t) and y(t) which satisfy

3ẋ+ ẏ + 5x− y = 2e−t + 4e−3t,
ẋ+ 4ẏ − 2x+ 7y = −3e−t + 5e−3t,

subject to x = y = 0 at t = 0.

Paper 2, Section II

8A Differential Equations
Medical equipment is sterilised by placing it in a hot oven for a time T and then

removing it and letting it cool for the same time. The equipment at temperature θ(t)
warms and cools at a rate equal to the product of a constant α and the difference between
its temperature and its surroundings, θ1 when warming in the oven and θ0 when cooling
outside. The equipment starts the sterilisation process at temperature θ0.

Bacteria are killed by the heat treatment. Their number N(t) decreases at a rate
equal to the product of the current number and a destruction factor β. This destruction
factor varies linearly with temperature, vanishing at θ0 and having a maximum βmax at
θ1.

Find an implicit equation for T such that the number of bacteria is reduced by a
factor of 10−20 by the sterilisation process.

A second hardier species of bacteria requires the oven temperature to be increased
to achieve the same destruction factor βmax. How is the sterilisation time T affected?

Part IA, 2013 List of Questions [TURN OVER
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Paper 2, Section I

1A Differential Equations
Find two linearly independent solutions of

y′′ + 4y′ + 4y = 0 .

Find the solution in x > 0 of

y′′ + 4y′ + 4y = e−2x ,

subject to y = y′ = 0 at x = 0.

Paper 2, Section I

2A Differential Equations
Find the constant solutions (those with un+1 = un) of the discrete equation

un+1 =
1
2un (1 + un) ,

and determine their stability.

Paper 2, Section II

5A Differential Equations
Find the first three non-zero terms in the series solutions y1(x) and y2(x) for the

differential equation
x2y′′ − 2xy′ + (2− x2)y = 0 ,

that satisfy

y′1(0) = a and y′′1 (0) = 0 ,

y′2(0) = 0 and y′′2 (0) = 2b .

Identify these solutions in closed form.
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Paper 2, Section II

6A Differential Equations
Consider the function

V (x, y) = x4 − x2 + 2xy + y2.

Find the critical (stationary) points of V (x, y). Determine the type of each critical point.
Sketch the contours of V (x, y) = constant.

Now consider the coupled differential equations

dx

dt
= −∂V

∂x
,

dy

dt
= −∂V

∂y
.

Show that V (x(t), y(t)) is a non-increasing function of t. If x = 1 and y = −1
2 at t = 0,

where does the solution tend to as t → ∞?

Paper 2, Section II

7A Differential Equations
Find the solution to the system of equations

dx

dt
+

−4x+ 2y

t
= −9,

dy

dt
+

x− 5y

t
= 3

in t > 1 subject to
x = 0 and y = 0 at t = 1.

[Hint: powers of t.]

Part IA, 2012 List of Questions
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Paper 2, Section II

8A Differential Equations
Consider the second-order differential equation for y(t) in t > 0

ÿ + 2kẏ + (k2 + ω2)y = f(t) . (∗)

(i) For f(t) = 0, find the general solution y1(t) of (∗).
(ii) For f(t) = δ(t − a) with a > 0, find the solution y2(t, a) of (∗) that satisfies

y = 0 and ẏ = 0 at t = 0.

(iii) For f(t) = H(t − b) with b > 0, find the solution y3(t, b) of (∗) that satisfies
y = 0 and ẏ = 0 at t = 0.

(iv) Show that

y2(t, b) = −∂y3
∂b

.

Part IA, 2012 List of Questions [TURN OVER
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Paper 2, Section I

1A Differential Equations

(a) Consider the homogeneous kth-order difference equation

akyn+k + ak−1yn+k−1 + . . .+ a2yn+2 + a1yn+1 + a0yn = 0 (∗)

where the coefficients ak, . . . , a0 are constants. Show that for λ 6= 0 the sequence yn = λn

is a solution if and only if p(λ) = 0, where

p(λ) = akλ
k + ak−1λ

k−1 + . . . + a2λ
2 + a1λ+ a0 .

State the general solution of (∗) if k = 3 and p(λ) = (λ− µ)3 for some constant µ.

(b) Find an inhomogeneous difference equation that has the general solution

yn = a 2n − n , a ∈ R .

Paper 2, Section I

2A Differential Equations

(a) For a differential equation of the form dy
dx = f(y), explain how f ′(y) can be used

to determine the stability of any equilibrium solutions and justify your answer.

(b) Find the equilibrium solutions of the differential equation

dy

dx
= y3 − y2 − 2y

and determine their stability. Sketch representative solution curves in the (x, y)-plane.

Part IA, 2011 List of Questions
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Paper 2, Section II

5A Differential Equations

(a) Find the general real solution of the system of first-order differential equations

ẋ = x+ µy

ẏ = −µx+ y ,

where µ is a real constant.

(b) Find the fixed points of the non-linear system of first-order differential equations

ẋ = x+ y

ẏ = −x+ y − 2x2y

and determine their nature. Sketch the phase portrait indicating the direction of motion
along trajectories.

Paper 2, Section II

6A Differential Equations

(a) A surface in R3 is defined by the equation f(x, y, z) = c, where c is a constant.
Show that the partial derivatives on this surface satisfy

∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1 . (∗)

(b) Now let f(x, y, z) = x2 − y4 + 2ay2 + z2, where a is a constant.

(i) Find expressions for the three partial derivatives ∂x
∂y

∣∣∣
z
, ∂y

∂z

∣∣∣
x
and ∂z

∂x

∣∣∣
y
on

the surface f(x, y, z) = c, and verify the identity (∗).
(ii) Find the rate of change of f in the radial direction at the point (x, 0, z).

(iii) Find and classify the stationary points of f .

(iv) Sketch contour plots of f in the (x, y)-plane for the cases a = 1 and a = −1.
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Paper 2, Section II

7A Differential Equations

(a) Define the Wronskian W of two solutions y1(x) and y2(x) of the differential
equation

y′′ + p(x)y′ + q(x)y = 0 , (∗)
and state a necessary and sufficient condition for y1(x) and y2(x) to be linearly independ-
ent. Show that W (x) satisfies the differential equation

W ′(x) = −p(x)W (x) .

(b) By evaluating the Wronskian, or otherwise, find functions p(x) and q(x) such
that (∗) has solutions y1(x) = 1 + cos x and y2(x) = sinx. What is the value of W (π)? Is
there a unique solution to the differential equation for 0 6 x < ∞ with initial conditions
y(0) = 0, y′(0) = 1? Why or why not?

(c) Write down a third-order differential equation with constant coefficients, such
that y1(x) = 1+cosx and y2(x) = sinx are both solutions. Is the solution to this equation
for 0 6 x < ∞ with initial conditions y(0) = y′′(0) = 0, y′(0) = 1 unique? Why or why
not?

Paper 2, Section II

8A Differential Equations

(a) The circumference y of an ellipse with semi-axes 1 and x is given by

y(x) =

∫ 2π

0

√
sin2 θ + x2 cos2 θ dθ . (∗)

Setting t = 1− x2, find the first three terms in a series expansion of (∗) around t = 0.

(b) Euler proved that y also satisfies the differential equation

x(1− x2)y′′ − (1 + x2)y′ + xy = 0 .

Use the substitution t = 1 − x2 for x > 0 to find a differential equation for u(t), where
u(t) = y(x). Show that this differential equation has regular singular points at t = 0 and
t = 1.

Show that the indicial equation at t = 0 has a repeated root, and find the recurrence
relation for the coefficients of the corresponding power-series solution. State the form of
a second, independent solution.

Verify that the power-series solution is consistent with your answer in (a).

Part IA, 2011 List of Questions
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Paper 2, Section I

1A Differential Equations

Find the general solutions to the following difference equations for yn, n ∈ N .

(i) yn+3 − 3 yn+1 + 2 yn = 0,

(ii) yn+3 − 3 yn+1 + 2 yn = 2n,

(iii) yn+3 − 3 yn+1 + 2 yn = (−2)n,

(iv) yn+3 − 3 yn+1 + 2 yn = (−2)n + 2n.

Paper 2, Section I

2A Differential Equations

Let f(x, y) = g(u, v) where the variables {x, y} and {u, v} are related by a smooth,

invertible transformation. State the chain rule expressing the derivatives
∂g

∂u
and

∂g

∂v
in

terms of
∂f

∂x
and

∂f

∂y
and use this to deduce that

∂2g

∂u ∂v
=

∂x

∂u

∂x

∂v

∂2f

∂x2
+

(
∂x

∂u

∂y

∂v
+

∂x

∂v

∂y

∂u

)
∂2f

∂x ∂y
+

∂y

∂u

∂y

∂v

∂2f

∂y2
+ H

∂f

∂x
+ K

∂f

∂y

where H and K are second-order partial derivatives, to be determined.

Using the transformation x = uv and y = u/v in the above identity, or otherwise,
find the general solution of

x
∂2f

∂x2
− y2

x

∂2f

∂y2
+

∂f

∂x
− y

x

∂f

∂y
= 0 .
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Paper 2, Section II

5A Differential Equations

(a) Consider the differential equation

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ . . . + a2

d2y

dx2
+ a1

dy

dx
+ a0y = 0 , (1)

with n ∈ N and a0, . . . , an ∈ R . Show that y(x) = eλx is a solution if and only if p(λ) = 0
where

p(λ) = anλ
n + an−1λ

n−1 + . . . + a2λ
2 + a1λ + a0 .

Show further that y(x) = xeµx is also a solution of (1) if µ is a root of the polynomial p(λ)
of multiplicity at least 2 .

(b) By considering v(t) =
d2u

dt2
, or otherwise, find the general real solution for u(t)

satisfying

d4u

dt4
+ 2

d2u

dt2
= 4t2 . (2)

By using a substitution of the form u(t) = y(t2) in (2), or otherwise, find the general
real solution for y(x), with x positive, where

4x2
d4y

dx4
+ 12x

d3y

dx3
+ (3 + 2x)

d2y

dx2
+

dy

dx
= x .
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Paper 2, Section II

6A Differential Equations

(a) By using a power series of the form

y(x) =
∞∑

k=0

ak x
k

or otherwise, find the general solution of the differential equation

xy′′ − (1− x)y′ − y = 0. (1)

(b) Define the Wronskian W (x) for a second order linear differential equation

y′′ + p(x)y′ + q(x)y = 0 (2)

and show that W ′+ p(x)W = 0. Given a non-trivial solution y1(x) of (2) show that W (x)
can be used to find a second solution y2(x) of (2) and give an expression for y2(x) in the
form of an integral.

(c) Consider the equation (2) with

p(x) = −P (x)

x
and q(x) = −Q(x)

x

where P and Q have Taylor expansions

P (x) = P0 + P1x+ . . . , Q(x) = Q0 +Q1x+ . . .

with P0 a positive integer. Find the roots of the indicial equation for (2) with these
assumptions. If y1(x) = 1 + βx + . . . is a solution, use the method of part (b) to find
the first two terms in a power series expansion of a linearly independent solution y2(x),
expressing the coefficients in terms of P0, P1 and β.
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Paper 2, Section II

7A Differential Equations

(a) Find the general solution of the system of differential equations




ẋ
ẏ
ż


 =




−1 2 −1
1 0 −1
1 −2 1







x
y
z


 . (1)

(b) Depending on the parameter λ ∈ R, find the general solution of the system of
differential equations




ẋ
ẏ
ż


 =




−1 2 −1
1 0 −1
1 −2 1







x
y
z


 + 2




−λ
1
λ


 e 2t, (2)

and explain why (2) has a particular solution of the form ce2t with constant vector c ∈ R3

for λ = 1 but not for λ 6= 1.

[Hint: decompose




−λ
1
λ


 in terms of the eigenbasis of the matrix in (1).]

(c) For λ = −1, find the solution of (2) which goes through the point (0, 1, 0) at
t = 0 .

Paper 2, Section II

8A Differential Equations

(a) State how the nature of a critical (or stationary) point of a function f(x) with
x ∈ Rn can be determined by consideration of the eigenvalues of the Hessian matrix H of
f(x), assuming H is non-singular.

(b) Let f(x, y) = xy(1 − x − y). Find all the critical points of the function f(x, y)
and determine their nature. Determine the zero contour of f(x, y) and sketch a contour
plot showing the behaviour of the contours in the neighbourhood of the critical points.

(c) Now let g(x, y) = x3y2(1− x− y) . Show that (0, 1) is a critical point of g(x, y)
for which the Hessian matrix of g is singular. Find an approximation for g(x, y) to lowest
non-trivial order in the neighbourhood of the point (0, 1). Does g have a maximum or a
minimum at (0, 1)? Justify your answer.
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Paper 2, Section I

1C Differential Equations
The size of the population of ducks living on the pond of a certain Cambridge college

is governed by the equation
dN

dt
= αN −N2,

where N = N(t) is the number of ducks at time t and α is a positive constant. Given that
N(0) = 2α, find N(t). What happens as t → ∞?

Paper 2, Section I

2C Differential Equations
Solve the differential equation

d2y

dx2
− 5

dy

dx
+ 6y = e3x

subject to the conditions y = dy/dx = 0 when x = 0.

Paper 2, Section II

5C Differential Equations
Consider the first-order ordinary differential equation

dy

dx
= f1(x)y + f2(x)y

p, (∗)

where y > 0 and p is a positive constant with p 6= 1. Let u = y1−p. Show that u satisfies

du

dx
= (1− p)[f1(x)u+ f2(x)].

Hence, find the general solution of equation (∗) when f1(x) = 1, f2(x) = x.

Now consider the case f1(x) = 1, f2(x) = −α2, where α is a non-zero constant. For
p > 1 find the two equilibrium points of equation (∗), and determine their stability. What
happens when 0 < p < 1?

Part IA, 2009 List of Questions [TURN OVER

20092009



6

Paper 2, Section II

6C Differential Equations
Consider the second-order ordinary differential equation

ẍ+ 2kẋ+ ω2x = 0 ,

where x = x(t) and k and ω are constants with k > 0. Calculate the general solution in
the cases (i) k < ω, (ii) k = ω, (iii) k > ω.

Now consider the system

ẍ+ 2kẋ+ ω2x =

{
a when ẋ > 0

0 when ẋ 6 0

with x(0) = x1, ẋ(0) = 0, where a and x1 are positive constants. In the case k < ω
find x(t) in the ranges 0 6 t 6 π/p and π/p 6 t 6 2π/p, where p =

√
ω2 − k2. Hence,

determine the value of x1 for which x(t) is periodic. For k > ω can x(t) ever be periodic?
Justify your answer.

Paper 2, Section II

7C Differential Equations
Consider the differential equation

x
d2y

dx2
+ (c− x)

dy

dx
− y = 0 ,

where c is a constant with 0 < c < 1. Determine two linearly independent series solutions
about x = 0, giving an explicit expression for the coefficient of the general term in each
series.

Determine the solution of

x
d2y

dx2
+ (c− x)

dy

dx
− y = x

for which y(0) = 0 and dy/dx is finite at x = 0.
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Paper 2, Section II

8C Differential Equations
(a) The function y(x, t) satisfies the forced wave equation

∂2y

∂x2
− ∂2y

∂t2
= 4

with initial conditions y(x, 0) = sinx and ∂y/∂t(x, 0) = 0. By making the change of
variables u = x+ t and v = x− t, show that

∂2y

∂u∂v
= 1 .

Hence, find y(x, t).

(b) The thickness of an axisymmetric drop of liquid spreading on a flat surface satisfies

∂h

∂t
=

1

r

∂

∂r

(
rh3

∂h

∂r

)
,

where h = h(r, t) is the thickness of the drop, r is the radial coordinate on the surface
and t is time. The drop has radius R(t). The boundary conditions are that ∂h/∂r = 0 at
r = 0 and h(r, t) ∝ (R(t)− r)1/3 as r → R(t).

Show that

M =

∫ R(t)

0
rhdr

is independent of time. Given that h(r, t) = f(r/tα)t−1/4 for some function f (which need
not be determined) and that R(t) is proportional to tα, find α.
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2/I/1A Differential Equations

Let a be a positive constant. Find the solution to the differential equation

d4y

dx4
− a4y = e−ax

that satisfies y(0) = 1 and y → 0 as x→∞ .

2/I/2A Differential Equations

Find the fixed points of the difference equation

un+1 = λun(1− u2n) .

Show that a stable fixed point exists when −1 < λ < 1 and also when 1 < λ < 2 .

Part IA 2008
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2/II/5A Differential Equations

Two cups of hot tea at temperatures T1(t) and T2(t) cool in a room at ambient
constant temperature T∞ . Initially T1(0) = T2(0) = T0 > T∞ .

Cup 1 has cool milk added instantaneously at t = 1; in contrast, cup 2 has cool
milk added at a constant rate for 1 6 t 6 2 . Briefly explain the use of the differential
equations

dT1
dt

= −a (T1 − T∞)− δ (t− 1) ,

dT2
dt

= −a (T2 − T∞)−H(t− 1) +H(t− 2) ,

where δ(t) and H(t) are the Dirac delta and Heaviside functions respectively, and a is a
positive constant.

(i) Show that for 0 6 t < 1

T1(t) = T2(t) = T∞ + (T0 − T∞) e−at.

(ii) Determine the jump (discontinuity) condition for T1 at t = 1 and hence find T1(t)
for t > 1 .

(iii) Using continuity of T2(t) at t = 1 show that for 1 < t < 2

T2(t) = T∞ −
1

a
+ e−at

(
T0 − T∞ +

1

a
ea
)
.

(iv) Compute T2(t) for t > 2 and show that for t > 2

T1(t)− T2(t) =

(
1

a
ea − 1− 1

a

)
e (1−t)a.

(v) Find the time t∗, after t = 1 , at which T1 = T2 .

Part IA 2008
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2/II/6A Differential Equations

The linear second-order differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x) y = 0

has linearly independent solutions y1(x) and y2(x). Define the Wronskian W of y1(x)
and y2(x).

Suppose that y1(x) is known. Use the Wronskian to write down a first-order
differential equation for y2(x). Hence express y2(x) in terms of y1(x) and W .

Show further that W satisfies the differential equation

dW

dx
+ p(x)W = 0 .

Verify that y1(x) = x2 − 2x+ 1 is a solution of

(x− 1)2
d2y

dx2
+ (x− 1)

dy

dx
− 4y = 0 . (∗)

Compute the Wronskian and hence determine a second, linearly independent,
solution of (∗).

2/II/7A Differential Equations

Find the first three non-zero terms in series solutions y1(x) and y2(x) for the
differential equation

x
d2y

dx2
− dy

dx
+ 4x3y = 0 , (∗)

that satisfy the boundary conditions

y1(0) = a , y′′1 (0) = 0 ,

y2(0) = 0 , y′′2 (0) = b ,

where a and b are constants.

Determine the value of α such that the change of variable u = xα transforms (∗)
into a differential equation with constant coefficients. Hence find the general solution
of (∗).
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2/II/8A Differential Equations

Consider the function

f(x, y) = x2 + y2 − 1

2
x4 − b x2y2 − 1

2
y4 ,

where b is a positive constant.

Find the critical points of f(x, y) , assuming b 6= 1 . Determine the type of each critical
point and sketch contours of constant f(x, y) in the two cases (i) b < 1 and (ii) b > 1 .

For b = 1 describe the subset of the (x, y) plane on which f(x, y) attains its
maximum value.
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2/I/1B Differential Equations

Find the solution y(x) of the equation

y′′ − 6y′ + 9y = cos(2x) e3x

that satisfies y(0) = 0 and y′(0) = 1.

2/I/2B Differential Equations

Investigate the stability of:

(i) the equilibrium points of the equation

dy

dt
= (y2 − 4) tan−1(y) ;

(ii) the constant solutions (un+1 = un) of the discrete equation

un+1 =
1

2
u2n(1 + un) .

2/II/5B Differential Equations

(i) The function y(z) satisfies the equation

y′′ + p(z)y′ + q(z)y = 0 .

Give the definitions of the terms ordinary point, singular point, and regular singular point
for this equation.

(ii) For the equation
4zy′′ + 2y′ + y = 0 ,

classify the point z = 0 according to the definitions you gave in (i), and find the series
solutions about z = 0. Identify these solutions in closed form.

Part IA 2007
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2/II/6B Differential Equations

Find the most general solution of the equation

6
∂2u

∂x2
− 5

∂2u

∂x∂y
+
∂2u

∂y2
= 1

by making the change of variables

ξ = x+ 2y, η = x+ 3y .

Find the solution that satisfies u = 0 and ∂u/∂y = x when y = 0.

2/II/7B Differential Equations

(i) Find, in the form of an integral, the solution of the equation

α
dy

dt
+ y = f(t)

that satisfies y → 0 as t → −∞. Here f(t) is a general function and α is a positive
constant.

Hence find the solution in each of the cases:

(a) f(t) = δ(t) ;

(b) f(t) = H(t), where H(t) is the Heaviside step function.

(ii) Find and sketch the solution of the equation

dy

dt
+ y = H(t)−H(t− 1) ,

given that y(0) = 0 and y(t) is continuous.

2/II/8B Differential Equations

(i) Find the general solution of the difference equation

uk+1 + 5uk + 6uk−1 = 12k + 1 .

(ii) Find the solution of the equation

yk+1 + 5yk + 6yk−1 = 2k

that satisfies y0 = y1 = 1. Hence show that, for any positive integer n, the quantity
2n − 26(−3)n is divisible by 10.
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2/I/1B Differential Equations

Solve the initial value problem

dx

dt
= x(1− x), x(0) = x0,

and sketch the phase portrait. Describe the behaviour as t → +∞ and as t → −∞ of
solutions with initial value satisfying 0 < x0 < 1.

2/I/2B Differential Equations

Consider the first order system

dx

dt
−Ax = eλtv

to be solved for x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Rn, where A is an n × n matrix, λ ∈ R
and v ∈ Rn. Show that if λ is not an eigenvalue of A there is a solution of the form
x(t) = eλtu. For n = 2, given

A =

(
0 1
0 0

)
, λ = 1, and v =

(
1
1

)
,

find this solution.

2/II/5B Differential Equations

Find the general solution of the system

dx

dt
= 5x+ 3y + e2t,

dy

dt
= 2x+ 2et,

dz

dt
= x+ y + et.
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2/II/6B Differential Equations

(i) Consider the equation

∂u

∂t
+
∂u

∂x
=
∂2u

∂x2
+ f(t, x)

and, using the change of variables (t, x) 7→ (s, y) = (t, x − t), show that it can be
transformed into an equation of the form

∂U

∂s
=
∂2U

∂y2
+ F (s, y)

where U(s, y) = u(s, y + s) and you should determine F (s, y).

(ii) LetH(y) be the Heaviside function. Find the general continuously differentiable
solution of the equation

w′′(y) +H(y) = 0.

(iii) Using (i) and (ii), find a continuously differentiable solution of

∂u

∂t
+
∂u

∂x
=
∂2u

∂x2
+H(x− t)

such that u(t, x) → 0 as x→ −∞ and u(t, x) → −∞ as x→ +∞.

2/II/7B Differential Equations

Let p, q be continuous functions and let y1(x) and y2(x) be, respectively, the
solutions of the initial value problems

y′′1 + p(x)y′1 + q(x)y1 = 0, y1(0) = 0, y′1(0) = 1,

y′′2 + p(x)y′2 + q(x)y2 = 0, y2(0) = 1, y′2(0) = 0.

If f is any continuous function show that the solution of

y′′ + p(x)y′ + q(x)y = f(x), y(0) = 0, y′(0) = 0

is

y(x) =

∫ x

0

y1(s)y2(x)− y1(x)y2(s)

W (s)
f(s)ds,

whereW (x) = y1(x)y
′
2(x)−y′1(x)y2(x) is the Wronskian. Use this method to find y = y(x)

such that
y′′ + y = sinx, y(0) = 0, y′(0) = 0.
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2/II/8B Differential Equations

Obtain a power series solution of the problem

xy′′ + y = 0, y(0) = 0, y′(0) = 1.

[You need not find the general power series solution.]

Let y0(x), y1(x), y2(x), . . . be defined recursively as follows: y0(x) = x. Given
yn−1(x), define yn(x) to be the solution of

xy′′n(x) = −yn−1, yn(0) = 0, y′n(0) = 1.

By calculating y1, y2, y3, or otherwise, obtain and prove a general formula for yn(x).
Comment on the relation to the power series solution obtained previously.
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2/I/1B Differential Equations

Solve the equation
dy

dx
+ 3x2y = x2,

with y(0) = a, by use of an integrating factor or otherwise. Find lim
x→+∞

y(x).

2/I/2B Differential Equations

Obtain the general solution of

x2
d2y

dx2
+ x

dy

dx
+ y = 0 (∗)

by using the indicial equation.

Introduce z = log x as a new independent variable and find an equivalent second
order differential equation with constant coefficients. Determine the general solution of
this new equation, and show that it is equivalent to the general solution of (∗) found
previously.

2/II/5B Differential Equations

Find two linearly independent solutions of the difference equation

Xn+2 − 2 cos θXn+1 +Xn = 0 ,

for all values of θ ∈ (0, π). What happens when θ = 0? Find two linearly independent
solutions in this case.

Find Xn(θ) which satisfy the initial conditions

X1 = 1, X2 = 2,

for θ = 0 and for θ ∈ (0, π). For every n, show that Xn(θ) → Xn(0) as θ → 0.
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2/II/6B Differential Equations

Find all power series solutions of the form W =
∞∑

n=0

anx
n to the equation

−W ′′ + 2xW ′ = EW ,

for E a real constant.

Impose the condition W (0) = 0 and determine those values of E for which your
power series gives polynomial solutions (i.e., an = 0 for n sufficiently large). Give the
values of E for which the corresponding polynomials have degree less than 6, and compute
these polynomials.

Hence, or otherwise, find a polynomial solution of

−W ′′ + 2xW ′ = x− 4

3
x3 +

4

15
x5 ,

satisfying W (0) = 0.

2/II/7B Differential Equations

The Cartesian coordinates (x, y) of a point moving in R2 are governed by the system

dx

dt
= −y + x(1− x2 − y2) ,

dy

dt
= x+ y(1− x2 − y2) .

Transform this system of equations to polar coordinates (r, θ) and hence find all
periodic solutions (i.e., closed trajectories) which satisfy r = constant.

Discuss the large time behaviour of an arbitrary solution starting at initial point
(x0, y0) = (r0 cos θ0, r0 sin θ0). Summarize the motion using a phase plane diagram, and
comment on the nature of any critical points.
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2/II/8B Differential Equations

Define the Wronskian W [u1, u2] for two solutions u1, u2 of the equation

d2u

dx2
+ p(x)

du

dx
+ q(x)u = 0

and obtain a differential equation which exhibits its dependence on x. Explain the
relevance of the Wronskian to the linear independence of u1 and u2.

Consider the equation

x2
d2y

dx2
− 2y = 0 (∗)

and determine the dependence on x of the Wronskian W [y1, y2] of two solutions y1 and
y2. Verify that y1(x) = x2 is a solution of (∗) and use the Wronskian to obtain a second
linearly independent solution.
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2/I/1B Differential Equations

By writing y(x) = mx where m is a constant, solve the differential equation

dy

dx
=
x− 2y

2x+ y

and find the possible values of m.

Describe the isoclines of this differential equation and sketch the flow vectors. Use
these to sketch at least two characteristically different solution curves.

Now, by making the substitution y(x) = xu(x) or otherwise, find the solution of
the differential equation which satisfies y(0) = 1.

2/I/2B Differential Equations

Find two linearly independent solutions of the differential equation

d2y

dx2
+ 2p

dy

dx
+ p2y = 0 .

Find also the solution of

d2y

dx2
+ 2p

dy

dx
+ p2y = e−px

that satisfies

y = 0,
dy

dx
= 0 at x = 0 .
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20042004



11

2/II/5B Differential Equations

Construct a series solution y = y1(x) valid in the neighbourhood of x = 0, for the
differential equation

d2y

dx2
+ 4x3

dy

dx
+ x2y = 0 ,

satisfying

y1 = 1,
dy1
dx

= 0 at x = 0 .

Find also a second solution y = y2(x) which satisfies

y2 = 0,
dy2
dx

= 1 at x = 0 .

Obtain an expression for the Wronskian of these two solutions and show that

y2(x) = y1(x)

∫ x

0

e−ξ4

y21(ξ)
dξ .

2/II/6B Differential Equations

Two solutions of the recurrence relation

xn+2 + b(n)xn+1 + c(n)xn = 0

are given as pn and qn, and their Wronskian is defined to be

Wn = pnqn+1 − pn+1qn .

Show that

Wn+1 =W1

n∏

m=1

c(m) . (∗)

Suppose that b(n) = α, where α is a real constant lying in the range [−2, 2], and
that c(n) = 1. Show that two solutions are xn = einθ and xn = e−inθ, where cos θ = −α/2.
Evaluate the Wronskian of these two solutions and verify (∗).
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2/II/7B Differential Equations

Show how a second-order differential equation ẍ = f(x, ẋ) may be transformed
into a pair of coupled first-order equations. Explain what is meant by a critical point on
the phase diagram for a pair of first-order equations. Hence find the critical points of
the following equations. Describe their stability type, sketching their behaviour near the
critical points on a phase diagram.

(i) ẍ+ cosx = 0

(ii) ẍ+ x(x2 + λx+ 1) = 0, for λ = 1, 5/2 .

Sketch the phase portraits of these equations marking clearly the direction of flow.

2/II/8B Differential Equations

Construct the general solution of the system of equations

ẋ+ 4x+ 3y = 0

ẏ + 4y − 3x = 0

in the form (
x(t)
y(t)

)
= x =

2∑

j=1

ajx
(j)eλjt

and find the eigenvectors x(j) and eigenvalues λj .

Explain what is meant by resonance in a forced system of linear differential
equations.

Consider the forced system

ẋ+ 4x+ 3y =
2∑

j=1

pje
λjt

ẏ + 4y − 3x =
2∑

j=1

qje
λjt .

Find conditions on pj and qj (j = 1, 2) such that there is no resonant response to the
forcing.
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2/I/1D Differential Equations

Consider the equation
dy

dx
= 1− y2 . (∗)

Using small line segments, sketch the flow directions in x > 0, −2 6 y 6 2 implied by
the right-hand side of (∗). Find the general solution

(i) in |y| < 1 ,

(ii) in |y| > 1 .

Sketch a solution curve in each of the three regions y > 1 , |y| < 1, and y < −1 .

2/I/2D Differential Equations

Consider the differential equation

dx

dt
+Kx = 0 ,

where K is a positive constant. By using the approximate finite-difference formula

dxn
dt

=
xn+1 − xn−1

2δt
,

where δt is a positive constant, and where xn denotes the function x(t) evaluated at t = nδt
for integer n, convert the differential equation to a difference equation for xn.

Solve both the differential equation and the difference equation for general initial
conditions. Identify those solutions of the difference equation that agree with solutions
of the differential equation over a finite interval 0 6 t 6 T in the limit δt → 0, and
demonstrate the agreement. Demonstrate that the remaining solutions of the difference
equation cannot agree with the solution of the differential equation in the same limit.

[You may use the fact that, for bounded |u|, lim
ε→0

(1 + εu)
1/ε

= eu. ]
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2/II/5D Differential Equations

(a) Show that if µ(x, y) is an integrating factor for an equation of the form

f(x, y) dy + g(x, y) dx = 0

then ∂(µf)/∂x = ∂(µg)/∂y .

Consider the equation

cotx dy − tany dx = 0

in the domain 0 6 x 6 1
2π , 0 6 y 6 1

2π . Using small line segments, sketch the flow
directions in that domain. Show that sinx cos y is an integrating factor for the equation.
Find the general solution of the equation, and sketch the family of solutions that occupies
the larger domain − 1

2π 6 x 6 1
2π , − 1

2π 6 y 6 1
2π .

(b) The following example illustrates that the concept of integrating factor extends
to higher-order equations. Multiply the equation

[
y
d2y

dx2
+

(
dy

dx

)2 ]
cos2x = 1

by sec2x , and show that the result takes the form
d

dx
h(x, y) = 0, for some function h(x, y)

to be determined. Find a particular solution y = y(x) such that y(0) = 0 with dy/dx
finite at x = 0 , and sketch its graph in 0 6 x < 1

2π .
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2/II/6D Differential Equations

Define the Wronskian W (x) associated with solutions of the equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0

and show that
W (x) ∝ exp

(
−
∫ x

p(ξ) dξ
)
.

Evaluate the expression on the right when p(x) = −2/x.

Given that p(x) = −2/x and that q(x) = −1, show that solutions in the form of
power series,

y = xλ
∞∑

n=0

anx
n (a0 6= 0) ,

can be found if and only if λ = 0 or 3. By constructing and solving the appropriate
recurrence relations, find the coefficients an for each power series.

You may assume that the equation is satisfied by y = coshx − x sinhx and by
y = sinhx−x coshx . Verify that these two solutions agree with the two power series found
previously, and that they give the W (x) found previously, up to multiplicative constants.

[Hint: coshx = 1 +
x2

2!
+
x4

4!
+ ... , sinhx = x+

x3

3!
+
x5

5!
+ ... . ]
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2/II/7D Differential Equations

Consider the linear system

ẋ(t)−Ax(t) = z(t)

where the n-vector z(t) and the n × n matrix A are given; A has constant real entries,
and has n distinct eigenvalues λ1, λ2, ..., λn and n linearly independent eigenvectors
a1,a2, ...,an. Find the complementary function. Given a particular integral xp(t), write
down the general solution. In the case n = 2 show that the complementary function is
purely oscillatory, with no growth or decay, if and only if

traceA = 0 and detA > 0 .

Consider the same case n = 2 with traceA = 0 and detA > 0 and with

z(t) = a1 exp(iω1t) + a2 exp(iω2t) ,

where ω1, ω2 are given real constants. Find a particular integral when

(i) iω1 6= λ1 and iω2 6= λ2 ;

(ii) iω1 6= λ1 but iω2 = λ2 .

In the case

A =

(
1 2
−5 −1

)

with z(t) =

(
2

3i− 1

)
exp(3it), find the solution subject to the initial condition x =

(
1

0

)

at t = 0.

2/II/8D Differential Equations

For all solutions of

ẋ = 1
2αx+ y − 2y3,

ẏ = −x

show that dK/dt = αx2 where

K = K(x, y) = x2 + y2 − y4 .

In the case α = 0, analyse the properties of the critical points and sketch the
phase portrait, including the special contours for which K(x, y) = 1

4 . Comment on the
asymptotic behaviour, as t → ∞, of solution trajectories that pass near each critical
point, indicating whether or not any such solution trajectories approach from, or recede
to, infinity.

Briefly discuss how the picture changes when α is made small and positive, using
your result for dK/dt to describe, in qualitative terms, how solution trajectories cross
K-contours.
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2/I/1D Differential Equations

Solve the equation
ÿ + ẏ − 2y = e−t

subject to the conditions y(t) = ẏ(t) = 0 at t = 0. Solve the equation

ÿ + ẏ − 2y = et

subject to the same conditions y(t) = ẏ(t) = 0 at t = 0.

2/I/2D Differential Equations

Consider the equation

dy

dx
= x

(
1− y2

1− x2

)1/2

, (∗)

where the positive square root is taken, within the square S : 0 6 x < 1, 0 6 y 6 1.
Find the solution that begins at x = y = 0. Sketch the corresponding solution curve,
commenting on how its tangent behaves near each extremity. By inspection of the right-
hand side of (∗), or otherwise, roughly sketch, using small line segments, the directions of
flow throughout the square S.
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2/II/5D Differential Equations

Explain what is meant by an integrating factor for an equation of the form

dy

dx
+ f(x, y) = 0 .

Show that 2yex is an integrating factor for

dy

dx
+

2x+ x2 + y2

2y
= 0 ,

and find the solution y = y(x) such that y(0) = a, for given a > 0.

Show that 2x+ x2 > −1 for all x and hence that

dy

dx
6 1− y2

2y
.

For a solution with a > 1, show graphically, by considering the sign of dy/dx first for
x = 0 and then for x < 0, that dy/dx < 0 for all x 6 0.

Sketch the solution for the case a = 1, and show that property that dy/dx → −∞
both as x→ −∞ and as x→ b from below, where b ≈ 0.7035 is the positive number that
satisfies b2 = e−b.

[Do not consider the range x > b.]
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2/II/6D Differential Equations

Solve the differential equation

dy

dt
= ry (1− ay)

for the general initial condition y = y0 at t = 0, where r, a, and y0 are positive constants.
Deduce that the equilibria at y = a−1 and y = 0 are stable and unstable, respectively.

By using the approximate finite-difference formula

dy

dt
=

yn+1 − yn
δt

for the derivative of y at t = nδt, where δt is a positive constant and yn = y(nδt), show
that the differential equation when thus approximated becomes the difference equation

un+1 = λ (1− un)un ,

where λ = 1 + r δt > 1 and where un = λ−1a(λ− 1) yn. Find the two equilibria and, by
linearizing the equation about them or otherwise, show that one is always unstable (given
that λ > 1) and that the other is stable or unstable according as λ < 3 or λ > 3. Show
that this last instability is oscillatory with period 2δt. Why does this last instability have
no counterpart for the differential equation? Show graphically how this instability can
equilibrate to a periodic, finite-amplitude oscillation when λ = 3.2.
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2/II/7D Differential Equations

The homogeneous equation

ÿ + p(t)ẏ + q(t)y = 0

has non-constant, non-singular coefficients p(t) and q(t). Two solutions of the equation,
y(t) = y1(t) and y(t) = y2(t), are given. The solutions are known to be such that the
determinant

W (t) =

∣∣∣∣
y1 y2
ẏ1 ẏ2

∣∣∣∣
is non-zero for all t. Define what is meant by linear dependence, and show that the two
given solutions are linearly independent. Show also that

W (t) ∝ exp
(
−
∫ t

p(s) ds
)
.

In the corresponding inhomogeneous equation

ÿ + p(t)ẏ + q(t)y = f(t)

the right-hand side f(t) is a prescribed forcing function. Construct a particular integral
of this inhomogeneous equation in the form

y(t) = a1(t) y1(t) + a2(t) y2(t) ,

where the two functions ai(t) are to be determined such that

y1(t) ȧ1(t) + y2(t) ȧ2(t) = 0

for all t. Express your result for the functions ai(t) in terms of integrals of the functions
f(t) y1(t)/W (t) and f(t) y2(t)/W (t).

Consider the case in which p(t) = 0 for all t and q(t) is a positive constant, q = ω2

say, and in which the forcing f(t) = sin(ωt). Show that in this case y1(t) and y2(t) can be
taken as cos(ωt) and sin(ωt) respectively. Evaluate f(t) y1(t)/W (t) and f(t) y2(t)/W (t)
and show that, as t → ∞, one of the ai(t) increases in magnitude like a power of t to be
determined.

2/II/8D Differential Equations

For any solution of the equations

ẋ = αx− y + y3 (α constant)

ẏ = −x
show that

d

dt

(
x2 − y2 + 1

2y
4
)

= 2αx2 .

What does this imply about the behaviour of phase-plane trajectories at large distances
from the origin as t → ∞, in the case α = 0? Give brief reasoning but do not try to find
explicit solutions.

Analyse the properties of the critical points and sketch the phase portrait (a) in
the case α = 0, (b) in the case α = 0.1, and (c) in the case α = −0.1.
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2/I/1B Differential Equations

Find the solution to

dy(x)

dx
+ tanh(x) y(x) = H(x) ,

in the range −∞ < x < ∞ subject to y(0) = 1, where H(x) is the Heavyside function
defined by

H(x) =

{
0 x < 0
1 x > 0

.

Sketch the solution.

2/I/2B Differential Equations

The function y(x) satisfies the inhomogeneous second-order linear differential
equation

y′′ − y′ − 2y = 18xe−x .

Find the solution that satisfies the conditions that y(0) = 1 and y(x) is bounded as x→ ∞.
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2/II/5B Differential Equations

The real sequence yk, k = 1, 2, . . . satisfies the difference equation

yk+2 − yk+1 + yk = 0 .

Show that the general solution can be written

yk = a cos
πk

3
+ b sin

πk

3
,

where a and b are arbitrary real constants.

Now let yk satisfy

yk+2 − yk+1 + yk =
1

k + 2
. (∗)

Show that a particular solution of (∗) can be written in the form

yk =
k∑

n=1

an
k − n+ 1

,

where
an+2 − an+1 + an = 0 , n ≥ 1 ,

and a1 = 1, a2 = 1 .

Hence, find the general solution to (∗).
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2/II/6B Differential Equations

The function y(x) satisfies the linear equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 .

The Wronskian, W (x), of two independent solutions denoted y1(x) and y2(x) is defined
to be

W (x) =

∣∣∣∣
y1 y2
y1

′ y2
′

∣∣∣∣ .

Let y1(x) be given. In this case, show that the expression for W (x) can be
interpreted as a first-order inhomogeneous differential equation for y2(x). Hence, by
explicit derivation, show that y2(x) may be expressed as

y2(x) = y1(x)

∫ x

x0

W (t)

y1(t)2
dt , (∗)

where the rôle of x0 should be briefly elucidated.

Show that W (x) satisfies

dW (x)

dx
+ p(x)W (x) = 0 .

Verify that y1(x) = 1− x is a solution of

xy′′(x)− (1− x2)y′(x)− (1 + x)y(x) = 0 . (†)

Hence, using (∗) with x0 = 0 and expanding the integrand in powers of t to order t3, find
the first three non-zero terms in the power series expansion for a solution, y2(x), of (†)
that is independent of y1(x) and satisfies y2(0) = 0, y2

′′(0) = 1.
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2/II/7B Differential Equations

Consider the linear system

ż+Az = h , (∗)

where

z(t) =

(
x(t)
y(t)

)
, A =

(
1 + a −2
1 −1 + a

)
, h(t) =

(
2 cos t

cos t− sin t

)
,

where z(t) is real and a is a real constant, a ≥ 0.

Find a (complex) eigenvector, e, of A and its corresponding (complex) eigenvalue,
l. Show that the second eigenvector and corresponding eigenvalue are respectively ē and
l̄, where the bar over the symbols signifies complex conjugation. Hence explain how the
general solution to (∗) can be written as

z(t) = α(t) e + ᾱ(t) ē ,

where α(t) is complex.

Write down a differential equation for α(t) and hence, for a > 0, deduce the solution
to (∗) which satisfies the initial condition z(0) = 0

¯
.

Is the linear system resonant?

By taking the limit a → 0 of the solution already found deduce the solution
satisfying z(0) = 0

¯
when a = 0.

2/II/8B Differential Equations

Carnivorous hunters of population h prey on vegetarians of population p. In the
absence of hunters the prey will increase in number until their population is limited by
the availability of food. In the absence of prey the hunters will eventually die out. The
equations governing the evolution of the populations are

ṗ = p
(
1− p

a

)
− ph

a
,

ḣ =
h

8

(p
b
− 1
)
,

(∗)

where a and b are positive constants, and h(t) and p(t) are non-negative functions of time,
t. By giving an interpretation of each term explain briefly how these equations model the
system described.

Consider these equations for a = 1. In the two cases 0 < b < 1/2 and b > 1
determine the location and the stability properties of the critical points of (∗). In both of
these cases sketch the typical solution trajectories and briefly describe the ultimate fate
of hunters and prey.
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