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Paper 1, Section I

3E Analysis
Let a ∈ R and let f and g be real-valued functions defined on R. State and prove

the chain rule for F (x) = g
(
f(x)

)
.

Now assume that f and g are non-constant on any interval. Must the function
F (x) = g

(
f(x)

)
be non-differentiable at x = a if

(i) f is differentiable at a and g is not differentiable at f(a)?

(ii) f is not differentiable at a and g is differentiable at f(a)?

(iii) f is not differentiable at a and g is not differentiable at f(a)?

Justify your answers.

Paper 1, Section I

4E Analysis
State the comparison test. Prove that if

∑∞
n=0 anz

n
0 converges and |z1| < |z0|, then∑∞

n=0 anz
n
1 converges absolutely.

Define the radius of convergence of a complex power series. [You do not need to
show that the radius of convergence is well-defined.]

If
∑∞

n=0 anz
n has radius of convergence R1 and

∑∞
n=0 bnz

n has radius of convergence
R2, show that the radius of convergence R of the series

∑∞
n=0 anbnz

n satisfies R > R1R2.
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Paper 1, Section II

9E Analysis
(a) Let x1 > 0 and define a sequence (xn) by

xn =
1

2

(
xn−1 +

1

xn−1

)
for n > 1.

Prove that limn→∞ xn = 1.

Show that if a real sequence (xn) satisfies

0 6 xm+n 6 xm + xn for all m,n = 1, 2, . . . ,

then the sequence (xn/n) is (i) bounded and (ii) convergent.

(b) Suppose that a series
∑∞

n=1 an of real numbers converges but not absolutely.
Let

Pn =
n∑

i=1

(
|ai|+ ai

)
, Nn =

n∑

i=1

(
|ai| − ai

)
.

Show that limn→∞ Pn/Nn = 1.

State the alternating series test. Let (bn) be a sequence of positive real numbers
such that

lim
n→∞

n

(
bn
bn+1

− 1

)
= p,

where p is a positive real number. Show that the series
∑∞

n=1(−1)nbn converges.

Paper 1, Section II

10E Analysis
State and prove the intermediate value theorem.

Give, with justification, an example of a function φ : [a,∞) → R such that, for any
b > a, φ takes on [a, b] every value between φ(a) and φ(b) but φ is not continuous on [a, b].

If a function f : [a, b] → R is monotone on [a, b] and takes every value between f(a)
and f(b), show that f is continuous on [a, b].

Let g : (a, b) → R be a continuous function and suppose that there are sequences
xn → a and yn → a as n→ ∞ such that g(xn) → l and g(yn) → L with l < L. Show that
for each λ ∈ [l, L] there is a sequence zn → a such that g(zn) → λ.
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Paper 1, Section II

11E Analysis
(a) State the mean value theorem. Deduce that

a− b
a

< log
a

b
<
a− b
b

for 0 < b < a.

(b) Let f : R → R be an n-times differentiable function, where n > 0. Show that
for each a ∈ R and h > 0 there exists b ∈ (a, a+ nh) such that

1

hn
∆n

hf(a) = f (n)(b),

where ∆k+1
h f(x) = ∆1

h

(
∆k

hf(x)
)

and ∆1
hf(x) = f(x+ h)− f(x).

(c) Let I ⊂ R be an open (non-empty) interval and a ∈ I. Suppose that a function
ϕ : I → R has a finite limit at a and limx→a ϕ(x) = ϕ(a) + 1. Can ϕ be the derivative of
some differentiable function f on I? Justify your answer.

Paper 1, Section II

12E Analysis
Define the upper and lower integral of a function on [a, b] and what it means for a

function to be (Riemann) integrable on [a, b].

(a) Let byc = max{i ∈ Z : i 6 y}. Show that the function

u(x) =
1

x
−
⌊

1

x

⌋
if x 6= 0, u(0) = 0,

is integrable on [0, 1]. [You may assume that every continuous function on a closed bounded
interval is integrable.]

(b) Let f : [A,B]→ R be a continuous function and A < a < x < B. Prove that

lim
h→0

1

h

∫ x

a

(
f(t+ h)− f(t)

)
dt = f(x)− f(a).

[Any version of the fundamental theorem of calculus from the course can be assumed if
accurately stated.]

(c) Show that if a function g : [a, b]→ R is integrable, then there exists a sequence

of continuous functions ϕn : [a, b]→ R such that
∫ β
α g(x)dx = limn→∞

∫ β
α ϕn(x)dx for any

subinterval [α, β] ⊆ [a, b].
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Paper 1, Section I
3D Analysis I

State the alternating series test. Deduce that the series
∑∞

n=1
(−1)n√

n
converges. Is

this series absolutely convergent? Justify your answer.

Find a divergent series which has the same terms (−1)n√
n

taken in a different order.

You should justify the divergence.

[You may use the comparison test, provided that you accurately state it.]

Paper 1, Section I
4D Analysis I

Let a ∈ R and let f and g be continuous real-valued functions defined on R which
are not identically zero on any interval containing a.

Must the function F (x) = f(x) + g(x) be non-differentiable at a ∈ R if (a) f is
differentiable at a and g is not differentiable at a; (b) both f and g are not differentiable
at a?

Must the function G(x) = f(x)g(x) be non-differentiable at a ∈ R if (a) f is
differentiable at a and g is not differentiable at a; (b) both f and g are not differentiable
at a?

Justify your answers.

Paper 1, Section II
9D Analysis I

(a) Let an be a sequence of real numbers. Show that if an converges, the sequence
1
n

∑n
k=1 ak also converges and lim

n→∞
1
n

∑n
k=1 ak = lim

n→∞
an.

If 1
n

∑n
k=1 ak converges, must an converge too? Justify your answer.

(b) Let xn be a sequence of real numbers with xn > 0 for all n. By considering the
sequence log xn, or otherwise, show that if xn converges then lim

n→∞
n
√
x1x2 . . . xn = lim

n→∞
xn.

You may assume that exp and log are continuous functions.

Deduce that if the sequence
xn
xn−1

converges, then lim
n→∞

n
√
xn = lim

n→∞
xn
xn−1

.

(c) What is a Cauchy sequence? State the general principle of convergence for real
sequences.

Let an be a decreasing sequence of positive real numbers and suppose that the series∑∞
n=1 an converges. Prove that lim

n→∞
nan = 0.
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Paper 1, Section II
10D Analysis I

Prove that every continuous real-valued function on a closed bounded interval is
bounded and attains its bounds. [The Bolzano–Weierstrass theorem can be assumed
provided it is accurately stated.]

Give an example of a continuous function φ : (0, 1) → R that is bounded but does
not attain its bounds and an example of a function ψ : [0, 1]→ R that is not bounded on
any interval [a, b] such that 0 6 a < b 6 1. Justify your examples.

Let f : [a, b]→ R be a continuous function. Prove that the functions

m(x) = inf
a6ξ6x

f(ξ) and M(x) = sup
a6ξ6x

f(ξ)

are also continuous on [a, b].

Let a function g : (0,∞) → R be continuous and bounded. Show that for every
T > 0 there exists a sequence xn such that xn →∞ and

lim
n→∞

(g(xn + T )− g(xn)) = 0.

[The intermediate value theorem can be assumed.]

Paper 1, Section II
11D Analysis I

In this question a < b are real numbers.

(a) State and prove Rolle’s theorem. State and prove the mean value theorem.

(b) Prove that if a continuous function f : [a, b]→ R is differentiable on (a, b) and

is not a linear function, then f ′(ξ) >
f(b)− f(a)

b− a for some ξ with a < ξ < b.

(c) Let f : [a, b]→ R be a continuous function and let f be differentiable on (a, b).
Must there exist, for every ξ ∈ (a, b), two points x1, x2 with a 6 x1 < ξ < x2 6 b such

that
f(x2)− f(x1)

x2 − x1
= f ′(ξ)? Give a proof or counterexample as appropriate.

(d) Let functions f and g be continuous on [a, b] and differentiable on (a, b) with
g(a) 6= g(b) and suppose that f ′(x) and g′(x) never vanish for the same value of x. By
considering λf + µg + ν for suitable real constants λ, µ, ν, or otherwise, prove that

f(b)− f(a)

g(b)− g(a)
=
f ′(ξ)
g′(ξ)

for some ξ with a < ξ < b.

Give an example to show that the condition that f ′(x) and g′(x) never vanish for the same
x cannot be omitted.
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Paper 1, Section II
12D Analysis I

Let f : [0, 1]→ R be a monotone function.

Show that for all dissections D and D′ of [0, 1] one has LD(f) 6 UD′(f), where
LD(f) and UD′(f) are the lower and upper sums of f for the respective dissections. Show
further that for each ε > 0 there is a dissection D such that UD(f)− LD(f) < ε. Deduce
that f is integrable.

Show that ∣∣∣∣
∫ 1

0
f(x)dx− 1

n

n∑

k=1

f
(k
n

)∣∣∣∣ <
|f(1)− f(0)|

n

for all positive integers n.

Let a function F be continuous on some open interval containing [0, 1] and have a
continuous derivative F ′ on [0, 1]. Denote

∆n =

∫ 1

0
F (x)dx− 1

n

n∑

k=1

F
(k
n

)
.

Stating clearly any results from the course that you require, show that

lim
n→∞

n∆n = (F (0)− F (1))/2.

[Hint: it might be helpful to consider
∫ k/n
(k−1)/n

(
F (x)− F ( kn)

)
dx.]
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Paper 1, Section I

3F Analysis I

State and prove the alternating series test. Hence show that the series
∑∞

n=1
(−1)n+1

n
converges. Show also that

7

12
6
∞∑

n=1

(−1)n+1

n
6 47

60
.

Paper 1, Section I

4F Analysis I
State and prove the Bolzano–Weierstrass theorem.

Consider a bounded sequence (xn). Prove that if every convergent subsequence of
(xn) converges to the same limit L then (xn) converges to L.

Paper 1, Section II

9F Analysis I
(a) State the intermediate value theorem. Show that if f : R → R is a continuous

bijection and x1 < x2 < x3 then either f(x1) < f(x2) < f(x3) or f(x1) > f(x2) > f(x3).
Deduce that f is either strictly increasing or strictly decreasing.

(b) Let f : R → R and g : R → R be functions. Which of the following statements
are true, and which can be false? Give a proof or counterexample as appropriate.

(i) If f and g are continuous then f ◦ g is continuous.

(ii) If g is strictly increasing and f ◦ g is continuous then f is continuous.

(iii) If f is continuous and a bijection then f−1 is continuous.

(iv) If f is differentiable and a bijection then f−1 is differentiable.

Part IA, 2021 List of Questions
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Paper 1, Section II

10F Analysis I
Let f : [a, b] → R be a continuous function.

(a) Let m = minx∈[a,b] f(x) and M = maxx∈[a,b] f(x). If g : [a, b] → R is a positive
continuous function, prove that

m

∫ b

a
g(x)dx 6

∫ b

a
f(x)g(x)dx 6M

∫ b

a
g(x)dx

directly from the definition of the Riemann integral.

(b) Let f : [0, 1] → R be a continuous function. Show that

∫ 1/
√
n

0
nf(x)e−nxdx→ f(0)

as n→ ∞, and deduce that ∫ 1

0
nf(x)e−nxdx→ f(0)

as n→ ∞.

Paper 1, Section II

11F Analysis I
Let f : R→ R be n-times differentiable, for some n > 0.

(a) State and prove Taylor’s theorem for f , with the Lagrange form of the remainder.
[You may assume Rolle’s theorem.]

(b) Suppose that f : R→ R is an infinitely differentiable function such that f(0) = 1
and f ′(0) = 0, and satisfying the differential equation f ′′(x) = −f(x). Prove carefully that

f(x) =
∞∑

k=0

(−1)k
x2k

(2k)!
.

Part IA, 2021 List of Questions [TURN OVER]

2021



4

Paper 1, Section II

12F Analysis I
(a) Let

∑∞
n=0 anz

n be a power series with an ∈ C. Show that there exists R ∈ [0,∞]
(called the radius of convergence) such that the series is absolutely convergent when |z| < R
but is divergent when |z| > R.

Suppose that the radius of convergence of the series
∑∞

n=0 anz
n is R = 2. For a

fixed positive integer k, find the radii of convergence of the following series. [You may
assume that limn→∞ |an|1/n exists.]

(i)
∞∑

n=0

aknz
n .

(ii)
∞∑

n=0

anz
kn .

(iii)
∞∑

n=0

anz
n2

.

(b) Suppose that there exist values of z for which
∑∞

n=0 bne
nz converges and values

for which it diverges. Show that there exists a real number S such that
∑∞

n=0 bne
nz

diverges whenever Re(z) > S and converges whenever Re(z) < S.

Determine the set of values of z for which

∞∑

n=0

2neinz

(n+ 1)2

converges.

Part IA, 2021 List of Questions
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Paper 1, Section I

3E Analysis I
(a) Let f be continuous in [a, b], and let g be strictly monotonic in [α, β], with a

continuous derivative there, and suppose that a = g(α) and b = g(β). Prove that

∫ b

a
f(x)dx =

∫ β

α
f(g(u))g′(u)du .

[Any version of the fundamental theorem of calculus may be used providing it is quoted
correctly.]

(b) Justifying carefully the steps in your argument, show that the improper Riemann
integral ∫ e−1

0

dx

x(log 1
x)
θ

converges for θ > 1, and evaluate it.

Paper 1, Section II

9D Analysis I
(a) State Rolle’s theorem. Show that if f : R→ R is N + 1 times differentiable and

x ∈ R then

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

f (N)(0)

N !
xN +

f (N+1)(θx)

(N + 1)!
xN+1 ,

for some 0 < θ < 1. Hence, or otherwise, show that if f ′(x) = 0 for all x ∈ R then f is
constant.

(b) Let s : R→ R and c : R→ R be differentiable functions such that

s′(x) = c(x), c′(x) = −s(x), s(0) = 0 and c(0) = 1.

Prove that

(i) s(x)c(a− x) + c(x)s(a− x) is independent of x,

(ii) s(x+ y) = s(x)c(y) + c(x)s(y),

(iii) s(x)2 + c(x)2 = 1.

Show that c(1) > 0 and c(2) < 0. Deduce there exists 1 < k < 2 such that s(2k) = c(k) = 0
and s(x+ 4k) = s(x).

Part IA, 2020 List of Questions
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Paper 1, Section II

10F Analysis I
(a) Let (xn) be a bounded sequence of real numbers. Show that (xn) has a convergent

subsequence.

(b) Let (zn) be a bounded sequence of complex numbers. For each n > 1, write
zn = xn + iyn. Show that (zn) has a subsequence (znj ) such that (xnj ) converges. Hence,
or otherwise, show that (zn) has a convergent subsequence.

(c) Write N = {1, 2, 3, . . .} for the set of positive integers. Let M be a positive real

number, and for each i ∈ N, let X(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 , . . .) be a sequence of real numbers

with |x(i)j | 6 M for all i, j ∈ N. By induction on i or otherwise, show that there exist

sequences N (i) = (n
(i)
1 , n

(i)
2 , n

(i)
3 , . . .) of positive integers with the following properties:

• for all i ∈ N, the sequence N (i) is strictly increasing;

• for all i ∈ N, N (i+1) is a subsequence of N (i); and

• for all k ∈ N and all i ∈ N with 1 6 i 6 k, the sequence

(x
(i)

n
(k)
1

, x
(i)

n
(k)
2

, x
(i)

n
(k)
3

, . . .)

converges.

Hence, or otherwise, show that there exists a strictly increasing sequence (mj) of positive

integers such that for all i ∈ N the sequence (x
(i)
m1 , x

(i)
m2 , x

(i)
m3 , . . .) converges.

Part IA, 2020 List of Questions [TURN OVER]
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Paper 1, Section I

3E Analysis I
State the Bolzano-Weierstrass theorem.

Let (an) be a sequence of non-zero real numbers. Which of the following conditions is
sufficient to ensure that (1/an) converges? Give a proof or counter-example as appropriate.

(i) an → ℓ for some real number ℓ.

(ii) an → ℓ for some non-zero real number ℓ.

(iii) (an) has no convergent subsequence.

Paper 1, Section I

4F Analysis I
Let

∑∞
n=1 anx

n be a real power series that diverges for at least one value of x. Show
that there exists a non-negative real number R such that

∑∞
n=1 anx

n converges absolutely
whenever |x| < R and diverges whenever |x| > R.

Find, with justification, such a number R for each of the following real power series:

(i)
∑∞

n=1
xn

3n ;

(ii)
∑∞

n=1 x
n
(
1 + 1

n

)n
.

Paper 1, Section II

9D Analysis I
Let g : R → R be a function that is continuous at at least one point z ∈ R. Suppose

further that g satisfies

g(x+ y) = g(x) + g(y)

for all x, y ∈ R. Show that g is continuous on R.

Show that there exists a constant c such that g(x) = cx for all x ∈ R.

Suppose that h : R → R is a continuous function defined on R and that h satisfies
the equation

h(x+ y) = h(x)h(y)

for all x, y ∈ R. Show that h is either identically zero or everywhere positive. What is the
general form for h?

Part IA, 2019 List of Questions
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Paper 1, Section II

10D Analysis I
State and prove the Intermediate Value Theorem.

State the Mean Value Theorem.

Suppose that the function g is differentiable everywhere in some open interval
containing [a, b], and that g′(a) < k < g′(b). By considering the functions h and f
defined by

h(x) =
g(x)− g(a)

x− a
(a < x 6 b), h(a) = g′(a)

and

f(x) =
g(b)− g(x)

b− x
(a 6 x < b), f(b) = g′(b),

or otherwise, show that there is a subinterval [α, β] ⊆ [a, b] such that

g(β) − g(α)

β − α
= k.

Deduce that there exists c ∈ (a, b) with g′(c) = k.

Paper 1, Section II

11E Analysis I
Let (an) and (bn) be sequences of positive real numbers. Let sn =

∑n
i=1 ai.

(a) Show that if
∑

an and
∑

bn converge then so does
∑(

a2n + b2n
)1/2

.

(b) Show that if
∑

an converges then
∑√

anan+1 converges. Is the converse true?

(c) Show that if
∑

an diverges then
∑ an

sn
diverges. Is the converse true?

[For part (c), it may help to show that for any N ∈ N there exist m > n > N with

an+1

sn+1
+

an+2

sn+2
+ . . . +

am
sm

> 1

2
.]

Part IA, 2019 List of Questions [TURN OVER
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Paper 1, Section II

12F Analysis I
Let f : [0, 1] → R be a bounded function. Define the upper and lower integrals of f .

What does it mean to say that f is Riemann integrable? If f is Riemann integrable, what
is the Riemann integral

∫ 1
0 f(x) dx?

Which of the following functions f : [0, 1] → R are Riemann integrable? For those
that are Riemann integrable, find

∫ 1
0 f(x) dx. Justify your answers.

(i) f(x) =

{
1 if x ∈ Q
0 if x 6∈ Q ;

(ii) f(x) =

{
1 if x ∈ A
0 if x 6∈ A

,

where A = {x ∈ [0, 1] : x has a base-3 expansion containing a 1};
[Hint: You may find it helpful to note, for example, that 2

3 ∈ A as one of the base–3
expansions of 2

3 is 0.1222... .]

(iii) f(x) =

{
1 if x ∈ B
0 if x 6∈ B

,

where B = {x ∈ [0, 1] : x has a base–3 expansion containing infinitely many 1s}.

Part IA, 2019 List of Questions
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Paper 1, Section I

3E Analysis I
Prove that an increasing sequence in R that is bounded above converges.

Let f : R → (0,∞) be a decreasing function. Let x1 = 1 and xn+1 = xn + f(xn).
Prove that xn → ∞ as n → ∞.

Paper 1, Section I

4D Analysis I
Define the radius of convergence R of a complex power series

∑
anz

n. Prove that∑
anz

n converges whenever |z| < R and diverges whenever |z| > R.

If |an| 6 |bn| for all n does it follow that the radius of convergence of
∑

anz
n is at

least that of
∑

bnz
n? Justify your answer.

Paper 1, Section II

9F Analysis I

(a) Let f : R → R be a function, and let x ∈ R. Define what it means for f to be
continuous at x. Show that f is continuous at x if and only if f(xn) → f(x) for
every sequence (xn) with xn → x.

(b) Let f : R → R be a non-constant polynomial. Show that its image {f(x) : x ∈ R}
is either the real line R, the interval [a,∞) for some a ∈ R, or the interval (−∞, a]
for some a ∈ R.

(c) Let α > 1, let f : (0,∞) → R be continuous, and assume that f(x) = f(xα) holds
for all x > 0. Show that f must be constant.

Is this also true when the condition that f be continuous is dropped?

Part IA, 2018 List of Questions [TURN OVER

2018
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Paper 1, Section II

10F Analysis

(a) Let f : R → R be differentiable at x0 ∈ R. Show that f is continuous at x0.

(b) State the Mean Value Theorem. Prove the following inequalities:

| cos(e−x)− cos(e−y)| 6 |x− y| for x, y > 0

and
log(1 + x) 6 x√

1 + x
for x > 0.

(c) Determine at which points the following functions from R to R are differentiable,
and find their derivatives at the points at which they are differentiable:

f(x) =

{
|x|x if x 6= 0

1 if x = 0,
g(x) = cos(|x|), h(x) = x|x|.

(d) Determine the points at which the following function from R to R is continuous:

f(x) =

{
0 if x 6∈ Q or x = 0

1/q if x = p/q where p ∈ Z \ {0} and q ∈ N are relatively prime.

Part IA, 2018 List of Questions
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Paper 1, Section II

11E Analysis I
State and prove the Comparison Test for real series.

Assume 0 6 xn < 1 for all n ∈ N. Show that if
∑

xn converges, then so do
∑

x2n
and

∑ xn
1−xn

. In each case, does the converse hold? Justify your answers.

Let (xn) be a decreasing sequence of positive reals. Show that if
∑

xn converges,
then nxn → 0 as n → ∞. Does the converse hold? If

∑
xn converges, must it be the case

that (n log n)xn → 0 as n → ∞? Justify your answers.

Paper 1, Section II

12D Analysis I
(a) Let q1, q2, . . . be a fixed enumeration of the rationals in [0, 1]. For positive reals

a1, a2, . . ., define a function f from [0, 1] to R by setting f(qn) = an for each n and f(x) = 0
for x irrational. Prove that if an → 0 then f is Riemann integrable. If an 6→ 0, can f be
Riemann integrable? Justify your answer.

(b) State and prove the Fundamental Theorem of Calculus.

Let f be a differentiable function from R to R, and set g(x) = f ′(x) for 0 6 x 6 1.
Must g be Riemann integrable on [0, 1]?

Part IA, 2018 List of Questions
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Paper 1, Section I

3F Analysis I
Given an increasing sequence of non-negative real numbers (an)

∞
n=1, let

sn =
1

n

n∑

k=1

ak.

Prove that if sn → x as n→ ∞ for some x ∈ R then also an → x as n→ ∞.

Paper 1, Section II

11F Analysis I

(a) Let (xn)
∞
n=1 be a non-negative and decreasing sequence of real numbers. Prove that∑∞

n=1 xn converges if and only if
∑∞

k=0 2
kx2k converges.

(b) For s ∈ R, prove that
∑∞

n=1 n
−s converges if and only if s > 1.

(c) For any k ∈ N, prove that
lim
n→∞

2−nnk = 0.

(d) The sequence (an)
∞
n=0 is defined by a0 = 1 and an+1 = 2an for n > 0. For any k ∈ N,

prove that

lim
n→∞

2n
k

an
= 0.
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Paper 1, Section I

4E Analysis I
Show that if the power series

∑∞
n=0 anz

n (z ∈ C) converges for some fixed z = z0,
then it converges absolutely for every z satisfying |z| < |z0|.

Define the radius of convergence of a power series.

Give an example of v ∈ C and an example of w ∈ C such that |v| = |w| = 1,

∞∑

n=1

vn

n

converges and
∞∑

n=1

wn

n
diverges. [You may assume results about standard series without

proof.] Use this to find the radius of convergence of the power series

∞∑

n=1

zn

n
.

Paper 1, Section II

9D Analysis I

(a) State the Intermediate Value Theorem.

(b) Define what it means for a function f : R → R to be differentiable at a point a ∈ R. If
f is differentiable everywhere on R, must f ′ be continuous everywhere? Justify your
answer.

State the Mean Value Theorem.

(c) Let f : R → R be differentiable everywhere. Let a, b ∈ R with a < b.
If f ′(a) 6 y 6 f ′(b), prove that there exists c ∈ [a, b] such that f ′(c) = y. [Hint:
consider the function g defined by

g(x) =
f(x)− f(a)

x− a

if x 6= a and g(a) = f ′(a). ]

If additionally f(a) 6 0 6 f(b), deduce that there exists d ∈ [a, b] such that
f ′(d) + f(d) = y.
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Paper 1, Section II

10D Analysis I
Let a, b ∈ R with a < b and let f : (a, b) → R.

(a) Define what it means for f to be continuous at y0 ∈ (a, b).

f is said to have a local minimum at c ∈ (a, b) if there is some ε > 0 such that
f(c) 6 f(x) whenever x ∈ (a, b) and |x− c| < ε.

If f has a local minimum at c ∈ (a, b) and f is differentiable at c, show that f ′(c) = 0.

(b) f is said to be convex if

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

for every x, y ∈ (a, b) and λ ∈ [0, 1]. If f is convex, r ∈ R and
[
y0−|r| , y0+|r|

]
⊂ (a, b),

prove that

(1 + λ)f(y0)− λf(y0 − r) 6 f(y0 + λr) 6 (1− λ)f(y0) + λf(y0 + r)

for every λ ∈ [0, 1].

Deduce that if f is convex then f is continuous.

If f is convex and has a local minimum at c ∈ (a, b), prove that f has a global minimum
at c, i.e., that f(x) > f(c) for every x ∈ (a, b). [Hint: argue by contradiction.] Must
f be differentiable at c? Justify your answer.
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Paper 1, Section II

12E Analysis I
Let f : [a, b] → R be a bounded function defined on the closed, bounded interval

[a, b] of R. Suppose that for every ε > 0 there is a dissection D of [a, b] such that
SD(f)− sD(f) < ε, where sD(f) and SD(f) denote the lower and upper Riemann sums of
f for the dissection D. Deduce that f is Riemann integrable. [You may assume without
proof that sD(f) 6 SD′(f) for all dissections D and D′ of [a, b].]

Prove that if f : [a, b] → R is continuous, then f is Riemann integrable.

Let g : (0, 1] → R be a bounded continuous function. Show that for any λ ∈ R, the
function f : [0, 1] → R defined by

f(x) =

{
g(x) if 0 < x 6 1 ,

λ if x = 0 ,

is Riemann integrable.

Let f : [a, b] → R be a differentiable function with one-sided derivatives at the
endpoints. Suppose that the derivative f ′ is (bounded and) Riemann integrable. Show
that ∫ b

a
f ′(x) dx = f(b)− f(a) .

[You may use the Mean Value Theorem without proof.]

Part IA, 2017 List of Questions [TURN OVER

2017



2

Paper 1, Section I

3D Analysis I
What does it mean to say that a sequence of real numbers (xn) converges to x?

Suppose that (xn) converges to x. Show that the sequence (yn) given by

yn =
1

n

n∑

i=1

xi

also converges to x.

Paper 1, Section I

4F Analysis I
Let an be the number of pairs of integers (x, y) ∈ Z2 such that x2 + y2 6 n2. What

is the radius of convergence of the series
∞∑

n=0

anz
n? [You may use the comparison test,

provided you state it clearly.]

Paper 1, Section II

9E Analysis I
State the Bolzano–Weierstrass theorem. Use it to show that a continuous function

f : [a, b] → R attains a global maximum; that is, there is a real number c ∈ [a, b] such that
f(c) > f(x) for all x ∈ [a, b].

A function f is said to attain a local maximum at c ∈ R if there is some ε > 0 such
that f(c) > f(x) whenever |x − c| < ε. Suppose that f : R → R is twice differentiable,
and that f ′′(x) < 0 for all x ∈ R. Show that there is at most one c ∈ R at which f attains
a local maximum.

If there is a constant K < 0 such that f ′′(x) < K for all x ∈ R, show that f attains
a global maximum. [Hint: if g′(x) < 0 for all x ∈ R, then g is decreasing.]

Must f : R → R attain a global maximum if we merely require f ′′(x) < 0 for all
x ∈ R? Justify your answer.
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Paper 1, Section II

10E Analysis I
Let f : R → R. We say that x ∈ R is a real root of f if f(x) = 0. Show that if f is

differentiable and has k distinct real roots, then f ′ has at least k − 1 real roots. [Rolle’s
theorem may be used, provided you state it clearly.]

Let p(x) =
∑n

i=1 aix
di be a polynomial in x, where all ai 6= 0 and di+1 > di. (In

other words, the ai are the nonzero coefficients of the polynomial, arranged in order of
increasing power of x.) The number of sign changes in the coefficients of p is the number
of i for which aiai+1 < 0. For example, the polynomial x5−x3−x2+1 has 2 sign changes.
Show by induction on n that the number of positive real roots of p is less than or equal
to the number of sign changes in its coefficients.

Paper 1, Section II

11D Analysis I
If (xn) and (yn) are sequences converging to x and y respectively, show that the

sequence (xn + yn) converges to x+ y.

If xn 6= 0 for all n and x 6= 0, show that the sequence

(
1

xn

)
converges to

1

x
.

(a) Find lim
n→∞

(√
n2 + n− n

)
.

(b) Determine whether

∞∑

n=1

√
n+ 1−√

n√
n

converges.

Justify your answers.

Paper 1, Section II

12F Analysis I
Let f : [0, 1] → R satisfy |f(x)− f(y)| 6 |x− y| for all x, y ∈ [0, 1].

Show that f is continuous and that for all ε > 0, there exists a piecewise constant
function g such that

sup
x∈[0,1]

|f(x)− g(x)| 6 ε.

For all integers n > 1, let un =
∫ 1
0 f(t) cos(nt)dt. Show that the sequence (un) con-

verges to 0.
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Paper 1, Section I

3F Analysis I
Find the following limits:

(a) lim
x→0

sinx

x

(b) lim
x→0

(1 + x)1/x

(c) lim
x→∞

(1 + x)
x

1+x cos4 x

ex

Carefully justify your answers.

[You may use standard results provided that they are clearly stated.]

Paper 1, Section I

4E Analysis I
Let

∑
n>0 anz

n be a complex power series. State carefully what it means for the
power series to have radius of convergence R, with 0 6 R 6 ∞.

Find the radius of convergence of
∑

n>0 p(n)z
n, where p(n) is a fixed polynomial in n

with coefficients in C.

Paper 1, Section II

9F Analysis I
Let (an), (bn) be sequences of real numbers. Let Sn =

∑n
j=1 aj and set S0 = 0.

Show that for any 1 6 m 6 n we have

n∑

j=m

ajbj = Snbn − Sm−1bm +

n−1∑

j=m

Sj(bj − bj+1).

Suppose that the series
∑

n>1 an converges and that (bn) is bounded and monotonic.
Does

∑
n>1 anbn converge?

Assume again that
∑

n>1 an converges. Does
∑

n>1 n
1/nan converge?

Justify your answers.

[You may use the fact that a sequence of real numbers converges if and only if it is
a Cauchy sequence.]
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Paper 1, Section II

10D Analysis I
(a) For real numbers a, b such that a < b, let f : [a, b] → R be a continuous function.

Prove that f is bounded on [a, b], and that f attains its supremum and infimum
on [a, b].

(b) For x ∈ R, define

g(x) =

{
|x| 12 sin(1/ sin x), x 6= nπ

0, x = nπ
(n ∈ Z).

Find the set of points x ∈ R at which g(x) is continuous.

Does g attain its supremum on [0, π]?

Does g attain its supremum on [π, 3π/2]?

Justify your answers.

Paper 1, Section II

11D Analysis I
(i) State and prove the intermediate value theorem.

(ii) Let f : [0, 1] → R be a continuous function. The chord joining the points
(
α, f(α)

)

and
(
β, f(β)

)
of the curve y = f(x) is said to be horizontal if f(α) = f(β). Suppose

that the chord joining the points
(
0, f(0)

)
and

(
1, f(1)

)
is horizontal. By considering

the function g defined on [0, 12 ] by

g(x) = f(x+ 1
2)− f(x),

or otherwise, show that the curve y = f(x) has a horizontal chord of length 1
2 in

[0, 1]. Show, more generally, that it has a horizontal chord of length 1
n for each

positive integer n.

Paper 1, Section II

12E Analysis I
Let f : [0, 1] → R be a bounded function, and let Dn denote the dissection

0 < 1
n < 2

n < · · · < n−1
n < 1 of [0, 1]. Prove that f is Riemann integrable if and

only if the difference between the upper and lower sums of f with respect to the dissection
Dn tends to zero as n tends to infinity.

Suppose that f is Riemann integrable and g : R → R is continuously differentiable.
Prove that g ◦ f is Riemann integrable.

[You may use the mean value theorem provided that it is clearly stated.]
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Paper 1, Section I

3D Analysis I

Show that every sequence of real numbers contains a monotone subsequence.

Paper 1, Section I

4F Analysis I
Find the radius of convergence of the following power series:

(i)
∑

n>1

n!

nn
zn; (ii)

∑

n>1

nnzn!.

Paper 1, Section II

9D Analysis I
(a) Show that for all x ∈ R,

lim
k→∞

3k sin(x/3k) = x,

stating carefully what properties of sin you are using.

Show that the series
∑

n>1 2
n sin(x/3n) converges absolutely for all x ∈ R.

(b) Let (an)n∈N be a decreasing sequence of positive real numbers tending to zero. Show
that for θ ∈ R, θ not a multiple of 2π, the series

∑

n>1

ane
inθ

converges.

Hence, or otherwise, show that
∑

n>1
sin(nθ)

n converges for all θ ∈ R.
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Paper 1, Section II

10E Analysis I
(i) State the Mean Value Theorem. Use it to show that if f : (a, b) → R is a differenti-

able function whose derivative is identically zero, then f is constant.

(ii) Let f : R → R be a function and α > 0 a real number such that for all x, y ∈ R,

|f(x)− f(y)| 6 |x− y|α .

Show that f is continuous. Show moreover that if α > 1 then f is constant.

(iii) Let f : [a, b] → R be continuous, and differentiable on (a, b). Assume also that the
right derivative of f at a exists; that is, the limit

lim
x→a+

f(x)− f(a)

x− a

exists. Show that for any ǫ > 0 there exists x ∈ (a, b) satisfying

∣∣∣∣
f(x)− f(a)

x− a
− f ′(x)

∣∣∣∣ < ǫ.

[You should not assume that f ′ is continuous.]

Paper 1, Section II

11E Analysis I
(i) Prove Taylor’s Theorem for a function f : R → R differentiable n times, in the

following form: for every x ∈ R there exists θ with 0 < θ < 1 such that

f(x) =

n−1∑

k=0

f (k)(0)

k!
xk +

f (n)(θx)

n!
xn.

[You may assume Rolle’s Theorem and the Mean Value Theorem; other results
should be proved.]

(ii) The function f : R → R is twice differentiable, and satisfies the differential equation
f ′′− f = 0 with f(0) = A, f ′(0) = B. Show that f is infinitely differentiable. Write
down its Taylor series at the origin, and prove that it converges to f at every point.
Hence or otherwise show that for any a, h ∈ R, the series

∞∑

k=0

f (k)(a)

k!
hk

converges to f(a+ h).
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Paper 1, Section II

12F Analysis I
Define what it means for a function f : [0, 1] → R to be (Riemann) integrable. Prove

that f is integrable whenever it is

(a) continuous,

(b) monotonic.

Let {qk : k ∈ N} be an enumeration of all rational numbers in [0, 1). Define a
function f : [0, 1] → R by f(0) = 0,

f(x) =
∑

k∈Q(x)

2−k, x ∈ (0, 1],

where
Q(x) = {k ∈ N : qk ∈ [0, x)}.

Show that f has a point of discontinuity in every interval I ⊂ [0, 1].

Is f integrable? [Justify your answer.]
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Paper 1, Section I

3D Analysis I
Show that exp(x) > 1 + x for x > 0.

Let (aj) be a sequence of positive real numbers. Show that for every n,

n∑

1

aj 6
n∏

1

(1 + aj) 6 exp

(
n∑

1

aj

)
.

Deduce that
∏n

1 (1 + aj) tends to a limit as n → ∞ if and only if
∑n

1 aj does.

Paper 1, Section I

4F Analysis I
(a) Suppose bn > bn+1 > 0 for n > 1 and bn → 0. Show that

∑∞
n=1(−1)n−1bn converges.

(b) Does the series
∑∞

n=2
1

n logn converge or diverge? Explain your answer.

Paper 1, Section II

9D Analysis I

(a) Determine the radius of convergence of each of the following power series:

∑

n>1

xn

n!
,

∑

n>1

n!xn,
∑

n>1

(n!)2xn
2
.

(b) State Taylor’s theorem.

Show that
(1 + x)1/2 = 1 +

∑

n>1

cnx
n,

for all x ∈ (0, 1), where

cn =
1
2 (

1
2 − 1) . . . (12 − n+ 1)

n!
.
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Paper 1, Section II

10E Analysis I

(a) Let f : [a, b] → R. Suppose that for every sequence (xn) in [a, b] with limit y ∈ [a, b],
the sequence (f(xn)) converges to f(y). Show that f is continuous at y.

(b) State the Intermediate Value Theorem.

Let f : [a, b] → R be a function with f(a) = c < f(b) = d. We say f is injective if
for all x, y ∈ [a, b] with x 6= y, we have f(x) 6= f(y). We say f is strictly increasing
if for all x, y with x < y, we have f(x) < f(y).

(i) Suppose f is strictly increasing. Show that it is injective, and that if
f(x) < f(y) then x < y.

(ii) Suppose f is continuous and injective. Show that if a < x < b then
c < f(x) < d. Deduce that f is strictly increasing.

(iii) Suppose f is strictly increasing, and that for every y ∈ [c, d] there exists
x ∈ [a, b] with f(x) = y. Show that f is continuous at b. Deduce that f is
continuous on [a, b].
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Paper 1, Section II

11E Analysis I

(i) State (without proof) Rolle’s Theorem.

(ii) State and prove the Mean Value Theorem.

(iii) Let f , g : [a, b] → R be continuous, and differentiable on (a, b) with g′(x) 6= 0 for all
x ∈ (a, b). Show that there exists ξ ∈ (a, b) such that

f ′(ξ)
g′(ξ)

=
f(b)− f(a)

g(b)− g(a)
.

Deduce that if moreover f(a) = g(a) = 0, and the limit

ℓ = lim
x→a

f ′(x)
g′(x)

exists, then
f(x)

g(x)
→ ℓ as x → a.

(iv) Deduce that if f : R → R is twice differentiable then for any a ∈ R

f ′′(a) = lim
h→0

f(a+ h) + f(a− h)− 2f(a)

h2
.
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Paper 1, Section II

12F Analysis I
Fix a closed interval [a, b]. For a bounded function f on [a, b] and a dissection

D of [a, b], how are the lower sum s(f,D) and upper sum S(f,D) defined? Show that
s(f,D) 6 S(f,D).

Suppose D′ is a dissection of [a, b] such that D ⊆ D′. Show that

s(f,D) 6 s(f,D′) and S(f,D′) 6 S(f,D) .

By using the above inequalities or otherwise, show that if D1 and D2 are two dissections
of [a, b] then

s(f,D1) 6 S(f,D2) .

For a function f and dissection D = {x0, . . . , xn} let

p(f,D) =

n∏

k=1

[
1 + (xk − xk−1) inf

x∈[xk−1,xk]
f(x)

]
.

If f is non-negative and Riemann integrable, show that

p(f,D) 6 e
∫ b
a f(x)dx .

[You may use without proof the inequality et > t+ 1 for all t.]
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Paper 1, Section I

3E Analysis I
What does it mean to say that a function f : R → R is continuous at x0 ∈ R?

Give an example of a continuous function f : (0, 1] → R which is bounded but attains
neither its upper bound nor its lower bound.

The function f : R → R is continuous and non-negative, and satisfies f(x) → 0 as
x → ∞ and f(x) → 0 as x → −∞. Show that f is bounded above and attains its upper
bound.

[Standard results about continuous functions on closed bounded intervals may be
used without proof if clearly stated.]

Paper 1, Section I

4F Analysis I
Let f, g : [0, 1] → R be continuous functions with g(x) > 0 for x ∈ [0, 1]. Show that

∫ 1

0
f(x)g(x) dx 6 M

∫ 1

0
g(x) dx ,

where M = sup{|f(x)| : x ∈ [0, 1]}.
Prove there exists α ∈ [0, 1] such that

∫ 1

0
f(x)g(x) dx = f(α)

∫ 1

0
g(x) dx .

[Standard results about continuous functions and their integrals may be used
without proof, if clearly stated.]
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Paper 1, Section II

9E Analysis I
(a) What does it mean to say that the sequence (xn) of real numbers converges to

ℓ ∈ R?

Suppose that (y
(1)
n ), (y

(2)
n ),. . . , (y

(k)
n ) are sequences of real numbers converging to

the same limit ℓ. Let (xn) be a sequence such that for every n,

xn ∈ {y(1)n , y(2)n , . . . , y(k)n } .

Show that (xn) also converges to ℓ.

Find a collection of sequences (y
(j)
n ), j = 1, 2, . . . such that for every j, (y

(j)
n ) → ℓ

but the sequence (xn) defined by xn = y
(n)
n diverges.

(b) Let a, b be real numbers with 0 < a < b. Sequences (an), (bn) are defined by
a1 = a, b1 = b and

for all n > 1, an+1 =
√

anbn, bn+1 =
an + bn

2
.

Show that (an) and (bn) converge to the same limit.

Paper 1, Section II

10D Analysis I

Let (an) be a sequence of reals.

(i) Show that if the sequence (an+1−an) is convergent then so is the sequence
(an
n
)
.

(ii) Give an example to show the sequence
(an
n
)
being convergent does not imply

that the sequence (an+1 − an) is convergent.

(iii) If an+k − an → 0 as n → ∞ for each positive integer k, does it follow that (an)

is convergent? Justify your answer.

(iv) If an+f(n) − an → 0 as n → ∞ for every function f from the positive integers

to the positive integers, does it follow that (an) is convergent? Justify your answer.
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Paper 1, Section II

11D Analysis I

Let f be a continuous function from (0, 1) to (0, 1) such that f(x) < x for every

0 < x < 1. We write fn for the n-fold composition of f with itself (so for example

f2(x) = f(f(x))).

(i) Prove that for every 0 < x < 1 we have fn(x) → 0 as n → ∞.

(ii) Must it be the case that for every ǫ > 0 there exists n with the property that

fn(x) < ǫ for all 0 < x < 1? Justify your answer.

Now suppose that we remove the condition that f be continuous.

(iii) Give an example to show that it need not be the case that for every 0 < x < 1

we have fn(x) → 0 as n → ∞.

(iv) Must it be the case that for some 0 < x < 1 we have fn(x) → 0 as n → ∞?

Justify your answer.

Paper 1, Section II

12F Analysis I
(a) (i) State the ratio test for the convergence of a real series with positive terms.

(ii) Define the radius of convergence of a real power series
∑∞

n=0 anx
n.

(iii) Prove that the real power series f(x) =
∑

n anx
n and g(x) =

∑
n(n+1)an+1x

n

have equal radii of convergence.

(iv) State the relationship between f(x) and g(x) within their interval of conver-
gence.

(b) (i) Prove that the real series

f(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
, g(x) =

∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!

have radius of convergence ∞.

(ii) Show that they are differentiable on the real line R, with f ′ = −g and g′ = f ,
and deduce that f(x)2 + g(x)2 = 1.

[You may use, without proof, general theorems about differentiating within the
interval of convergence, provided that you give a clear statement of any such theorem.]
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Paper 1, Section I

3F Analysis I

(a) State, without proof, the Bolzano–Weierstrass Theorem.

(b) Give an example of a sequence that does not have a convergent subsequence.

(c) Give an example of an unbounded sequence having a convergent subsequence.

(d) Let an = 1+ (−1)⌊n/2⌋
(
1 + 1/n

)
, where ⌊x⌋ denotes the integer part of x. Find

all values c such that the sequence {an} has a subsequence converging to c. For each such
value, provide a subsequence converging to it.

Paper 1, Section I

4D Analysis I

Find the radius of convergence of each of the following power series.

(i)
∑

n>1

n2zn

(ii)
∑

n>1

nn1/3
zn

Paper 1, Section II

9F Analysis I

(a) State, without proof, the ratio test for the series
∑

n>1

an, where an > 0. Give

examples, without proof, to show that, when an+1 < an and an+1

/
an → 1, the series may

converge or diverge.

(b) Prove that
n−1∑

k=1

1

k
> log n.

(c) Now suppose that an > 0 and that, for n large enough,
an+1

an
6 1 − c

n
where

c > 1. Prove that the series
∑

n>1

an converges.

[You may find it helpful to prove the inequality log (1− x) < −x for 0 < x < 1.]
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Paper 1, Section II

10E Analysis I

State and prove the Intermediate Value Theorem.

A fixed point of a function f : X → X is an x ∈ X with f(x) = x. Prove that every
continuous function f : [0, 1] → [0, 1] has a fixed point.

Answer the following questions with justification.

(i) Does every continuous function f : (0, 1) → (0, 1) have a fixed point?

(ii) Does every continuous function f : R → R have a fixed point?

(iii) Does every function f : [0, 1] → [0, 1] (not necessarily continuous) have a fixed
point?

(iv) Let f : [0, 1] → [0, 1] be a continuous function with f(0) = 1 and f(1) = 0. Can
f have exactly two fixed points?

Paper 1, Section II

11E Analysis I

For each of the following two functions f : R → R, determine the set of points at
which f is continuous, and also the set of points at which f is differentiable.

(i) f(x) =

{
x if x ∈ Q
−x if x /∈ Q ,

(ii) f(x) =

{
x sin(1/x) if x 6= 0

0 if x = 0 .

By modifying the function in (i), or otherwise, find a function (not necessarily
continuous) f : R → R such that f is differentiable at 0 and nowhere else.

Find a continuous function f : R → R such that f is not differentiable at the points
1/2, 1/3, 1/4, . . ., but is differentiable at all other points.

Part IA, 2011 List of Questions [TURN OVER

2011



4

Paper 1, Section II

12D Analysis I

State and prove the Fundamental Theorem of Calculus.

Let f : [0, 1] → R be integrable, and set F (x) =
∫ x
0 f(t) dt for 0 < x < 1. Must F

be differentiable?

Let f : R → R be differentiable, and set g(x) = f ′(x) for 0 6 x 6 1. Must the

Riemann integral of g from 0 to 1 exist?
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Paper 1, Section I

3D Analysis I

Let
∑

n>0 anz
n be a complex power series. State carefully what it means for the

power series to have radius of convergence R , with R ∈ [0,∞] .

Suppose the power series has radius of convergence R , with 0 < R < ∞ . Show

that the sequence | anzn| is unbounded if |z| > R .

Find the radius of convergence of
∑

n>1 z
n/n3.

Paper 1, Section I

4E Analysis I

Find the limit of each of the following sequences; justify your answers.

(i)
1 + 2 + . . .+ n

n2
;

(ii)
n
√
n ;

(iii)

(an + bn)1/n with 0 < a 6 b .

Part IA, 2010 List of Questions

2010



3

Paper 1, Section II

9E Analysis I

Determine whether the following series converge or diverge. Any tests that you use

should be carefully stated.

(a) ∑

n>1

n!

nn
;

(b) ∑

n>1

1

n+ (log n)2
;

(c)
∑

n>1

(−1)n

1 +
√
n
;

(d)
∑

n>1

(−1)n

n (2 + (−1)n)
.

Paper 1, Section II

10F Analysis I

(a) State and prove Taylor’s theorem with the remainder in Lagrange’s form.

(b) Suppose that e : R → R is a differentiable function such that e(0) = 1 and
e′(x) = e(x) for all x ∈ R. Use the result of (a) to prove that

e(x) =
∑

n>0

xn

n!
for all x ∈ R.

[No property of the exponential function may be assumed.]
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Paper 1, Section II

11D Analysis I

Define what it means for a bounded function f : [a,∞) → R to be Riemann
integrable.

Show that a monotonic function f : [a, b] → R is Riemann integrable, where
−∞ < a < b < ∞ .

Prove that if f : [1,∞) → R is a decreasing function with f(x) → 0 as x → ∞ ,
then

∑
n>1 f(n) and

∫ ∞
1 f(x) dx either both diverge or both converge.

Hence determine, for α ∈ R , when
∑

n>1 n
α converges.

Paper 1, Section II

12F Analysis I

(a) Let n > 1 and f be a function R → R. Define carefully what it means for f to
be n times differentiable at a point x0 ∈ R.

Set sign(x) =

{
x/|x|, x 6= 0,

0, x = 0.

Consider the function f(x) on the real line, with f(0) = 0 and

f(x) = x2 sign(x)
∣∣∣cos π

x

∣∣∣ , x 6= 0.

(b) Is f(x) differentiable at x = 0?

(c) Show that f(x) has points of non-differentiability in any neighbourhood of x = 0.

(d) Prove that, in any finite interval I, the derivative f ′(x), at the points x ∈ I
where it exists, is bounded: |f ′(x)| 6 C where C depends on I.
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Paper 1, Section I

3F Analysis I
Determine the limits as n → ∞ of the following sequences:

(a) an = n−
√
n2 − n ;

(b) bn = cos2
(
π
√
n2 + n

)
.

Paper 1, Section I

4E Analysis I

Let a0, a1, a2, . . . be a sequence of complex numbers. Prove that there exists

R ∈ [0,∞] such that the power series
∑∞

n=0 anz
n converges whenever |z| < R and diverges

whenever |z| > R.

Give an example of a power series
∑∞

n=0 anz
n that diverges if z = ±1 and converges

if z = ±i.

Paper 1, Section II

9F Analysis I
For each of the following series, determine for which real numbers x it diverges, for

which it converges, and for which it converges absolutely. Justify your answers briefly.

(a)
∑
n>1

3 +
(
sinx

)n

n

(
sinx

)n
,

(b)
∑
n>1

∣∣ sinx
∣∣n (−1)n√

n
,

(c)
∑
n>1

sin (0.99 sin (0.99 . . . sin (0.99 x) . . .))︸ ︷︷ ︸
n times

.
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Paper 1, Section II

10D Analysis I

State and prove the intermediate value theorem.

Let f : R → R be a continuous function and let P = (a, b) be a point of the plane

R2. Show that the set of distances from points (x, f(x)) on the graph of f to the point P

is an interval [A,∞) for some value A > 0.

Paper 1, Section II

11D Analysis I

State and prove Rolle’s theorem.

Let f and g be two continuous, real-valued functions on a closed, bounded interval

[a, b] that are differentiable on the open interval (a, b). By considering the determinant

φ(x) =

∣∣∣∣∣∣

1 1 0

f(a) f(b) f(x)

g(a) g(b) g(x)

∣∣∣∣∣∣
= g(x) (f(b)− f(a))− f(x) (g(b) − g(a)) ,

or otherwise, show that there is a point c ∈ (a, b) with

f ′(c)(g(b) − g(a)) = g′(c)(f(b)− f(a)) .

Suppose that f, g : (0,∞) → R are differentiable functions with f(x) → 0 and

g(x) → 0 as x → 0. Prove carefully that if the limit lim
x→0

f ′(x)
g′(x)

= ℓ exists and is finite,

then the limit lim
x→0

f(x)

g(x)
also exists and equals ℓ.
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Paper 1, Section II

12E Analysis I

(a) What does it mean for a function f : [a, b] → R to be Riemann integrable?

(b) Let f : [0, 1] → R be a bounded function. Suppose that for every δ > 0 there is a

sequence

0 6 a1 < b1 6 a2 < b2 6 . . . 6 an < bn 6 1

such that for each i the function f is Riemann integrable on the closed interval

[ai, bi], and such that
∑n

i=1(bi − ai) > 1− δ. Prove that f is Riemann integrable on

[0, 1].

(c) Let f : [0, 1] → R be defined as follows. We set f(x) = 1 if x has an infinite decimal

expansion that consists of 2s and 7s only, and otherwise we set f(x) = 0. Prove

that f is Riemann integrable and determine
∫ 1
0 f(x) dx.
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1/I/3F Analysis I

State the ratio test for the convergence of a series.

Find all real numbers x such that the series

∞∑

n=1

xn − 1

n

converges.

1/I/4E Analysis I

Let f : [0, 1] → R be Riemann integrable, and for 0 6 x 6 1 set F (x) =
∫ x

0
f(t) dt .

Assuming that f is continuous, prove that for every 0 < x < 1 the function F is
differentiable at x , with F ′(x) = f(x).

If we do not assume that f is continuous, must it still be true that F is differentiable
at every 0 < x < 1? Justify your answer.

1/II/9F Analysis I

Investigate the convergence of the series

(i)

∞∑

n=2

1

np(log n)q

(ii)

∞∑

n=3

1

n (log log n)r

for positive real values of p, q and r .

[You may assume that for any positive real value of α, log n < nα for n sufficiently large.

You may assume standard tests for convergence, provided that they are clearly stated.]
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1/II/10D Analysis I

(a) State and prove the intermediate value theorem.

(b) An interval is a subset I of R with the property that if x and y belong to I and
x < z < y then z also belongs to I . Prove that if I is an interval and f is a continuous
function from I to R then f(I) is an interval.

(c) For each of the following three pairs (I, J) of intervals, either exhibit a
continuous function f from I to R such that f(I) = J or explain briefly why no such
continuous function exists:

(i) I = [0, 1] , J = [0,∞) ;

(ii) I = (0, 1] , J = [0,∞) ;

(iii) I = (0, 1] , J = (−∞,∞) .

1/II/11D Analysis I

(a) Let f and g be functions from R to R and suppose that both f and g are
differentiable at the real number x . Prove that the product fg is also differentiable at x .

(b) Let f be a continuous function from R to R and let g(x) = x2f(x) for every x .
Prove that g is differentiable at x if and only if either x = 0 or f is differentiable at x .

(c) Now let f be any continuous function from R to R and let g(x) = f(x)2 for
every x . Prove that g is differentiable at x if and only if at least one of the following two
possibilities occurs:

(i) f is differentiable at x;

(ii) f(x) = 0 and
f(x + h)

|h|1/2
−→ 0 as h → 0 .

Part IA 2008
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1/II/12E Analysis I

Let
∑

∞

n=0
anzn be a complex power series. Prove that there exists an R ∈ [0,∞]

such that the series converges for every z with |z| < R and diverges for every z with
|z| > R .

Find the value of R for each of the following power series:

(i)

∞∑

n=1

1

n2
zn ;

(ii)

∞∑

n=0

zn! .

In each case, determine at which points on the circle |z| = R the series converges.

Part IA 2008
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1/I/3F Analysis

Prove that, for positive real numbers a and b,

2
√
ab 6 a+ b .

For positive real numbers a1, a2, . . ., prove that the convergence of

∞∑

n=1

an

implies the convergence of
∞∑

n=1

√
an

n
.

1/I/4D Analysis

Let
∑∞

n=0 anz
n be a complex power series. Show that there exists R ∈ [0,∞] such

that
∑∞

n=0 anz
n converges whenever |z| < R and diverges whenever |z| > R.

Find the value of R for the power series

∞∑

n=1

zn

n
.

1/II/9F Analysis

Let a1 =
√

2, and consider the sequence of positive real numbers defined by

an+1 =

√
2 +

√
an , n = 1, 2, 3, . . . .

Show that an 6 2 for all n. Prove that the sequence a1, a2, . . . converges to a limit.

Suppose instead that a1 = 4. Prove that again the sequence a1, a2, . . . converges to
a limit.

Prove that the limits obtained in the two cases are equal.
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1/II/10E Analysis

State and prove the Mean Value Theorem.

Let f : R → R be a function such that, for every x ∈ R, f ′′(x) exists and is
non-negative.

(i) Show that if x ≤ y then f ′(x) ≤ f ′(y).

(ii) Let λ ∈ (0, 1) and a < b. Show that there exist x and y such that

f
(
λa+ (1 − λ)b

)
= f(a) + (1 − λ)(b− a)f ′(x) = f(b) − λ(b− a)f ′(y)

and that
f
(
λa+ (1 − λ)b

)
≤ λf(a) + (1 − λ)f(b) .

1/II/11E Analysis

Let a < b be real numbers, and let f : [a, b] → R be continuous. Show that
f is bounded on [a, b], and that there exist c, d ∈ [a, b] such that for all x ∈ [a, b],
f(c) ≤ f(x) ≤ f(d).

Let g : R → R be a continuous function such that

lim
x→+∞

g(x) = lim
x→−∞

g(x) = 0 .

Show that g is bounded. Show also that, if a and c are real numbers with 0 < c ≤ g(a),
then there exists x ∈ R with g(x) = c.

1/II/12D Analysis

Explain carefully what it means to say that a bounded function f : [0, 1] → R is
Riemann integrable.

Prove that every continuous function f : [0, 1] → R is Riemann integrable.

For each of the following functions from [0, 1] to R, determine with proof whether
or not it is Riemann integrable:

(i) the function f(x) = x sin
1

x
for x 6= 0, with f(0) = 0;

(ii) the function g(x) = sin
1

x
for x 6= 0, with g(0) = 0.
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1/I/3F Analysis

Let an ∈ R for n > 1. What does it mean to say that the infinite series
∑

n an

converges to some value A? Let sn = a1 + · · · + an for all n > 1. Show that if
∑

n an

converges to some value A, then the sequence whose n-th term is

(s1 + · · · + sn) /n

converges to some value Ã as n → ∞. Is it always true that A = Ã? Give an example
where (s1 + · · · + sn) /n converges but

∑
n an does not.

1/I/4D Analysis

Let
∑∞

n=0 anzn and
∑∞

n=0 bnzn be power series in the complex plane with radii of
convergence R and S respectively. Show that if R 6= S then

∑∞
n=0(an + bn)zn has radius

of convergence min(R,S). [Any results on absolute convergence that you use should be
clearly stated.]

1/II/9E Analysis

State and prove the Intermediate Value Theorem.

Suppose that the function f is differentiable everywhere in some open interval
containing [a, b], and that f ′(a) < k < f ′(b). By considering the functions g and h defined
by

g(x) =
f(x) − f(a)

x − a
(a < x 6 b) , g(a) = f ′(a)

and

h(x) =
f(b) − f(x)

b − x
(a 6 x < b) , h(b) = f ′(b),

or otherwise, show that there is a subinterval [a′, b′] ⊆ [a, b] such that

f(b′) − f(a′)
b′ − a′ = k.

Deduce that there exists c ∈ (a, b) with f ′(c) = k. [You may assume the Mean Value
Theorem.]
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1/II/10E Analysis

Prove that if the function f is infinitely differentiable on an interval (r, s) containing
a, then for any x ∈ (r, s) and any positive integer n we may expand f(x) in the form

f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) + · · · + (x − a)n

n!
f (n)(a) + Rn(f, a, x),

where the remainder term Rn(f, a, x) should be specified explicitly in terms of f (n+1).

Let p(t) be a nonzero polynomial in t, and let f be the real function defined by

f(x) = p

(
1

x

)
exp

(
− 1

x2

)
(x 6= 0) , f(0) = 0.

Show that f is differentiable everywhere and that

f ′(x) = q

(
1

x

)
exp

(
− 1

x2

)
(x 6= 0) , f ′(0) = 0,

where q(t) = 2t3p(t) − t2p′(t). Deduce that f is infinitely differentiable, but that there
exist arbitrarily small values of x for which the remainder term Rn(f, 0, x) in the Taylor
expansion of f about 0 does not tend to 0 as n → ∞.

1/II/11F Analysis

Consider a sequence (an)n>1 of real numbers. What does it mean to say that an →
a ∈ R as n → ∞? What does it mean to say that an → ∞ as n → ∞? What does it
mean to say that an → −∞ as n → ∞? Show that for every sequence of real numbers
there exists a subsequence which converges to a value in R∪ {∞,−∞}. [You may use the
Bolzano–Weierstrass theorem provided it is clearly stated.]

Give an example of a bounded sequence (an)n>1 which is not convergent, but for
which

an+1 − an → 0 as n → ∞.

1/II/12D Analysis

Let f1 and f2 be Riemann integrable functions on [a, b]. Show that f1 + f2 is
Riemann integrable.

Let f be a Riemann integrable function on [a, b] and set f+(x) = max(f(x), 0).
Show that f+ and |f | are Riemann integrable.

Let f be a function on [a, b] such that |f | is Riemann integrable. Is it true that f
is Riemann integrable? Justify your answer.

Show that if f1 and f2 are Riemann integrable on [a, b], then so is max(f1, f2).
Suppose now f1, f2, . . . is a sequence of Riemann integrable functions on [a, b] and
f(x) = supn fn(x); is it true that f is Riemann integrable? Justify your answer.
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1/I/3F Analysis

Define the supremum or least upper bound of a non-empty set of real numbers.

Let A denote a non-empty set of real numbers which has a supremum but no
maximum. Show that for every ε > 0 there are infinitely many elements of A contained
in the open interval

(supA − ε , supA).

Give an example of a non-empty set of real numbers which has a supremum and
maximum and for which the above conclusion does not hold.

1/I/4D Analysis

Let
∑∞

n=0 anzn be a power series in the complex plane with radius of convergence
R. Show that |anzn| is unbounded in n for any z with |z| > R. State clearly any results
on absolute convergence that are used.

For every R ∈ [0,∞], show that there exists a power series
∑∞

n=0 anzn with radius
of convergence R.

1/II/9F Analysis

Examine each of the following series and determine whether or not they converge.
Give reasons in each case.

(i)
∞∑

n=1

1

n2
,

(ii)

∞∑

n=1

1

n2 + (−1)
n+1

2n + 1
,

(iii)

∞∑

n=1

n3 + (−1)n 8n2 + 1

n4 + (−1)n+1 n2
,

(iv)
∞∑

n=1

n3

een .
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1/II/10D Analysis

Explain what it means for a bounded function f : [a, b] → R to be Riemann
integrable.

Let f : [0,∞) → R be a strictly decreasing continuous function. Show that for each
x ∈ (0,∞), there exists a unique point g(x) ∈ (0, x) such that

1

x

∫ x

0

f(t) dt = f(g(x)).

Find g(x) if f(x) = e−x.

Suppose now that f is differentiable and f ′(x) < 0 for all x ∈ (0,∞). Prove that
g is differentiable at all x ∈ (0,∞) and g′(x) > 0 for all x ∈ (0,∞), stating clearly any
results on the inverse of f you use.

1/II/11E Analysis

Prove that if f is a continuous function on the interval [a, b] with f(a) < 0 < f(b)
then f(c) = 0 for some c ∈ (a, b).

Let g be a continuous function on [0, 1] satisfying g(0) = g(1). By considering the
function f(x) = g(x + 1

2 ) − g(x) on [0, 1
2 ], show that g(c + 1

2 ) = g(c) for some c ∈ [0, 1
2 ].

Show, more generally, that for any positive integer n there exists a point cn ∈ [0, n−1
n ] for

which g(cn + 1
n ) = g(cn).

1/II/12E Analysis

State and prove Rolle’s Theorem.

Prove that if the real polynomial p of degree n has all its roots real (though not
necessarily distinct), then so does its derivative p′. Give an example of a cubic polynomial
p for which the converse fails.
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1/I/3D Analysis

Define the supremum or least upper bound of a non-empty set of real numbers.

State the Least Upper Bound Axiom for the real numbers.

Starting from the Least Upper Bound Axiom, show that if (an) is a bounded
monotonic sequence of real numbers, then it converges.

1/I/4E Analysis

Let f(x) = (1 + x)1/2 for x ∈ (−1, 1). Show by induction or otherwise that for
every integer r ≥ 1,

f (r)(x) = (−1)r−1 (2r − 2)!

22r−1(r − 1)!
(1 + x)

1
2−r.

Evaluate the series ∞∑

r=1

(−1)r−1 (2r − 2)!

8rr!(r − 1)!
.

[You may use Taylor’s Theorem in the form

f(x) = f(0) +

n∑

r=1

f (r)(0)

r!
xr +

∫ x

0

(x− t)nf (n+1)(t)

n!
dt

without proof.]

1/II/9D Analysis

i) State Rolle’s theorem.

Let f, g : [a, b] → R be continuous functions which are differentiable on (a, b).

ii) Prove that for some c ∈ (a, b),

(f(b) − f(a))g′(c) = (g(b) − g(a))f ′(c).

iii) Suppose that f(a) = g(a) = 0, and that lim
x→a+

f ′(x)
g′(x)

exists and is equal to L.

Prove that lim
x→a+

f(x)

g(x)
exists and is also equal to L.

[You may assume there exists a δ > 0 such that, for all x ∈ (a, a + δ), g ′(x) 6= 0 and
g(x) 6= 0.]

iv) Evaluate lim
x→0

log cos x

x2
.
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1/II/10E Analysis

Define, for an integer n ≥ 0,

In =

∫ π/2

0

sinn x dx.

Show that for every n ≥ 2, nIn = (n− 1)In−2, and deduce that

I2n =
(2n)!

(2nn!)2
π

2
and I2n+1 =

(2nn!)2

(2n+ 1)!
.

Show that 0 < In < In−1, and that

2n

2n+ 1
<
I2n+1

I2n
< 1.

Hence prove that

lim
n→∞

24n+1(n!)4

(2n+ 1)(2n)!2
= π.

1/II/11F Analysis

Let f be defined on R, and assume that there exists at least one point x0 ∈ R at
which f is continuous. Suppose also that, for every x, y ∈ R, f satisfies the equation

f(x+ y) = f(x) + f(y).

Show that f is continuous on R.

Show that there exists a constant c such that f(x) = cx for all x ∈ R.

Suppose that g is a continuous function defined on R and that, for every x, y ∈ R,
g satisfies the equation

g(x+ y) = g(x)g(y).

Show that if g is not identically zero, then g is everywhere positive. Find the general form
of g.

Part IA 2004
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1/II/12F Analysis

(i) Show that if an > 0, bn > 0 and

an+1

an
6 bn+1

bn

for all n > 1, and if
∞∑

n=1
bn converges, then

∞∑
n=1

an converges.

(ii) Let

cn =

(
2n
n

)
4−n.

By considering log cn, or otherwise, show that cn → 0 as n→ ∞.

[Hint: log(1 − x) 6 −x for x ∈ (0, 1).]

(iii) Determine the convergence or otherwise of

∞∑

n=1

(
2n
n

)
xn

for (a) x = 1
4 , (b) x = − 1

4 .
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1/I/3B Analysis

Define what it means for a function of a real variable to be differentiable at x ∈ R .

Prove that if a function is differentiable at x ∈ R , then it is continuous there.

Show directly from the definition that the function

f(x) =

{
x2 sin(1/x) x 6= 0
0 x = 0

is differentiable at 0 with derivative 0.

Show that the derivative f ′(x) is not continuous at 0.

1/I/4C Analysis

Explain what is meant by the radius of convergence of a power series.

Find the radius of convergence R of each of the following power series:

(i)
∞∑

n=1

n−2zn, (ii)
∞∑

n=1

(
n +

1

2n

)
zn .

In each case, determine whether the series converges on the circle |z| = R.

1/II/9F Analysis

Prove the Axiom of Archimedes.

Let x be a real number in [0, 1], and let m,n be positive integers. Show that the
limit

lim
m→∞

[
lim

n→∞
cos2n (m!πx)

]

exists, and that its value depends on whether x is rational or irrational.

[You may assume standard properties of the cosine function provided they are clearly
stated.]
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1/II/10F Analysis

State without proof the Integral Comparison Test for the convergence of a series
∞∑

n=1

an of non-negative terms.

Determine for which positive real numbers α the series

∞∑

n=1

n−α converges.

In each of the following cases determine whether the series is convergent or
divergent:

(i)
∞∑

n=3

1

n log n
,

(ii)
∞∑

n=3

1

(n log n) (log log n)2
,

(iii)
∞∑

n=3

1

n(1+1/n) log n
.

1/II/11B Analysis

Let f : [a, b] → R be continuous. Define the integral

∫ b

a

f(x)dx. (You are not asked

to prove existence.)

Suppose that m,M are real numbers such that m 6 f(x) 6 M for all x ∈ [a, b].
Stating clearly any properties of the integral that you require, show that

m(b − a) 6
∫ b

a

f(x)dx 6 M(b − a) .

The function g : [a, b] → R is continuous and non-negative. Show that

m

∫ b

a

g(x)dx 6
∫ b

a

f(x)g(x)dx 6 M

∫ b

a

g(x)dx .

Now let f be continuous on [0, 1]. By suitable choice of g show that

lim
n→∞

∫ 1/
√

n

0

nf(x)e−nxdx = f(0) ,

and by making an appropriate change of variable, or otherwise, show that

lim
n→∞

∫ 1

0

nf(x)e−nxdx = f(0) .

Part IA 2003

2003



9

1/II/12C Analysis

State carefully the formula for integration by parts for functions of a real variable.

Let f : (−1, 1) → R be infinitely differentiable. Prove that for all n > 1 and all
t ∈ (−1, 1),

f(t) = f(0) + f ′(0)t +
1

2!
f ′′(0)t2 + . . . +

1

(n − 1)!
f (n−1)(0)tn−1 +

1

(n − 1)!

∫ t

0

f (n)(x)(t − x)n−1 dx.

By considering the function f(x) = log(1 − x) at x = 1/2, or otherwise, prove that the
series ∞∑

n=1

1

n 2n

converges to log 2.
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1/I/3C Analysis I

Suppose an ∈ R for n > 1 and a ∈ R. What does it mean to say that an → a as
n→ ∞? What does it mean to say that an → ∞ as n→ ∞?

Show that, if an 6= 0 for all n and an → ∞ as n → ∞, then 1/an → 0 as n → ∞.
Is the converse true? Give a proof or a counter example.

Show that, if an 6= 0 for all n and an → a with a 6= 0, then 1/an → 1/a as n→ ∞.

1/I/4C Analysis I

Show that any bounded sequence of real numbers has a convergent subsequence.

Give an example of a sequence of real numbers with no convergent subsequence.

Give an example of an unbounded sequence of real numbers with a convergent
subsequence.

1/II/9C Analysis I

State some version of the fundamental axiom of analysis. State the alternating
series test and prove it from the fundamental axiom.

In each of the following cases state whether
∑∞

n=1 an converges or diverges and
prove your result. You may use any test for convergence provided you state it correctly.

(i) an = (−1)n(log(n+ 1))−1.

(ii) a2n = (2n)−2, a2n−1 = −n−2.

(iii) a3n−2 = −(2n− 1)−1, a3n−1 = (4n− 1)−1, a3n = (4n)−1.

(iv) a2n+r = (−1)n(2n + r)−1 for 0 6 r 6 2n − 1, n > 0.
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1/II/10C Analysis I

Show that a continuous real-valued function on a closed bounded interval is bounded
and attains its bounds.

Write down examples of the following functions (no proof is required).

(i) A continuous function f1 : (0, 1) → R which is not bounded.

(ii) A continuous function f2 : (0, 1) → R which is bounded but does not attain its
bounds.

(iii) A bounded function f3 : [0, 1] → R which is not continuous.

(iv) A function f4 : [0, 1] → R which is not bounded on any interval [a, b] with
0 6 a < b 6 1.

[Hint: Consider first how to define f4 on the rationals.]

1/II/11C Analysis I

State the mean value theorem and deduce it from Rolle’s theorem.

Use the mean value theorem to show that, if h : R → R is differentiable with
h′(x) = 0 for all x, then h is constant.

By considering the derivative of the function g given by g(x) = e−axf(x), find all
the solutions of the differential equation f ′(x) = af(x) where f : R → R is differentiable
and a is a fixed real number.

Show that, if f : R → R is continuous, then the function F : R → R given by

F (x) =

∫ x

0

f(t) dt

is differentiable with F ′(x) = f(x).

Find the solution of the equation

g(x) = A+

∫ x

0

g(t) dt

where g : R → R is differentiable and A is a real number. You should explain why the
solution is unique.
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1/II/12C Analysis I

Prove Taylor’s theorem with some form of remainder.

An infinitely differentiable function f : R → R satisfies the differential equation

f (3)(x) = f(x)

and the conditions f(0) = 1, f ′(0) = f ′′(0) = 0. If R > 0 and j is a positive integer,
explain why we can find an Mj such that

|f (j)(x)| 6Mj

for all x with |x| 6 R. Explain why we can find an M such that

|f (j)(x)| 6M

for all x with |x| 6 R and all j > 0.

Use your form of Taylor’s theorem to show that

f(x) =

∞∑

n=0

x3n

(3n)!
.
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1/I/3D Analysis I

What does it mean to say that un → l as n → ∞ ?

Show that, if un → l and vn → k, then unvn → lk as n → ∞.

If further un 6= 0 for all n and l 6= 0, show that 1/un → 1/l as n → ∞.

Give an example to show that the non-vanishing of un for all n need not imply the
non-vanishing of l.

1/I/4D Analysis I

Starting from the theorem that any continuous function on a closed and bounded
interval attains a maximum value, prove Rolle’s Theorem. Deduce the Mean Value
Theorem.

Let f : R → R be a differentiable function. If f ′(t) > 0 for all t show that f is a
strictly increasing function.

Conversely, if f is strictly increasing, is f ′(t) > 0 for all t ?

1/II/9D Analysis I

(i) If a0, a1, . . . are complex numbers show that if, for some w ∈ C, w 6= 0, the set
{|anwn| : n ≥ 0} is bounded and |z| < |w|, then

∑∞
n=0 anzn converges absolutely.

Use this result to define the radius of convergence of the power series
∑∞

n=0 anzn.

(ii) If |an|1/n → R as n → ∞ (0 < R < ∞) show that
∑∞

n=0 anzn has radius of
convergence equal to 1/R.

(iii) Give examples of power series with radii of convergence 1 such that (a) the series
converges at all points of the circle of convergence, (b) diverges at all points of the
circle of convergence, and (c) neither of these occurs.

1/II/10D Analysis I

Suppose that f is a continuous real-valued function on [a, b] with f(a) < f(b). If
f(a) < v < f(b) show that there exists c with a < c < b and f(c) = v.

Deduce that if f is a continuous function from the closed bounded interval [a, b]
to itself, there exists at least one fixed point, i.e., a number d belonging to [a, b] with
f(d) = d. Does this fixed point property remain true if f is a continuous function defined
(i) on the open interval (a, b) and (ii) on R? Justify your answers.
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1/II/11D Analysis I

(i) Show that if g : R → R is twice continuously differentiable then, given ε > 0, we
can find some constant L and δ(ε) > 0 such that

|g(t) − g(α) − g′(α) (t − α)| ≤ L|t − α|2

for all |t − α| < δ(ε).

(ii) Let f : R → R be twice continuously differentiable on [a, b] (with one-sided
derivatives at the end points), let f ′ and f ′′ be strictly positive functions and
let f(a) < 0 < f(b).

If F (t) = t − (f(t)/f ′(t)) and a sequence {xn} is defined by b = x0, xn =
F (xn−1) (n > 0), show that x0, x1, x2, . . . is a decreasing sequence of points in [a, b]
and hence has limit α. What is f(α)? Using part (i) or otherwise estimate the rate of
convergence of xn to α, i.e., the behaviour of the absolute value of (xn−α) for large values
of n.

1/II/12D Analysis I

Explain what it means for a function f : [a, b] → R to be Riemann integrable on
[a, b], and give an example of a bounded function that is not Riemann integrable.

Show each of the following statements is true for continuous functions f , but false
for general Riemann integrable functions f .

(i) If f : [a, b] → R is such that f(t) ≥ 0 for all t in [a, b] and
∫ b

a
f(t) dt = 0, then

f(t) = 0 for all t in [a, b].

(ii)
∫ t

a
f(x) dx is differentiable and d

dt

∫ t

a
f(x) dx = f(t).
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