
Green’s theorem in the plane

Green’s theorem in the plane. For functions P (x, y) and Q(x, y) defined in R
2, we have
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where C is a simple closed curve bounding the region A.

Vector Calculus is a “methods” course, in which we apply these results, not prove them.
Here is a sketch proof.

We’ll show that
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Assume that R has “nice y-ranges”, in the sense that for each fixed x, the range of y-
integration is an interval, say [y
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where Ct, Cb are the top and bottom parts of C. (Remember that C is traversed anticlock-
wise.)

Similarly, assume R has “nice x-ranges”, i.e., that for each fixed y, the range of x-integration
is an interval, say [x

−
(y), x+(y)]. Let the range of y-integration be [y

−
, y+].
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where Cl, Cr are the left and right parts of C.

Combining these two calculations gives the required answer for A.

Any fairly nice A can be subdivided into such nice regions. When summing the path subin-
tegrals, all internal edges cancel out, leaving the integral around the outer boundary C.
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