Green's theorem in the plane

Green's theorem in the plane. For functions P(x,y) and Q(x,y) defined in \mathbb{R}^2 , we have

$$\oint_C (P \, dx + Q \, dy) = \iint_A \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy$$

where C is a simple closed curve bounding the region A.

Vector Calculus is a "methods" course, in which we apply these results, not prove them. Here is a sketch proof.

We'll show that
$$\iint_A \frac{\partial P}{\partial y} dx dy = -\oint_C P dx$$
, and $\iint_A \frac{\partial Q}{\partial x} dx dy = \oint_C Q dy$.

Assume that R has "nice y-ranges", in the sense that for each fixed x, the range of y-integration is an interval, say $[y_-(x), y_+(x)]$. Let the range of x-integration be $[x_-, x_+]$. Then

$$\iint_{A} \frac{\partial P}{\partial y} dx dy = \int_{x_{-}}^{x_{+}} \left(\int_{y_{-}(x)}^{y_{+}(x)} \frac{\partial P}{\partial y} dy \right) dx
= \int_{x_{-}}^{x_{+}} P(x, y_{+}(x)) - P(x, y_{-}(x)) dx
= -\int_{x_{-}}^{x_{+}} P(x, y_{-}(x)) dx - \int_{x_{+}}^{x_{-}} P(x, y_{+}(x)) dx
= -\int_{C_{b}} P(x, y) dx - \int_{C_{t}} P(x, y) dx
= -\oint_{C} P(x, y) dx$$

where C_t , C_b are the top and bottom parts of C. (Remember that C is traversed anticlockwise.)

Similarly, assume R has "nice x-ranges", i.e., that for each fixed y, the range of x-integration is an interval, say $[x_-(y), x_+(y)]$. Let the range of y-integration be $[y_-, y_+]$.

$$\iint_{A} \frac{\partial Q}{\partial x} dx dy = \int_{y_{-}}^{y_{+}} \left(\int_{x_{-}(y)}^{x_{+}(y)} \frac{\partial Q}{\partial x} dx \right) dy$$

$$= \int_{y_{-}}^{y_{+}} Q(x_{+}(y), y) - Q(x_{-}(y), y) dy$$

$$= \int_{y_{-}}^{y_{+}} Q(x_{+}(y), y) dy + \int_{y_{+}}^{y_{-}} Q(x_{-}(y), y) dy$$

$$= \int_{C_{l}} Q(x, y) dy + \int_{C_{r}} Q(x, y) dy$$

$$= \oint_{C} Q(x, y) dy$$

where C_l , C_r are the left and right parts of C.

Combining these two calculations gives the required answer for A.

Any fairly nice A can be subdivided into such nice regions. When summing the path subintegrals, all internal edges cancel out, leaving the integral around the outer boundary C.