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REPRESENTATION THEORY (D) 24 lectures, Lent term
Linear Algebra, and Groups, Rings and Modules are essential.

Representations of finite groups

Representations of groups on vector spaces, matrix representations. Equivalence of represen-
tations. Invariant subspaces and submodules. Irreducibility and Schur’s Lemma. Complete
reducibility for finite groups. Irreducible representations of Abelian groups.

Characters

Determination of a representation by its character. The group algebra, conjugacy classes, and
or- thogonality relations. Regular representation. Induced representations and the Frobenius
reciprocity theorem. Mackey’s theorem. [12]

Arithmetic properties of characters
Divisibility of the order of the group by the degrees of its irreducible characters. Burnside’s
p%q® theorem. (2]

Tensor products
Tensor products of representations. The character ring. Tensor, symmetric and exterior
algebras. 3]

Representations of S' and SU,
The groups S' and SU, , their irreducible representations, complete reducibility. The
Clebsch-Gordan formula. *Compact groups.* [4]

Further worked examples
The characters of one of GLy(Fy), Sy, or the Heisenberg group. (3]

Appropriate books

J.L. Alperin and R.B. Bell Groups and representations. Springer 1995 (£37.50 paperback).

LM. Isaacs Character theory of finite groups. Dover Publications 1994 (£12.95 paperback).

G.D. James and M.W. Liebeck Representations and characters of groups. Second Edition,
CUP 2001 (£24.99 paperback).

J-P. Serre Linear representations of finite groups. Springer-Verlag 1977 (£42.50 hardback).

M. Artin Algebra. Prentice Hall 1991 (£56.99 hardback).



Representation Theory

This is the theory of how groups act as groups of transformations on vector spaces.

e group (usually) means finite group.
e vector spaces are finite-dimensional and (usually) over C.

1. Group Actions

e I a field — usually F' = C or R or Q : ordinary representation theory;
— sometimes F' = F, or F,, (algebraic closure) : modular representation theory.

e V' a vector space over F' — always finite-dimensional over F.

e GL(V)={0:V — V, 0 linear, invertible} — group operation is composition, identity is 1.
Basic linear algebra

If dimpV = n < oo, choose a basis eq,...,e, over F so that we can identify it with F™.
Then § € GL(V') corresponds to a matrix Ag = (a;j) € Fyxn where 0(e;) = 3. aj;je;, and
Ap € GL,(F), the general linear group.

(1.1) GL(V) 2 GL,(F), 0 — Ay. (A group isomorphism — check Ag,9, = Ap, Ag,, bijection.)

Choosing different bases gives different isomorphisms to GL,,(F'), but:

(1.2) Matrices Aj, Az represent the same element of GL(V) with respect to different bases
iff they are conjugate/similar, viz. there exists X € GL,(F) such that 4; = X A; X 1.

Recall the trace of A, tr (A) =", a;; where A = (a;;) € Frxn.
(1.3) tr (XAX 1) = tr (A), hence define tr (f) = tr (A), independent of basis.

(1.4) Let o« € GL(V) where V is finite-dimensional over C and « is idempotent, i.e.
a™ =id, some m. Then « is diagonalisable. (Proof uses Jordan blocks — see Telemann p.4.)

Recall End(V'), the endomorphism algebra, is the set of all linear maps V' — V with
natural addition of linear maps, and the composition as ‘multiplication’.

(1.5) Proposition. Take V finite-dimensional over C, o € End(V'). Then « is diagonalis-
able iff there exists a polynomial f with distinct linear factors such that f(«) = 0.

Recall in (1.4), o™ =1id, so take f = X™ -1 = H;n:_ol(X — w’), where w = e2™/",

Proof of (1.5). f(X)= (X —XA)...(X — Xg).

Sol=735 f(X). Put V; = f;(a)V. The f;(a) are orthogonal projections, and V' =
@ V; with V; CV(A;) the Ag-eigenspace. O



(1.4%) In fact, a finite family of commuting separately diagonalisable automorphisms of a
C-space can be simultaneously diagonalised.
Basic group theory

(1.6) Symmetric group, S, = Sym(X,,) on the set X,, = {1,...,n}, is the set of all
permutations (bijections X,, — X,,) of X,,. |S,| =n!

Alternating group, A, on X,, is the set of products of an even number of transpositions
(ij) € Sp. (‘A, is mysterious. Results true for S, usually fail for A,!")

(1.7) Cyclic group of order n, C,, = (x : 2™ = 1). E.g., Z/nZ under +.

It’s also the group of rotations, centre 0, of the regular n-gon in R2. And also the group of
n™ roots of unity in C (living in GL;1(C)).

(1.8) Dihedral group, Ds,, of order 2m. Da,, = (x,y : 2™ = y? = 1,yzy~! = 27 1).

Can think of this as the set of rotations and reflections preserving a regular m-gon (living in
GLs(R)). E.g., Dg, of the square.

(1.9) Quaternion group, Qs = (z,y : 2* = 1,4% = 22, yry~! = 271) of order 8.

(‘Often used as a counterexample to dihedral results.”)

i 0 0 1
In GLy(C), can put = = (0 _i),y <_1 0).

(1.10) The conjugacy class of g € G is Ca(g) = {zgx~! : 2 € G}.
Then [Ca(g)| = |G : Ca(g)|, where Cg(g) = {x € G : xg = gz} is the centraliser of g € G.

Definition. G a group, X a set. G acts on X if there exists a map * : G x X — X,
(9,x) — g * x, written gz for g € G, z € X, such that:

lr =2 forallz € X
(gh)x = g(hx) forall g,h € G,z € X.

Given an action of G on X, we obtain a homomorphism 6 : G — Sym(X) called the per-
mutation representation of G.

Proof. For g € G, the function 6, : X — X, x — gz, is a permutation (inverse is fy-1).
Moreover, for all g1, g2 € G, 04,4, = 04,04, since (gi1g2)z = g1(g2x) for z € X. O

In this course, X is often a finite-dimensional vector space, and the action is linear, viz:
g(v1 + v2) = gu1 + gua, g(Av) = Agu for all v,v1,v2 €V =X,g€ G, A€ F.



2. Linear Representations
G a finite group. F a field, usually C.

(2.1) Definition. Let V be a finite-dimensional vector space over F'. A (linear) repre-
sentation of G on V is a homomorphism p = py : G — GL(V).

We write pg for pyv(g). So for each g € G, py € GL(V) and pg, g, = pg1 Ly -
The dimension or degree of p is dimp V.

(2.2) Recall kerp << G and G/ kerp = p(G) < GL(V). (The first isomorphism theorem.)
We say that p is faithful if ker p = 1.

Alternative (and equivalent) approach:
(2.3) G acts linearly on V if there exists a linear action G x V' — V, viz:

action: (g1g2)v = g1(g2v), lv = v, for all 1,92 € G, v €V
linearity: g(v1 + v2) = guv1 + gva, g(Av) = Agv, for all g € G,v €V, A€ F.

So if G acts linearly on V, the map G — GL(V), g — py, with pg : v — gv, is a represen-
tation of V. And conversely, given a representation G — GL(V'), we have a linear action of

GonVviag-v=p(g)v, forallveV, geq.

(2.4) In (2.3) we also say that V is a G-space or a G-module. In fact, if we define the
group algebra FG = { deG Qgg:ag € F} then V is actually an F'G-module.

Closely related:
(2.5) R is a matrix representation of G of degree n if R is a homomorphism G — G L, (F).

Given a linear representation p : G — GL(V) with dimp V' = n, fix basis B; get a matrix
representation G — GLy(F), g — [p(9)]5-

Conversely, given matrix representation R : G — GL,(F), we get a linear representation
p:G— GL(V), g pg, via pg(v) = Ry(v).

(2.6) Example. Given any group G, take V = F (the 1-dimensional space) and p : G —
GL(V), g — (id : F — F). This is known as the trivial/principal representation. So
degp = 1.

(2.7) Example. G =Cy = (z : 2 = 1).
Let n =2 and F = C. Then R: x +— X (some matrix X) will determine all 27 — X7. We

need X% = I. We can take X diagonal with diagonal entries € {41, +i} (16 choices). Or we
can take X not diagonal, then it will be isomorphic to some diagonal matrix, by (1.4).

(2.8) Definition. Fix G,F. Let V,V’ be F-spaces and p : G — v 2y

GL(V), p' : G — GL(V') be representations of G. The linear map o 1o

¢:V — V' is a G-homomorphism if Vi — V!
Py

(*) oplg) =p'(9)¢ for all g € G.

the square commutes



We say ¢ intertwines p, p'.

We write Homg (V, V') for the F-space of all of these.

We say that ¢ is a G-isomorphism if also ¢ is bijective; if such a ¢ exists we say that p, p’ are
isomorphic. If ¢ is a G-isomorphism, we write (x) as p’ = ¢pd~! (meaning p'(g9) = ¢p(g9)d !
for all g € G).

(2.9) The relation of being isomorphic is an equivalence relation on the set of all linear
representations of G (over F).

Remark. The basic problem of representation theory is to classify all representations of
a given group G up to isomorphisms. Good theory exists for finite groups over C, and for
compact topological groups.

(2.10) If p, p' are isomorphic representations, they have the same dimension. Converse is
false: in C4 there are four non-isomorphic 1-dimensional representations. If w = e>™/4 then
we have pj(w’) =w? (0 < i < 3).

P
(2.11) Given G,V over F of dimension n and p : G — GL(V). Fix V.=V

a basis B for V'; we get a linear isomorphism ¢ : V. — F" v — [v]5. ¢4 1o
Get a representation p’ : G — GL(F™) isomorphic to p. o 7 o
(2.12) In terms of matrix representations, R : G — GL,(F), R’ : G — GL,(F) are G-
isomorphic if there exists a (non-singular) matrix X € GL,(F) with R'(g) = XR(g)X !

(for all g € G).

In terms of G-actions, the actions of G on V, V' are G-isomorphic if there is an isomorphism

¢V — V' such that g ¢(v) = ¢ (gv) for all g € G,v € V.
~—~— ~—
in V/ inV

Subrepresentations

(2.13) Let p: G — GL(V) be a representation of G. Say that W < V is a G-subspace if
it’s a subspace and is p(G)-invariant, i.e. p,(W) C W for all g € G. E.g., {0} and V.

Say p is irreducible, or simple, if there is no proper G-subspace.

(2.14) Example. Any 1-dimensional representation of G is irreducible. (But not conversely:
e.g. D¢ has a 2-dimensional C-irreducible representation.)

(2.15) In definition (2.13) if W is a G-subspace then the corresponding map G — GL(W),
g — p(g)|lw is a representation of G, a subrepresentation of p.

(2.16) Lemma. p : G — GL(V) a representation. If W is a G-subspace of V and if

B = {v1,...,v,} is a basis of V containing the basis {v1,...,v,,} of W, then the matrix of
p(g) with respect to B is (with the top-left * being m x m)

Xk
(0 *) (for each g € G)



(2.17) Examples

(1)

(iil)

(2.10) revisited. The irreducible representations of Cy = (z : 2* = 1) are all 1-
dimensional, and four of these are z +— i, xt — —1, z +— —i, x +— 1.

(The two x — =i are faithful, since they have trivial kernel.)

In general, C,,, = (x : ™ = 1) has precisely m irreducible complex representations, all

of degree 1. Put w = €>™*/™ € p,,, and define py by pi, : @7 +— wi® 0<jk<m—1).

It turns out that all irreducible complex representations of a finite abelian group are
1-dimensional: (1.4*) or see (4.4) below.

G = Dg = (z,y : 2 = y?> = 1,yzy~! = 27 1), the smallest non-abelian finite group.
G = S3 (generated by a 3-cycle and a 2-cycle).

G has the following irreducible complex representations:

2of degreel: pi:z—1l,y—1
prix—=1liy— —1

w 0 0 1 i
1 of degree 2 : pg:zr—><0 w_l),y»—><1 O>’Wherewe2 /3€H3
This follows easily later on. For now, by brute force. ..

Define wg =1+ + 22, vy = UgY,
ur =1 +w?r +we, v =uy,
us =1+ we +w?a?, vy = Uy.

Check easily ru; = 2 +w?r? + w = wuy, and in general zu; = wiu; (0 <i < 2). (Le., in
the action of z, u; is an eigenvector, of eigenvalue w”.) So (u;), (v;) are C(z)-modules.

Also:  yup = vg, Yvy = ug,
Yyuy = vz, Yvp = u2,
Yuz = V1, Yvz = Uj.

So (ug, vo), (u1,va), (ug,v1) are C(y)-modules,
and hence are all CG-submodules.

Note, Us = (u1,v2), Uy = {uz2,v1) are irreducible and (ug,vo) has Uy = (ug + vp) and
Us = (up — vp) as CG-submodules.

Moreover, CDg = Uy ® Us ® Us @ Uy.
~—_———

S T N
trivial non-trivial isomorphic via w1 — v1, v2 — U2
G = Dg = (z,y : * = y?> = 1,yzy~! = 271), the rotations/reflections of a square.

G < Sy. See (1.8) with m = 4.
G has the following irreducible complex representations:

4of degree 1: po: x+—1, y— 1 (trivial)
pr: x—1, y— -1
p2: x——1, y—1
p3: x— —1, y— —1

1 of degree 2 : py:x <(Z) _Ol> , Y <(1) (1)) (up to isomorphism)



By considering the effect of y on eigenvectors of x, we’ll show that any irreducible
representation of G is isomorphic to one of the p;. This is easy to do later. Here, let V
be some irreducible G-space.

Under the action of x, we have
Ve=VieVaeV,eV,;
where Vi = {v e V : 2v = Av}.

1

For the y-action: if zv = v then yv € Vi, since z(yv) = yz~'v = yv; similarly if

v = —v then yv € V_1, since x(yv) = ya~lv = —yv.

So, if V' is irreducible and V; # 0 or V_q1 # 0, then V is 1-dimensional (so one of the

Taking v € Vi, we have xv = v, and yv is either v or —wv.

Taking v € V_1, we have v = —v, and yv is either v or —wv. } So, four cases

Final case: V=V, & V_,.

1

Let v € V;, i.e. zv = dv. Then yv € V_;, since x(yv) = yz~'v = —iyv, and vice versa.

Clearly (v,yv) is G-invariant, so V = (v,yv) as V is irreducible. Taking basis {v,yv}
we have z,y acting as in p4 (with respect to this basis).

See James & Liebeck, p. 94, and also Example Sheet 1.

(2.18) Definition. We say that p: G — GL(V) is decomposable if there are G-invariant
subspaces U, W with V =U @& W. Say p is a direct sum py @ pw. If no such exists, we say
p is indecomposable.

(U, W must have G-actions on them, not just ordinary vector subspaces.)

(2.19) Lemma. Suppose p : G — GL(V) is a decomposition with G-invariant decomposition
V=U@W. If Bis a basis {u1,...,ug,wi,...,we} consisting of a basis By of U and By of
W, then with respect to B,

_[* 0] _ [leu(9)ls, 0
p(9)s = [0 *] = [ "0 low (9)].

(2.20) Definition. p: G — GL(V), p' : G — GL(V’). The direct sum of p, p/ is
p&p G = GLVaV'), (p&p)(g)(v+v2)=plg)vr+p'(g)v2
— a block diagonal action.
For matrix representations, R : G — GLy(F), R’ : G — GL,/(F), define

R(g) 0O

/.

}, Vg € G.



3. Complete Reducibility and Maschke’s Theorem

G, F as usual.

(3.1) Definition. The representation p : G — GL(V) is completely reducible, or
semisimple, if it is a direct sum of irreducible representations.

Evidently, simple = completely reducible, but not conversely.

(3.2) Examples. Not all representations are completely reducible.

(i) G= { <(1) 711) in € Z}, V = C?, natural action (gv is matrix multiplication).
V' is not completely reducible. (Note G not finite.)

(i) G=Cp, F=Fp. 27 — (; (1)) (0 < j < p—1) defines a representation G — GLa(F).

V = (v1,v2) where x/v; = v1, /vy = ju1 + v2. Define W = (v1).
Then W is an FCp-module but there is no X s.t. V=W & X. (Note F # R,C.)

(3.3) Theorem (Complete Reducibility Theorem). Every finite-dimensional represen-
tation of a finite group over a field of characteristic 0 is completely reducible.

Enough to prove the following.

(3.4) Theorem (Maschke’s Theorem). G finite, p : G — GL(V) with V an F-space,
char FF = 0. If W is a G-subspace of V then there exists a G-subspace U of V such
that V. =W @ U (a direct sum of G-subspaces).

Note. The proof below also works for (char F, |G|) = 1.

Proof 1. Let W’ be any vector space complement of W in V, ie. V = W @& W’'. Let
q: V — W be the projection of V onto W along W', i.e. if v = w + w’ then ¢(v) = w.

1

Define qg:v— —
G|

Z p(9)a(p(g~ " )v), the ‘average of q over G’.
geG

Drop the ps —i.e. write p(g9)q(p(g~1)v) as gq(g~1v).
Claim (i). g: V > W.
Forv eV, q(g7tv) € W and gW C W (as W is g-invariant).

Claim (ii). g(w) = w for w € W.
gw) = — > galg w) = L3 glg7w) = = > w=w.
Gl =2 ~ G| G|

So (i), (i) = ¢ projects V onto W.



Claim (iii). If h € G then hg(v) = g(hv) (for v € V).

|G| qu 711} |G| Z hgq(g 711} |G| Z hg)q lhv)

geG geG geG
= @ Z g'a(g"" () = q(hw).
g'eG

Claim (iv). kerg is G-invariant.
If v € kerg, h € G, then hg(v) = 0 =q(hv), so hv € kerg.
Then V =imgq ® kerqg = W @ kerq is a G-subspace decomposition. O
Remark. Complements are not necessarily unique.

The second proof uses inner products, hence we need to take F' = C (or R), and it can be
generalised to compact groups (chapter 15).

Recall for V' a C-space, (,) is a C-inner product if
(a) (w,v) = (v, w) for all v, w
(b) linear in LHS
(¢) (v,v) >0ifv#0
Additionally, (,) is G-invariant if
(d) (gv,gw) = (v,w) for allv,w € V,g € G

Note that if W is a G-subspace of V (with G-invariant inner product) then W+ is also
G-invariant and V = W @ W+,

Proof. Want: for all v € W+, for all g € G, we have gv € W+.
Now, v € Wt & (v,w) = 0 for all w € W. Thus (gv,gw) =0 for all g € G,w € W.
Hence (gv,w’) = 0 for all w’ € W since we can take w = g~ 'w’ by G-invariance of W.
Hence gv € W+ since g was arbitrary. O

Hence if there is a G-invariant inner product on any complex G-space, we get:

(3.4") (Weyl’s Unitary Trick). Let p be a complex representation of the finite group G on

the C-space V. There is a G-invariant inner product on V' (whence p(G) is conjugate
to a subgroup of U(V), the unitary group on V, i.e. p(g)* = p(g7')).

Proof. There is an inner product on V: take basis e1,...,en, and define (e;,e;) = d;4,
extended sesquilinearly. Now define (v, w) | G| Z gu, gw).
geG

Claim. (,) is sesquilinear, positive definite, and G-invariant.

IfhEG,(hv,hw*|G|Z (gh)v w |G|nggw w). O
e



(3.5) (The (left) regular representation of G.) Define the group algebra of G to be the
F-space FG = span{e, : g € G}.

There is a G-linear action: for h € G, define h(zg ageq) = > g ageng( =D, an-1geq).
Preg is the corresponding representation — the regular representation of G.

This is faithful of dimension |G].

It turns out that every irreducible representation of G is a subrepresentation of pycg.

(3.6) Proposition. Let p be an irreducible representation of the finite group G over a field
of characteristic 0. Then p is isomorphic to a subrepresentation of preg.

Proof. Take p: G — GL(V), irreducible, and let 0 v € V.

Let 0: FG =V, > ageq > aggu (a G-homomorphism).

really p(g)

Now, V is irreducible and so imf = V (since im# is a G-subspace). Also kerd is a
G-subspace of F'G. Let W be a G-complement of ker§ in FG (using (3.4)), so that
W < F@G is a G-subspace and F'G = ker§ & W.

Hence W =2 FG/kerf = imf =V. O

G-isom.
More generally,

(3.7) Definition. Let F be a field, and let G act on a set X. Let FX = span{e, : x € X},
with G-action g (ZzGX azem) = az€gy-

So we have a G-space FX. The representation G — GL(V) with V = FX is the correspond-
ing permutation representation.



4. Schur’s Lemma

(4.1) Theorem (‘Schur’s Lemma’). (a) Assume V,W are irreducible G-spaces (over a
field F). Then any G-homomorphism 6 : V' — W is either 0 or an isomorphism.

(b) Assume F' is algebraically closed and let V' be an irreducible G-space. Then any
G-endomorphism 6 : V' — V is a scalar multiple of the identity map idy (a homothety).

Proof. (a) Let 6 : V.— W be a G-homomorphism. Then ker § is a G-subspace of V, and
since V is irreducible, either kerd = 0 or kerf = V. And im# is a G-subspace of W,
so as W is irreducible, im 6 is either 0 or W. Hence either § = 0 or 6 is injective and
surjective, so 6 is an isomorphism.

(b) Since F is algebraically closed, § has an eigenvalue A. Then 6 — Aid is a singular
G-endomorphism on V| so must be 0, so § = Aid. O

Recall from (2.8) the F-space Homg(V,W) of all G-homomorphisms V. — W. Write
Endg (V) for the endomorphism algebra Home(V, V).

(4.2) Corollary. If V,W are irreducible complex G-spaces, then

1 if VW are G-isomorphic

dim¢ HOmG(Vv W)= { 0 otherwise

Proof. If V,WW are not isomorphic then the only G-homomorphism V' — W is 0 by (4.1).
Assume V =g W and 604,02 € Homg(V, W), both # 0. Then 6, is invertible by (4.1)
and 9;191 € Homg(V, V). So 9;191 = \id for some X\ € C. Then 07 = \0s. O
(4.3) Corollary. If G has a faithful complex irreducible representation then Z(G) is cyclic.

Remark. The converse is false. (See examples sheet 1, question 11.)

Proof. Let p: G — GL(V) be a faithful irreducible complex representation. Let z € Z(G),
so zg = gz for all g € G.

Consider the map ¢, : v — zv for v € V. This is a G-endomorphism on V', hence is
multiplication by a scalar p., say (by Schur).

Then the map Z(G) — C*, z — u,, is a representation of Z and is faithful (since p
is). Thus Z(G) is isomorphic to a finite subgroup of C*, hence is cyclic. O

Applications to abelian groups

(4.4) Corollary. The irreducible complex representations of a finite abelian group G are all
1-dimensional.

Proof. Either (1.4*) to invoke simultaneous diagonalisation: if v is an eigenvector for each
g € G and if V is irreducible, then V' = (v).

Or let V be an irreducible complex representation. For g € G, the map 0, : V — V,
v — gv, is a G-endomorphism of V' and, as V' is irreducible, 8, = )\4id for some A, € C.

Thus gv = Agv for any g. Thus, as V is irreducible, V' = (v) is 1-dimensional. O

Remark. This fails on R. E.g., C3 has two irreducible real representations: one of dimension
1, one of dimension 2. (See sheet 1, question 12.)

10



Recall that any finite abelian group G is isomorphic to a product of cyclic groups, e.g.
Cs = Cy x C3. In fact, it can be written as a product of Cpa for various primes p and o > 1,
and the factors are uniquely determined up to ordering.

(4.5) Proposition. The finite abelian group G = Cy,, X...xCy,, has precisely |G| irreducible
complex representations, as described below.

Proof. Write G = (z1) x ... x (x,) where o(z;) = n;. Suppose p is irreducible — so by (4.4)
it’s 1-dimensional, p: G — C*.

Let p(1,...,1,2;,1,...,1) = A; € C*. Then )\?j =1,50 \; is an ng-h root of unity.

Now the values (A1, ..., Ar) determine p, as p(z7', ..., zdr) = X', N

Thus p < (M\1,...,\) with )\;-” =1 for all j. (And have n;...n, such r-tuples, each
giving a 1-dimensional representation.

Examples. (a) G = Cy = (). |1 =z 2* 4P
m|1 1 1 1
;|1 i -1
ps |1 -1 1 -1
pall —2 =1 4
(b) G = VZ; = <$1> X <$2> = CQ X CQ. 1 T xTo T1T2
;m |1 1 1 1
;|1 1 -1 -1
;31 -1 1 -1
pa|1 -1 -1 1

Warning. There is no ‘natural’ 1-1 correspondence between the elements of G and the

representations of G. If you choose an isomorphism G = C; x ... x C,., then you can identify

the two sets, but it depends on the choice of isomorphism.

** Non-examinable section **

Application to isotypical decompositions

(4.6) Proposition. Let V be a G-space over C, and assume V =U1®...¢U, =W ... D
Wy, with all the Uj;, Wy, irreducible G-spaces. Let X be a fixed irreducible G-space.
Let U be the sum of all the U; isomorphic to X, and W be the sum of all the W;

isomorphic to X.

Then U = W, and is known as the isotypical component of V' corresponding to X.
Hence:

# U; isomorphic to X = # W}, isomorphic to X = (V : X)) = multiplicity of X in V.

Proof (sketch). Look at 05 : U; l) V =5 Wy, with Wy, 2 X, where i; is inclusion and
Ty, is projection. If U; = X then U; C W, — all the projections to the other W, are 0.

‘Then fiddle around with dimensions, then done.’ O
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(4.7) Proposition. (V : X) = dim¢c Homg(V, X) for X irreducible, V' any G-space.

Proof. Prove Homg(W; @ Wa, X) = Homg(Wi, X) & Homg(Wa, X), then apply Schur.
(Or see James & Liebeck 11.6.)

(4.8) Proposition. dim¢ Homg(CG, X) = dime X.

Proof. Let d = dim X, and take a basis {e1,...,eq} of X. Define ¢, : CG — X, g — ge;
(1 < i< d). Then ¢; € Homg(CG, X) and {é1,...,¢4} is a basis. (See James &
Liebeck 11.8.)

Remark. If Vi,...,V, are all the distinct complex irreducible G-spaces then CG = n, V) &
...®n,V, where n; = dim V;. Then |G| = n?+...+n2. (See (5.9), or James & Liebeck 11.2.)

Recall (2.17). G = Dg, CG =U; & U3 ® U3 & Uy, dim Hom(CG, Us) = 2. (Challenge: find a
basis for it.) Uy and U, occur with multiplicity 1, and Us occurs with multiplicity 2.

** End of non-examinable section **
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5. Character Theory

We want to attach invariants to a representation p of a finite group G on V. Matrix coefficients
of p(g) are basis dependent, so not true invariants.

Take F = C, and G finite. p = py : G — GL(V), a representation of G.

(5.1) Definition. The character X, = Xy = X is defined by X(g) = trp(g) (= tr R(g),
where R(g) is any matrix representation of p(g) with respect to any basis). The degree of
Xy is dim V.

Thus X is a function G — C. X is linear if dim V' = 1, in which case X is a homomorphism
G — C*.

e X is irreducible if p is.
e X is faithful if p is.
e X is trivial (principal) if p is the trivial representation: write X = 1¢.

X is a complete invariant in the sense that it determines p up to isomorphism — see (5.7).

(5.2) First properties.
(i) Xy (1) =dimV.

(ii) Xy is a class function, viz it is conjugation invariant, i.e. Xy (hgh™!) = Xy (g)
for all g,h € G.
Thus Xy is constant on the conjugacy classes (ccls) of G.

(iit) Xv(g~") = Xv(g)-
(iv) For two representations, V, W, have Xygw = Xy + Xw.

Proof. (i) tr (1) =n.
(i) X(hgh™') =tr (RyRyRy—1) = tr (Ry) = X(g)-
(iii) g € G has finite order, so by (1.4) can assume p(g) is represented by a diagonal ma-

A At
trix ( ) Thus X(g) = Y. A\i. Now g~ ! is represented by ( ! 1).
An .

n

and since [\;| = 1 for all i, X(g71) = A7 =N =3 N = X(9).
(iv) Suppose V. =V, @ Vs, p; : G — GL(V;), p: G — GL(V). Take basis B = By U Bs
of V', containing bases B; of V;.

With respect to B, p(g) has matrix

[o1(9)]s, O }
0 [p29)]B.)
So X(g) = tr (this) = tr p1(g) + tr p2(g) = X1(g) + X2(g). O

Remark. We see later that X1, Xo characters of G = X1 X» also a character of G. This uses
tensor products — see (9.6).

(5.3) Lemma. Let p: G — GL(V) be a complex representation affording (“which can
take”) the character X. Then |X(g)| < X(1), with equality iff p(g) = Aid for some
A € C, a root of unity. Moreover, X(g) = X(1) < g € kerp.

A
Proof. Fix g. W.r.t. a basis of V of eigenvectors of p(g), the matrix of p(g) is ( )
An

13



Hence, [X(g)] = | D> M| < X0 |Al = D1 = dimV = X(1), with equality iff all \; are
equal to A, say (using Cauchy-Schwarz). And if X(g) = X(1) then p(g) = Aid.

Therefore, X(g) = AX(1), and so A =1 and g € ker p. O

(5.4) Lemma. If X is a complex irreducible character of G, then so is X, and so is eX for
any linear character ¢ of G.

Proof. If R: G — GL,(C) is a complex (matrix) representation then so is R : G — G L, (C),
9= R(g)-

Similarly for R’ : g — e(g)R(g). Check the details. O

(5.5) Definition. C(G) = {f : G — C : f(hgh™!) = f(g) Vh,g € G}, the C-space of class
functions. (Where f1 + fo: g = fi(g) + f2(9), Af : g— Af(9).)

List conjugacy classes as C1(= {1}), Ca, ..., Cx. Choose ¢g1(= 1), g, - .., gr as representatives
of the classes.

Note also that dim¢ C(G) = k, as the characteristic functions §; of the conjugacy classes form
a basis, where §;(g) =1 if g € C;, and 0 otherwise.

Define Hermitian inner product on C(G) by

k k
1 — 1 — 1
L) =15 2 Fa)f'(9) = = D1 £gi) f(9:) = ) 7 Fl9:)f (g5
using orbit-stabiliser: |C(x)| = |G : Cg(x)|, where Cg(x) is the centraliser of z in G.
o
For characters, (X, X') = Z 7X(gj_1)x’(gj) is a real symmetric form.
2 Cala,)]

Main result follows.

(5.6) Big Theorem (Completeness of characters). The C-irreducible characters of G
form an orthonormal basis of the space of class functions of G. Moreover,

(a) If p: G — GL(V), p' : G — GL(V') are irreducible representations of G affording
characters X, X’ then

1 if p, p’ are isomorphic
AN 9
XX = { 0 otherwise

(b) Each class function of G can be expressed as a linear combinations of irreducible
characters of G.

Proof. In chapter 6.

(5.7) Corollary. Complex representations of finite groups are characterised by their char-
acters.

Proof. Have p: G — GL(V) affording X. Complete reducibility (3.3) says p = m1p1 @...®
mypk, where p; is irreducible and m; > 0. Then m; = (X, X;) where X, is afforded
by pj, since X = m1X1 + ... + mpXg and (X, X;) = (maXy + ...+ mpXg, Xj) = m;, by
(5.6)(a). O

14



(5.8) Corollary (Irreducibility criterion). If p is a complex representation of G affording
X then p irreducible < (X, X) = 1.

Proof. (=) Orthonormality.

(<) Assume (X, X) = 1. (3.3) says X = > m;X;, for X; irreducible, m; > 0. Then
> m? =1, so X = X; for some j. Therefore X is irreducible.

(5.9) Theorem. If the irreducible complex representations of G have dimensions nq, ..., ng,
then |G| =, n?.

(Recall end of chapter 4.)

Proof. Recall from (3.5), preg : G — GL(CG), the regular representation of G, of dimension
|G|. Let meg be its character.

Claim. mes(1) = |G| and meg(h) = 0 if h # 1.

Proof. Easy. Let G = {g1,...,9n} and take h € G, h # 1. For 1 < i < n, hg; = gj,
some j # i, so i™® row of [peg(h)]s has O0s in every place, except column j — in
particular, the (i,7)" entry is 0 for all i. Hence myeq(h) = tr [preg(h)]s = 0.

By claim, myeg = Y njX; with n; = X;(1) :
1 —_— 1
nj = (Mreg, Xj) = @ Z Treg(9)X;(9) = @ |G X;(1) = X;(1)

geG O

(5.10) Corollary. The number of irreducible characters of G (up to equivalence) equals k,
the number of conjugacy classes.

(5.11) Corollary. Elements g1,g2 € G are conjugate iff X(g1) = X(gz2) for all irreducible
characters of G.

Proof. (=) Characters are class functions.
(<) Let 6 be the characteristic function of the class of g;. Then 4 is a class function, so
can be written as a linear combination of the irreducible characters of G, by (5.6)(b).
Hence 6(g2) = d(g1) = 1. So g2 € Ca(g1)- -
Recall from (5.5) the inner product on C(G) and the real symmetric form (,) for characters.
(5.12) Definition. G finite, F = C. The character table of G is the k x k matrix
X = [Xi(g;)] where X1(= 1), Xa, ..., X; are the irreducible characters of G, and C;(= {1}),

Ca, ..., C;, are the conjugacy classes, with g; € C;.

Le., the (i,7)" entry of X is X;(g;).

Examples. Cy = (z: 2% = 1) Cy={(z:23=1)
1 = | 1 z a2
Xl 1 1 Xl 1 1 1 . 27Ti/3
o |1 -1 o ll w w? where w = e € 3.
X3 |1 w? w

15



G =Dg={a,b:a®>=0>=1,bab~! =a1) = G;.

In (2.17) we found a complete set of non-isomorphic irreducible CG-modules: Uy, Uz, Us.
Let Xi = XU” (1 < ) < 3)

| 1 {a,a®} {b,ab,a®b} <« g, Orthogonality:
X4 1 1 1
Xo 1 1 -1 I1x2 (=1)(1)
X 5 4 0 G + 5 = 0 (rows 2 & 3)
124124026
6 3 2 — 1Calg))| 22 (=1)°
7 — =1 3
1 2 3 < 1C(g;)l 6 3 (row 3)

16



6. Proofs and Orthogonality
We want to prove (5.6), the Big Theorem. We’ll do this in two ways.

Proof 1 of (5.6)(a). Fix bases of V and V’. Write R(g), R'(g) for the matrices of p(g),
p'(g) with respect to these, respectively.

1
71 /o —1
|G|ZX e Z R'(g7 )i R(9)
g€q geqG
1<i<n’
1<j<n

~ 1
Let ¢ : V — V' be linear, and define ¢ : V. — V' v — €] Z 0 (g7 Hop(g)(v).
geG

Then this ‘average’ qz is a G-homomorphism. For if h € G,

o/ (h")ép(h |G|Zp (gh)"") o (p(gh Z (9 " ep(g))(v) = 6(v).

geG g 'eG

Assume first that p, p’ are not isomorphic. Schur’s Lemma says q~5 = 0 for any linear
V=V,

Let ¢ = €48 having matrix E,g (with respect to our basis), namely 0 everywhere except
1 in the (a, )™ place.

Then E,5 = |G| > (R(g™"EasR(9)),, = 0.
geG

Thus — > R'(9™")iaR(g)s; =0 for all i,.
IGI =

With a = Z R'(g7YuR = 0. Sum over ¢, j and conclude (X', X) = 0.

=7
1G] 2

Now assume that p, p" are isomorphic, so X = X'. Take V. =V', p=p'. If ¢p: V =V
is linear, then ¢ € Homg(V,V).

1
Now tré = tr ¢, as tr ¢ = |G|Ztr g)):@Ztr(b:tr(b.
~ 1
By Schur, ¢ = Aid for some A € C (depending on ¢). Now A = —tr ¢.
n
Let ¢ = €4, s0 tr ¢ = d,3. Hence g,5 = amd |G| Zp Eaﬁp g)-

1 1
In terms of matrices, take the (i, 7)™ entry: @ Z R(g™ViaR(9)p; = Eéaﬁéij’
g

) . 1 _ 1
and put a =i, 8 = j to get @ ;R(g DiuR(9)j; = 55”,
Finally sum over 4, j: (X,X) = 1. O
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Before proving (b), let’s prove column orthogonality, assuming (5.10).

(6.1) Theorem (column orthogonality). ZX Xi(ge) = 651 |Calgj)l-

This has an easy corollary:

k
(6.2) Corollary. |G| = ZX?(I)

Proof of (6.1). d;; = (X;, X;) Z |CG (90)X;(ge)-

Consider the character table X = (X;(g;)).

_ |Cc(g1)]
Then X D' X? = I.«, where D = ( )
|Ca(gk)|

As X is a square matrix, it follows that D-'X" is the inverse of X. So X X = D. O

Proof of (5.6)(b). List all the irreducible characters X1,...,X; of G. It’s enough to show
that the orthogonal complement of span{Xy,...,X;} in C(G) is 0.

To see this, assume f € C(G) with (f,X;) = 0 for all irreducible X;.

Let p : G — GL(V) be irreducible affording X € {Xi,...,X¢}. Then (f, X) = 0.

Consider @ Z f(g : V' — V. This is a G-homomorphism, so as p is irreducible

it must be Aid for some A € C (by Schur).

Now,n)\:trézmp |G|Zf 9) =0=(f,X).

So A = 0. Hence > f(g)p(g) =0, the zero endomorphism on V', for all representations
p. Take p = preg, Where preg(g) : €1 — €4 (g € G), the regular representation.

So Zg f(9)preg(g) s €1 Zg f(g)eg. It follows that > f(g)ey = 0.
Therefore f(g) =0 for all g € G. And so f = 0. O
Various important corollaries follow from this:

5.10) # irreducibles of G = # conjugacy classes

6.1) column orthogonality

(
(
(6.2) |G| = S X2(1) = 38 n?
(

5.11) irreducible X is constant on conjugacy classes — i.e., g1 ~g g2 = X(g1) = X(g2)-

e g,g9 ! are G-conjugate < X(g) € R for all irreducible X — as X(g~ 1) = X(g).

18



Example. 6 3 2 —|Ca(g)l
| 1 a b <+ g
X1 1 1 1
Xo 1 1 -1
X3 2 —1 0 < coming from operations on equilateral triangle

3
Column orthogonality: Z Xi(g:-)Xi(gs)-
i=1

r=1,s=2: 11+11+2(-1)
r=1,s=3: 1.1+1(=1)+2.0
r=2s=2: 11+11+(=1)(-1)

0 r#s
0 r#s
- 3 r = s, weight by |Ca(gr)]

** Non-examinable section **
Proof 2 of (5.6)(a). (Uses starred material at the end of chapter 4.)
X irreducible G-space, V any G-space. V = @.", U;, with U; irreducible.

Then the number of U; isomorphic to X is independent of the decomposition. We
wrote (V' : X) for this number, and in (4.7) we saw (V : X) = dimc Homg(V, X) ().

Let p : G — GL(U) have character X Write U = {u € U : p(g)u = u¥ g € G}, the
G-invariants of U.

1
Consider the map 7 : U — U, u — @ Zp(g)u.
g

This is a projection onto U® (because it’s a G-homomorphism, and when restricted
to UY it acts as the identity there). Verify dimU% = trm = ‘—é,‘ > Xu(g) (+x) (by
decomposing U and looking at bases).

Now choose U = Home(V, V') with V, V' being G-spaces. G acts on U via ¢.0(v) =
pv(9)(8pv (g7 )v) for 6 € U.

1
But Home(V, V') = (Home(V, V")), so by (+x), dime Homg(V, V') = i > Xu(g).
g

Finally, show Xy (g) = Xy (97 )Xv (g) — see section on tensor products in chapter 9.
The orthogonality of the irreducible characters now follows from (x). O

** End of non-examinable section **
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7. Permutation Representations
Preview was given in (3.7). Recall:

e G finite, acting on finite set X = {z1,...,2,}.
e CX = C-space, basis {e,, ..., €, } of dimension | X|. CX = {ZJ ajes, s a; € C}.

e corresponding permutation representation, px : G — GL(CX), g — p(g), where p(g) :
€x; F* €gq;, extended linearly. So px(g) 1 > cx @u€s = D cx GzCga-

e px is the permutation representation corresponding to the action of G on X.

e matrices representing px(g) with respect to the basis {e,},cx are permutation ma-
trices: 0 everywhere except one 1 in each row and column, and (p(g));; = 1 precisely
when gz; = ;.

(7.1) Permutation character 7x is mx(g) = |fixx(9)| = |[{z € X : gz = z}|.

(7.2) mx always contains 1g. For: span(ey, + ...+ eg,) is a trivial G-subspace of CX with
G-invariant complement span(} azez : Y a, = 0).

(7.3) ‘Burnside’s Lemma’ (Cauchy, Frobenius). (rx,1) = # orbits of G on X.

Proof. If X = X;U...UXy, a disjoint union of orbits, then 7x = 7x, + ...+ 7x, with TX;
the permutation character of G on X;. So to prove the claim, it’s enough to show that
if G is transitive on X then (rx,1) = 1.

So, assume G is transitive on X. Then

1
(rx,1) = @ZWX(Q)

geG

1
= @H(g,x) EGXX:gx:xH

1

= & Z |Gz| (G = stabiliser of x)
| |z€X
1

= = X[G:| =

1
—G =1
G|

G| 0

(7.4) Lemma. Let G act on sets X7, Xo. Then G acts on X7 x X5 via g(x1, x2) = (921, gz2).
The character mx, xx, = Tx,Tx, and so (7x,,7x,) = # orbits of G on X; x Xs.

Proof. (mx,,7x,) = (7x,7Tx,,1) = (Tx, xx,, 1) = # orbits of G on X; x X5 (by (7.3)). O

(7.5) Let G act on X, |X| > 2. Then G is 2-transitive on X if G has just two orbits on
X x X, namely {(z,x) : z € X} and {(x1,22) : 2; € X, 21 # x2}.

(7.6) Lemma. Let G act on X, |X| > 2. Then mx = 1 4+ X with X irreducible & G is
2-transitive on X.

Proof. mx = mil+maXa+...+mgX, with 1,Xs, ..., X, distinct irreducibles and m; € Zx.

Then (rx,7x) = Zlizl m?2. Hence G is 2-transitive on X iff £=2, m; =me=1. O

(7.7) S, acting on X,, (see 1.6) is 2-transitive. Hence mx, = 1+ X with X irreducible of
degree n — 1. Similarly for A, (n > 3)
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(7.8) Example. G = S,.

Conjugacy classes correspond to different cycle types.

1 3 8 6 6 <— sizes
| 1 (12)(34) (123) (1234) (12) < ccl reps
trivial =& X4 1 1 1 1 1 two linear characters
sign — Xo 1 1 1 -1 -1 } since S4/8) = C2
Tx,— 1= Xz| 3 -1 0 -1 1
X3 X Xo = X4 3 -1 0 1 —1 < product of the two above
X5 d x Y z w

Know: 24=1+4+149+9+d*> = d=2.

Column orthogonality: 1+1-3-342x =0 = z=2
141404042y =0 = y=-1
1-1-34+3422 =0 = z=0
1-143-342w =0 = w=0

Or: Xpeg = X1+ Xo +3X3 +3X4 +2X5 = X5 = 2 (Xpeg — X1 — X2 — 3X3 — 3X4).

Or: can obtain X5 by observing S;/Vy & S35 and ‘lifting’ characters — see chapter 8.

(7.9) Example. G = S5.

1 15 20 24 10 20 30 —|Cj]
1 (12)(34) (123) (12345) (12) (123)(45) (1234) <,
trivial = X1 1 1 1 1 1 1 1
sign =&  Xo 1 1 1 1 -1 -1 -1
Tx,—1— X3 4 0 1 -1 2 -1 0
X3XXo — X4 4 0 1 -1 -2 1 0
X5 ) 1 -1 0 -1 -1 1
X5 X Xo = Xg ) 1 -1 0 1 1 -1
X;| 6 -2 0 1 0 0 0

There are various methods to get X5, X¢ of degree 5.

One way is to note that if X = Syl;(G) then | X| = 6 and one checks that (Xx,Xx) = 2.
Therefore mx — 1 is irreducible.

For X7, first > d? = 120 gives deg X7 = 6, and orthogonality for the remaining entries.
Or: let S5 act on the set of (g) unordered pairs of elements of {1,2,3,4,5}.

Ty 10 2 1 0 4 10
)

<X(5)51>:1 éX(g):lJngﬁL’l/)

¥ has degree 5 (and is actually Xg in the table).

See chapter 10 for the method of induced characters, and chapter 9 for symmetric and
alternating powers.
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(7.10) Alternating groups.

Let g € A,. Then |Cs,(g9)] = |Sn:Cs,(9)]
Ul 1 A, index 2 in S,
ICa,(9)] = [An:Ca,(9)]

but not necessarily equal: e.g., if o = (123), then Ca, (o) = {0}, but Cs, (0) = {o,071}.

We know |S,, : Ap| = 2, and in fact:

(7.11) If g € A, then Cg, (g) = Ca, (g) precisely when g commutes with some odd permuta-
tion; otherwise it breaks up into two classes of equal size. (In the latter case, precisely
when the disjoint cycle decomposition of g is a product of odd cycles of distinct lengths.)

Proof. See James & Liebeck 12.17.

(7.12) G = Ay. Write w = €27/3,

1 3 4 4 —1¢yl
| 1 (12)(34) (123) (123)7! <y,
le— X1 | 1 1 1 1
x—1—= Xo 3 -1 0 0
X3 1 1 w w?
X4 1 1 w? w
T

S d?=12=1%432472472=7=1
Final two linear characters are found via G/G’'= G/Vy= Cj, by lifting — see chapter 8.

For A5 see Telemann chapter 11, or James & Liebeck 20.13.
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8. Normal Subgroups and Lifting Characters

(8.1) Lemma. Let N <G, let p: G/N — GL(V) be a representation of G/N. Then

p:G - G/N L5 GL(V) is a representation of G, where p(g) = p(gN) (and q is the
natural homomorphism). Moreover, p is irreducible if p is.

The corresponding characters satisfy X(g) = %(gN) for g € G, and deg X = deg X. We
say that X lifts to X.

The lifting sending X — X is a bijection between
{irreducibles of G/N} +— {irreducibles of G with N in the kernel}
Proof. (See examples sheet 1, question 4.)
Note: X(g) = tr (p(g)) = tr (p(gN)) = X(gN) Vg, and X(1) = X(N), so deg X = deg X.

Bijection. If X is a character of G/N and X is a lift to G then X(N) = x(1). Also, if
k € N then X(k) = X(kN) = X(N) = X(1). So N < ker X.

Now let X be a character of G with N < kerX. Suppose p : G — GL(V) affords X.
Define p : G/N — GL(V), gN  p(g) for g € G. This is well-defined (as N < kerX)
and p is a homomorphism, hence a representation of G /N. If X is the character of p
then X(gN) = X(g) for all g € G.

Finally, check irreducibility is preserved. O

Definition. The derived subgroup of G is G’ = {[a,b] : a,b € G), where [a,b] = aba=1b~!
is the commutator of a@ and b. (G’ is a crude measure of how abelian G is.)

(8.2) Lemma. G’ is the unique minimal normal subgroup of G such that G/G’ is abelian.
(Le., G/N abelian = G’ < N, and G/G’ is abelian.)

G has precisely ¢ = |G/G’| representations of degree 1, all with kernel containing G’
and obtained by lifting from G/G".

Proof. G’ <1 G — easy exercise.

Let N 9 G. Let g,h € G. Then g-'h~'gh € N & ghN = hgN < (gN)(hN) =
(hN)(gN). So G’ < N < G/N abelian. Since G’ < G, G/G’ is an abelian group.

By (4.5), G/G’ has exactly ¢ irreducible characters, X1, ..., X, all of degree 1. The
lifts of these to G also have degree 1 and by (8.1) these are precisely the irreducible
characters X; of G such that G’ < ker X;.

But any linear character X of G is a homomorphism X : G — C*, hence X(ghg~'h™1) =
X(g)X(R)X(g~H)X(h1) = 1.

Therefore G’ < ker X, and so Xi,..., X, are all irreducible characters of G. |
Examples. (i) Let G = S,,. Show G' = A,,. Thus G/G’ = C>.

So S, must have exactly two linear characters.
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| 1 (12)(34) (123) (123)?
| 1 1 1 1
Xo | 1 1 w w?
X3 | 1 1 w? w
Xy | 3 —1 0 0

O
Let N = {1,(12)(34),(13)(24), (14)(23)} < G. In fact, N 2V}, N<G, and G/N = Cs.
Also, G' =V, so G/G' = Cs.

(8.3) Lemma. G is not simple iff X(g) = X(1) for some irreducible character X # 1¢ and
1 # g € G. Any normal subgroup of GG is the intersection of kernels of some of the
irreducibles of G, N = ﬂ ker X;.

X irred

Proof. If X(g) = X(1) for some non-principal character X (afforded by p, say), then g € ker p
(by (5.3)). Therefore if g # 1 then 1 # ker p < G.

If 1 # N <G, take an irreducible X of G/N (X # lg/n). Lift to get an irreducible X
afforded by p of G, then N < ker p < G. Therefore X(g) = X(1) for g € N.

In fact, if 1 # N < G then N is the intersection of the kernels of the lifts of all of the

irreducibles of G/N. < is clear. For >: if g € G \ N then gN # N, so X(gN) # X(N)
for some irreducible X of G/N, and then lifting X to X we have X(g) # X(1). O
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9. Dual Spaces and Tensor Products of Representations

Recall (5.5), (5.6): C(G) = C-space of class functions of G, dim¢ C(G) = k, with basis
X1, .. .Xg, the irreducible characters of G.

e (fi+ f2)(9) = fi(g) + f2(9)
o (f1f2)(9) = f1(g)f2(9)

e Jinvolution (homomorphism of order 2) f +— f* where f*(g) = f(g~!)

e Jinner product (,)

Duality

(9.1) Lemma. Let p: G — GL(V) be a representation over F' and let V* = Homp(V, F),
the dual space of V.

Then V* is a G-space under p*(9)¢(v) = ¢(p(g7*)v), the dual representation of p.
Its character is X, (9) = X,(g™1).
Proof. P91 (g2)9) (v) = (p"(92 )(p(gf D) = é(plez )eler')v)

= ¢(p(gr92) " (v)) = (p*(9192)8)(v)

Character. Fix g € G and let eq,...,e, be a basis of V of eigenvectors of p(g), say
p(g)e; = Ajej. let e1,..., &, be the dual basis.

Then p*(g)e; = A;lsj, for (p*(9)e;) (i) = €;(plg™")e;) = sj)\;lei = )\;16]'61' for all s.
Hence X,-(g) = ZA;l =X,(g7h). O
(9.2) Definition. p: G — GL(V) is self~-dual if V = V* (as an isomorphism of G-spaces).

Over F = C, this holds iff X,(g) = X,(¢~"), and since this = X,(g), it holds iff X,(g) € R for
all g.

Example. All irreducible representations of S, are self-dual: the conjugacy classes are
determined by cycle types, so g, g~ are always S,,-conjugate. Not always true for A,: it’s
okay for As, but not for A7 — see sheet 2, question 8.

Tensor Products
V and W, F-spaces, dimV = m, dim W = n. Fix bases vy,...,v, and wy,...,w, of VW,

respectively. The tensor product space VW (or V®p W) is an mn-dimensional F-space
with basis {v; ® w; : 1 <7< m,1<j <n}. Thus:

(a) VoW = { Z AijU @yt Ajj € F}, with ‘obvious’ addition and scalar multiplication.
1<i<m
1<j<n

(b)ifv=>Y v eV, w=> Bjw; € W, definev@w = Zi,j a; 85 (v; ® wj).

Note: not all elements of V®@W are of this form. Some are combinations, e.g. v1 ®w; +v2Rws,

which cannot be further simplified.
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(9.3) Lemma. (i) ForveV, weW, A€ F, have (M) @ w = A(v @ w) =v ® (Aw)

(i) If z,21,22 € V and y,y1,y2 € W, then (z1 + 22) ® y = (1 ® y) + (v2 ® y) and
z® (Y1 +y2) = (@@y1) + (z @ y2).

Hence V.x W = V@ W, (v,w) — v ® w is bilinear.

Proof. (i) v =) av;, w =3 Bjwj, then (\) @ w =37, ;(A)Bjv; ® wj, and A(v @ w) =
A2 @iBivi @ wy, and v @ (Aw) = 37, 5 @i (ABj)vi ®@ w;.

All three are equal. (ii) is similar. O

(9.4) Lemma. If {eq,... e} is a basis of V and {f1, ..., fn} is a basis of W, then {e; ® f; :
1<i<m,1<j<n}isabasisof VaW.

Proof. Writing vy, = >, aures, we = Zj Bji f;, we have v, @ w, = Z” i Bj1(e; ® fj), hence
{e; ® f;} spans V ® W, and since there are mn of them, they are a basis. O

(9.5) Digression. (Tensor products of endomorphisms.) Iff « : V=V, §: W — W are
linear endomorphisms, define a @ : VW - V@ W, v®w — a(v) ® B(w), and extend
linearly on a basis.

Example. Given bases A = {e1,...,en} of V, and B = {f1,..., fn} of W, if [a]4 = A and
[B]s = B, then ordering the basis A ® B lexicographically (i.e., e1 ® f1, e1® fa, ..., e1® fn,
62®f13 R €m®fn), we have

[a11B]  [a12B]
[a ® Blags = [a2_1B] [a2.23]

(9.6) Proposition. Let p: G — GL(V), p' : G — GL(V’) be representations of G. Define
pRp :G— GL(V®V') by

(P p)g) Y Agui @ wyi =Y Aijp(g)vs @ pl(9)w;

Then p ® p’ is a representation of G, with character X,g,(9) = X,(g)X,(g) for all
g €aq.

Hence the product of two characters of G is also a character of G. Note: example sheet 2,
question 2, says that if p is irreducible and p’ is degree 1, then p ® p’ is irreducible. if p’ is

not of degree 1, then this is usually false, since p ® p’ is usually reducible.

Proof. It’s clear that (p ® p')(g) € GL(V ® V') for all g, and so p ® p’ is a homomorphism
G— GLVV').

Let g € G. Let v1,...,v,, be a basis of V of eigenvectors of p(g), and wy, ..., w, be a
basis of V' of eigenvectors of p'(g). So p(g9)v; = \jvj, p/(g)w; = pjw;.

Then (p @ p')(g)(vi @ w;) = p(g)vi ® p'(gJw; = Nivi @ pjw; = (Niptz)(vi @ wy).
S0 Xpapr (9) = D Nty = D A D 1 = Xp(9)X, (9). =
ij =1 j=1

Take V = V'’ and define V¥2 = V@ V. Let 7 : > \ijjvi @ vj — Y. \jju; @ v;, a linear
G-endomorphism of V®2 such that 72 = 1. Therefore, eigenvalues = 1.
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(9.7) Definition. The symmetric square of V is S?V = {z € V®? : 7(z) = z}.

The exterior square of V is A2V = {x € V®?: 7(x) = —x}. (Also called the anti-
symmetric square, or wedge.)

(9.8) Lemma. S?V and A2V are G-subspaces of V®2 and V®?2 = S2V & A%V
S2V has a basis {viv; == 1; ®v; +v; ®v;,1 <@ < j <}, so dim S?V = %n(n +1).
A%V has a basis {v; Av; 1= v; ®v; —v; ®v;,1 <i <j<n}, sodimA?V = in(n—1).
Proof. Elementary linear algebra.

To show V®? is reducible, write z € V®2 as z = (z + 7()) + £ (z — 7(2)). O

€S2 €A?
(9.9) Lemma. If p : G — GL(V) is a representation affording character X, then X? =
X5+ Xx where Xg (= S2X) is the character of G on the subrepresentation on S2V, and
Xa (= A%X) is the character of G on the subrepresentation on A%V
Moreover, for g € G, Xs(g) = 3(X*(9) + X(¢°)) and Xa(g) = 5(X*(g) — X(g%)).

Proof. Compute characters Xg, X5. Fix g € G. Let vy, ..., v,, be a basis of V of eigenvectors
of p(g), say p(g)vi = A\iv;. Then gvv; = MAjvv; and gv; A vy = MAjv; Avj.

Hence Xs(g) = »_ Aidjand Xa(g) = > A

1<i<j<n 1<i<jsn
2
Now (X(g))” = (Z )\Z—) =3 X 423 NN = X(g?) + 2Xa(9).
1<J

So, Xa(g) = 3(X*(g) — X(g?)), and so Xs(g) = 3 (X*(g) + X(¢?)), as X* = Xg + Xx. O
‘Usual trick to find characters: diagonalise and hope for the best!’

Example. G = S5 (again)

1 15 20 24 10 20 30 <—|C]~\
1 (12)(34) (123) (12345) (12) (123)(45) (1234) <,

lg=X1| 1 1 1 1 1 1 1
sign = Xo | 1 1 1 1 -1 -1 -1
Tx.—1=Xz| 4 0 1 -1 2 -1 0
XsXo = Xy4| 4 0 1 -1 -2 1 0
S2X —1—X3=X5| 5 1 -1 0 -1 -1 1
X5Xo = Xg| 5 1 -1 0 1 1 -1
AX=X;| 6 -2 0 1 0 0 0

To find X5 and X7, we use (9.9) on X4 = X.
| 1 (12)(34) (123) (12345) (12) (123)(45) (1234)

X?(g) | 16 0 1 1 4 1 0
X(g?) | 4 4 1 -1 4 1 0
Xs(g) | 10 2 1 0 4 1 0
Xa(g) | 6 -2 0 1 0 0 0

We have seen Xg already as () Check inner product = 3; contains 1, X3.
2

27



Characters of GG X H (cf. (4.5) for abelian groups)

(9.10) Proposition. If G, H are finite groups, with irreducible characters X1, ..., X; and
Y1, . .., Py respectively, then the irreducible characters of the direct product G x H are
precisely {X;9; : 1 <14 < k,1 < j <1} where X;9;(g,h) = Xi(g)¥;(h).

Proof. If p : G — GL(V) affording X and p' : H — GL(W) affording v, then p ® p’ :
Gx H— GL(V@W), (g,h) — p(g) @ p'(h) is a representation of G x H on V@ W
by (9.6). And X,g, = X1, also by (9.6).

Claim: X;1; are distinct and irreducible, for:

1 -
(Xl Xetbs)own = s (gz};) Xitj (g, h) Xo0s (g, h)
1 1 —
= =N i r T i(h s h
<|G|;x<g>x <g>> <|H|;w]< )9l ))
= 5ir5js
Complete set: >, - Xj1h;(1)* = 3, XZ(1) > ¢3(1) = |G| |H| = |G x H. O

Exercise. Dg X Dg has 9 characters.

Digression: a general approach to tensor products
V,W, F-spaces (general F', even a non-commutative ring).

(9.11) Definition. V ® W is the F-space with a bilinear map ¢ : V.x W — T, (v,w)
v ® w =: t(v,w), such that any bilinear f : V x W — X (X any F-space) can be
‘factored through’ it:

Vxw %o
N 3
X

Le., there exists linear f’ : T — X such that f'ot = f.

This is the universal property of the tensor product.
Claim. Such T exists and is unique up to isomorphism.

Existence. Take (huge) space M with basis {(v,w) : v € V;w € W}. Factor out the
subspace N generated by ‘all the things you want to be zero’, i.e. by

(v1 4 v, w) — (v, w) — (va, w)
(v, w1 +ws) — (v,w1) — (v, w2) for all v,v1,v2 € V, w,wy,wy € W, A€ F.
(M, w) — A(v,w), (v, \w) — A(v,w)
Define ¢ to be the map embedding V' x W — M followed by the natural quotient map
VxW - M/N

N 3
X
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Check ¢ is bilinear (we’ve quotiented out the relevant properties to make it so). f is
defined on our basis of M, (v,w) — f(v,w), extended linearly. f’ = 0 on all elements
of N, hence well-defined on M/N.

Uniqueness. V xW — T  Apply universal property with respect to T, 7T".
N N Linear maps give isomorphism.
T/

a

Henceforth, we think of V. ® W as being generated by elements v @ w (v € V;w € W) and
satisfying

(V1 +v2) Qw =v1 W+ v2 W

VR (W +wa) = v w + v ws

Av@uw)= w=v® \w

(9.12) Lemma. If ey,..., e, and fi,..., f, are bases of V, W respectively then {e; ® f; :
1<i<m,1<j<n}isabasisof Ve W.

Proof. (Span.) Any v ® w can be expressed (hence so can any element of V ® W) as

v = Ziaiei, w = Zj ﬂjfj = VW = Zi,j aiﬂjei ®fj.

(Independence.) Find a linear functional ¢ sending e; ® f; to 1 and all the rest to 0.
For, take dual basis {g;}, {¢;} to the above. Define ¢(v ® w) = ¢;(v)¢; (w) and check
¢(e; ® f;) =1, other = 0. O

(9.13) Lemma. There is a ‘natural’ (basis independent) isomorphism in each of the follow-
ing.
HVeWwW=weV
i) Uo(VeaW)=UaV)eW
(i) U V)W 2X(UW)a (VW)

Proof. (i) v® w — w ® v and extend linearly. It’s well-defined: (v,w) — w @ v is a
bilinear map V x W — W ® V. So by the universal property v ® w — w ® v gives
a well-defined linear map.

(i) u® (v@w) — (u®v) ®w and extend linearly. It’s well-defined: fix u € U, then
(v,w) = (4 ®v) ®w is bilinear, so get v @ w — (u ® v) @ w.
Varying u, (u,v @ w) — (u®v) @ w is a well-defined bilinear map U x (V@ W) —
(U®V)®W. Hence, get linear map u ® (v @ w) — (u® v) ® w.

(iii) Similar. (See Telemann, chapter 6.) O

(9.14) Lemma. Let dimV, dimW < oco. Then Hom(V,W) = V* @ W naturally as G-
spaces, if V, W are both G-spaces.

Proof. The natural map V* x W — Hom(V, W), (a,w) — (¢ : v — a(v)w) is bilinear, so
a ® w > ¢, extended linearly, is a linear map, V* @ W — Hom(V, W).

It’s bijective as it takes basis to basis: €; @ f; — (Ej; : e; — f;). O

Returning to the proof of orthogonality at the end of chapter 6: the missing link was to
observe that U = Hom(V', V) = (V')* @ V, hence X,,(9) = X(v)«gv(9) = Xv/ (g~ ")Xv (g).
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Symmetric and exterior powers

V an F-space, dimV = d, basis {e1,...,eq}, n € N. Then V" =V ®...® V (n times), of
dimension d".

Note, S, acts on V" for o € Sp, 0(v1 ® ... @ Vp) = V(1) @ ... @ Uy(n), and extend linearly
(‘place permutations’).

The S,,-action commutes with any G-action on V.

(9.15) Definition.
The symmetric powers, S"V = {z € V¥" : g(z) =z for all o € S,,}.
The exterior powers, A"V = {z € V®" : g(x) = sgn(o)x for all o € S, }.

These are G-subspaces of V®" but if n > 2 then there are others obtained from the S,,-action.

. . . 1 . .
Exercises. Basis for S™V is {E Z Vigy @+ @i, 1< <. <ip < d}.
T o€Sy

. . 1 . )
Basis for A"V is {; ZS sgn(o)vig(l) Q... QUi * 1< <... <1, £ d}.
gESH

So dim S™V = <d+n_ 1>
n

and dim A"V = <d>
n

(9.16) Definition. Let 7"V =V®" =V ®...@ V.

The tensor algebra of V is T(V) = @T”V, where T°V = {0} — an F-space with
n=0
obvious addition and scalar multiplication.

There is a product: for x € T"V, y € T™V, get .y := x ® y € T"T™V, thus giving a
graded algebra (with product 7"V @ T™V — T™rmV).

Finally, define:

S(V)=1T(V)/(ideal generated by u ® v — v ® u) — the symmetric algebra,
T(V)/(ideal generated by v ® v) — the exterior algebra.

2
=
I

Character ring
C(@) is aring, so the sum and product of characters are class functions. This chapter verified
that they are in fact characters afforded by the sum and tensor product of their corresponding

representations.

(9.17) The Z-submodule of C(G) spanned by the irreducible characters of G is the character
ring of G, written R(G).

Elements of R(G) are called difference/generalised/virtual characters.

Y € R(G) ¢ = Z nxX, ny € Z.

X irred
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R(G) is a commutative ring, and any generalised character is a difference of two characters.

Le., ¢ = a— 3, a, B characters, where o = Z nxX, = — Z nxX.

ny =0 ny <0
The {X;} form a Z-basis for R(G), as free Z-module.

Suppose a € R(G) and (o, o) = 1. Then (1) > 0 implies « is the character of an irreducible
representation of G.

Proof. Let the irreducible characters of G be Xi,...,Xg. Then o = > n;X;. So {(a,a) =
> n? =1, so exactly one n; = 1. But (1) > 0, so one n; = 1 and the rest are 0.

Henceforth we don’t distinguish between a character and its negative, and we often study
generalised characters of norm 1 ({a, &) = 1) rather than just irreducible characters.

31



10. Induction and Restriction
Throughout, H < G.

(10.1) Definition (Restriction). Let p : G — GL(V) be a representation affording X.
Can think of V' as a H-space by restricting attention to h € H.

Get Res$ p: H — GL(V), the restriction of p to H. (Also written p|z or pz.)
It affords the character Res$ X. (Also written X|g or Xzr.)

(10.2) Lemma. If ¢ is any non-zero character of H, then there exists an irreducible char-
acter X of GG such that

e 9 C Res§y X
e 1) is a constituent of Resg X 3 ways of saying the same thing
o (Res& X, 1) # 0

Proof. List the irreducible characters of G: X1, ...Xj. Recall X,eg from (5.9).

Therefore (X;|m, 1) # 0 for some i. O

0 ?é ||§f ( ) = <Xreg|H7’l/)>H = ZdegX1<X1|H,¢>H

(10.3) Lemma. Let X be an irreducible character of G, and let Resg X = Zz c;iX; with X;
irreducible characters of H, where ¢; € Zxo.

Then Zcf < |G : H|, with equality iff X(g) =0 forall g € G\ H.

Proof. Zc (Res X, Res% X)pr = |H| Z [X(h

heH
But 1 = (X,X)g = > IX(g)
|G| vrd
- (S hwes ¥ ror)
heH geG\H
M~ o 2
= X(g)l
R P
>0, and =0& X(9)=0Vge G\ H
Therefore Y ¢ < |G : H|, with equality iff X(g) =0 for all g € G\ H. 0
Example. G = S5, H = As, 1; = Res$ X
#0 somewhere outside H X(g9)=0 VgeSs\As
hY e

11 44 55 6
NSNS NS /N
deg; 1 4 5 33

deg X;

general fact about normal subgroups:
splits into constituents of equal degree
(Clifford’s Theorem)

32



(10.4) Definition (Induction). If ¢ is a class function of H, define

cy ] VW) yed
Z’L/JSC gz), where w(y){ 0 y¢H

zeG

_ G

(10.5) Lemma. If ¢ is a class function of H, then Ind% < is a class function of G, and
Ind§ 6(1) = G+ H| (1),

Proof. Clear, noting that Ind$ S (1) =16 Hly(1). O

|H| zeG

Let n = |G : H|. Let t1(=1),ta,...,t, be a left transversal of H in G (i.e., a complete set
of coset representatives), so t1H(= H), toH, ..., t, H are precisely the left cosets of H in G.

(10.6) Lemma. Given a transversal as above, Ind% ¥ (g Z 1/1 (t;gts).

Proof. For h € H, i((tih)’lg(tih)) = i(t;lgti), as 1 is a class function of H. O
(10.7) Theorem (Frobenius Reciprocity). ¢ a class function on H, ¢ a class function

on GG. Then
(Res$; ¢, )i = (¢, Ind ¥)c.

Proof. (3,0 = HEZ@Q/’G(Q)

= S o) () (put y = =~ "g)

= — Z o(y) 12) (y) (independent of z)

= (¢u,¥)n O
(10.8) Corollary. If ¢ is a character of H then Ind 1 is a character of G.
Proof. Let X be an irreducible character of G.
By (10.7), (Ind% 1, X)¢ = (1, Res§ X) € Zsy, since ¢, Resy X are characters.

Hence Indg 1 is a linear combination of irreducible characters, with positive coefficients,
hence a character. O

(10.9) Lemma. Let ¢ be a character (or even a class function) of H < G and let g € G.
Let Cc(9) N H = U;~, Cu(z;) (disjoint union), where x; are representatives of the m
H-conjugacy classes of elements of H conjugate to g.

Then, for m = 0, Ind% 4(g) = 0, and for m > 1, nd$ ¥(g) = |Cc(9)| Z—Jf%
i=1 v

33



Diversion. Let H,K < G. A double coset of H and K in G is a set of the form
HzK = {hxk :h € H,k € K} for some z € G.

Facts. Two double cosets are either disjoint or equal, and

\HI[K|  _ [H]|K]
|[HNzKz='| |ecHz 'NK|

|HxK| =

Proof of (10.9). If m = 0 then {z € G : 2~ 'gz € H} = 0, and then Ind$ ¢(g) = 0 by
definition.

Let m > 0. Let X; = {z € G : x~'gx € H and is conjugate in H to x;}, for 1 <i < m.
The X; are pairwise disjoint and their union is {x € G : 7 1gx € H}.

By definition,

md§v(g) = == ¢ (@ 'ga)

zeCG

| X
|H|

We need to calculate
Fix 1 < 4 < m and choose g; € G such that g; 'gg; = x;. So for all ¢ € Cg(g) and
h € H we have

(cgih)~'g(cgih) = h™'g; e gegih = W' g ggih = h™ i,
ie. cg;h € X;, and hence Ci(g)g;:H C X;.

Conversely, for z € X;, we have x~ gz = h~ta;h = h_l(gjlggi)h for some h € H. So
xh~'g; ' € Cg(g), and hence = € Cg(g)gih € Ca(g)g:iH.

[Ca(9)l |H|

Thus CG(g)gZH = Xia 50 |Xl| = |CG(g)ng| = |ngz_ICG(g)gz|

But g; 'Cc(9)g: = Calg; '99:) = Ca(x:).
So | Xi| = [H : HN Cg(x:)||Calg)| = [H : Cu(z:)||Calg)l-

X, C ..
RY - M, giving the result. =

So =
|H|  [Ch(2:)]

(10.10) Lemma. If ¢ = 1y, the principal character of H, then Ind$ 15 = 7y, the permu-
tation character of G on the set X of left cosets of H in G.
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Proof. Indg 1(g) Z 1?{ (ti_lgti) (where the t; form a transversal)

[{i:t; " gt; € HY|

= ’{’L 1g € tiHﬁi_l}‘ <— stabiliser in G of the point t;H € X
= |ﬁXX(g)| = Tx (see (7.1)) O
Remark. Recalling (7.3):
(rx,1¢)e = (Ind$ 1y, 1e)e (g, Res$ 1)y = (g, 1g)y = 1.

(10.10) (10.7)

Examples. (a) Recall (7.9), G = S5 acting on X = the set of Sylow 5-subgroups of G.
7x =Ind% 1y, where H = ((12345), (2354)). Note |H]| = 20.

H—ccls|1 (12345) (2354) (2453) (25)(34)
size |1 4 5 5 5

G-eols | 1 (12)(34) (123) (12345) (12) (123)(45) (1234)
size |1 15 20 24 10 20 30

Tx(2354) = (2 4 )
mx ((25)(34)) = B (55) =
(b) Recall (2.17) and (7.8). H = Cy = ((1234)) < G = Sy, index 6.
Character of induced representation Indg‘j1 (), where « is faithful 1-dimensional
representation of Cy. If «((1234)) = ¢ then character of « is:

|1 (1234) (13)(24) (1432)
Xo |1 i -1 —i

Induced representations:

size 1 6 8 3 6
ccls |1 (12) (123) (12)(34) (1234)
IndZ! (@) [6 0 0 -2 0

For (12)(34), only one of 3 elements in Sy that it’s conjugate to lies in H. So
Ind§ (a) = 8(-1) = —2.

(1234) is conjugate to 6 elements of Sy, of which 2 are in Cy (viz. (1234), (1432)).
So Ind§j (a) = 4(2 — &) = 0.
Induced modules

H < G, index n. t; = 1,ts,...,t, a transversal —i.e. H,t2H,... t,H are the left cosets of
H in G. Let W be an H-space.

(10.11) Definition. Let V =W @2 WD ... ®t, @ W, where t, @ W = {t; @w : w € W}.
(‘Essentially tensored group algebra with W.")

So dimV = ndim W and we write V = Indg w.

G-action. g € G, for all 4, there exists a unique j with t;lgti € H (namely t;H is the unique
coset which contains gt;).
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Define g(t;w) = tj((tj_lgti)w). (Drop the ®s, so t;w :=t; ® w.) Check this is a G-action:

g1 (g2tiw) = g1 (t;(t;  gati)w)
~——
(3 unique j s.t. got1H =t; H)
= to((t;  guty)(t;  gati)w)
—_——
(3 unique £ s.t. gi1t;H € t,H)
to(ty (grga)ti)w
(9192)(tiw)

¢ is unique with (g192)t;H € t,H.

It has the right character (still dropping the ®) g : tyw — t; (t;lgti)w.

——
ew

So the contribution to the character is 0 unless j = 4, i.e. unless ti_lgti € H, then it
contributes ¥ (t; *gt;), i.e. nd% ¥(g) = S0, ¥ (t; *gt;), thus agreeing with (10.6).

Example. Module-theoretic version of (10.10) states: Ind$ (C) = CX, where X = G/H.
In particular, Ind¥(C) = Preg-

Remarks (non-examinable). (1) There is also a ‘Frobenius reciprocity’ for modules: for
W a H-space, V a G-space, Hompy (W, Resg V) Homg(lndg W, V) naturally,
as vector spaces.

This is an example of a ‘Nakayama relation’. See Telemann 15.9 — works over
general fields.

(2) Tensor products of modules over rings. In (10.11), V = FG ®pg W.

Replace F'G by R, FH by S, and try to generalise. In general, given rings R, S,
and modules U an (R, S)-bimodule and W a left S-module, then U ® W is a left
R-module with balanced map ¢t : U x W — U ® W such that any balanced map
f:UXxW — X, any left R-module X can be factored through t¢.

UxW 5 UsW
f\ /3 unique module homomorphismf’
X

‘Balanced’ means f(u1 + ug2,w) = f(u1,w) + f(ug2,w)

f(uawl + w2) = f(uawl) + f(uan)

fQu,w) = f(u,\w)  (for all A € S)
Then Indi = FG ® W is now a well-defined FG-module, since W is a left
FH-module, FG is (FG, FH)-bimodule. (Alperin-Bell.)
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11. Frobenius Groups

(11.1) Frobenius Theorem (1891). G a transitive permutation group on a set X, with
|X| = n. Assume that each non-identity element of G fixes at most one element of X.
Then

K={1}u{geG:ga#aforalla € X}

is a normal subgroup of G of order n.

Proof. (Suzuki, Collins (book).) Required to prove K < G.
Let H = G, (stabiliser of @ € X), so conjugates of H are the stabilisers of single
elements of X, as G0 = gGog™'. No two conjugates can share a non-identity element
(hypothesis).
So H has n distinct conjugates and G has n(|H| — 1) elements that fix exactly one
element of X. But |G| = |X||H| = n|H|. (X and G/H are isomorphic G-sets, as the
action is transitive), hence |K| = |G| — n(|H| — 1) = n.
Let 1 # h € H. Suppose h = gh'g™!, some g € G,h’ € H. Then h lies in H = G,
and gHg~ ' = G4o. By hypothesis, ga = «, hence g € H. So H N cclg(h) is precisely
ccly (h).
Similarly, if g € C(h) then h = ghg™" € Gy4 hence g € H, i.e. Ci(h) = Cy(h).

Every element of G lies either in K or in one of the n stabilisers, each of which is
conjugate to H. So every element of G \ K is conjugate with a non-1 element of H. So

{1ah2;- "7htay15' ayu}
—_———— — —

reps of H-ccls  reps of ccls of G comprising K \ {1}
is a set of conjugacy class representatives for G.
Problem. To show K < G.

Take 6 = 1¢, {1g = ¥1,%2,...,¢:} irreducible characters of H. Fix some 1 < i < ¢.
Then if g € G,

Ca(hy) = Cr(hy) & (10.9)
Fix some 2 < i < t and put 6; = ¥ — ¥, (1)§ +1:(1)61 € R(G), by (9.16).

Values for 2 < j <t¢, 1 <k<w

f | (1) i(hy)
1/%‘(1)%(; ni;(1)
Yi(1)01 | (1)

0; ¥i(1)
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1 2
(0;,0:) = @Z|9i(9)|

geG

IO NUCIED S SRTIOLY
geEK

aeX 1#geGq
- i(n¢§(1)+n > |9i(h)|2)

] Vinen

- ﬁZm(mF
= (i, i)

= 1 (row orthogonality of irreducible H-characters)

By (9.17) either 6; or —6; is an irreducible character of G, since 6;(1) > 0, it is ;. Let
0 =S!_, 0:(1)6;. Column orthogonality = 0(h) = S°t_, 4:i(1)(h) =0 (1 # h € H)
and for any y € K, 0(y) = Y ¢2(1) = |H|.

H| ifgeK
809(9){|0| ifggéK

Therefore K = {g € G:0(g) =0(1)} < G. O
(5-3)

(11.2) Definition. A Frobenius group is a group G having a subgroup H such that
HNHY=1forall g¢ H. H is a Frobenius complement.

(11.3) Any finite Frobenius group satisfies the hypothesis of (11.1). The normal subgroup
K is the Frobenius kernel of G.

If G is Frobenius and H a complement then the action of G on G/H is faithful and tran-
sitive. If 1 # g € G fixes *H and yH then ¢ € xHxz~' N yHy !, which implies that
HnN(y 'z)H(y 'z)~! #1, and so zH = yH.

Remarks. (i) Thompson (thesis, 1959) worked on the structure of Frobenius groups — e.g.

showed that K is nilpotent (i.e., K is the direct product of its Sylow subgroups).
(ii) There is no proof of (11.1) known in which character theory is not used.

(iii*) Show that G = K x H, semi-direct product.
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12. Mackey Theory

This describes restriction to a subgroup K < G of an induced representation € W. K, H are
unrelated but usually we take K = H, in which case we can tell when Ind$, W is irreducible.

Special case: W = 1 (trivial H-space, dim 1). Then by (10.10) Ind$ 1 = permutation
representation of G on X = G/H (coset action on the set of left cosets of H in G).

Recall. If G is transitive on a set X and H = G, (o € X) then the action of G on X is
isomorphic to the action on G/H, viz:

(12.1) g.a «— gH is a well-defined bijection and commutes with G-actions.
N~ N~

exX €eG/H

Le., z(ga) = (zg)a +— z(gH) = (zg)H.

Consider the action of G on G/H and restriction to some K < G. G/H splits into K-orbits;
these correspond to double cosets KgH = {kgh : k € K,h € H}. The K-orbit containing
gH contains precisely all kgH (k € K).

(12.2) Definition. K \ G/H is the set of double cosets KgH.

Note |K' \ G/H| = (nq/k,ng/u) — see (7.4). Clearly Gy = gHg~'. Therefore Ky =
gHg ' N K. So by (12.1) the action of K on the orbit containing gH is isomorphic to the
action of K on K/(gHg™' N K).

(12.3) Proposition. Res% Ind% 1 = @ IndegflﬂKl,
geK\G/H

summed over set of representatives of double cosets.

Now choose g1, ..., g, such that G = |JKg;H. Write H, = gHg ' N K < K. Let W be
an H-space, and write W, for the Hy-space with the same underlying vector space as W of
vectors, but with H-action from py(z) = p(g~'xg) for v € gHg™*.

—

€H
We will prove:

(12.4) Theorem (Mackey’s Restriction Formula). Res$ Ind$ W = @ IndggWg.
geK\G/H

In terms of characters:

(12.5) Theorem. If ¢ € C(H), then Res$ Ind$ ¢ = Z Indgg g, where 104 is the class
geK\G/H

—1

function on Hy given by ¢4 (z) = (29

).
The most useful form for applications is:

(12.6) Corollary (Mackey’s Irreducibility Criterion). H < G, W and H-space. Then
V = Ind$ W is irreducible iff
(i) W is irreducible, and

(ii) for each g € G\ H, the two (¢Hg~' N H)-spaces W, and ResggW have no irre-
ducible constituents in common. (We say they are disjoint.)
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Proof of Corollary. Take K = H in (12.4), so H, = gHg ' N H. Assume W is irreducible
with character .

(Ind% v, Indf¢) = (¥, Res Indf o)
(F.R.)

= > (. Indff g\

(12.5) geH\G/H

= > (Resi, v, v)m,

(F.R.) geH\G/H

= 14 Z dy  where dy = (Resjy ¥, ¥g)u,
geH\G/H
g¢H

So to get irreducibility we need all the d, = 0. O

(12.7) Corollary. If H <4 G, assume 1 is an irreducible character of H. Then Indg P is
irreducible iff ¢ is distinct from all its conjugates ¢, for g € G \ H, where ¢4(h) =

P(h") = P(g~ hg).

Proof. Take K = H, so Hy = gHg ' N H = H for all g (since H < G). 1, is the character
of H conjugate to 1, so Resgyw =1 and the 1), are just the conjugates of 1. O

Proof of (12.4). Write V = Ind§ W. Fix g € G, so KgH € K\ G/H. Observe V is a
direct sum of images of the form zW (officially  ® W, recall), with z running over
representatives of left cosets of H in G (see (10.11)). Collect together the images xW

with € KgH (as in (12.3)) and define V(g) = @ aW.
rcKgH

Now V(g) is a K-space and Res&V = @ V(g).

g reps of
K\G/H

We have to prove V(g) = Indgy Wy, as K-spaces. The subgroup of K consisting of the

elements z with zgW = gW is H, = gHg 'NK (see (12.2)), and V (g) = @ x(gW).
c€EK\H,y

Hence V(g) = Indgy (gW).

Finally W, 2 gW as K-spaces, as the map w +— gw is an isomorphism. Hence the
assertion. O

Examples. (a) Give a direct proof of (12.3). Hint. Write G = U Kg;H (1<i<r).

gi reps of
K\G/H

Let Hgy, have transversal ki, ..., kir, in K. Then {k;jg; : 1 <i<r1<j<r}
is a transversal of K in G. Then compute Ind% (k).

(b) (Examples sheet 3, question 4.) C,, < Doy, = (x,y: 2" = y?> = 1,y toy = 27 1).
Mackey says that for any 1-dimensional representation « of C,,, the 2-dimensional
representation Indgz”'a is irreducible iff o is not isomorphic to a,.

Now y~'zy = 27!, so this says that if a(z) = (" (¢ € un), aq is the representation
ag(z) = (7. So for 0 < i < n/2 (ie. when €™/ £ ¢=27k/n) we get a
2-dimensional irreducible representation of Ds,, this way.
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13. Integrality

(13.1) Definition. a € C is an algebraic integer if it is a root of a monic polynomial
in Z[X]. Equivalently, the subring Z[a] = {f(a) : f(z) € Z|X]} of C is a finitely-generated
Z-module.

Fact 1. The algebraic integers form a subring of C. (James & Liebeck 22.3)

Fact 2. If a € C is both an algebraic integer and a rational number then a € Z. (James &
Liebeck 22.5)

Fact 3. Any subring S of C which is finitely generated as a Z-module consists of algebraic

integers.
If s1,...,s, are generators of S as a Z-module, let a € S. Then for all ¢, there exist
a;; € Z with as; = Zj a;jsj. Put A= (a;j). Then Av = av, where v = (s1,...,5,)", so

a is a root of the characteristic polynomial of A. Therefore, it’s an algebraic integer.
(13.2) Proposition. If X is a character of G and g € G then X(g) is an algebraic integer.

Corollary. There are no entries in the character table of any finite group which are rational
but not integers. (Fact 2.)

Proof of (13.2). X(g) is the sum of n'" roots of 1 (n = |g|). Each root of unity is an
algebraic integer, and any sum of algebraic integers is an algebraic integer. (Fact 1.) O

Recall from (2.4) the group algebra CG = {3 ayg : oy € C} of a finite group G, the C-space
with basis the elements of G. It is also a ring.

List C; = {1},Ca, .. ., Cg, the G-conjugacy classes. Define the class sums, C; = Z g € CG.
9€C;

Z(CQG) is the centre of CG (not the same as CZ(G)).

(13.3) Proposition. C1,...,Cy is a basis of Z(CG). There exist non-negative integers a;;
(1 <i,4,1 < k)with C;Cj; =" a;;Cy. These are the structure constants for Z(CG).

E.g., 1, (12) + (13) + (23), (123) + (132) form a basis of Z(CSs).

Proof. gCjg~! = C}, so C; € Z(CG). Clearly the C; are linearly independent (because the
conjugacy classes are pairwise disjoint).

Now suppose z € Z(CG), z = > .5 @gg. Then for all h € G we have aj,-14, = ayg,
so the function g — «, is constant on G-conjugacy classes. Writing o, = o (g € C;),

then z =Y a;C;.

Finally Z(CQ) is a C-algebra (‘vector space over C with ring multiplication’), so C;C; =
Zle aij1Ce, as the C; span. We claim that a;j; € Zxo.

For: fix g¢ € Cp, then a;j; = #{(z,y) € C; X C; : vy = ge} € Zxo. O
(13.4) Definition. Let p : G — GL(V) be an irreducible representation over C affording

X. Extend by linearity to p : CG — EndV, an algebra homomorphism. Such a
homomorphism of algebras, CG = A — End V is a representation of A.
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Let z € Z(CG). Then p(z) commutes with all p(g) (¢ € G), so by Schur’s Lemma p(g) = A,
for some A, € C. Consider the algebra homomorphism wy = w : Z(CG) — C, z — A,.

Then p(C;) = w(Ci)1, so X(L)w(C;) = 3 ce, X(9) = |Ci| X(g:) (i a representative of C;).

X(g:)

Therefore wy (C;) = X

|Cil.

X(g:)
X()

(13.5) Lemma. The values of wy(C;) = |Ci| are algebraic integers.

Proof. Since w is an algebra homomorphism, have wy (Ci)wy (C;) = S35 aijiwx (Cy), with
aiji € Zxp. Thus the span {w(C;) : 1 < i < k} is a subring of C, so by Fact 3 consists
of algebraic integers. O

Example. Show that a;;; = #{(z,y) € C; xC; : zy = g¢} can be obtained from the character
table. In fact,

Qi1 =

k
|G| Z Xs gz g] (gl )
|Ca(g:)]1Ca(g;)] ) (1)

Hint: use column orthogonality. (See James & Liebeck 30.4.)
(13.6) Theorem. The degree of any irreducible character of G divides |G|.
Le., X;(1)||G| (1 < i< k).

Proof. Given irreducible X. (‘Standard trick: show |G|/X(1) € N.’)

|Gl
RO

i=1 X( )
CiX(g:) . . 1y :
Now (1) is an algebraic integer by (13.5), and X(g; *) is a sum of roots of unity,
so is an algebraic integer by (13.2)
G
Thus )|( (1|) is an algebraic integer, and since it’s clearly rational, it is an integer. O

Examples. (a) If G is a p-group then X(1) is a p-power (X irreducible). If |G| = p? then
X(1) =1 (hence G is abelian).

(b) No simple group has an irreducible character of degree 2 (see James & Liebeck
22.13).

(¢*) In fact, if X is irreducible then X(1) divides |G|/|Z]| (Burnside).

(d) G =8, : every prime p dividing the degree of an irreducible character of G also
divides n!. Hence p < n.
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G
(13.7) Theorem (Burnside). If X is irreducible, then X(1) divides %

Proof. Let p : G — GL(V) be a representation with character X. For any m, consider
Pm : pE™ G — GLIQ™ V).

Now ker py,, contains the subgroup Z;, = {(g1,...,9m) € Z™ 1 g1+ -gm = 1}.

G m
If p is irreducible then so is py, by (9.11), and dim p,, = (dim p)™ |G™/Z],| = ||Z|”|11
G
This is true for any m, so dim p divides % (Check via prime factorisation.) O
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14. Burnside’s p%q" Theorem

(14.1) Theorem (Burnside, 1904). p,q primes. Let |G| = p%q® where a,b € Zx, with
a+b> 2. Then G is not simple.

Remarks. (1) In fact, even more is true: G is soluble. That is, there exists a chain
G=G">G'> - > G" = {1} such that G'/G**! is abelian for all i.

(2) The result is best possible: A5 is simple, and 60 = 22.3.5.

(3) If either a or b is 0 then |G| = p-power and we know Z(G) # 1. Then there is
g€ Z, |g|=pand (9) <G, with (g) # 1 or G.

(14.2) Proposition. X an irreducible C-character of G, C a G-conjugacy class, g € G such
that (X(1),|C]) = 1. Then |[X(g)| = X(1) or 0.

Proof. There are a,b € Zx( such that aX(1)+b|C| = 1. Define o = aX(g)+ —=|C| = —==.

Then « is an algebraic integer, so the assertion follows from:

1 m
(14.3) Lemma. Assume o = - Z A; is an algebraic integer with A7 = 1 for all j, some n.
i=1
Then |o| = 1.

For (14.2), we take n = |g|, m = X(1).

2mi/n

Proof (non-examinable). Assume |a| # 0. Now o € F = Q(¢) where ¢ = e and

Aj € F for all j.

Let G = Gal(F/Q). Observe {3 € F : 37 = g forallo € G} = F9 = Q. (Result from
Galois Theory.)

Consider the norm N(«) of «, namely the product of all the Galois conjugates «”
(0 € G). The norm € Q because it’s fixed by all of G. It’s an algebraic integer (all
Galois group conjugates of an algebraic integer are algebraic integers). Hence N(«) € Z.

ts of 1
2 roots of 1 € C of absolute value
m

But N(a) = H «? is a product of expressions

oceg
< 1.

Hence the norm must be £1, hence |a| = 1. O

(14.4) Theorem. If in a finite group G the number of elements in a conjugacy class C # {1}
is a p-power, then G is not non-abelian simple.

Remark. This implies (14.1). Assume a > 0,b > 0. Let Q € Syl (G). Then Z(Q) # 1, so
choose 1 # g € Z(Q). So Ca(g) 2 Q. Therefore |C(g)| = |G : Ca(g)| = p" (some r).

Hence if p” = 1 then g € Z(G). Therefore Z(G) # 1 (so not simple). If p” then G is
not simple (by (14.4)).

Proof of (14.4). Assume that G is non-abelian simple, and let 1 # ¢g € G with |Ca(g)| = p".
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By column orthogonality, 0 = Z X(1)X(g) - (*)

X irred
of G

G is non-abelian simple, so |X(g)| # X(1) for any irreducible X # 1. By (14.2), for any
irreducible character X # 1 of G, we have p|X(1) or X(g) = 0.

X(1
Deleting zero terms in (x), 0 =14 p Z QX(g).
X irred p
plx(1)

Thus 1/p is an algebraic integer, since 1/p € Q, hence 1/p € Z. Contradiction. O

Remarks. (a) In 1911, Burnside conjectured that if |G| is odd then G is not non-abelian
simple. Only proved in 1963 by Feit & Thompson, a result which began the
Classification of Finite Simple Groups. The Classification only ended in 2005.

(b) A group-theoretic proof given only in 1972 (H. Bender)
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15. Representations of Topological Groups

(15.1) A topological group is a group which is also a topological space such that the group
operations G x G — G, (h,g) = hg and G — G, g — g~ ! are continuous. It is compact if
it is so as a topological space.

(15.2) Basic examples. (a) GLy(R), GL,(C) are open subspaces of R"" or C™".
(b) G finite, discrete topological. Also compact.
() G=8'=U(1)={geC:lg|=1}.
(d) O(n) ={A € GL,(R) : AA* = I'} — orthogonal group.
Compact: set of orthonormal bases for R” = {(e1,...,e,) € R”" x ... x R" :
(eisej) = 0ij}-
U(n)={A4 € GL,(C) : AA' = I} — unitary group.
Compact: A € U(n) iff its columns are orthonormal.
Note: O(1) =7Z/2, SO(1) =1, and O(2)/S' = Z/2, SO(2) = S*.
(e) SUn)={AeU(n):det A=1} = SL,(C)NU(n).
z1 )

Eg., SU(22) = = Z_l) 12 € C |z +|zf* = 1} — spin group

~ B ={2eC?:|z]|=1} — C? 2 R* (homeomorphic).
SO(n) ={A€0(n):det A=1} = SL,(R) N O(n).
E.g., SO(2) = U(1), rotation of 6 — €%
SO(3), rotations about various axes in R?.

SO(n), SU(n), U(n), O(n) are groups of isometries of geometric objects — known as compact
Lie groups. Theory is done by H. Weyl, ‘Classical Groups’.

(15.3) Definition. A representation of a topological group on a finite-dimensional vector
space V is a continuous group homomorphism p : G — GL(V) with the topology of GL(V)
inherited from the space End V.

(There exist extensions when V is infinite-dimensional — see Telemann, remark 19.2.)

Here, continuous p : G — GL(V) = GL,(C) means each g — (p(g))l.j is continuous for i, j,
or the map G xV =V, (g,v) — p(g)v is continuous.

The compact group U(1)

(15.4) Theorem. The continuous homomorphisms C! — GL;(C) = C* (i.e. the 1-dim.
representations of S1) are precisely the representations z — 2" (some n € Z).

The proof is closely tied with Fourier Series. We need a couple of lemmas.

(15.5) Lemma. Consider (R,+). If ¢y : R — R is a continuous homomorphism then
is multiplication by a scalar. (Le., solve ¢¥)(z + y) = ¢ (z) + 9 (y) for ¢ a continuous
function.)

Proof. Put ¢ = ¥(1). Then ¥(n) = nc (n € Z). Also my(1/m) = ¢, so ¥(1/m) = ¢/m
(m € Z). Hence ¥(n/m) = cn/m. Thus ¢(z) = cx (z € Q), but Q is dense in R and ¢

is continuous, so ¥ (z) = cx for all 2 € R.

(15.6) Lemma. If ¢ : RT — U(1) is a continuous homomorphism then there exists ¢ € R
with ¢(z) = e'® for all x € R.
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Proof. Claim. There is a unique continuous homomorphism a : R — R such that ¢(z) =
e (so we deduce (15.6) from (15.5)).

Recall that the exponential map ¢ : RT — U(1), x — €, maps the real line around
the unit circle with period 27.

\QQ\Q\Q @ complete the triangle!

For any continous ¢ : Rt — U(1) such that ¢(0) = 1, there exists a unique continuous
lifting « of this function to the real line such that a(O) = 0 — i.e., there exists a unique
continuous « : R — R such that a(0) =0 and ¢(z) = e(a(x)) for all z.

(Lifting is constructed starting with condition a(0) = 0 and then extending it a small
interval at a time. See Telemann, section 21. Non-examinable!)

Claim. If ¢ is a homomorphism then its lift « is also a homomorphism. (So a(z) = cz,
some ¢ — (15.4).)

We tensor ¢(a +b) = ¢(a)d(b), hence e(a(a+b) — a(a) — (b)) = 1. Hence a(a +b) —
a(a) — a(b) = 2rm for some m € Z depending only on a,b. Varying a,b continuously,
m = constant; setting a = b = 0 shows m = 0. O

Proof of (15.4). Given a representation p : S' — C*, it has a compact, hence bounded,
image. This image lies on the unit circle (integral powers of any other complex number
would form an unbounded sequence). Thus p : ST — S? is a continuous homomorphism.

Thus we get a homomorphism R — St 2 +— p(e®), so by (15.6), there exists ¢ € R
with p(e®) = eic®.

Finally, 1 = p(e"®™) = ™, thus ¢ € Z. Putting n = ¢ we have p(z) = 2". O

So pp : U(1l) = C*, z+— 2", (n € Z) give the complete list of irreducible representations of
U(1).

Schur’s Lemma applies — all irreducibles are 1-dimensional (cf. (4.4.)). Clearly their charac-
ters are linearly independent; in fact they are orthonormal under the inner product

27

W)= 5= [ d@uw )

where z = €. Le., ‘averaging over U(1)’. Finite linear combinations of these p,, are the

Fourier polynomials = Z;:_n ampPm; the p, are the Fourier modes.

U(1) is abelian, hence coincides with the space of conjugacy classes

(15.7) Theorem. (i) The functions p,, form a complete list of the irreducible representa-
tions of U(1).

(ii) Every finite-dimensional representation V' of U(1) is isomorphic to a sum of the
pn- Its character Xy is a Fourier polynomial. The multiplicity of p, in V equals

(pn, Xv) (as in (x)).
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Remark. Complete reducibility of a finite-dimensional representation requires invoking
Weyl’s Unitary Trick (3.4") to average over a given inner product using integration on U(1)
— 80 before moving on to SU(2), let’s consider a more general theory of compact groups.

General theory of compact groups
The main tools for studying representations of finite groups are:

e Schur’s Lemma — holds here too

e Maschke’s Theorem. The relevant proof used Weyl’s trick of averaging over GG. Need
to replace summation by integration over compact group G.

Namely, for each continuous function f on G, we have / f(g)dg € C such that:
G

° / is a non-trivial linear functional
G

. / is left /right-invariant, i.e. / flg)dg = / f(hg)dg = / f(gh)dg (h € G)
e} e} G €]
e (G has total volume 1, i.e. / dg=1
G

A (difficult) theorem of Haar asserts that these constraints determine existence and unique-
ness for any compact G. We'll assume it, but for our Lie groups of interest (U(1), SU(2),
etc) there are easier proofs of existence.

(15.8) Examples. (a) G finite. / flg |G| Z flg

geqG

e sl/f Y=o 7 Fe) ds

(c) G=SU(2),2x2C- matmces preserving complex inner product and det = 1.

Le, SU(2) - {(“ﬁ ﬂ) Cuf? + |vf? = 1}.

Identify G' with the unit 3-sphere S® C C? = R* in such a way that left/right
translation by elements of G give isometries on the sphere. With this identification,
translation-invariant integration on G can be taken to be integration over S? with
usual Euclidean measure x1/272 (to normalise).

(d) Embed SU(2) CH = { Z;_ ?) 12 € (C}, the quaternion algebra.
-Z2 Z1
(Actually, it’s a division algebra, so that every non-zero element has an inverse.)
H is a 4-dimensional Euclidean space: ||A|| = Vdet A = (27 + 23 + 23 + 23)/2,
where z1 = 21 4 22, 29 = x3 + ix4, with SU(2) as the unit sphere in this normed
space.

Multiplication (from left or right) by an element of SU(2) is an isometry of H, viz:
(AX,AX)=det AX =detAdet X =det X = (X,X) = (XA, XA),

where A € SU(2).
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Once we have found our translation-invariant integration on the set of continuous functions
on our compact group G, a lot can be proved about the representation theory of G in parallel
with finite groups.

Representations (continuous, finite-dimensional) ~ characters (continuous functions G — C).

Complete reducibility ~ Weyl’s Unitary Trick of averaging over G replaced by integration.

Character inner product: (X, X’) :/ X(g)X'(g)dg (1)
€

X irreducible iff (X, X) = 1.
Moreover,

(15.9) Theorem. For G compact.

(a) Every finite-dimensional representation is a direct sum of irreducible representa-
tions (so completely reducible).

(b) Schur’s Lemma applies: if p, p’ are irreducible representations of G then

C if p is isomorphic to p
n_
Hom(p, pf) = { 0 otherwise

(¢) The characters of irreducible representations form an orthonormal set with respect
to the inner product () above. (The set is infinite, and it is not a basis for the
Hilbert space of all continuous class functions.)

Even showing completeness of characters is hard — needs Peter-Weyl Theorem.

(d) If the characters of p, p’ are equal then p = p'.
(e) If X is a character with (X, X) =1 then X is irreducible.

(f) If G is abelian then all irreducible representations are 1-dimensional.

Note. We don’t have actions on finite sets: the regular representation is infinite-dimensional.
Comment. The only spheres with continuous group homomorphisms are S* (= SO(2)) and
the 3-sphere S? (= SU(3)).

The group SU(2)

Recall G = SU(2) = {(_ag 2) ta,b e Clal* + b2 = 1}.

b
G — S3 — C?=R4, ( E) — (a1, asz,b1,b2). (Homeomorphism, i.e. continuous inverse.)

@Ig

The centre is Z(G) = {xI}.

Define the maximal torus T = {(8 g) :al? = 1} = st
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Conjugacy

(15.10) Proposition. (a) Every conjugacy class C of G = SU(2) meets T, i.e. CNT # .

(b)
(c)

Proof. Let S = <

(a)

Az} i C#{£I}
Infact,CﬁT{ C if C = {£I}

The normalised trace, %tr : SU(2) — C, gives a bijection of the set of G-conjugacy
classes with the interval [—1, 1], namely

11 L A0

I

Picture of ccls: 1
‘ g %tr
2-dim spheres of constant latitude -
on unit sphere, plus the two poles ' 1
—1

Choose z1 = ¢, then 23 + 23 + 23 =1—-¢? s0 —1 <c< 1.
Given ¢ € (—1,1), all matrices g € G have trg = 2c.

0 1

2 _
o O)GG,S — I

Every unitary matrix has an orthonormal basis of eigenvectors, hence is conjugate
in U(2) to something in T', say QX@t erT.

We seek Q with det @ =1 (so that Q € SU(2)).

Let 6 = det @. Since Q@t =1, |6] = 1. If ¢ is a square root of § then Q1 = Q) €
SU(2) (since € = 1/¢), hence QlXEt eT.

Let g € SU(2) and suppose g € Cg. If g=+1 then CNT = {g}.

0 A1

A 0 Ao . by AL
ThuSCﬂT:{(O )\1),( 0 )\)},bynotmgS( )\1)5’:( )\).

Further, if (M Hl) € C then {pu,u= 1} = {N\,A71}, i.e. the eigenvalues are

Otherwise g has distinct eigenvalues A\, A~! and C = {h (A 0 ) h=t:he G}.

preserved under conjugacy.

Consider tr : {ccls} — [~1,1]. By (b) matrices are conjugate in G iff their
eigenvalues agree up to order. Now

Lo (A _ 1 —1y _ _ b
§tr< )\_1>§()\+)\ ) =Re(A\) =cosf (A=¢€")

hence the map is surjective onto [—1,1].
It’s injective: $tr(g) = 3tr (¢') then g, g’ have the same characteristic polynomial,
viz X2 —tr (g)X + 1, hence the same eigenvalues, hence are conjugate. O

Thus we write C; = {g € SU(2) : 3tr (g) = t}.
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Representations
Let V,, be the space of all homogeneous polynomials of degree n in the variables x,y.

Le., V,, = {roz™ + ria" 'y + ... + r,y"}, an (n + 1)-dimensional C-space, with basis

n ,.n—1 n
T, x Y, ..,y

(15.11) GLy(C) acts on V.

First, define p,, : GL2(C) — GL(Vy,) = GLp11(C). Let g = ((cl Z)

pu(9)f(2,y) = flaz + cy,ba + dy) = f((2,y).g) (L., matrix product)

Le., for f =370 rja"Iy’, p(g)f = rolax +cy)™ + ri(az + cy)" (b + dy) + ... +
rn(bx + dy)™.

Check that this defines a representation.
E.g. (a) n=0, pg = trivial

(b) n =1, natural 2-dimensional representation. p; (Z Z) has matrix <CCL Z) with

respect to the standard basis: = +— ax + cy, y — bz + dy.
a b a? cb b2
() n=2,p2 = ( ) has matrix | 2ac ad + bc 2bd | with respect to the stan-
c d 9 9
c cd d
dard basis.
(We have (az + cy)? + (az + cy)(bx + dy) + (bx + dy)?, so the first column is the
coordinate vector of p2(g)z? = (az + cy)? = a’x? + 2acxy + 2y?.)

Characters

@ =@~ (7 a)er

z
Zn—2
So pn (Z zl) has matrix ) with respect to the standard basis.
. .
P ) Zn-i—l _ Z—(n+1)
Hence, X,, = Xy, ( zl) =242V 42 =————— unless 2 ==+
z—z

(15.12) Theorem. The representations p, : SU(2) — GL(V,) of dimension n + 1 are
irreducible for n € Zy.

Proof. Telemann (21.1) shows (X,,, X;,) = 1 (implying X,, irreducible, by (15.9)(e)). We will
use combinatorics. Assume 0 # W < V,,, G-invariant.

Claim. If w = ), rja" 7y’ € W with some r; # 0, then 2"~ 7y? € W.
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Proof of claim. We argue by induction on the number of non-zero r;. If a unique
r; # 0 then it’s clear (multiply by its inverse), so we’ll assume more than one and
choose one.

Pick z € C with 2™,2"2,..., 27" distinct in C.

Now, p, (Z E) w=>r;z" "2z Iyl € W (G-space).

Define w; = py, <Z z_l) w— 2" 2w e W.

Then w; = }; T;z"’jyf and re # 0 & (r; # 0 and j # i). By induction
hypothesis, we have "7y’ € W for all j with (r; # 0 and j # i).

y' =71 (w— Y rja"Iy?) € W, so the claim is proved.

%

Finally, ™~

Now let 0 # w € W. Wlog, w = 2" JyJ. Tt is now easy to find matrices in SU(2), the
action of which will give all the "'y’ € W.

E.g.,
1 /1 -1 o 1 . )
— 2"yt — (e +y)" N (—x+y) =" eW
7 (1 1 ) y \/5( y)"(—x+y)
a 71_7 n n n—i,
( _):x = (ax+by)" — all 2"y e W
b a T
(a,b #0) all coefficients in here # 0
So all basis elements are in W. So W = V,,. O

Next we show that all irreducibles of SU(2) are of the form in (15.12).

Notation. Write No[z,zfl] = { Z amz™ ay, € No}.
And Ny[z, 271]ey = {even Laurent polynomials, i.e. a,, = a_,, for all odd m}.

Let X = Xy be the character of some representation p : G — GL(V). If g € G = SU(2)
then g~¢g (Z zl) for some z € C. So Xy is determined by its restriction to 7', hence
Xy € Nolz, 271] by ().

_1 z 271 z 271
Actually Xy € Ng[z, 27 ey, as Xy 1) = Xy E because 1) ~G .
via S = (_1 1>.

(15.13) Theorem. Every (finite-dimensional, continuous) irreducible representation of G
is one of the p,, : G = GL(V,,) above (n > 0).

Proof. Assume p : G — GL(V) is an irreducible representation affording the character X.
The characters characterise representations (15.9)(d), so it’s enough to show X = X,,
for some n.
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Now Xg =1, X1 =2+ 274 Xog =22+ 14272, ... form a basis of Q[z, 27 ey, hence
X =" anXy, a finite sum with a, € Q.

Clear the denominators and move all summands with negative coefficients to the LHS:

il jeJ
with I, J disjoint finite subsets of N, and m,m;,n; € N.

The left and right hand sides are characters of representations of SU(2):
mV@@mi% = @n]VJ
I J

Since V is irreducible we must have V = V,,, for some n € J. O
So we have found all irreducible representations of G; they are p, : G — GL(V,,) (n # 0)
with V,, the (n + 1)-dimensional space of homogeneous polynomials of degree n in x,y. The
characters of p,, are given by ().
To compute representations we ‘just’ work with characters: as an example we derive a famous
rule for decomposing tensor products.
Tensor product of representations
Recall from section 9: if V, W are G-spaces we have V ® W afforidng Xy gw = Xy Xw.

Examples. Vi @ Vi =V, @ V.

Character = (2 + 2712 =224+ 2+ 22 = (2 +1+2H)+ 1
~———
Va Vo

VieVe=Vsd V.

Character = (2 + 27 1) (22 +14+272) =2+ 2+ 271 +273) + (2 + 271)
(15.14) Theorem (Clebsch-Gordan). V,, @ Vi, = Voym © Vg 2 © ... @ Vjpy_pyy
Proof. Just check that the characters work.

Wlog n > m and prove X, X;n, = Xpgm + Xntm—2+ ... + Xnm.

Zn-i—l _ Z—n—l

Xn(9)Xm(g) = R — i N )

B i Zn+m+1—2j _ ZQj—n—m—l

o< z—z"1
J=0
m

— Z Xn+m—2j
j=0

(The n > m ensures no cancellations in the sum.) O
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Some SU(2)-related groups

Check (see Telemann 22.1, and Examples Sheet 4 Question 6):

e SO(3) = SU(2)/{£I}
o SO(4) = SU(2) x SUQ)/{£(I, 1)} (%)
o U(2) 2= U(1) x SU(2)/{£(I,1)}

(Isomorphisms, but actually homeomorphisms.)

So continuous representations of these groups are the same as continuous representations of
SU(2) and SU(2) x SU(2), respectively, which send —T and (—I, —I) to the identity matrix.

(15.15) Corollary. The irreducible representations of SO(3) are precisely pa,, : SO(3) —
GL(Vam) (m > 0).

Remarks. (a) We get precisely those V;, with —id in the kernel of the action, and —id acts
onV,, as

(b) V4 is the standard 3-dimensional representation of SO(3). (The only 3-dimensional
representation in the list.)

(c*) For SO(4) the complete list is py, ® pr, (M, 1 >
For U(2) the list is det®™ ®p,, (m,n € Z, n
1-dimensional (see Telemann 22.9).

0, m = n(2)) (see Telemann 22.7).
> 0) where det : U(2) — U(1) is

Sketch proof of () Recall from (15.8)(d) that SU(2) C H =2 R* can be viewed as the space
of unit norm quaternions. We also saw that multiplication from the left (and right) by
elements of SU(2) gives isometries of H. The left/right multiplication action of SU(2)
gives a homomorphism ¢ : SU(2) x SU(2) — SO(4), (g,h) — {0 : ¢+ ggh™1}.

Kernel. (g,h) sends 1 € H to gh™!, so (g,h) fixes the identity iff g = h, i.e. G =
{(9.9) : g € SU(2)} = stabsy(2)xsu(2)(1)-

Now (g, g) fixes every other quaternion iff g € Z(SU(2)), i.e. g = £id. Thus ker¢ =

{£(1,1)}.

Surjective and homeomorphic (i.e. inverse map is continuous). Restricting the
left /right action to G (the diagonal embedding of SU(2)) give the conjugation action
of SU(2) on the space of ‘pure quaternions’, (i, j, k)r (the trace 0 skew-Hermitian 2 x 2
matrices). So get a 3-dimensional Euclidean space on which G acts, and ¢(G) < SO(3).

#(G) = SO(3). Rotations in (Z,j)-plane implemented by a + bk, similarly with any
permutations of i, j, k, and these rotations generate SO(3) (see some Geometry course).
So we have a surjective homomorphism SU(2) — SO(3), and we know that ker =
{#£id}. The result follows.

Homeomorphism. Prove it directly or ‘recall’ the fact that a continuous bijection
from a compact space to a Hausdorff space is a homeomorphism (Sutherland 5.9.1)

54



Further worked example
Sn, GLo(Fy), Hp.

We consider Heisenberg groups. For p prime, the abelian groups of order p? are Cps, Cp2 x Cy,
Cp x Cp x Cyp, and their character tables can be constructed using (4.5).

Suppose G is any non-abelian group of order p3. Let Z = Z(G), then it’s well-known that
Z # 1 and G/Z is non-cyclic, i.e. G/Z = C), x C, and Z = C),.

1 *x =k
Take G = H, = 0 1 *x]:%¢cTF, >, the modular Heisenberg group.

0 0 1

We take p odd (else G = Dg or Qs).

Have Z = (z), z =

o O =

0
1
0

—_O

1 10 100
Witha= (0 1 O0Jandb=1]0 1 1], [a,b=zand G'=Z.
0 0 1 0 0 1

There are p? linear characters (of degree 1) (recall G/G’ = C, x C,), and (p — 1) characters
of degree p, induced from the 1-dimensional characters of the abelian subgroup

1 x =k
(a,z) = 0 1 0
0 0 1
2
of order p~.

Conjugacy classes
p conjugacy classes of size 1. The rest have size p and there are p? — 1 such classes.

We’ll show that the character table of H), looks like

+— p central ccls — | < p?—1 ccls each of size p —
1z ... Pt a ab .. a" !
1 1 .. 1
p? linear 1 1 ... 1 char. table of
characters : . . . Cp x Cp lifted
1 1 ... 1
p  pw
—1ch
p b dc aracters p p % char. O
of degtee p table of C,,
p
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More formally,
e 7 = (z) gives p conjugacy classes of size 1: {1}, {z}, ..., {zP~1}.
e G/Z=(aZ,bZ)={a'¥Z:0<i<p—1,0<j<p—1}.
So, in particular, every element of G is of the form a’b?2%, 0 < i,j,k, <p — 1.

e the p?—1 conjugacy classes of size p are C(a’b’) = {a’b’2* : 0 < k < p—1, (i,5) # (0,0)}.

For aba™'b=' =z : aba™' = zb (= bz as z central)
bab=! = az~!

= aa'tla”! =a'(aba=t) = a'bizl .
ba'bib=t = (bab= 1)t = a'bi 27"

Le., any conjugate of a'b’ is some a’b’z*, as above.

Irreducible characters

(15.16) Theorem. As above, let G = {a’b’2* : 0 < i,5,k < p — 1} be a non-abelian group
of order p3. Write w = e2™/P ¢ tp. Then the irreducible characters of G are:

Xuw (0<u,v<p—1) (p* of degree 1)
¢  (A<u<p—1) (p?>—1 of degree p

where for all i, j, k,

Xuo(@bish) = wit
uk; . . .
ik pw ifi=7=0
Pu(a’h’z") { 0 otherwise

Proof. First, the p® linear characters. The irreducible characters of G** = G/G' = G/Z =
Cp x Cp are ¢y, ,(a'b? Z) = w™tY (0 < u,v < p—1). The lift to G of 9, , is precisely
Xu,v-

Next, the p — 1 characters of degree p.
1 *x %
Now, H = 0 1 0] :*%eF,p =(a,z)is anormal abelian subgroup of index p.
0 0 1
Let 9, be a character of H defined as ¥, (a’z¥) = w** (0 < k < p — 1), and calculate
Y%, Choose transversal {1,b,...,0P"} of H in G.
VG (a'2%) = hulal) + b (a’2) + ...+ uaizP™h)

p—1
= y(d’) Zz/;u(/) (as homomorphic)
o
— e S = 0
r=0
G (k) = Z 1Zu(bjzkb_j) = phu(2¥) = pw™, and ¥, (g) = 0 for all g ¢ H.
J

Thus %S = ¢,,.

56



Finally,

bundn) = = 3 0@oul0) = = 3 Gul@)ulg)

p geG p geZ
—1
1% 1
- D N D !
p k=0 p z

O
Remarks. 1. Alternative is to apply Mackey (12.6).

2. Typically for p-groups: any irreducible representation is induced from a 1-dimen-
sional representation of some subgroup (Telemann, chapter 17).

3. For p odd, in fact there are two non-abelian groups of order p:

Gy ={a,b:a?” =b° =1,b"'ab = aP™!) with Z = (aP)
Gy = (a,b,z:aP =bP = 2P = 1,az = za,bz = zb,b~tab = az) with Z = ()
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PART II REPRESENTATION THEORY
SHEET 1

Unless otherwise stated, all groups here are finite, and all vector spaces are finite-dimensional
over a field F' of characteristic zero, usually C.

1  Let p be a representation of the group G.

(a) Show that d : g — det p(g) is a 1-dimensional representation of G.

(b) Prove that G/ ker ¢ is abelian.

(c) Assume that §(g) = —1 for some g € G. Show that G has a normal subgroup of
index 2.

2 Let # : G — F* be a 1-dimensional representation of the group G, and let p : G —
GL(V') be another representation. Show that 0®p : G —-GL(V) given by 0®p : g — 0(g)-p(g)
is a representation of (G, and that it is irreducible if and only if p is irreducible.

3  Let G be the alternating group A4. Find all the degree one representations of G over F'
for:
(a)
(b)
(c) F =7/37.
[Hint: you can use the fact that the Klein 4-group V' = {1, (1,2)(3,4), (1, 3)(2,4), (1,4)(2,3)}
is the unique normal subgroup of A, (apart from the trivial subgroup and Ay itself).]
Now let G = D;, the symmetry group of a regular hexagon. Let a € GG be a rotation

through /3 anticlockwise, and let b € G be a reflection, so that G = {a’,a’b : 0 < i < 5}.
Let A, B,C, D €GLy(C) be the matrices

™3 0 1 V3 1 0
_ _ _ 2 _
A‘( 0 e”/3>’B_<10)’C_<_2 1 ’D_(O—l)'

Each of the following is a (matrix) representation of G over C (you need not verify this):
p1:a’b’ — A"B®.
po :a"b® — A3 (—B).
p3:a'b®— (—A)B".
py:a’ b’ — C"D?.
Which of these are faithful? Which are equivalent to one another?

F=C,
F =TR;

| [
B

4  (Counterexamples to Maschke’s Theorem)

(a) Let F'G denote the regular F'G-module (i.e. the permutation module coming from
the action of G on itself by left multiplication), and let F' be the trivial module. Find all
the F'G-homomorphisms from F'G to F' and vice versa. By considering a submodule of F'G
isomorphic to F', prove that whenever the characteristic of F' divides the order of GG, there is
a counterexample to Maschke’s Theorem.

(b) Find an example of a representation of some finite group over some field of charac-
teristic p, which is not completely reducible. Find an example of such a representation in
characteristic 0 for an infinite group.



2 PART II REPRESENTATION THEORY SHEET 1

5 Let N be a normal subgroup of the group G. Given a representation of the quotient
G/N, use it to obtain a representation of G. Which representations of G do you get this way?

Recall that the derived subgroup G’ of GG is the unique smallest normal subgroup of G
such that G/G’ is abelian. Show that the 1-dimensional complex representations of G are
precisely those obtained from G/G’.

6  Let G be a cyclic group of order n. Decompose the regular representation of GG explicitly
as a direct sum of 1-dimensional representations, by giving the matrix of change of coordinates
from the natural basis {e,},cc to a basis where the group action is diagonal.

7  Let G be the dihedral group D;( of order 10,

Dy = (x,y : 2°=1=¢ yoy™' =27").
Show that G has precisely two 1-dimensional representations. By considering the effect of y
on an eigenvector of x show that any complex irreducible representation of G' of dimension

at least 2 is isomorphic to one of two representations of dimension 2. Show that all these
representations can be realised over R.

8 Let G be the quaternion group Q)g of order 8,

Qs = (m,y|at =1, =27 yay ' =a71).
By considering the effect of y on an eigenvector of x show that any complex irreducible
representation of G' of dimension at least 2 is isomorphic to the standard representation of
Qg of dimension 2.
Show that this 2-dimensional representation cannot be realised over R; that is, (g is not
a subgroup of GLy(R).

9  State Schur’s lemma.
Show that if G is a finite group with trivial centre and H is a subgroup of G with
non-trivial centre, then any faithful representation of G is reducible on restriction to H.

10 Let G be a subgroup of order 18 of the symmetric group Sg¢ given by
G = ((123), (456), (23)(56)).

Show that G has a normal subgroup of order 9 and four normal subgroups of order 3. By
considering quotients, show that G has two representations of degree 1 and four inequivalent
irreducible representations of degree 2. Deduce that G has no faithful irreducible representa-
tions.



PART II REPRESENTATION THEORY SHEET 1 3

11 In this question work over the field F' = R.

Let G be the cyclic group of order 3.

(a) Write the regular RG-module as a direct sum of irreducible submodules.

(b) Find all the RG-homomorphisms between the irreducible RG-modules.

(c) Show that the conclusion of Schur’s Lemma (‘every homomorphism from an irre-
ducible module to itself is a scalar multiple of the identity’) is false if you replace C by
R.

From now on let G be a cyclic group of order n. Show that:

(d) If n is even, the regular RG-module is a direct sum of two (non-isomorphic) 1-
dimensional irreducible submodules and (n—2)/2 (non-isomorphic) 2-dimensional irreducible
submodules.

(e) If n is odd, the regular RG-module is a direct sum of one 1-dimensional irreducible
submodule and (n — 1)/2 (non-isomorphic) 2-dimensional irreducible submodules.

[Hint: use the fact that RG C CG and what you know about the regular CG-module
from question 6.]

12 Show that if p is a homomorphism from the finite group G to GL,(R), then there is a
matrix P €GL,(R) such that Pp(g)P~! is an orthogonal matrix for each g € G. (Recall that
the real matrix A is orthogonal if A'A =1.)

Determine all finite groups which have a faithful 2-dimensional representation over R.

SM, Lent Term 2011
Comments on and corrections to this sheet may be emailed to sm@dpmms . cam.ac.uk



PART II REPRESENTATION THEORY
SHEET 2

Unless otherwise stated, all groups here are finite, and all vector spaces are finite-dimensional
over a field F' of characteristic zero, usually C.

1 Let p: G -GL(V) be a representation of G of dimension d, and affording character .
Show that kerp = {g € G | x(9) = d}. Show further that |x(g)| < d for all g € G, with
equality only if p(g) = A, a scalar multiple of the identity, for some root of unity .

2 Let x be the character of a representation V of G and let g be an element of G. If g is
an involution (i.e. g = 1 # g), show that x(g) is an integer and x(g) = x(1) mod 2. If G is
simple (but not Cy), show that in fact x(g) = x(1) mod 4. (Hint: consider the determinant
of g acting on V.) If g has order 3 and is conjugate to g~', show that x(g) = x(1) mod 3.

3  Construct the character table of the dihedral group Dg and of the quaternion group Qs.
You should notice something interesting.

4  Construct the character table of the dihedral group D1p.

Each irreducible representation of Dy may be regarded as a representation of the cyclic
subgroup C5. Determine how each irreducible representation of Dy decomposes into irre-
ducible representations of Cs.

Repeat for D15 = S3 x (5 and the cyclic subgroup Cg of Dys.

5  Construct the character tables of Ay, Sy, Sy, and As.

The group S, acts by conjugation on the set of elements of A,. This induces an action
on the set of conjugacy classes and on the set of irreducible characters of A,,. Describe the
actions in the cases where n =4 and n = 5.

6  The group My is a certain subgroup of the symmetric group Sy generated by the two
elements (1,4, 9,8)(2,5,3,6) and (1,6,5,2)(3,7,9,8). You are given the following facts about
Mgi

e there are six conjugacy classes:

— (; contains the identity.

— For 2 < i < 4, |C;| = 18 and C; contains g;, where go = (2,3,8,6)(4,7,5,9), g5 =
(2,4,8,5)(3,9,6,7) and g4 = (2,7,8,9)(3,4,6,5).

— |C5| =9, and C} contains g5 = (2,8)(3,6)(4,5)(7,9)

— |Cs| = 8, and C§ contains gs = (1,2,8)(3,9,4)(5,7,6).

e every element of My is conjugate to its inverse.

Calculate the character table of My. [Hint: You may find it helpful to notice that

95 =95 =9i = g5.|
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7 A certain group of order 720 has 11 conjugacy classes. Two representations of this group
are known and have corresponding characters o and S. The table below gives the sizes of the
conjugacy classes and the values which o and g take on them.

1 15 40 90 45 120 144 120 90 15 40
« 6 2 0 0 2 2 1 1 0 -2 3
B2 1 -3 -1 1 1 1 0 -1 -3 0

Prove that the group has an irreducible representation of degree 16 and write down the
corresponding character on the conjugacy classes.

8 The table below is a part of the character table of a certain finite group, with some
of the rows missing. The columns are labelled by the sizes of the conjugacy classes, and
v = (=1+1iV7)/2, { = (=1 +14+/3)/2. Complete the character table. Describe the group in
terms of generators and relations.

13377
x1 111 ¢ ¢
x2 3 vy 00
x3 3y v 00

9 Let x be an element of order n in a finite group G. Say, without detailed proof, why

(a) if y is a character of G, then x(x) is a sum of nth roots of unity;

(b) 7(z) is real for every character 7 of G if and only if z is conjugate to z~';

(c) x and z~! have the same number of conjugates in G.

Prove that the number of irreducible characters of G which take only real values (so-
called real characters) is equal to the number of self-inverse conjugacy classes (so-called real
classes).

A group of order 168 has 6 conjugacy classes. Three representations of this group are
known and have corresponding characters «, 8 and . The table below gives the sizes of the
conjugacy classes and the values «, § and ~ take on them.

1 21 42 56 24 24
a 14 2 0 -1 0 0
B 15 -1 -1 0 1 1
v 16 0 0 -2 2 2

Construct the character table of the group.
[You may assume, if needed, the fact that v/7 is not in the field Q(¢), where ( is a primitive
7th root of unity.]

10 Let a finite group G act on itself by conjugation. Find the character of the corresponding
permutation representation.

11 Consider the character table Z of G as a matrix of complex numbers (as we did when
deriving the column orthogonality relations from the row orthogonality relations).

(a) Using the fact that the complex conjugate of an irreducible character is also an
irreducible character, show that the determinant det Z is +det Z, where Z is the complex
conjugate of Z.

(b) Deduce that either det Z € R or i.det Z € R.

(c) Use the column orthogonality relations to calculate the product Z7Z, where Z7 is
the transpose of the complex conjugate of Z.

(d) Calculate |det Z]|.
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12 The character table obtained in Question 9 is in fact the character table of the group
G =PSLy(7) of 2 x 2 matrices with determinant 1 over the field F; (of seven elements) modulo
the two scalar matrices.

Deduce directly from the character table which you have obtained that G is simple.

[Comment: it is known that there are precisely five non-abelian simple groups of order
less than 1000. The smallest of these is A5 =PSLy(5), while G is the second smallest. It is
also known that for p > 5, PSLy(p) is simple.]

Identify the columns corresponding to the elements x and y where x is an element of
order 7 (eg the unitriangular matrix with 1 above the diagonal) and y is an element of order
3 (eg the diagonal matrix with entries 4 and 2).

The group G acts as a permutation group of degree 8 on the set of Sylow 7-subgroups
(or the set of 1-dimensional subspaces of the vector space (F7)?). Obtain the permutation
character of this action and decompose it into irreducible characters.

Show that the group G is generated by an element of order 2 and an element of order 3
whose product has order 7.

[Hint: for the last part use the formula that the number of pairs of elements conjugate to x
and y respectively, whose product is conjugate to ¢, equals ¢>_ x(z)x(y)x(t™1)/x(1), where
the sum runs over all the irreducible characters of G, and ¢ = |G|*(|Cq(2)||Cq(y)||Ca(t)]) 7]
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PART II REPRESENTATION THEORY
SHEET 3

Unless otherwise stated, all groups here are finite, and all vector spaces are finite-dimensional
over a field F' of characteristic zero, usually C.

1  Recall the character table of S, from Sheet 2. Find all the characters of S5 induced from
the irreducible characters of S;. Hence find the complete character table of Ss.
Repeat, replacing S, by the subgroup ((12345), (2354)) of order 20 in Ss.

2 Recall the construction of the character table of the dihedral group Dy of order 10 from
Sheet 2.

(a) Use induction from the subgroup Dio of A5 to As to obtain the character table of
As.

(b) Let G be the subgroup of SLy(F5) consisting of upper triangular matrices. Compute
the character table of GG.

Hint: bear in mind that there is an isomorphism G/Z — Dy.

3 Let H be a subgroup of the group G. Show that for every irreducible representation
p for G there is an irreducible representation p’ for H with p a component of the induced
representation Ind$ o/

Prove that if A is an abelian subgroup of G then every irreducible representation of G
has dimension at most |G : Al.

4  Obtain the character table of the dihedral group D, of order 2m, by using induction
from the cyclic subgroup C,,. [Hint: consider the cases m odd and m even separately, as for
m even there are two conjugacy classes of reflections, whereas for m odd there is only one.]

5  Prove the transitivity of induction: if H < K < G then
Ind$ Ind% p = Ind%p

for any representation p of H.

6

(a) Let V.= U @& W be a direct sum of CG-modules. Prove that both the symmetric
square and the exterior square of V' have submodules isomorphic to U ® W.

(b) Calculate x5z, and xs2,, where p is the irreducible representation of dimension 2 of
Dg: repeat this for (Jg. Which of these characters contains the trivial character in the two
cases?

7 Let p: G —GL(V) be a representation of G of dimension d.

(a) Compute the dimension of S"V and A"V for all n.

(b) Let g € G and let Aq,..., \q be the eigenvalues of g on V. What are the eigenvalues
of g on S™V and A"V?

(c) Let f(x) = det(g — zI) be the characteristic polynomial of g on V. Describe how to
obtain the trace xany(g) from the coefficients of f(z).

(d)* Find a relation between xgny (g) and the polynomial f(z). [Hint: first do the case
when dim V' = 1]
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8 Let G be the symmetric group S, acting naturally on the set X = {1,...,n}. For any
integer r < 7, write X, for the set of all r-element subsets of X, and let m, be the permutation
character of the action of G on X,. Observe m,(1) = [X,| = (7). If 0 < £ < k < n/2, show
that

(T, mg) = €+ 1.
Let m = n/2 if n is even, and m = (n — 1)/2 if n is odd. Deduce that S, has distinct
irreducible characters y(™ = 1, 0D, y(=22)  y(=mm) guch that for all r < m,

T, = X(n) + X(n—l,l) + X(n—2,2) N X(n—r,r)‘

In particular the class functions 7, — m,_; are irreducible characters of S, for 1 < r < n/2
n—r,r)

and equal to x( :

9 If p: G —-GL(V) is an irreducible complex representation for G affording character y,
find the characters of the representation spaces V ® V, Sym?(V) and A%(V).
Define the Frobenius-Schur indicator vx of x by

1 2
LX:|—G|ZX(CU)

zelG
and show that

| 0, if x is not real-valued
XTI £, i X is real-valued.
[Remark. The sign +, resp. —, indicates whether p(G) preserves an orthogonal, respectively,
symplectic form on V', and whether or not the representation can be realised over the reals.

You can read about it in Isaacs or in James and Liebeck.]

10 If 0 is a faithful character of the group GG, which takes r distinct values on G, prove that
each irreducible character of G is a constituent of # to power ¢ for some ¢ < r.

[Hint: assume that (x,6) = 0 for all ¢ < r; use the fact that the Vandermonde r x r matrix
involving the row of the distinct values ay, ..., a, of 6 is nonsingular to obtain a contradiction.

11 Construct the character table of the symmetric group S¢. Identify which of your char-
acters are equal to the characters y(©, y(®1) (%2 (33) constructed in question 8.

12 Show by induction on n that if the symmetric group S, with n > 5 has a complex
irreducible representation p of dimension d < n then one of the following holds:
(i) d =1, and p is either the trivial representation 1 or the sign representation o;
(ii) d = n — 1 and either 1 @ p or 1 @ op is the natural permutation representation;
(i) n=5and d=5(=n)orn==6 and d =5(=n—1).
[Hint: Restrict p to S,_s X Sa; it becomes reducible, unless it is linear; now use induction -
what do linear representations of S, _s X Sy get induced to?]
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PART II REPRESENTATION THEORY
SHEET 4

Unless otherwise stated, all vector spaces are finite-dimensional over C. In the first nine
questions we let G = SU(2).

1 (a) Let V,, be the vector space of complex homogeneous polynomials of degree n in the
variables = and y. Describe a representation p, of G on V,, and show that it is irreducible.
Describe the character x,, of p,.

(b) Decompose V; ® V3 into irreducible G-spaces (that is, find a direct sum of irreducible
representations which is isomorphic to V; ® V3. In this and the following questions, you are
not being asked to find such an isomorphism explicitly.)

(c) Decompose also Va2, A%Vz and S?Vs.

(d) Show that V,, is isomorphic to its dual V*.

2 Decompose V" into irreducibles.

3  Determine the character of S™V; for n > 1.
Decompose S?V,, and A?V,, for n > 1.
Decompose S?V; into irreducibles.

4  Let G act on the space M3(C) of 3 x 3 complex matrices, by
A X = AXAT

where A; is the 3 x 3 block diagonal matrix with block diagonal entries A, 1. Show that this
gives a representation of G and decompose it into irreducibles.

5  Let x, be the character of the irreducible representation p, of G on V,.

Show that
1 27

P K (2)XnXmdl = 0pm,
o /. (2)xnX
where z = € and K(z) = 1(z — 27 1) (27! = 2).
[ Note that all you need to know about integrating on the circle is orthogonality of characters:

% f027r 2"df = 0,,9. This is really a question about Laurent polynomials. |

6 (a) Let G be a compact group. Show that there is a continuous group homomorphism
p: G —0(n) if and only if G has an n-dimensional representation over R. Here O(n) denotes
the subgroup of GL, (R) preserving the standard (positive definite) symmetric bilinear form.
(b) Explicitly construct such a representation p : SU(2) — SO(3) by showing that SU(2) acts
on the vector space of matrices of the form

{A_ ( i _ba > eMz(C);A+E_o}
by conjugation. Show that this subspace is isomorphic to R3, that (A, B) — —tr(AB) is a

positive definite non-degenerate invariant bilinear form, and that p is surjective with kernel
{£I}.
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7  Check that the usual formula for integrating functions defined on S® C R* defines an
G-invariant inner product on

G_SU(Q)_{( N 2) :aa+b5_1},

and normalize it so that the integral over the group is one.

8  Suppose we are given that H is a subgroup of order 24 in G. We are told that H contains
{#£I} as a normal subgroup, and that the quotient group H/{41} is isomorphic to A,. Find
the character table of H. [You may assume that H has a conjugacy class containing six
elements of order 4, two conjugacy classes each containing four elements of order 3, and two
conjugacy classes each containing four elements of order 6.]

9 Compute the character of the representation S™V, of G for any n > 0. Calculate
dime(S"V5)¢ (by which we mean the subspace of S"V, where G acts trivially).

Deduce that the ring of complex polynomials in three variables x, y, z which are invariant
under the action of SO(3) is a polynomial ring. Find a generator for this polynomial ring.

10 The Heisenberg group of order p? is the (non-abelian) group

1 a x
G = 01 b ca,b,x €T,
0 0 1

of 3 x 3 upper unitriangular matrices over the finite field F, of p elements (p prime).

Show that G has p conjugacy classes of size 1, and p? — 1 conjugacy classes of size p.

Find p? characters of degree 1.

Let H be the subgroup of G comprising matrices with a = 0. Let ¢ : F, — C* be a non-
trivial 1-dimensional representation of the cyclic group I, = Z/p, and define a 1-dimensional
representation p of H by

p U().

o O =

O = O

Al
I

Check that V,, = Ind%p is irreducible.
Now list all the irreducible representations of GG, explaining why your list is complete.

11 Recall Sheet 3, q.8 where we used inner products to construct some irreducible characters
") for S,,. Let n € N, and let  be the set of all ordered pairs (i, j) withi,j € {1,2,...,n}
and i # j. Let G = S, act on  in the obvious manner (namely, o(i,7) = (0i,07) for o € S,,).
Let’s write 7(®=211 for the permutation character of S, in this action.
Prove that
7_(_(n—2,1,1) -1+ 2X(n—1,1) + X(n—272) + w’

where 9 is an irreducible character. Writing ¢ = x®~251 | calculate the degree of y ("~
Find its value on any transposition and on any 3-cycle. Returning to the character table of
Se calculated on Sheet 3 q.11, identify the character x5,

1,1)
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