
Jacobians

Suppose we wish to integrate

∫

A

cos(x2+y2) dA, where A is the region between two quarter-circles:

✲

✻

.

......................

......................

......................

......................

.....................

.....................

.....................

.....................

......................

......................
......................

......................

.

................

.................

.................

................

................

.................
.................

................ A

1 2 x

y

We decide to change to polar coordinates, by setting x = r cos θ, y = r sin θ.

The integrand transforms from cos(x2 + y2) to cos r2.

The region above satisfies r ∈ [1, 2] and θ ∈ [0, π
2 ], which gives a much nicer shape if we draw axes

labelled with r and θ, as we see:
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So the limits of the integral will now be much easier. But we must also remember to introduce the
Jacobian, which is the determinant of a matrix of partial derivatives:
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cos θ −r sin θ
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= r(cos2 θ + sin2 θ) = r

We then declare that dx dy = |J | dr dθ = r dr dθ, and obtain

∫

A

cos(x2 + y2) dA =

∫ 2π

0

∫ 2

1

(cos r2) r dr dθ

which we can now do more easily.

So, what was going on? What did the change of variables really do, and what did the Jacobian do?

It is common to think of the change of variables procedure as ‘transforming from x, y into r, θ’,
since we were initially in the x, y world, and we ended up in the r, θ world. However, it is better to
think of this transformation as going the other way – or rather, ‘having come from the other way’.

While we initially had expressions in x, y, we then wrote ‘x = r cos θ, y = r sin θ’, so we were
declaring x, y to be functions of r, θ. In other words, in some sense, we were assuming that there
were some r, θ already lying around, and we were defining x, y in terms of them.

With this view in mind, we could think of the change of variables as ‘pulling back’ from the x, y
world into the r, θ world.

Let us now think about how the integration process changes. The integral can be approximated by
subdividing the region of integration into little boxes and estimating the value of the function in
that region. We multiply this estimate by the area of the little box to find the contribution to the
integral, and then we add up all of the contributions.
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When we change variables, the estimate of the value of the function is easy: in the above example
we just turned cos(x2 + y2) into cos(r2). However, what happens to the little box? We need to
know how the area of this changes in order to make the above approximation. This is the role of
the Jacobian.

We have the following (with the ‘pulling back’ idea meaning that we’ll draw the r, θ picture first):
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In the r, θ picture, the little boxes have nice dimensions, say they’re δr × δθ. Over in the x, y
picture, these boxes have distorted. Notice, however, that these ‘boxes’ all have one dimension the
same: their ‘depth’ (i.e., as measured outwards from the origin) is constant, and is still δr. But
their ‘width’ increases as we move outwards – it is proportional to the distance we move away from
the origin, and so turns out to be r δθ. So these new ‘boxes’ have area roughly equal to r δr δθ (if
we pretend they’re rectangles, that is).

We obtain a fairly plausible justification of the Jacobian rule that the x, y world dA equals r dr dθ.

Can we prove this more rigorously?

Take one small box in the r, θ world, of sides δr and δθ, with bottom-left corner at (r0, θ0).

We change variables, defining x = x(r, θ) and y = y(r, θ). (We know what the actual functions are
in our example, of course, but let’s be more general.)
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We approximate the sides of this new ‘box’. Consider the right-most point. Its x-coordinate is:

x(r0 + δr, θ0) = x(r0, θ0) +
∂x

∂r
δr + . . .

where we have used a Taylor series expansion in the first component.

Similarly, its y coordinate is

y(r0 + δr, θ0) = y(r0, θ0) +
∂y

∂r
δr + . . .

Hence the bottom-right edge can be approximated as the vector

(

x(r0 + δr, θ0), y(r0 + δr, θ0)
)

−
(

x(r0, θ0), y(r0, θ0)
)

≈

(

∂x

∂r
,
∂y

∂r

)

δr

Next, consider the left-most point. Its x-coordinate is:

x(r0, θ0 + δθ) = x(r0, θ0) +
∂x

∂θ
δθ + . . .
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where we have used a Taylor series expansion in the second component.

Similarly, its y coordinate is

y(r0, θ0 + δθ) = y(r0, θ0) +
∂y

∂θ
δθ + . . .

Hence the bottom-left edge can be approximated as the vector

(

x(r0, θ0 + δθ), y(r0, θ0 + δθ)
)

−
(

x(r0, θ0), y(r0, θ0)
)

≈

(

∂x

∂θ
,
∂y

∂θ

)

δθ

Now that we have estimates for these two vectors, we can approximate the area of the new box.
Treating it as roughly a parallelogram (it doesn’t look like it in the picture, but for very small δr
and δθ it will be a better match), we can use the ‘two-dimensional vector product’ to find the area.
Namely:

δA ≈

∣
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∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

∣

∣

∣

∣

δr δθ

Hence, taking the limit, we obtain dA = |J | dr dθ, with this determinant above being precisely the
Jacobian.

(Why do we take the modulus of the determinant, and use |J | rather than J? We want to estimate
the area of the little boxes. One way to guarantee this is to use |J | for the scale factor, and to
promise that we always integrate from ‘low to high’, so that we really are doing δr × δθ, and not
accidentally −δr × δθ.)

And finally, we see how the change of variables takes effect. Let us return to our example. To
picture what happens, let’s imagine the process in terms of approximations and sums. (Although,
of course, when integrating we don’t really go via sums.)

In the x, y world, we have

∫

A

cos(x2 + y2) dA.

We approximate this as a sum,
∑

A-boxes

cos(x2 + y2) δA.

We ‘pull back’ into the r, θ world, giving
∑

A′-boxes

(cos r2) |J | δr δθ.

And we return to an integral,

∫

A′

(cos r2) r dr dθ.

The same process works in three dimensions, with little change. The transformation now turns
little cubes into distorted little ‘cubes’, whose sides we estimate as above, and whose volume we
estimate with a 3× 3 determinant.

Exercise

After the first pictures on page 2, there was an informal justification for why the plane polar
Jacobian was r, by observing that the sides of the new boxes were δr and r δθ. It should be clear
from a similar picture that in three-dimensional cylindrical coordinates, the new boxes have sides
δr, r δθ and δz, confirming that the Jacobian there is also r.

Convince yourself that the spherical polar Jacobian is indeed r2 sin θ, by reasoning what the sides
of the new boxes are – i.e., what multiples of δr, δθ, δφ.

Please let me know of any corrections: glt1000@cam.ac.uk
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