Part IA

Analysis I

Year
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001

Paper 1, Section I

3E Analysis

Let $a \in \mathbb{R}$ and let f and g be real-valued functions defined on \mathbb{R}. State and prove the chain rule for $F(x)=g(f(x))$.

Now assume that f and g are non-constant on any interval. Must the function $F(x)=g(f(x))$ be non-differentiable at $x=a$ if
(i) f is differentiable at a and g is not differentiable at $f(a)$?
(ii) f is not differentiable at a and g is differentiable at $f(a)$?
(iii) f is not differentiable at a and g is not differentiable at $f(a)$?

Justify your answers.

Paper 1, Section I

4E Analysis

State the comparison test. Prove that if $\sum_{n=0}^{\infty} a_{n} z_{0}^{n}$ converges and $\left|z_{1}\right|<\left|z_{0}\right|$, then $\sum_{n=0}^{\infty} a_{n} z_{1}^{n}$ converges absolutely.

Define the radius of convergence of a complex power series. [You do not need to show that the radius of convergence is well-defined.]

If $\sum_{n=0}^{\infty} a_{n} z^{n}$ has radius of convergence R_{1} and $\sum_{n=0}^{\infty} b_{n} z^{n}$ has radius of convergence R_{2}, show that the radius of convergence R of the series $\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}$ satisfies $R \geqslant R_{1} R_{2}$.

Paper 1, Section II

9E Analysis

(a) Let $x_{1}>0$ and define a sequence $\left(x_{n}\right)$ by

$$
x_{n}=\frac{1}{2}\left(x_{n-1}+\frac{1}{x_{n-1}}\right) \text { for } n>1
$$

Prove that $\lim _{n \rightarrow \infty} x_{n}=1$.
Show that if a real sequence $\left(x_{n}\right)$ satisfies

$$
0 \leqslant x_{m+n} \leqslant x_{m}+x_{n} \quad \text { for all } m, n=1,2, \ldots,
$$

then the sequence $\left(x_{n} / n\right)$ is (i) bounded and (ii) convergent.
(b) Suppose that a series $\sum_{n=1}^{\infty} a_{n}$ of real numbers converges but not absolutely. Let

$$
P_{n}=\sum_{i=1}^{n}\left(\left|a_{i}\right|+a_{i}\right), \quad N_{n}=\sum_{i=1}^{n}\left(\left|a_{i}\right|-a_{i}\right)
$$

Show that $\lim _{n \rightarrow \infty} P_{n} / N_{n}=1$.
State the alternating series test. Let $\left(b_{n}\right)$ be a sequence of positive real numbers such that

$$
\lim _{n \rightarrow \infty} n\left(\frac{b_{n}}{b_{n+1}}-1\right)=p
$$

where p is a positive real number. Show that the series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges.

Paper 1, Section II

10E Analysis

State and prove the intermediate value theorem.
Give, with justification, an example of a function $\phi:[a, \infty) \rightarrow \mathbb{R}$ such that, for any $b>a, \phi$ takes on $[a, b]$ every value between $\phi(a)$ and $\phi(b)$ but ϕ is not continuous on $[a, b]$.

If a function $f:[a, b] \rightarrow \mathbb{R}$ is monotone on $[a, b]$ and takes every value between $f(a)$ and $f(b)$, show that f is continuous on $[a, b]$.

Let $g:(a, b) \rightarrow \mathbb{R}$ be a continuous function and suppose that there are sequences $x_{n} \rightarrow a$ and $y_{n} \rightarrow a$ as $n \rightarrow \infty$ such that $g\left(x_{n}\right) \rightarrow l$ and $g\left(y_{n}\right) \rightarrow L$ with $l<L$. Show that for each $\lambda \in[l, L]$ there is a sequence $z_{n} \rightarrow a$ such that $g\left(z_{n}\right) \rightarrow \lambda$.

Paper 1, Section II

11E Analysis

(a) State the mean value theorem. Deduce that

$$
\frac{a-b}{a}<\log \frac{a}{b}<\frac{a-b}{b} \quad \text { for } 0<b<a .
$$

(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an n-times differentiable function, where $n>0$. Show that for each $a \in \mathbb{R}$ and $h>0$ there exists $b \in(a, a+n h)$ such that

$$
\frac{1}{h^{n}} \Delta_{h}^{n} f(a)=f^{(n)}(b),
$$

where $\Delta_{h}^{k+1} f(x)=\Delta_{h}^{1}\left(\Delta_{h}^{k} f(x)\right)$ and $\Delta_{h}^{1} f(x)=f(x+h)-f(x)$.
(c) Let $I \subset \mathbb{R}$ be an open (non-empty) interval and $a \in I$. Suppose that a function $\varphi: I \rightarrow \mathbb{R}$ has a finite limit at a and $\lim _{x \rightarrow a} \varphi(x)=\varphi(a)+1$. Can φ be the derivative of some differentiable function f on I ? Justify your answer.

Paper 1, Section II

12E Analysis

Define the upper and lower integral of a function on $[a, b]$ and what it means for a function to be (Riemann) integrable on $[a, b]$.
(a) Let $\lfloor y\rfloor=\max \{i \in \mathbb{Z}: i \leqslant y\}$. Show that the function

$$
u(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor \quad \text { if } x \neq 0, \quad u(0)=0,
$$

is integrable on $[0,1]$. [You may assume that every continuous function on a closed bounded interval is integrable.]
(b) Let $f:[A, B] \rightarrow \mathbb{R}$ be a continuous function and $A<a<x<B$. Prove that

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{a}^{x}(f(t+h)-f(t)) d t=f(x)-f(a) .
$$

[Any version of the fundamental theorem of calculus from the course can be assumed if accurately stated.]
(c) Show that if a function $g:[a, b] \rightarrow \mathbb{R}$ is integrable, then there exists a sequence of continuous functions $\varphi_{n}:[a, b] \rightarrow \mathbb{R}$ such that $\int_{\alpha}^{\beta} g(x) d x=\lim _{n \rightarrow \infty} \int_{\alpha}^{\beta} \varphi_{n}(x) d x$ for any subinterval $[\alpha, \beta] \subseteq[a, b]$.

Paper 1, Section I

3D Analysis I

State the alternating series test. Deduce that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges. Is this series absolutely convergent? Justify your answer.

Find a divergent series which has the same terms $\frac{(-1)^{n}}{\sqrt{n}}$ taken in a different order. You should justify the divergence.
[You may use the comparison test, provided that you accurately state it.]

Paper 1, Section I

4D Analysis I

Let $a \in \mathbb{R}$ and let f and g be continuous real-valued functions defined on \mathbb{R} which are not identically zero on any interval containing a.

Must the function $F(x)=f(x)+g(x)$ be non-differentiable at $a \in \mathbb{R}$ if (a) f is differentiable at a and g is not differentiable at a; (b) both f and g are not differentiable at a ?

Must the function $G(x)=f(x) g(x)$ be non-differentiable at $a \in \mathbb{R}$ if (a) f is differentiable at a and g is not differentiable at a; (b) both f and g are not differentiable at a ?

Justify your answers.

Paper 1, Section II

9D Analysis I

(a) Let a_{n} be a sequence of real numbers. Show that if a_{n} converges, the sequence $\frac{1}{n} \sum_{k=1}^{n} a_{k}$ also converges and $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} a_{n}$.

If $\frac{1}{n} \sum_{k=1}^{n} a_{k}$ converges, must a_{n} converge too? Justify your answer.
(b) Let x_{n} be a sequence of real numbers with $x_{n}>0$ for all n. By considering the sequence $\log x_{n}$, or otherwise, show that if x_{n} converges then $\lim _{n \rightarrow \infty} \sqrt[n]{x_{1} x_{2} \ldots x_{n}}=\lim _{n \rightarrow \infty} x_{n}$. You may assume that exp and log are continuous functions.

Deduce that if the sequence $\frac{x_{n}}{x_{n-1}}$ converges, then $\lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}=\lim _{n \rightarrow \infty} \frac{x_{n}}{x_{n-1}}$.
(c) What is a Cauchy sequence? State the general principle of convergence for real sequences.

Let a_{n} be a decreasing sequence of positive real numbers and suppose that the series $\sum_{n=1}^{\infty} a_{n}$ converges. Prove that $\lim _{n \rightarrow \infty} n a_{n}=0$.

Paper 1, Section II

10D Analysis I

Prove that every continuous real-valued function on a closed bounded interval is bounded and attains its bounds. [The Bolzano-Weierstrass theorem can be assumed provided it is accurately stated.]

Give an example of a continuous function $\phi:(0,1) \rightarrow \mathbb{R}$ that is bounded but does not attain its bounds and an example of a function $\psi:[0,1] \rightarrow \mathbb{R}$ that is not bounded on any interval $[a, b]$ such that $0 \leqslant a<b \leqslant 1$. Justify your examples.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Prove that the functions

$$
m(x)=\inf _{a \leqslant \xi \leqslant x} f(\xi) \quad \text { and } \quad M(x)=\sup _{a \leqslant \xi \leqslant x} f(\xi)
$$

are also continuous on $[a, b]$.
Let a function $g:(0, \infty) \rightarrow \mathbb{R}$ be continuous and bounded. Show that for every $T>0$ there exists a sequence x_{n} such that $x_{n} \rightarrow \infty$ and

$$
\lim _{n \rightarrow \infty}\left(g\left(x_{n}+T\right)-g\left(x_{n}\right)\right)=0
$$

[The intermediate value theorem can be assumed.]

Paper 1, Section II

11D Analysis I

In this question $a<b$ are real numbers.
(a) State and prove Rolle's theorem. State and prove the mean value theorem.
(b) Prove that if a continuous function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable on (a, b) and is not a linear function, then $f^{\prime}(\xi)>\frac{f(b)-f(a)}{b-a}$ for some ξ with $a<\xi<b$.
(c) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function and let f be differentiable on (a, b). Must there exist, for every $\xi \in(a, b)$, two points x_{1}, x_{2} with $a \leqslant x_{1}<\xi<x_{2} \leqslant b$ such that $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(\xi)$? Give a proof or counterexample as appropriate.
(d) Let functions f and g be continuous on $[a, b]$ and differentiable on (a, b) with $g(a) \neq g(b)$ and suppose that $f^{\prime}(x)$ and $g^{\prime}(x)$ never vanish for the same value of x. By considering $\lambda f+\mu g+\nu$ for suitable real constants λ, μ, ν, or otherwise, prove that

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} \quad \text { for some } \xi \text { with } a<\xi<b
$$

Give an example to show that the condition that $f^{\prime}(x)$ and $g^{\prime}(x)$ never vanish for the same x cannot be omitted.

Paper 1, Section II

12D Analysis I

Let $f:[0,1] \rightarrow \mathbb{R}$ be a monotone function.
Show that for all dissections \mathcal{D} and \mathcal{D}^{\prime} of $[0,1]$ one has $L_{\mathcal{D}}(f) \leqslant U_{\mathcal{D}^{\prime}}(f)$, where $L_{\mathcal{D}}(f)$ and $U_{\mathcal{D}^{\prime}}(f)$ are the lower and upper sums of f for the respective dissections. Show further that for each $\varepsilon>0$ there is a dissection \mathcal{D} such that $U_{\mathcal{D}}(f)-L_{\mathcal{D}}(f)<\varepsilon$. Deduce that f is integrable.

Show that

$$
\left|\int_{0}^{1} f(x) d x-\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\right|<\frac{|f(1)-f(0)|}{n}
$$

for all positive integers n.
Let a function F be continuous on some open interval containing $[0,1]$ and have a continuous derivative F^{\prime} on $[0,1]$. Denote

$$
\Delta_{n}=\int_{0}^{1} F(x) d x-\frac{1}{n} \sum_{k=1}^{n} F\left(\frac{k}{n}\right) .
$$

Stating clearly any results from the course that you require, show that

$$
\lim _{n \rightarrow \infty} n \Delta_{n}=(F(0)-F(1)) / 2 .
$$

[Hint: it might be helpful to consider $\int_{(k-1) / n}^{k / n}\left(F(x)-F\left(\frac{k}{n}\right)\right) d x$.]

Paper 1, Section I

3F Analysis I

State and prove the alternating series test. Hence show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges. Show also that

$$
\frac{7}{12} \leqslant \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \leqslant \frac{47}{60}
$$

Paper 1, Section I

4F Analysis I

State and prove the Bolzano-Weierstrass theorem.
Consider a bounded sequence $\left(x_{n}\right)$. Prove that if every convergent subsequence of $\left(x_{n}\right)$ converges to the same limit L then $\left(x_{n}\right)$ converges to L.

Paper 1, Section II

9F Analysis I

(a) State the intermediate value theorem. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous bijection and $x_{1}<x_{2}<x_{3}$ then either $f\left(x_{1}\right)<f\left(x_{2}\right)<f\left(x_{3}\right)$ or $f\left(x_{1}\right)>f\left(x_{2}\right)>f\left(x_{3}\right)$. Deduce that f is either strictly increasing or strictly decreasing.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions. Which of the following statements are true, and which can be false? Give a proof or counterexample as appropriate.
(i) If f and g are continuous then $f \circ g$ is continuous.
(ii) If g is strictly increasing and $f \circ g$ is continuous then f is continuous.
(iii) If f is continuous and a bijection then f^{-1} is continuous.
(iv) If f is differentiable and a bijection then f^{-1} is differentiable.

Paper 1, Section II

10F Analysis I

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function.
(a) Let $m=\min _{x \in[a, b]} f(x)$ and $M=\max _{x \in[a, b]} f(x)$. If $g:[a, b] \rightarrow \mathbb{R}$ is a positive continuous function, prove that

$$
m \int_{a}^{b} g(x) d x \leqslant \int_{a}^{b} f(x) g(x) d x \leqslant M \int_{a}^{b} g(x) d x
$$

directly from the definition of the Riemann integral.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that

$$
\int_{0}^{1 / \sqrt{n}} n f(x) e^{-n x} d x \rightarrow f(0)
$$

as $n \rightarrow \infty$, and deduce that

$$
\int_{0}^{1} n f(x) e^{-n x} d x \rightarrow f(0)
$$

as $n \rightarrow \infty$.

Paper 1, Section II

11F Analysis I

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be n-times differentiable, for some $n>0$.
(a) State and prove Taylor's theorem for f, with the Lagrange form of the remainder. [You may assume Rolle's theorem.]
(b) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is an infinitely differentiable function such that $f(0)=1$ and $f^{\prime}(0)=0$, and satisfying the differential equation $f^{\prime \prime}(x)=-f(x)$. Prove carefully that

$$
f(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!} .
$$

Paper 1, Section II

12F Analysis I

(a) Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with $a_{n} \in \mathbb{C}$. Show that there exists $R \in[0, \infty]$ (called the radius of convergence) such that the series is absolutely convergent when $|z|<R$ but is divergent when $|z|>R$.

Suppose that the radius of convergence of the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is $R=2$. For a fixed positive integer k, find the radii of convergence of the following series. [You may assume that $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$ exists.]
(i) $\sum_{n=0}^{\infty} a_{n}^{k} z^{n}$.
(ii) $\sum_{n=0}^{\infty} a_{n} z^{k n}$.
(iii) $\sum_{n=0}^{\infty} a_{n} z^{n^{2}}$.
(b) Suppose that there exist values of z for which $\sum_{n=0}^{\infty} b_{n} e^{n z}$ converges and values for which it diverges. Show that there exists a real number S such that $\sum_{n=0}^{\infty} b_{n} e^{n z}$ diverges whenever $\operatorname{Re}(z)>S$ and converges whenever $\operatorname{Re}(z)<S$.

Determine the set of values of z for which

$$
\sum_{n=0}^{\infty} \frac{2^{n} e^{i n z}}{(n+1)^{2}}
$$

converges

Paper 1, Section I

3E Analysis I
(a) Let f be continuous in $[a, b]$, and let g be strictly monotonic in $[\alpha, \beta]$, with a continuous derivative there, and suppose that $a=g(\alpha)$ and $b=g(\beta)$. Prove that

$$
\int_{a}^{b} f(x) d x=\int_{\alpha}^{\beta} f(g(u)) g^{\prime}(u) d u
$$

[Any version of the fundamental theorem of calculus may be used providing it is quoted correctly.]
(b) Justifying carefully the steps in your argument, show that the improper Riemann integral

$$
\int_{0}^{e^{-1}} \frac{d x}{x\left(\log \frac{1}{x}\right)^{\theta}}
$$

converges for $\theta>1$, and evaluate it.

Paper 1, Section II

9D Analysis I

(a) State Rolle's theorem. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is $N+1$ times differentiable and $x \in \mathbb{R}$ then

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots+\frac{f^{(N)}(0)}{N!} x^{N}+\frac{f^{(N+1)}(\theta x)}{(N+1)!} x^{N+1}
$$

for some $0<\theta<1$. Hence, or otherwise, show that if $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$ then f is constant.
(b) Let $s: \mathbb{R} \rightarrow \mathbb{R}$ and $c: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions such that

$$
s^{\prime}(x)=c(x), \quad c^{\prime}(x)=-s(x), \quad s(0)=0 \quad \text { and } \quad c(0)=1
$$

Prove that
(i) $s(x) c(a-x)+c(x) s(a-x)$ is independent of x,
(ii) $s(x+y)=s(x) c(y)+c(x) s(y)$,
(iii) $s(x)^{2}+c(x)^{2}=1$.

Show that $c(1)>0$ and $c(2)<0$. Deduce there exists $1<k<2$ such that $s(2 k)=c(k)=0$ and $s(x+4 k)=s(x)$.

Paper 1, Section II

10F Analysis I

(a) Let $\left(x_{n}\right)$ be a bounded sequence of real numbers. Show that $\left(x_{n}\right)$ has a convergent subsequence.
(b) Let $\left(z_{n}\right)$ be a bounded sequence of complex numbers. For each $n \geqslant 1$, write $z_{n}=x_{n}+i y_{n}$. Show that $\left(z_{n}\right)$ has a subsequence $\left(z_{n_{j}}\right)$ such that $\left(x_{n_{j}}\right)$ converges. Hence, or otherwise, show that $\left(z_{n}\right)$ has a convergent subsequence.
(c) Write $\mathbb{N}=\{1,2,3, \ldots\}$ for the set of positive integers. Let M be a positive real number, and for each $i \in \mathbb{N}$, let $X^{(i)}=\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, \ldots\right)$ be a sequence of real numbers with $\left|x_{j}^{(i)}\right| \leqslant M$ for all $i, j \in \mathbb{N}$. By induction on i or otherwise, show that there exist sequences $N^{(i)}=\left(n_{1}^{(i)}, n_{2}^{(i)}, n_{3}^{(i)}, \ldots\right)$ of positive integers with the following properties:

- for all $i \in \mathbb{N}$, the sequence $N^{(i)}$ is strictly increasing;
- for all $i \in \mathbb{N}, N^{(i+1)}$ is a subsequence of $N^{(i)}$; and
- for all $k \in \mathbb{N}$ and all $i \in \mathbb{N}$ with $1 \leqslant i \leqslant k$, the sequence

$$
\left(x_{n_{1}^{(k)}}^{(i)}, x_{n_{2}^{(k)}}^{(i)}, x_{n_{3}^{(k)}}^{(i)}, \ldots\right)
$$

converges.

Hence, or otherwise, show that there exists a strictly increasing sequence $\left(m_{j}\right)$ of positive integers such that for all $i \in \mathbb{N}$ the sequence $\left(x_{m_{1}}^{(i)}, x_{m_{2}}^{(i)}, x_{m_{3}}^{(i)}, \ldots\right)$ converges.

Paper 1, Section I

3E Analysis I

State the Bolzano-Weierstrass theorem.
Let $\left(a_{n}\right)$ be a sequence of non-zero real numbers. Which of the following conditions is sufficient to ensure that $\left(1 / a_{n}\right)$ converges? Give a proof or counter-example as appropriate.
(i) $a_{n} \rightarrow \ell$ for some real number ℓ.
(ii) $a_{n} \rightarrow \ell$ for some non-zero real number ℓ.
(iii) $\left(a_{n}\right)$ has no convergent subsequence.

Paper 1, Section I

4F Analysis I

Let $\sum_{n=1}^{\infty} a_{n} x^{n}$ be a real power series that diverges for at least one value of x. Show that there exists a non-negative real number R such that $\sum_{n=1}^{\infty} a_{n} x^{n}$ converges absolutely whenever $|x|<R$ and diverges whenever $|x|>R$.

Find, with justification, such a number R for each of the following real power series:
(i) $\sum_{n=1}^{\infty} \frac{x^{n}}{3^{n}}$;
(ii) $\sum_{n=1}^{\infty} x^{n}\left(1+\frac{1}{n}\right)^{n}$.

Paper 1, Section II

9D Analysis I

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function that is continuous at at least one point $z \in \mathbb{R}$. Suppose further that g satisfies

$$
g(x+y)=g(x)+g(y)
$$

for all $x, y \in \mathbb{R}$. Show that g is continuous on \mathbb{R}.
Show that there exists a constant c such that $g(x)=c x$ for all $x \in \mathbb{R}$.
Suppose that $h: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function defined on \mathbb{R} and that h satisfies the equation

$$
h(x+y)=h(x) h(y)
$$

for all $x, y \in \mathbb{R}$. Show that h is either identically zero or everywhere positive. What is the general form for h ?

Paper 1, Section II

10D Analysis I

State and prove the Intermediate Value Theorem.
State the Mean Value Theorem.
Suppose that the function g is differentiable everywhere in some open interval containing $[a, b]$, and that $g^{\prime}(a)<k<g^{\prime}(b)$. By considering the functions h and f defined by

$$
h(x)=\frac{g(x)-g(a)}{x-a}(a<x \leqslant b), \quad h(a)=g^{\prime}(a)
$$

and

$$
f(x)=\frac{g(b)-g(x)}{b-x}(a \leqslant x<b), \quad f(b)=g^{\prime}(b),
$$

or otherwise, show that there is a subinterval $[\alpha, \beta] \subseteq[a, b]$ such that

$$
\frac{g(\beta)-g(\alpha)}{\beta-\alpha}=k .
$$

Deduce that there exists $c \in(a, b)$ with $g^{\prime}(c)=k$.

Paper 1, Section II

11E Analysis I

Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of positive real numbers. Let $s_{n}=\sum_{i=1}^{n} a_{i}$.
(a) Show that if $\sum a_{n}$ and $\sum b_{n}$ converge then so does $\sum\left(a_{n}^{2}+b_{n}^{2}\right)^{1 / 2}$.
(b) Show that if $\sum a_{n}$ converges then $\sum \sqrt{a_{n} a_{n+1}}$ converges. Is the converse true?
(c) Show that if $\sum a_{n}$ diverges then $\sum \frac{a_{n}}{s_{n}}$ diverges. Is the converse true?
[For part (c), it may help to show that for any $N \in \mathbb{N}$ there exist $m \geqslant n \geqslant N$ with

$$
\left.\frac{a_{n+1}}{s_{n+1}}+\frac{a_{n+2}}{s_{n+2}}+\ldots+\frac{a_{m}}{s_{m}} \geqslant \frac{1}{2} .\right]
$$

Paper 1, Section II

12F Analysis I

Let $f:[0,1] \rightarrow \mathbb{R}$ be a bounded function. Define the upper and lower integrals of f. What does it mean to say that f is Riemann integrable? If f is Riemann integrable, what is the Riemann integral $\int_{0}^{1} f(x) d x$?

Which of the following functions $f:[0,1] \rightarrow \mathbb{R}$ are Riemann integrable? For those that are Riemann integrable, find $\int_{0}^{1} f(x) d x$. Justify your answers.
(i) $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{array}\right.$;
(ii) $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{array}\right.$,
where $A=\{x \in[0,1]: x$ has a base-3 expansion containing a 1$\}$;
[Hint: You may find it helpful to note, for example, that $\frac{2}{3} \in A$ as one of the base-3 expansions of $\frac{2}{3}$ is 0.1222... .]
(iii) $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \in B \\ 0 & \text { if } x \notin B\end{array}\right.$,
where $B=\{x \in[0,1]: x$ has a base -3 expansion containing infinitely many 1 s$\}$.

Paper 1, Section I

3E Analysis I

Prove that an increasing sequence in \mathbb{R} that is bounded above converges.
Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a decreasing function. Let $x_{1}=1$ and $x_{n+1}=x_{n}+f\left(x_{n}\right)$. Prove that $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Paper 1, Section I

4D Analysis I

Define the radius of convergence R of a complex power series $\sum a_{n} z^{n}$. Prove that $\sum a_{n} z^{n}$ converges whenever $|z|<R$ and diverges whenever $|z|>R$.

If $\left|a_{n}\right| \leqslant\left|b_{n}\right|$ for all n does it follow that the radius of convergence of $\sum a_{n} z^{n}$ is at least that of $\sum b_{n} z^{n}$? Justify your answer.

Paper 1, Section II

9F Analysis I

(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function, and let $x \in \mathbb{R}$. Define what it means for f to be continuous at x. Show that f is continuous at x if and only if $f\left(x_{n}\right) \rightarrow f(x)$ for every sequence $\left(x_{n}\right)$ with $x_{n} \rightarrow x$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a non-constant polynomial. Show that its image $\{f(x): x \in \mathbb{R}\}$ is either the real line \mathbb{R}, the interval $[a, \infty)$ for some $a \in \mathbb{R}$, or the interval $(-\infty, a]$ for some $a \in \mathbb{R}$.
(c) Let $\alpha>1$, let $f:(0, \infty) \rightarrow \mathbb{R}$ be continuous, and assume that $f(x)=f\left(x^{\alpha}\right)$ holds for all $x>0$. Show that f must be constant.

Is this also true when the condition that f be continuous is dropped?

Paper 1, Section II

10F Analysis
(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x_{0} \in \mathbb{R}$. Show that f is continuous at x_{0}.
(b) State the Mean Value Theorem. Prove the following inequalities:

$$
\left|\cos \left(e^{-x}\right)-\cos \left(e^{-y}\right)\right| \leqslant|x-y| \quad \text { for } x, y \geqslant 0
$$

and

$$
\log (1+x) \leqslant \frac{x}{\sqrt{1+x}} \quad \text { for } x \geqslant 0
$$

(c) Determine at which points the following functions from \mathbb{R} to \mathbb{R} are differentiable, and find their derivatives at the points at which they are differentiable:

$$
f(x)=\left\{\begin{array}{ll}
|x|^{x} & \text { if } x \neq 0 \\
1 & \text { if } x=0,
\end{array} \quad g(x)=\cos (|x|), \quad h(x)=x|x| .\right.
$$

(d) Determine the points at which the following function from \mathbb{R} to \mathbb{R} is continuous:

$$
f(x)= \begin{cases}0 & \text { if } x \notin \mathbb{Q} \text { or } x=0 \\ 1 / q & \text { if } x=p / q \text { where } p \in \mathbb{Z} \backslash\{0\} \text { and } q \in \mathbb{N} \text { are relatively prime. }\end{cases}
$$

Paper 1, Section II

11E Analysis I

State and prove the Comparison Test for real series.
Assume $0 \leqslant x_{n}<1$ for all $n \in \mathbb{N}$. Show that if $\sum x_{n}$ converges, then so do $\sum x_{n}^{2}$ and $\sum \frac{x_{n}}{1-x_{n}}$. In each case, does the converse hold? Justify your answers.

Let $\left(x_{n}\right)$ be a decreasing sequence of positive reals. Show that if $\sum x_{n}$ converges, then $n x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Does the converse hold? If $\sum x_{n}$ converges, must it be the case that $(n \log n) x_{n} \rightarrow 0$ as $n \rightarrow \infty$? Justify your answers.

Paper 1, Section II

12D Analysis I

(a) Let q_{1}, q_{2}, \ldots be a fixed enumeration of the rationals in $[0,1]$. For positive reals a_{1}, a_{2}, \ldots, define a function f from $[0,1]$ to \mathbb{R} by setting $f\left(q_{n}\right)=a_{n}$ for each n and $f(x)=0$ for x irrational. Prove that if $a_{n} \rightarrow 0$ then f is Riemann integrable. If $a_{n} \nrightarrow 0$, can f be Riemann integrable? Justify your answer.
(b) State and prove the Fundamental Theorem of Calculus.

Let f be a differentiable function from \mathbb{R} to \mathbb{R}, and set $g(x)=f^{\prime}(x)$ for $0 \leqslant x \leqslant 1$. Must g be Riemann integrable on $[0,1]$?

Paper 1, Section I

3F Analysis I

Given an increasing sequence of non-negative real numbers $\left(a_{n}\right)_{n=1}^{\infty}$, let

$$
s_{n}=\frac{1}{n} \sum_{k=1}^{n} a_{k}
$$

Prove that if $s_{n} \rightarrow x$ as $n \rightarrow \infty$ for some $x \in \mathbb{R}$ then also $a_{n} \rightarrow x$ as $n \rightarrow \infty$.

Paper 1, Section II

11F Analysis I

(a) Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a non-negative and decreasing sequence of real numbers. Prove that $\sum_{n=1}^{\infty} x_{n}$ converges if and only if $\sum_{k=0}^{\infty} 2^{k} x_{2^{k}}$ converges.
(b) For $s \in \mathbb{R}$, prove that $\sum_{n=1}^{\infty} n^{-s}$ converges if and only if $s>1$.
(c) For any $k \in \mathbb{N}$, prove that

$$
\lim _{n \rightarrow \infty} 2^{-n} n^{k}=0
$$

(d) The sequence $\left(a_{n}\right)_{n=0}^{\infty}$ is defined by $a_{0}=1$ and $a_{n+1}=2^{a_{n}}$ for $n \geqslant 0$. For any $k \in \mathbb{N}$, prove that

$$
\lim _{n \rightarrow \infty} \frac{2^{n^{k}}}{a_{n}}=0
$$

Paper 1, Section I

4E Analysis I

Show that if the power series $\sum_{n=0}^{\infty} a_{n} z^{n}(z \in \mathbb{C})$ converges for some fixed $z=z_{0}$, then it converges absolutely for every z satisfying $|z|<\left|z_{0}\right|$.

Define the radius of convergence of a power series.
Give an example of $v \in \mathbb{C}$ and an example of $w \in \mathbb{C}$ such that $|v|=|w|=1, \sum_{n=1}^{\infty} \frac{v^{n}}{n}$ converges and $\sum_{n=1}^{\infty} \frac{w^{n}}{n}$ diverges. [You may assume results about standard series without proof.] Use this to find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$.

Paper 1, Section II

9D Analysis I

(a) State the Intermediate Value Theorem.
(b) Define what it means for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ to be differentiable at a point $a \in \mathbb{R}$. If f is differentiable everywhere on \mathbb{R}, must f^{\prime} be continuous everywhere? Justify your answer.
State the Mean Value Theorem.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable everywhere. Let $a, b \in \mathbb{R}$ with $a<b$.

If $f^{\prime}(a) \leqslant y \leqslant f^{\prime}(b)$, prove that there exists $c \in[a, b]$ such that $f^{\prime}(c)=y$. [Hint: consider the function g defined by

$$
g(x)=\frac{f(x)-f(a)}{x-a}
$$

if $x \neq a$ and $g(a)=f^{\prime}(a)$.]
If additionally $f(a) \leqslant 0 \leqslant f(b)$, deduce that there exists $d \in[a, b]$ such that $f^{\prime}(d)+f(d)=y$.

Paper 1, Section II

10D Analysis I

Let $a, b \in \mathbb{R}$ with $a<b$ and let $f:(a, b) \rightarrow \mathbb{R}$.
(a) Define what it means for f to be continuous at $y_{0} \in(a, b)$.
f is said to have a local minimum at $c \in(a, b)$ if there is some $\varepsilon>0$ such that $f(c) \leqslant f(x)$ whenever $x \in(a, b)$ and $|x-c|<\varepsilon$.
If f has a local minimum at $c \in(a, b)$ and f is differentiable at c, show that $f^{\prime}(c)=0$.
(b) f is said to be convex if

$$
f(\lambda x+(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y)
$$

for every $x, y \in(a, b)$ and $\lambda \in[0,1]$. If f is convex, $r \in \mathbb{R}$ and $\left[y_{0}-|r|, y_{0}+|r|\right] \subset(a, b)$, prove that

$$
(1+\lambda) f\left(y_{0}\right)-\lambda f\left(y_{0}-r\right) \leqslant f\left(y_{0}+\lambda r\right) \leqslant(1-\lambda) f\left(y_{0}\right)+\lambda f\left(y_{0}+r\right)
$$

for every $\lambda \in[0,1]$.
Deduce that if f is convex then f is continuous.
If f is convex and has a local minimum at $c \in(a, b)$, prove that f has a global minimum at c, i.e., that $f(x) \geqslant f(c)$ for every $x \in(a, b)$. [Hint: argue by contradiction.] Must f be differentiable at c ? Justify your answer.

Paper 1, Section II

12E Analysis I

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function defined on the closed, bounded interval $[a, b]$ of \mathbb{R}. Suppose that for every $\varepsilon>0$ there is a dissection \mathcal{D} of $[a, b]$ such that $S_{\mathcal{D}}(f)-s_{\mathcal{D}}(f)<\varepsilon$, where $s_{\mathcal{D}}(f)$ and $S_{\mathcal{D}}(f)$ denote the lower and upper Riemann sums of f for the dissection \mathcal{D}. Deduce that f is Riemann integrable. [You may assume without proof that $s_{\mathcal{D}}(f) \leqslant S_{\mathcal{D}^{\prime}}(f)$ for all dissections \mathcal{D} and \mathcal{D}^{\prime} of $[a, b]$.]

Prove that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is Riemann integrable.
Let $g:(0,1] \rightarrow \mathbb{R}$ be a bounded continuous function. Show that for any $\lambda \in \mathbb{R}$, the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}g(x) & \text { if } 0<x \leqslant 1 \\ \lambda & \text { if } x=0\end{cases}
$$

is Riemann integrable.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function with one-sided derivatives at the endpoints. Suppose that the derivative f^{\prime} is (bounded and) Riemann integrable. Show that

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) .
$$

[You may use the Mean Value Theorem without proof.]

Paper 1, Section I

3D Analysis I

What does it mean to say that a sequence of real numbers $\left(x_{n}\right)$ converges to x ? Suppose that $\left(x_{n}\right)$ converges to x. Show that the sequence $\left(y_{n}\right)$ given by

$$
y_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

also converges to x.

Paper 1, Section I

4F Analysis I

Let a_{n} be the number of pairs of integers $(x, y) \in \mathbb{Z}^{2}$ such that $x^{2}+y^{2} \leqslant n^{2}$. What is the radius of convergence of the series $\sum_{n=0}^{\infty} a_{n} z^{n}$? [You may use the comparison test, provided you state it clearly.]

Paper 1, Section II

9E Analysis I

State the Bolzano-Weierstrass theorem. Use it to show that a continuous function $f:[a, b] \rightarrow \mathbb{R}$ attains a global maximum; that is, there is a real number $c \in[a, b]$ such that $f(c) \geqslant f(x)$ for all $x \in[a, b]$.

A function f is said to attain a local maximum at $c \in \mathbb{R}$ if there is some $\varepsilon>0$ such that $f(c) \geqslant f(x)$ whenever $|x-c|<\varepsilon$. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable, and that $f^{\prime \prime}(x)<0$ for all $x \in \mathbb{R}$. Show that there is at most one $c \in \mathbb{R}$ at which f attains a local maximum.

If there is a constant $K<0$ such that $f^{\prime \prime}(x)<K$ for all $x \in \mathbb{R}$, show that f attains a global maximum. [Hint: if $g^{\prime}(x)<0$ for all $x \in \mathbb{R}$, then g is decreasing.]

Must $f: \mathbb{R} \rightarrow \mathbb{R}$ attain a global maximum if we merely require $f^{\prime \prime}(x)<0$ for all $x \in \mathbb{R}$? Justify your answer.

Paper 1, Section II

10E Analysis I

Let $f: \mathbb{R} \rightarrow \mathbb{R}$. We say that $x \in \mathbb{R}$ is a real root of f if $f(x)=0$. Show that if f is differentiable and has k distinct real roots, then f^{\prime} has at least $k-1$ real roots. [Rolle's theorem may be used, provided you state it clearly.]

Let $p(x)=\sum_{i=1}^{n} a_{i} x^{d_{i}}$ be a polynomial in x, where all $a_{i} \neq 0$ and $d_{i+1}>d_{i}$. (In other words, the a_{i} are the nonzero coefficients of the polynomial, arranged in order of increasing power of x.) The number of sign changes in the coefficients of p is the number of i for which $a_{i} a_{i+1}<0$. For example, the polynomial $x^{5}-x^{3}-x^{2}+1$ has 2 sign changes. Show by induction on n that the number of positive real roots of p is less than or equal to the number of sign changes in its coefficients.

Paper 1, Section II

11D Analysis I

If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences converging to x and y respectively, show that the sequence $\left(x_{n}+y_{n}\right)$ converges to $x+y$.

If $x_{n} \neq 0$ for all n and $x \neq 0$, show that the sequence $\left(\frac{1}{x_{n}}\right)$ converges to $\frac{1}{x}$.
(a) Find $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right)$.
(b) Determine whether $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}}$ converges.

Justify your answers.

Paper 1, Section II

12F Analysis I

Let $f:[0,1] \rightarrow \mathbb{R}$ satisfy $|f(x)-f(y)| \leqslant|x-y|$ for all $x, y \in[0,1]$.
Show that f is continuous and that for all $\varepsilon>0$, there exists a piecewise constant function g such that

$$
\sup _{x \in[0,1]}|f(x)-g(x)| \leqslant \varepsilon
$$

For all integers $n \geqslant 1$, let $u_{n}=\int_{0}^{1} f(t) \cos (n t) d t$. Show that the sequence $\left(u_{n}\right)$ converges to 0 .

Paper 1, Section I

3F Analysis I

Find the following limits:
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
(b) $\lim _{x \rightarrow 0}(1+x)^{1 / x}$
(c) $\lim _{x \rightarrow \infty} \frac{(1+x)^{\frac{x}{1+x}} \cos ^{4} x}{e^{x}}$

Carefully justify your answers.
[You may use standard results provided that they are clearly stated.]

Paper 1, Section I

4E Analysis I

Let $\sum_{n \geqslant 0} a_{n} z^{n}$ be a complex power series. State carefully what it means for the power series to have radius of convergence R, with $0 \leqslant R \leqslant \infty$.

Find the radius of convergence of $\sum_{n \geqslant 0} p(n) z^{n}$, where $p(n)$ is a fixed polynomial in n with coefficients in \mathbb{C}.

Paper 1, Section II

9F Analysis I

Let $\left(a_{n}\right),\left(b_{n}\right)$ be sequences of real numbers. Let $S_{n}=\sum_{j=1}^{n} a_{j}$ and set $S_{0}=0$. Show that for any $1 \leqslant m \leqslant n$ we have

$$
\sum_{j=m}^{n} a_{j} b_{j}=S_{n} b_{n}-S_{m-1} b_{m}+\sum_{j=m}^{n-1} S_{j}\left(b_{j}-b_{j+1}\right)
$$

Suppose that the series $\sum_{n \geqslant 1} a_{n}$ converges and that $\left(b_{n}\right)$ is bounded and monotonic. Does $\sum_{n \geqslant 1} a_{n} b_{n}$ converge?

Assume again that $\sum_{n \geqslant 1} a_{n}$ converges. Does $\sum_{n \geqslant 1} n^{1 / n} a_{n}$ converge?
Justify your answers.
[You may use the fact that a sequence of real numbers converges if and only if it is a Cauchy sequence.]

Paper 1, Section II

10D Analysis I

(a) For real numbers a, b such that $a<b$, let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Prove that f is bounded on $[a, b]$, and that f attains its supremum and infimum on $[a, b]$.
(b) For $x \in \mathbb{R}$, define

$$
g(x)=\left\{\begin{array}{ll}
|x|^{\frac{1}{2}} \sin (1 / \sin x), & x \neq n \pi \\
0, & x=n \pi
\end{array} \quad(n \in \mathbb{Z})\right.
$$

Find the set of points $x \in \mathbb{R}$ at which $g(x)$ is continuous.
Does g attain its supremum on $[0, \pi]$?
Does g attain its supremum on $[\pi, 3 \pi / 2]$?
Justify your answers.

Paper 1, Section II

11D Analysis I

(i) State and prove the intermediate value theorem.
(ii) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. The chord joining the points $(\alpha, f(\alpha))$ and $(\beta, f(\beta))$ of the curve $y=f(x)$ is said to be horizontal if $f(\alpha)=f(\beta)$. Suppose that the chord joining the points $(0, f(0))$ and $(1, f(1))$ is horizontal. By considering the function g defined on $\left[0, \frac{1}{2}\right]$ by

$$
g(x)=f\left(x+\frac{1}{2}\right)-f(x)
$$

or otherwise, show that the curve $y=f(x)$ has a horizontal chord of length $\frac{1}{2}$ in $[0,1]$. Show, more generally, that it has a horizontal chord of length $\frac{1}{n}$ for each positive integer n.

Paper 1, Section II

12E Analysis I

Let $f:[0,1] \rightarrow \mathbb{R}$ be a bounded function, and let \mathcal{D}_{n} denote the dissection $0<\frac{1}{n}<\frac{2}{n}<\cdots<\frac{n-1}{n}<1$ of [0,1]. Prove that f is Riemann integrable if and only if the difference between the upper and lower sums of f with respect to the dissection \mathcal{D}_{n} tends to zero as n tends to infinity.

Suppose that f is Riemann integrable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable. Prove that $g \circ f$ is Riemann integrable.
[You may use the mean value theorem provided that it is clearly stated.]

Paper 1, Section I

3D Analysis I

Show that every sequence of real numbers contains a monotone subsequence.

Paper 1, Section I

4F Analysis I

Find the radius of convergence of the following power series:
(i) $\sum_{n \geqslant 1} \frac{n!}{n^{n}} z^{n}$;
(ii) $\sum_{n \geqslant 1} n^{n} z^{n!}$.

Paper 1, Section II

9D Analysis I

(a) Show that for all $x \in \mathbb{R}$,

$$
\lim _{k \rightarrow \infty} 3^{k} \sin \left(x / 3^{k}\right)=x,
$$

stating carefully what properties of sin you are using.
Show that the series $\sum_{n \geqslant 1} 2^{n} \sin \left(x / 3^{n}\right)$ converges absolutely for all $x \in \mathbb{R}$.
(b) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a decreasing sequence of positive real numbers tending to zero. Show that for $\theta \in \mathbb{R}, \theta$ not a multiple of 2π, the series

$$
\sum_{n \geqslant 1} a_{n} e^{i n \theta}
$$

converges.
Hence, or otherwise, show that $\sum_{n \geqslant 1} \frac{\sin (n \theta)}{n}$ converges for all $\theta \in \mathbb{R}$.

Paper 1, Section II

10E Analysis I

(i) State the Mean Value Theorem. Use it to show that if $f:(a, b) \rightarrow \mathbb{R}$ is a differentiable function whose derivative is identically zero, then f is constant.
(ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $\alpha>0$ a real number such that for all $x, y \in \mathbb{R}$,

$$
|f(x)-f(y)| \leqslant|x-y|^{\alpha} .
$$

Show that f is continuous. Show moreover that if $\alpha>1$ then f is constant.
(iii) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous, and differentiable on (a, b). Assume also that the right derivative of f at a exists; that is, the limit

$$
\lim _{x \rightarrow a+} \frac{f(x)-f(a)}{x-a}
$$

exists. Show that for any $\epsilon>0$ there exists $x \in(a, b)$ satisfying

$$
\left|\frac{f(x)-f(a)}{x-a}-f^{\prime}(x)\right|<\epsilon
$$

[You should not assume that f^{\prime} is continuous.]

Paper 1, Section II

11E Analysis I
(i) Prove Taylor's Theorem for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ differentiable n times, in the following form: for every $x \in \mathbb{R}$ there exists θ with $0<\theta<1$ such that

$$
f(x)=\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^{k}+\frac{f^{(n)}(\theta x)}{n!} x^{n}
$$

[You may assume Rolle's Theorem and the Mean Value Theorem; other results should be proved.]
(ii) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable, and satisfies the differential equation $f^{\prime \prime}-f=0$ with $f(0)=A, f^{\prime}(0)=B$. Show that f is infinitely differentiable. Write down its Taylor series at the origin, and prove that it converges to f at every point. Hence or otherwise show that for any $a, h \in \mathbb{R}$, the series

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} h^{k}
$$

converges to $f(a+h)$.

Paper 1, Section II

12F Analysis I

Define what it means for a function $f:[0,1] \rightarrow \mathbb{R}$ to be (Riemann) integrable. Prove that f is integrable whenever it is
(a) continuous,
(b) monotonic.

Let $\left\{q_{k}: k \in \mathbb{N}\right\}$ be an enumeration of all rational numbers in $[0,1)$. Define a function $f:[0,1] \rightarrow \mathbb{R}$ by $f(0)=0$,

$$
f(x)=\sum_{k \in Q(x)} 2^{-k}, \quad x \in(0,1],
$$

where

$$
Q(x)=\left\{k \in \mathbb{N}: q_{k} \in[0, x)\right\} .
$$

Show that f has a point of discontinuity in every interval $I \subset[0,1]$.
Is f integrable? [Justify your answer.]

Paper 1, Section I

3D Analysis I

Show that $\exp (x) \geqslant 1+x$ for $x \geqslant 0$.
Let $\left(a_{j}\right)$ be a sequence of positive real numbers. Show that for every n,

$$
\sum_{1}^{n} a_{j} \leqslant \prod_{1}^{n}\left(1+a_{j}\right) \leqslant \exp \left(\sum_{1}^{n} a_{j}\right)
$$

Deduce that $\prod_{1}^{n}\left(1+a_{j}\right)$ tends to a limit as $n \rightarrow \infty$ if and only if $\sum_{1}^{n} a_{j}$ does.

Paper 1, Section I

4F Analysis I

(a) Suppose $b_{n} \geqslant b_{n+1} \geqslant 0$ for $n \geqslant 1$ and $b_{n} \rightarrow 0$. Show that $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ converges.
(b) Does the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ converge or diverge? Explain your answer.

Paper 1, Section II

9D Analysis I

(a) Determine the radius of convergence of each of the following power series:

$$
\sum_{n \geqslant 1} \frac{x^{n}}{n!}, \quad \sum_{n \geqslant 1} n!x^{n}, \quad \sum_{n \geqslant 1}(n!)^{2} x^{n^{2}} .
$$

(b) State Taylor's theorem.

Show that

$$
(1+x)^{1 / 2}=1+\sum_{n \geqslant 1} c_{n} x^{n}
$$

for all $x \in(0,1)$, where

$$
c_{n}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \ldots\left(\frac{1}{2}-n+1\right)}{n!} .
$$

Paper 1, Section II

10E Analysis I

(a) Let $f:[a, b] \rightarrow \mathbb{R}$. Suppose that for every sequence $\left(x_{n}\right)$ in $[a, b]$ with limit $y \in[a, b]$, the sequence $\left(f\left(x_{n}\right)\right)$ converges to $f(y)$. Show that f is continuous at y.
(b) State the Intermediate Value Theorem.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function with $f(a)=c<f(b)=d$. We say f is injective if for all $x, y \in[a, b]$ with $x \neq y$, we have $f(x) \neq f(y)$. We say f is strictly increasing if for all x, y with $x<y$, we have $f(x)<f(y)$.
(i) Suppose f is strictly increasing. Show that it is injective, and that if $f(x)<f(y)$ then $x<y$.
(ii) Suppose f is continuous and injective. Show that if $a<x<b$ then $c<f(x)<d$. Deduce that f is strictly increasing.
(iii) Suppose f is strictly increasing, and that for every $y \in[c, d]$ there exists $x \in[a, b]$ with $f(x)=y$. Show that f is continuous at b. Deduce that f is continuous on $[a, b]$.

Paper 1, Section II

11E Analysis I

(i) State (without proof) Rolle's Theorem.
(ii) State and prove the Mean Value Theorem.
(iii) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous, and differentiable on (a, b) with $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Show that there exists $\xi \in(a, b)$ such that

$$
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)} .
$$

Deduce that if moreover $f(a)=g(a)=0$, and the limit

$$
\ell=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

exists, then

$$
\frac{f(x)}{g(x)} \rightarrow \ell \quad \text { as } x \rightarrow a .
$$

(iv) Deduce that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable then for any $a \in \mathbb{R}$

$$
f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}} .
$$

Paper 1, Section II

12F Analysis I

Fix a closed interval $[a, b]$. For a bounded function f on $[a, b]$ and a dissection \mathcal{D} of $[a, b]$, how are the lower sum $s(f, \mathcal{D})$ and upper sum $S(f, \mathcal{D})$ defined? Show that $s(f, \mathcal{D}) \leqslant S(f, \mathcal{D})$.

Suppose \mathcal{D}^{\prime} is a dissection of $[a, b]$ such that $\mathcal{D} \subseteq \mathcal{D}^{\prime}$. Show that

$$
s(f, \mathcal{D}) \leqslant s\left(f, \mathcal{D}^{\prime}\right) \text { and } S\left(f, \mathcal{D}^{\prime}\right) \leqslant S(f, \mathcal{D})
$$

By using the above inequalities or otherwise, show that if \mathcal{D}_{1} and \mathcal{D}_{2} are two dissections of $[a, b]$ then

$$
s\left(f, \mathcal{D}_{1}\right) \leqslant S\left(f, \mathcal{D}_{2}\right)
$$

For a function f and dissection $\mathcal{D}=\left\{x_{0}, \ldots, x_{n}\right\}$ let

$$
p(f, \mathcal{D})=\prod_{k=1}^{n}\left[1+\left(x_{k}-x_{k-1}\right) \inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x)\right]
$$

If f is non-negative and Riemann integrable, show that

$$
p(f, \mathcal{D}) \leqslant e^{\int_{a}^{b} f(x) d x}
$$

[You may use without proof the inequality $e^{t} \geqslant t+1$ for all t.]

Paper 1, Section I

3E Analysis I

What does it mean to say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_{0} \in \mathbb{R}$?
Give an example of a continuous function $f:(0,1] \rightarrow \mathbb{R}$ which is bounded but attains neither its upper bound nor its lower bound.

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and non-negative, and satisfies $f(x) \rightarrow 0$ as $x \rightarrow \infty$ and $f(x) \rightarrow 0$ as $x \rightarrow-\infty$. Show that f is bounded above and attains its upper bound.
[Standard results about continuous functions on closed bounded intervals may be used without proof if clearly stated.]

Paper 1, Section I

4F Analysis I

Let $f, g:[0,1] \rightarrow \mathbb{R}$ be continuous functions with $g(x) \geqslant 0$ for $x \in[0,1]$. Show that

$$
\int_{0}^{1} f(x) g(x) d x \leqslant M \int_{0}^{1} g(x) d x
$$

where $M=\sup \{|f(x)|: x \in[0,1]\}$.
Prove there exists $\alpha \in[0,1]$ such that

$$
\int_{0}^{1} f(x) g(x) d x=f(\alpha) \int_{0}^{1} g(x) d x .
$$

[Standard results about continuous functions and their integrals may be used without proof, if clearly stated.]

Paper 1, Section II

9E Analysis I

(a) What does it mean to say that the sequence $\left(x_{n}\right)$ of real numbers converges to $\ell \in \mathbb{R}$?

Suppose that $\left(y_{n}^{(1)}\right),\left(y_{n}^{(2)}\right), \ldots,\left(y_{n}^{(k)}\right)$ are sequences of real numbers converging to the same limit ℓ. Let $\left(x_{n}\right)$ be a sequence such that for every n,

$$
x_{n} \in\left\{y_{n}^{(1)}, y_{n}^{(2)}, \ldots, y_{n}^{(k)}\right\} .
$$

Show that $\left(x_{n}\right)$ also converges to ℓ.
Find a collection of sequences $\left(y_{n}^{(j)}\right), j=1,2, \ldots$ such that for every $j,\left(y_{n}^{(j)}\right) \rightarrow \ell$ but the sequence (x_{n}) defined by $x_{n}=y_{n}^{(n)}$ diverges.
(b) Let a, b be real numbers with $0<a<b$. Sequences $\left(a_{n}\right),\left(b_{n}\right)$ are defined by $a_{1}=a, b_{1}=b$ and

$$
\text { for all } n \geqslant 1, \quad a_{n+1}=\sqrt{a_{n} b_{n}}, \quad b_{n+1}=\frac{a_{n}+b_{n}}{2} .
$$

Show that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge to the same limit.

Paper 1, Section II

10D Analysis I

Let $\left(a_{n}\right)$ be a sequence of reals.
(i) Show that if the sequence $\left(a_{n+1}-a_{n}\right)$ is convergent then so is the sequence $\left(\frac{a_{n}}{n}\right)$.
(ii) Give an example to show the sequence ($\frac{a_{n}}{n}$) being convergent does not imply that the sequence ($a_{n+1}-a_{n}$) is convergent.
(iii) If $a_{n+k}-a_{n} \rightarrow 0$ as $n \rightarrow \infty$ for each positive integer k, does it follow that (a_{n}) is convergent? Justify your answer.
(iv) If $a_{n+f(n)}-a_{n} \rightarrow 0$ as $n \rightarrow \infty$ for every function f from the positive integers to the positive integers, does it follow that $\left(a_{n}\right)$ is convergent? Justify your answer.

Paper 1, Section II

11D Analysis I

Let f be a continuous function from $(0,1)$ to $(0,1)$ such that $f(x)<x$ for every $0<x<1$. We write f^{n} for the n-fold composition of f with itself (so for example $\left.f^{2}(x)=f(f(x))\right)$.
(i) Prove that for every $0<x<1$ we have $f^{n}(x) \rightarrow 0$ as $n \rightarrow \infty$.
(ii) Must it be the case that for every $\epsilon>0$ there exists n with the property that $f^{n}(x)<\epsilon$ for all $0<x<1$? Justify your answer.

Now suppose that we remove the condition that f be continuous.
(iii) Give an example to show that it need not be the case that for every $0<x<1$ we have $f^{n}(x) \rightarrow 0$ as $n \rightarrow \infty$.
(iv) Must it be the case that for some $0<x<1$ we have $f^{n}(x) \rightarrow 0$ as $n \rightarrow \infty$? Justify your answer.

Paper 1, Section II

12F Analysis I

(a) (i) State the ratio test for the convergence of a real series with positive terms.
(ii) Define the radius of convergence of a real power series $\sum_{n=0}^{\infty} a_{n} x^{n}$.
(iii) Prove that the real power series $f(x)=\sum_{n} a_{n} x^{n}$ and $g(x)=\sum_{n}(n+1) a_{n+1} x^{n}$ have equal radii of convergence.
(iv) State the relationship between $f(x)$ and $g(x)$ within their interval of convergence.
(b) (i) Prove that the real series

$$
f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad g(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

have radius of convergence ∞.
(ii) Show that they are differentiable on the real line \mathbb{R}, with $f^{\prime}=-g$ and $g^{\prime}=f$, and deduce that $f(x)^{2}+g(x)^{2}=1$.
[You may use, without proof, general theorems about differentiating within the interval of convergence, provided that you give a clear statement of any such theorem.]

Paper 1, Section I

3F Analysis I

(a) State, without proof, the Bolzano-Weierstrass Theorem.
(b) Give an example of a sequence that does not have a convergent subsequence.
(c) Give an example of an unbounded sequence having a convergent subsequence.
(d) Let $a_{n}=1+(-1)^{\lfloor n / 2\rfloor}(1+1 / n)$, where $\lfloor x\rfloor$ denotes the integer part of x. Find all values c such that the sequence $\left\{a_{n}\right\}$ has a subsequence converging to c. For each such value, provide a subsequence converging to it.

Paper 1, Section I

4D Analysis I

Find the radius of convergence of each of the following power series.
(i) $\sum_{n \geqslant 1} n^{2} z^{n}$
(ii) $\sum_{n \geqslant 1} n^{n^{1 / 3}} z^{n}$

Paper 1, Section II

9F Analysis I

(a) State, without proof, the ratio test for the series $\sum_{n \geqslant 1} a_{n}$, where $a_{n}>0$. Give examples, without proof, to show that, when $a_{n+1}<a_{n}$ and $a_{n+1} / a_{n} \rightarrow 1$, the series may converge or diverge.
(b) Prove that $\sum_{k=1}^{n-1} \frac{1}{k} \geqslant \log n$.
(c) Now suppose that $a_{n}>0$ and that, for n large enough, $\frac{a_{n+1}}{a_{n}} \leqslant 1-\frac{c}{n}$ where $c>1$. Prove that the series $\sum_{n \geqslant 1} a_{n}$ converges.
[You may find it helpful to prove the inequality $\log (1-x)<-x$ for $0<x<1$.]

Paper 1, Section II

10E Analysis I

State and prove the Intermediate Value Theorem.
A fixed point of a function $f: X \rightarrow X$ is an $x \in X$ with $f(x)=x$. Prove that every continuous function $f:[0,1] \rightarrow[0,1]$ has a fixed point.

Answer the following questions with justification.
(i) Does every continuous function $f:(0,1) \rightarrow(0,1)$ have a fixed point?
(ii) Does every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ have a fixed point?
(iii) Does every function $f:[0,1] \rightarrow[0,1]$ (not necessarily continuous) have a fixed point?
(iv) Let $f:[0,1] \rightarrow[0,1]$ be a continuous function with $f(0)=1$ and $f(1)=0$. Can f have exactly two fixed points?

Paper 1, Section II

11E Analysis I

For each of the following two functions $f: \mathbb{R} \rightarrow \mathbb{R}$, determine the set of points at which f is continuous, and also the set of points at which f is differentiable.
(i) $f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ -x & \text { if } x \notin \mathbb{Q},\end{cases}$
(ii) $f(x)= \begin{cases}x \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

By modifying the function in (i), or otherwise, find a function (not necessarily continuous) $f: \mathbb{R} \rightarrow \mathbb{R}$ such that f is differentiable at 0 and nowhere else.

Find a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that f is not differentiable at the points $1 / 2,1 / 3,1 / 4, \ldots$, but is differentiable at all other points.

Paper 1, Section II

12D Analysis I

State and prove the Fundamental Theorem of Calculus.
Let $f:[0,1] \rightarrow \mathbb{R}$ be integrable, and set $F(x)=\int_{0}^{x} f(t) \mathrm{d} t$ for $0<x<1$. Must F be differentiable?

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable, and set $g(x)=f^{\prime}(x)$ for $0 \leqslant x \leqslant 1$. Must the Riemann integral of g from 0 to 1 exist?

Paper 1, Section I

3D Analysis I

Let $\sum_{n \geqslant 0} a_{n} z^{n}$ be a complex power series. State carefully what it means for the power series to have radius of convergence R, with $R \in[0, \infty]$.

Suppose the power series has radius of convergence R, with $0<R<\infty$. Show that the sequence $\left|a_{n} z^{n}\right|$ is unbounded if $|z|>R$.

Find the radius of convergence of $\sum_{n \geqslant 1} z^{n} / n^{3}$.

Paper 1, Section I

4E Analysis I

Find the limit of each of the following sequences; justify your answers.
(i)

$$
\frac{1+2+\ldots+n}{n^{2}}
$$

(ii)

$$
\sqrt[n]{n}
$$

(iii)

$$
\left(a^{n}+b^{n}\right)^{1 / n} \quad \text { with } \quad 0<a \leqslant b
$$

Paper 1, Section II

9E Analysis I

Determine whether the following series converge or diverge. Any tests that you use should be carefully stated.
(a)

$$
\sum_{n \geqslant 1} \frac{n!}{n^{n}}
$$

(b)

$$
\sum_{n \geqslant 1} \frac{1}{n+(\log n)^{2}} ;
$$

(c)

$$
\sum_{n \geqslant 1} \frac{(-1)^{n}}{1+\sqrt{n}}
$$

(d)

$$
\sum_{n \geqslant 1} \frac{(-1)^{n}}{n\left(2+(-1)^{n}\right)}
$$

Paper 1, Section II

10F Analysis I

(a) State and prove Taylor's theorem with the remainder in Lagrange's form.
(b) Suppose that $e: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function such that $e(0)=1$ and $e^{\prime}(x)=e(x)$ for all $x \in \mathbb{R}$. Use the result of (a) to prove that

$$
e(x)=\sum_{n \geqslant 0} \frac{x^{n}}{n!} \quad \text { for all } \quad x \in \mathbb{R}
$$

[No property of the exponential function may be assumed.]

Paper 1, Section II

11D Analysis I

Define what it means for a bounded function $f:[a, \infty) \rightarrow \mathbb{R}$ to be Riemann integrable.

Show that a monotonic function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable, where $-\infty<a<b<\infty$.

Prove that if $f:[1, \infty) \rightarrow \mathbb{R}$ is a decreasing function with $f(x) \rightarrow 0$ as $x \rightarrow \infty$, then $\sum_{n \geqslant 1} f(n)$ and $\int_{1}^{\infty} f(x) d x$ either both diverge or both converge.

Hence determine, for $\alpha \in \mathbb{R}$, when $\sum_{n \geqslant 1} n^{\alpha}$ converges.

Paper 1, Section II

12F Analysis I

(a) Let $n \geqslant 1$ and f be a function $\mathbb{R} \rightarrow \mathbb{R}$. Define carefully what it means for f to be n times differentiable at a point $x_{0} \in \mathbb{R}$.

Set $\operatorname{sign}(x)= \begin{cases}x /|x|, & x \neq 0, \\ 0, & x=0 .\end{cases}$
Consider the function $f(x)$ on the real line, with $f(0)=0$ and

$$
f(x)=x^{2} \operatorname{sign}(x)\left|\cos \frac{\pi}{x}\right|, \quad x \neq 0
$$

(b) Is $f(x)$ differentiable at $x=0$?
(c) Show that $f(x)$ has points of non-differentiability in any neighbourhood of $x=0$.
(d) Prove that, in any finite interval I, the derivative $f^{\prime}(x)$, at the points $x \in I$ where it exists, is bounded: $\left|f^{\prime}(x)\right| \leqslant C$ where C depends on I.

Paper 1, Section I

3F Analysis I

Determine the limits as $n \rightarrow \infty$ of the following sequences:
(a) $a_{n}=n-\sqrt{n^{2}-n}$;
(b) $b_{n}=\cos ^{2}\left(\pi \sqrt{n^{2}+n}\right)$.

Paper 1, Section I

4E Analysis I

Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of complex numbers. Prove that there exists $R \in[0, \infty]$ such that the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges whenever $|z|<R$ and diverges whenever $|z|>R$.

Give an example of a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ that diverges if $z= \pm 1$ and converges if $z= \pm \mathrm{i}$.

Paper 1, Section II

9F Analysis I

For each of the following series, determine for which real numbers x it diverges, for which it converges, and for which it converges absolutely. Justify your answers briefly.
(a) $\quad \sum_{n \geqslant 1} \frac{3+(\sin x)^{n}}{n}(\sin x)^{n}$,
(b) $\quad \sum_{n \geqslant 1}|\sin x|^{n} \frac{(-1)^{n}}{\sqrt{n}}$,
(c) $\quad \sum_{n \geqslant 1} \underbrace{\sin (0.99 \sin (0.99 \ldots \sin (0.99 x) \ldots))}_{n \text { times }}$.

Paper 1, Section II

10D Analysis I

State and prove the intermediate value theorem.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and let $P=(a, b)$ be a point of the plane \mathbb{R}^{2}. Show that the set of distances from points $(x, f(x))$ on the graph of f to the point P is an interval $[A, \infty)$ for some value $A \geqslant 0$.

Paper 1, Section II

11D Analysis I

State and prove Rolle's theorem.
Let f and g be two continuous, real-valued functions on a closed, bounded interval $[a, b]$ that are differentiable on the open interval (a, b). By considering the determinant

$$
\phi(x)=\left|\begin{array}{ccc}
1 & 1 & 0 \\
f(a) & f(b) & f(x) \\
g(a) & g(b) & g(x)
\end{array}\right|=g(x)(f(b)-f(a))-f(x)(g(b)-g(a))
$$

or otherwise, show that there is a point $c \in(a, b)$ with

$$
f^{\prime}(c)(g(b)-g(a))=g^{\prime}(c)(f(b)-f(a))
$$

Suppose that $f, g:(0, \infty) \rightarrow \mathbb{R}$ are differentiable functions with $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow 0$. Prove carefully that if the limit $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\ell$ exists and is finite, then the limit $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$ also exists and equals ℓ.

Paper 1, Section II

12E Analysis I

(a) What does it mean for a function $f:[a, b] \rightarrow \mathbb{R}$ to be Riemann integrable?
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be a bounded function. Suppose that for every $\delta>0$ there is a sequence

$$
0 \leqslant a_{1}<b_{1} \leqslant a_{2}<b_{2} \leqslant \ldots \leqslant a_{n}<b_{n} \leqslant 1
$$

such that for each i the function f is Riemann integrable on the closed interval $\left[a_{i}, b_{i}\right]$, and such that $\sum_{i=1}^{n}\left(b_{i}-a_{i}\right) \geqslant 1-\delta$. Prove that f is Riemann integrable on $[0,1]$.
(c) Let $f:[0,1] \rightarrow \mathbb{R}$ be defined as follows. We set $f(x)=1$ if x has an infinite decimal expansion that consists of 2 s and 7 s only, and otherwise we set $f(x)=0$. Prove that f is Riemann integrable and determine $\int_{0}^{1} f(x) \mathrm{d} x$.

1/I/3F Analysis I

State the ratio test for the convergence of a series.
Find all real numbers x such that the series

$$
\sum_{n=1}^{\infty} \frac{x^{n}-1}{n}
$$

converges.

1/I/4E Analysis I

Let $f:[0,1] \rightarrow \mathbb{R}$ be Riemann integrable, and for $0 \leqslant x \leqslant 1$ set $F(x)=\int_{0}^{x} f(t) d t$.
Assuming that f is continuous, prove that for every $0<x<1$ the function F is differentiable at x, with $F^{\prime}(x)=f(x)$.

If we do not assume that f is continuous, must it still be true that F is differentiable at every $0<x<1$? Justify your answer.

1/II/9F Analysis I

Investigate the convergence of the series
(i) $\quad \sum_{n=2}^{\infty} \frac{1}{n^{p}(\log n)^{q}}$
(ii) $\quad \sum_{n=3}^{\infty} \frac{1}{n(\log \log n)^{r}}$
for positive real values of p, q and r.
[You may assume that for any positive real value of $\alpha, \log n<n^{\alpha}$ for n sufficiently large. You may assume standard tests for convergence, provided that they are clearly stated.]

1/II/10D Analysis I

(a) State and prove the intermediate value theorem.
(b) An interval is a subset I of \mathbb{R} with the property that if x and y belong to I and $x<z<y$ then z also belongs to I. Prove that if I is an interval and f is a continuous function from I to \mathbb{R} then $f(I)$ is an interval.
(c) For each of the following three pairs (I, J) of intervals, either exhibit a continuous function f from I to \mathbb{R} such that $f(I)=J$ or explain briefly why no such continuous function exists:
(i) $I=[0,1], \quad J=[0, \infty)$;
(ii) $I=(0,1], \quad J=[0, \infty)$;
(iii) $I=(0,1], \quad J=(-\infty, \infty)$.

1/II/11D Analysis I

(a) Let f and g be functions from \mathbb{R} to \mathbb{R} and suppose that both f and g are differentiable at the real number x. Prove that the product $f g$ is also differentiable at x.
(b) Let f be a continuous function from \mathbb{R} to \mathbb{R} and let $g(x)=x^{2} f(x)$ for every x. Prove that g is differentiable at x if and only if either $x=0$ or f is differentiable at x.
(c) Now let f be any continuous function from \mathbb{R} to \mathbb{R} and let $g(x)=f(x)^{2}$ for every x. Prove that g is differentiable at x if and only if at least one of the following two possibilities occurs:
(i) f is differentiable at x;
(ii) $f(x)=0$ and

$$
\frac{f(x+h)}{|h|^{1 / 2}} \longrightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

1/II/12E Analysis I

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be a complex power series. Prove that there exists an $R \in[0, \infty]$ such that the series converges for every z with $|z|<R$ and diverges for every z with $|z|>R$.

Find the value of R for each of the following power series:
(i) $\sum_{n=1}^{\infty} \frac{1}{n^{2}} z^{n}$;
(ii) $\sum_{n=0}^{\infty} z^{n!}$.

In each case, determine at which points on the circle $|z|=R$ the series converges.

1/I/3F Analysis

Prove that, for positive real numbers a and b,

$$
2 \sqrt{a b} \leqslant a+b
$$

For positive real numbers a_{1}, a_{2}, \ldots, prove that the convergence of

$$
\sum_{n=1}^{\infty} a_{n}
$$

implies the convergence of

$$
\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}
$$

1/I/4D Analysis

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be a complex power series. Show that there exists $R \in[0, \infty]$ such that $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges whenever $|z|<R$ and diverges whenever $|z|>R$.

Find the value of R for the power series

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

1/II/9F Analysis

Let $a_{1}=\sqrt{2}$, and consider the sequence of positive real numbers defined by

$$
a_{n+1}=\sqrt{2+\sqrt{a}_{n}}, \quad n=1,2,3, \ldots
$$

Show that $a_{n} \leqslant 2$ for all n. Prove that the sequence a_{1}, a_{2}, \ldots converges to a limit.
Suppose instead that $a_{1}=4$. Prove that again the sequence a_{1}, a_{2}, \ldots converges to a limit.

Prove that the limits obtained in the two cases are equal.

1/II/10E Analysis

State and prove the Mean Value Theorem.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that, for every $x \in \mathbb{R}, f^{\prime \prime}(x)$ exists and is non-negative.
(i) Show that if $x \leq y$ then $f^{\prime}(x) \leq f^{\prime}(y)$.
(ii) Let $\lambda \in(0,1)$ and $a<b$. Show that there exist x and y such that

$$
f(\lambda a+(1-\lambda) b)=f(a)+(1-\lambda)(b-a) f^{\prime}(x)=f(b)-\lambda(b-a) f^{\prime}(y)
$$

and that

$$
f(\lambda a+(1-\lambda) b) \leq \lambda f(a)+(1-\lambda) f(b)
$$

1/II/11E Analysis

Let $a<b$ be real numbers, and let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Show that f is bounded on $[a, b]$, and that there exist $c, d \in[a, b]$ such that for all $x \in[a, b]$, $f(c) \leq f(x) \leq f(d)$.

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that

$$
\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow-\infty} g(x)=0 .
$$

Show that g is bounded. Show also that, if a and c are real numbers with $0<c \leq g(a)$, then there exists $x \in \mathbb{R}$ with $g(x)=c$.

1/II/12D Analysis

Explain carefully what it means to say that a bounded function $f:[0,1] \rightarrow \mathbb{R}$ is Riemann integrable.

Prove that every continuous function $f:[0,1] \rightarrow \mathbb{R}$ is Riemann integrable.
For each of the following functions from $[0,1]$ to \mathbb{R}, determine with proof whether or not it is Riemann integrable:
(i) the function $f(x)=x \sin \frac{1}{x}$ for $x \neq 0$, with $f(0)=0$;
(ii) the function $g(x)=\sin \frac{1}{x}$ for $x \neq 0$, with $g(0)=0$.

1/I/3F Analysis

Let $a_{n} \in \mathbb{R}$ for $n \geqslant 1$. What does it mean to say that the infinite series $\sum_{n} a_{n}$ converges to some value A ? Let $s_{n}=a_{1}+\cdots+a_{n}$ for all $n \geqslant 1$. Show that if $\sum_{n} a_{n}$ converges to some value A, then the sequence whose n-th term is

$$
\left(s_{1}+\cdots+s_{n}\right) / n
$$

converges to some value \tilde{A} as $n \rightarrow \infty$. Is it always true that $A=\tilde{A}$? Give an example where $\left(s_{1}+\cdots+s_{n}\right) / n$ converges but $\sum_{n} a_{n}$ does not.

1/I/4D Analysis

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\sum_{n=0}^{\infty} b_{n} z^{n}$ be power series in the complex plane with radii of convergence R and S respectively. Show that if $R \neq S$ then $\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) z^{n}$ has radius of convergence $\min (R, S)$. [Any results on absolute convergence that you use should be clearly stated.]

1/II/9E Analysis

State and prove the Intermediate Value Theorem.
Suppose that the function f is differentiable everywhere in some open interval containing $[a, b]$, and that $f^{\prime}(a)<k<f^{\prime}(b)$. By considering the functions g and h defined by

$$
g(x)=\frac{f(x)-f(a)}{x-a} \quad(a<x \leqslant b), \quad g(a)=f^{\prime}(a)
$$

and

$$
h(x)=\frac{f(b)-f(x)}{b-x} \quad(a \leqslant x<b), \quad h(b)=f^{\prime}(b),
$$

or otherwise, show that there is a subinterval $\left[a^{\prime}, b^{\prime}\right] \subseteq[a, b]$ such that

$$
\frac{f\left(b^{\prime}\right)-f\left(a^{\prime}\right)}{b^{\prime}-a^{\prime}}=k .
$$

Deduce that there exists $c \in(a, b)$ with $f^{\prime}(c)=k$. [You may assume the Mean Value Theorem.]

1/II/10E Analysis

Prove that if the function f is infinitely differentiable on an interval (r, s) containing a, then for any $x \in(r, s)$ and any positive integer n we may expand $f(x)$ in the form

$$
f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\cdots+\frac{(x-a)^{n}}{n!} f^{(n)}(a)+R_{n}(f, a, x),
$$

where the remainder term $R_{n}(f, a, x)$ should be specified explicitly in terms of $f^{(n+1)}$.
Let $p(t)$ be a nonzero polynomial in t, and let f be the real function defined by

$$
f(x)=p\left(\frac{1}{x}\right) \exp \left(-\frac{1}{x^{2}}\right) \quad(x \neq 0), \quad f(0)=0 .
$$

Show that f is differentiable everywhere and that

$$
f^{\prime}(x)=q\left(\frac{1}{x}\right) \exp \left(-\frac{1}{x^{2}}\right) \quad(x \neq 0), \quad f^{\prime}(0)=0,
$$

where $q(t)=2 t^{3} p(t)-t^{2} p^{\prime}(t)$. Deduce that f is infinitely differentiable, but that there exist arbitrarily small values of x for which the remainder term $R_{n}(f, 0, x)$ in the Taylor expansion of f about 0 does not tend to 0 as $n \rightarrow \infty$.

1/II/11F Analysis

Consider a sequence $\left(a_{n}\right)_{n \geqslant 1}$ of real numbers. What does it mean to say that $a_{n} \rightarrow$ $a \in \mathbb{R}$ as $n \rightarrow \infty$? What does it mean to say that $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$? What does it mean to say that $a_{n} \rightarrow-\infty$ as $n \rightarrow \infty$? Show that for every sequence of real numbers there exists a subsequence which converges to a value in $\mathbb{R} \cup\{\infty,-\infty\}$. [You may use the Bolzano-Weierstrass theorem provided it is clearly stated.]

Give an example of a bounded sequence $\left(a_{n}\right)_{n \geqslant 1}$ which is not convergent, but for which

$$
a_{n+1}-a_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

1/II/12D Analysis

Let f_{1} and f_{2} be Riemann integrable functions on $[a, b]$. Show that $f_{1}+f_{2}$ is Riemann integrable.

Let f be a Riemann integrable function on $[a, b]$ and set $f^{+}(x)=\max (f(x), 0)$. Show that f^{+}and $|f|$ are Riemann integrable.

Let f be a function on $[a, b]$ such that $|f|$ is Riemann integrable. Is it true that f is Riemann integrable? Justify your answer.

Show that if f_{1} and f_{2} are Riemann integrable on $[a, b]$, then so is $\max \left(f_{1}, f_{2}\right)$. Suppose now f_{1}, f_{2}, \ldots is a sequence of Riemann integrable functions on $[a, b]$ and $f(x)=\sup _{n} f_{n}(x)$; is it true that f is Riemann integrable? Justify your answer.

1/I/3F Analysis

Define the supremum or least upper bound of a non-empty set of real numbers.
Let A denote a non-empty set of real numbers which has a supremum but no maximum. Show that for every $\epsilon>0$ there are infinitely many elements of A contained in the open interval

$$
(\sup A-\epsilon, \sup A) .
$$

Give an example of a non-empty set of real numbers which has a supremum and maximum and for which the above conclusion does not hold.

1/I/4D Analysis

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series in the complex plane with radius of convergence R. Show that $\left|a_{n} z^{n}\right|$ is unbounded in n for any z with $|z|>R$. State clearly any results on absolute convergence that are used.

For every $R \in[0, \infty]$, show that there exists a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ with radius of convergence R.

1/II/9F Analysis

Examine each of the following series and determine whether or not they converge. Give reasons in each case.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{2}}, \tag{i}
\end{equation*}
$$

(ii)

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+(-1)^{n+1} 2 n+1},
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{3}+(-1)^{n} 8 n^{2}+1}{n^{4}+(-1)^{n+1} n^{2}}, \tag{iii}
\end{equation*}
$$

(iv)

$$
\sum_{n=1}^{\infty} \frac{n^{3}}{e^{e^{n}}}
$$

1/II/10D Analysis

Explain what it means for a bounded function $f:[a, b] \rightarrow \mathbb{R}$ to be Riemann integrable.

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a strictly decreasing continuous function. Show that for each $x \in(0, \infty)$, there exists a unique point $g(x) \in(0, x)$ such that

$$
\frac{1}{x} \int_{0}^{x} f(t) d t=f(g(x))
$$

Find $g(x)$ if $f(x)=e^{-x}$.
Suppose now that f is differentiable and $f^{\prime}(x)<0$ for all $x \in(0, \infty)$. Prove that g is differentiable at all $x \in(0, \infty)$ and $g^{\prime}(x)>0$ for all $x \in(0, \infty)$, stating clearly any results on the inverse of f you use.

1/II/11E Analysis

Prove that if f is a continuous function on the interval $[a, b]$ with $f(a)<0<f(b)$ then $f(c)=0$ for some $c \in(a, b)$.

Let g be a continuous function on $[0,1]$ satisfying $g(0)=g(1)$. By considering the function $f(x)=g\left(x+\frac{1}{2}\right)-g(x)$ on $\left[0, \frac{1}{2}\right]$, show that $g\left(c+\frac{1}{2}\right)=g(c)$ for some $c \in\left[0, \frac{1}{2}\right]$. Show, more generally, that for any positive integer n there exists a point $c_{n} \in\left[0, \frac{n-1}{n}\right]$ for which $g\left(c_{n}+\frac{1}{n}\right)=g\left(c_{n}\right)$.

1/II/12E Analysis

State and prove Rolle's Theorem.
Prove that if the real polynomial p of degree n has all its roots real (though not necessarily distinct), then so does its derivative p^{\prime}. Give an example of a cubic polynomial p for which the converse fails.

1/I/3D Analysis

Define the supremum or least upper bound of a non-empty set of real numbers.
State the Least Upper Bound Axiom for the real numbers.
Starting from the Least Upper Bound Axiom, show that if $\left(a_{n}\right)$ is a bounded monotonic sequence of real numbers, then it converges.

1/I/4E Analysis

Let $f(x)=(1+x)^{1 / 2}$ for $x \in(-1,1)$. Show by induction or otherwise that for every integer $r \geq 1$,

$$
f^{(r)}(x)=(-1)^{r-1} \frac{(2 r-2)!}{2^{2 r-1}(r-1)!}(1+x)^{\frac{1}{2}-r} .
$$

Evaluate the series

$$
\sum_{r=1}^{\infty}(-1)^{r-1} \frac{(2 r-2)!}{8^{r} r!(r-1)!}
$$

[You may use Taylor's Theorem in the form

$$
f(x)=f(0)+\sum_{r=1}^{n} \frac{f^{(r)}(0)}{r!} x^{r}+\int_{0}^{x} \frac{(x-t)^{n} f^{(n+1)}(t)}{n!} d t
$$

without proof.]

1/II/9D Analysis

i) State Rolle's theorem.

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous functions which are differentiable on (a, b).
ii) Prove that for some $c \in(a, b)$,

$$
(f(b)-f(a)) g^{\prime}(c)=(g(b)-g(a)) f^{\prime}(c)
$$

iii) Suppose that $f(a)=g(a)=0$, and that $\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists and is equal to L. Prove that $\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}$ exists and is also equal to L.
[You may assume there exists a $\delta>0$ such that, for all $x \in(a, a+\delta), g^{\prime}(x) \neq 0$ and $g(x) \neq 0$.]
iv) Evaluate $\lim _{x \rightarrow 0} \frac{\log \cos x}{x^{2}}$.

1/II/10E Analysis

Define, for an integer $n \geq 0$,

$$
I_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x
$$

Show that for every $n \geq 2, n I_{n}=(n-1) I_{n-2}$, and deduce that

$$
I_{2 n}=\frac{(2 n)!}{\left(2^{n} n!\right)^{2}} \frac{\pi}{2} \quad \text { and } \quad I_{2 n+1}=\frac{\left(2^{n} n!\right)^{2}}{(2 n+1)!}
$$

Show that $0<I_{n}<I_{n-1}$, and that

$$
\frac{2 n}{2 n+1}<\frac{I_{2 n+1}}{I_{2 n}}<1 .
$$

Hence prove that

$$
\lim _{n \rightarrow \infty} \frac{2^{4 n+1}(n!)^{4}}{(2 n+1)(2 n)!^{2}}=\pi .
$$

1/II/11F Analysis

Let f be defined on \mathbb{R}, and assume that there exists at least one point $x_{0} \in \mathbb{R}$ at which f is continuous. Suppose also that, for every $x, y \in \mathbb{R}, f$ satisfies the equation

$$
f(x+y)=f(x)+f(y) .
$$

Show that f is continuous on \mathbb{R}.
Show that there exists a constant c such that $f(x)=c x$ for all $x \in \mathbb{R}$.
Suppose that g is a continuous function defined on \mathbb{R} and that, for every $x, y \in \mathbb{R}$, g satisfies the equation

$$
g(x+y)=g(x) g(y)
$$

Show that if g is not identically zero, then g is everywhere positive. Find the general form of g.

1/II/12F Analysis

(i) Show that if $a_{n}>0, b_{n}>0$ and

$$
\frac{a_{n+1}}{a_{n}} \leqslant \frac{b_{n+1}}{b_{n}}
$$

for all $n \geqslant 1$, and if $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) Let

$$
c_{n}=\binom{2 n}{n} 4^{-n}
$$

By considering $\log c_{n}$, or otherwise, show that $c_{n} \rightarrow 0$ as $n \rightarrow \infty$.
[Hint: $\log (1-x) \leqslant-x$ for $x \in(0,1)$.]
(iii) Determine the convergence or otherwise of

$$
\sum_{n=1}^{\infty}\binom{2 n}{n} x^{n}
$$

for (a) $x=\frac{1}{4}$, (b) $x=-\frac{1}{4}$.

1/I/3B Analysis

Define what it means for a function of a real variable to be differentiable at $x \in \mathbb{R}$.
Prove that if a function is differentiable at $x \in \mathbb{R}$, then it is continuous there
Show directly from the definition that the function

$$
f(x)= \begin{cases}x^{2} \sin (1 / x) & x \neq 0 \\ 0 & x=0\end{cases}
$$

is differentiable at 0 with derivative 0 .
Show that the derivative $f^{\prime}(x)$ is not continuous at 0 .

1/I/4C Analysis

Explain what is meant by the radius of convergence of a power series.
Find the radius of convergence R of each of the following power series:
(i) $\sum_{n=1}^{\infty} n^{-2} z^{n}$,
(ii) $\sum_{n=1}^{\infty}\left(n+\frac{1}{2^{n}}\right) z^{n}$.

In each case, determine whether the series converges on the circle $|z|=R$.

1/II/9F Analysis

Prove the Axiom of Archimedes.
Let x be a real number in $[0,1]$, and let m, n be positive integers. Show that the limit

$$
\lim _{m \rightarrow \infty}\left[\lim _{n \rightarrow \infty} \cos ^{2 n}(m!\pi x)\right]
$$

exists, and that its value depends on whether x is rational or irrational.
[You may assume standard properties of the cosine function provided they are clearly stated.]

1/II/10F Analysis

State without proof the Integral Comparison Test for the convergence of a series $\sum_{n=1}^{\infty} a_{n}$ of non-negative terms.

Determine for which positive real numbers α the series $\sum_{n=1}^{\infty} n^{-\alpha}$ converges.
In each of the following cases determine whether the series is convergent or divergent:
(i) $\sum_{n=3}^{\infty} \frac{1}{n \log n}$,
(ii) $\sum_{n=3}^{\infty} \frac{1}{(n \log n)(\log \log n)^{2}}$,
(iii) $\sum_{n=3}^{\infty} \frac{1}{n^{(1+1 / n)} \log n}$.

1/II/11B Analysis

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Define the integral $\int_{a}^{b} f(x) d x$. (You are not asked to prove existence.)

Suppose that m, M are real numbers such that $m \leqslant f(x) \leqslant M$ for all $x \in[a, b]$. Stating clearly any properties of the integral that you require, show that

$$
m(b-a) \leqslant \int_{a}^{b} f(x) d x \leqslant M(b-a) .
$$

The function $g:[a, b] \rightarrow \mathbb{R}$ is continuous and non-negative. Show that

$$
m \int_{a}^{b} g(x) d x \leqslant \int_{a}^{b} f(x) g(x) d x \leqslant M \int_{a}^{b} g(x) d x .
$$

Now let f be continuous on $[0,1]$. By suitable choice of g show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1 / \sqrt{n}} n f(x) e^{-n x} d x=f(0)
$$

and by making an appropriate change of variable, or otherwise, show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} n f(x) e^{-n x} d x=f(0) .
$$

1/II/12C Analysis
State carefully the formula for integration by parts for functions of a real variable.
Let $f:(-1,1) \rightarrow \mathbb{R}$ be infinitely differentiable. Prove that for all $n \geqslant 1$ and all $t \in(-1,1)$,
$f(t)=f(0)+f^{\prime}(0) t+\frac{1}{2!} f^{\prime \prime}(0) t^{2}+\ldots+\frac{1}{(n-1)!} f^{(n-1)}(0) t^{n-1}+\frac{1}{(n-1)!} \int_{0}^{t} f^{(n)}(x)(t-x)^{n-1} d x$.
By considering the function $f(x)=\log (1-x)$ at $x=1 / 2$, or otherwise, prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}
$$

converges to $\log 2$.

1/I/3C Analysis I

Suppose $a_{n} \in \mathbb{R}$ for $n \geqslant 1$ and $a \in \mathbb{R}$. What does it mean to say that $a_{n} \rightarrow a$ as $n \rightarrow \infty$? What does it mean to say that $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$?

Show that, if $a_{n} \neq 0$ for all n and $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then $1 / a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Is the converse true? Give a proof or a counter example.

Show that, if $a_{n} \neq 0$ for all n and $a_{n} \rightarrow a$ with $a \neq 0$, then $1 / a_{n} \rightarrow 1 / a$ as $n \rightarrow \infty$.

1/I/4C Analysis I

Show that any bounded sequence of real numbers has a convergent subsequence.
Give an example of a sequence of real numbers with no convergent subsequence.
Give an example of an unbounded sequence of real numbers with a convergent subsequence.

1/II/9C Analysis I

State some version of the fundamental axiom of analysis. State the alternating series test and prove it from the fundamental axiom.

In each of the following cases state whether $\sum_{n=1}^{\infty} a_{n}$ converges or diverges and prove your result. You may use any test for convergence provided you state it correctly.
(i) $a_{n}=(-1)^{n}(\log (n+1))^{-1}$.
(ii) $a_{2 n}=(2 n)^{-2}, a_{2 n-1}=-n^{-2}$.
(iii) $a_{3 n-2}=-(2 n-1)^{-1}, a_{3 n-1}=(4 n-1)^{-1}, a_{3 n}=(4 n)^{-1}$.
(iv) $a_{2^{n}+r}=(-1)^{n}\left(2^{n}+r\right)^{-1}$ for $0 \leqslant r \leqslant 2^{n}-1, n \geqslant 0$.

1/II/10C Analysis I

Show that a continuous real-valued function on a closed bounded interval is bounded and attains its bounds.

Write down examples of the following functions (no proof is required).
(i) A continuous function $f_{1}:(0,1) \rightarrow \mathbb{R}$ which is not bounded.
(ii) A continuous function $f_{2}:(0,1) \rightarrow \mathbb{R}$ which is bounded but does not attain its bounds.
(iii) A bounded function $f_{3}:[0,1] \rightarrow \mathbb{R}$ which is not continuous.
(iv) A function $f_{4}:[0,1] \rightarrow \mathbb{R}$ which is not bounded on any interval $[a, b]$ with $0 \leqslant a<b \leqslant 1$.
[Hint: Consider first how to define f_{4} on the rationals.]

1/II/11C Analysis I

State the mean value theorem and deduce it from Rolle's theorem.
Use the mean value theorem to show that, if $h: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable with $h^{\prime}(x)=0$ for all x, then h is constant.

By considering the derivative of the function g given by $g(x)=e^{-a x} f(x)$, find all the solutions of the differential equation $f^{\prime}(x)=a f(x)$ where $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and a is a fixed real number.

Show that, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then the function $F: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
F(x)=\int_{0}^{x} f(t) d t
$$

is differentiable with $F^{\prime}(x)=f(x)$.
Find the solution of the equation

$$
g(x)=A+\int_{0}^{x} g(t) d t
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and A is a real number. You should explain why the solution is unique.

1/II/12C Analysis I

Prove Taylor's theorem with some form of remainder.
An infinitely differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the differential equation

$$
f^{(3)}(x)=f(x)
$$

and the conditions $f(0)=1, f^{\prime}(0)=f^{\prime \prime}(0)=0$. If $R>0$ and j is a positive integer, explain why we can find an M_{j} such that

$$
\left|f^{(j)}(x)\right| \leqslant M_{j}
$$

for all x with $|x| \leqslant R$. Explain why we can find an M such that

$$
\left|f^{(j)}(x)\right| \leqslant M
$$

for all x with $|x| \leqslant R$ and all $j \geqslant 0$.
Use your form of Taylor's theorem to show that

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{3 n}}{(3 n)!}
$$

1/I/3D Analysis I

What does it mean to say that $u_{n} \rightarrow l$ as $n \rightarrow \infty$?
Show that, if $u_{n} \rightarrow l$ and $v_{n} \rightarrow k$, then $u_{n} v_{n} \rightarrow l k$ as $n \rightarrow \infty$.
If further $u_{n} \neq 0$ for all n and $l \neq 0$, show that $1 / u_{n} \rightarrow 1 / l$ as $n \rightarrow \infty$.
Give an example to show that the non-vanishing of u_{n} for all n need not imply the non-vanishing of l.

1/I/4D Analysis I

Starting from the theorem that any continuous function on a closed and bounded interval attains a maximum value, prove Rolle's Theorem. Deduce the Mean Value Theorem.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. If $f^{\prime}(t)>0$ for all t show that f is a strictly increasing function.

Conversely, if f is strictly increasing, is $f^{\prime}(t)>0$ for all $t ?$

1/II/9D Analysis I

(i) If a_{0}, a_{1}, \ldots are complex numbers show that if, for some $w \in \mathbb{C}, w \neq 0$, the set $\left\{\left|a_{n} w^{n}\right|: n \geq 0\right\}$ is bounded and $|z|<|w|$, then $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges absolutely. Use this result to define the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$.
(ii) If $\left|a_{n}\right|^{1 / n} \rightarrow R$ as $n \rightarrow \infty(0<R<\infty)$ show that $\sum_{n=0}^{\infty} a_{n} z^{n}$ has radius of convergence equal to $1 / R$.
(iii) Give examples of power series with radii of convergence 1 such that (a) the series converges at all points of the circle of convergence, (b) diverges at all points of the circle of convergence, and (c) neither of these occurs.

1/II/10D Analysis I

Suppose that f is a continuous real-valued function on $[a, b]$ with $f(a)<f(b)$. If $f(a)<v<f(b)$ show that there exists c with $a<c<b$ and $f(c)=v$.

Deduce that if f is a continuous function from the closed bounded interval $[a, b]$ to itself, there exists at least one fixed point, i.e., a number d belonging to $[a, b]$ with $f(d)=d$. Does this fixed point property remain true if f is a continuous function defined (i) on the open interval (a, b) and (ii) on \mathbb{R} ? Justify your answers.

1/II/11D Analysis I

(i) Show that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is twice continuously differentiable then, given $\epsilon>0$, we can find some constant L and $\delta(\epsilon)>0$ such that

$$
\left|g(t)-g(\alpha)-g^{\prime}(\alpha)(t-\alpha)\right| \leq L|t-\alpha|^{2}
$$

for all $|t-\alpha|<\delta(\epsilon)$.
(ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable on $[a, b]$ (with one-sided derivatives at the end points), let f^{\prime} and $f^{\prime \prime}$ be strictly positive functions and let $f(a)<0<f(b)$.

If $F(t)=t-\left(f(t) / f^{\prime}(t)\right)$ and a sequence $\left\{x_{n}\right\}$ is defined by $b=x_{0}, x_{n}=$ $F\left(x_{n-1}\right) \quad(n>0)$, show that $x_{0}, x_{1}, x_{2}, \ldots$ is a decreasing sequence of points in $[a, b]$ and hence has limit α. What is $f(\alpha)$? Using part (i) or otherwise estimate the rate of convergence of x_{n} to α, i.e., the behaviour of the absolute value of $\left(x_{n}-\alpha\right)$ for large values of n.

1/II/12D Analysis I

Explain what it means for a function $f:[a, b] \rightarrow \mathbb{R}$ to be Riemann integrable on $[a, b]$, and give an example of a bounded function that is not Riemann integrable.

Show each of the following statements is true for continuous functions f, but false for general Riemann integrable functions f.
(i) If $f:[a, b] \rightarrow \mathbb{R}$ is such that $f(t) \geq 0$ for all t in $[a, b]$ and $\int_{a}^{b} f(t) d t=0$, then $f(t)=0$ for all t in $[a, b]$.
(ii) $\int_{a}^{t} f(x) d x$ is differentiable and $\frac{d}{d t} \int_{a}^{t} f(x) d x=f(t)$.

