## Green's theorem in the plane

Green's theorem in the plane. For functions $P(x, y)$ and $Q(x, y)$ defined in $\mathbb{R}^{2}$, we have

$$
\oint_{C}(P d x+Q d y)=\iint_{A}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

where $C$ is a simple closed curve bounding the region $A$.
Vector Calculus is a "methods" course, in which we apply these results, not prove them. Here is a sketch proof.

We'll show that $\iint_{A} \frac{\partial P}{\partial y} d x d y=-\oint_{C} P d x$, and $\iint_{A} \frac{\partial Q}{\partial x} d x d y=\oint_{C} Q d y$.
Assume that $R$ has "nice $y$-ranges", in the sense that for each fixed $x$, the range of $y$ integration is an interval, say $\left[y_{-}(x), y_{+}(x)\right]$. Let the range of $x$-integration be $\left[x_{-}, x_{+}\right]$. Then

$$
\begin{aligned}
\iint_{A} \frac{\partial P}{\partial y} d x d y & =\int_{x_{-}}^{x_{+}}\left(\int_{y_{-}(x)}^{y_{+}(x)} \frac{\partial P}{\partial y} d y\right) d x \\
& =\int_{x_{-}}^{x_{+}} P\left(x, y_{+}(x)\right)-P\left(x, y_{-}(x)\right) d x \\
& =-\int_{x_{-}}^{x_{+}} P\left(x, y_{-}(x)\right) d x-\int_{x_{+}}^{x_{-}} P\left(x, y_{+}(x)\right) d x \\
& =-\int_{C_{b}} P(x, y) d x-\int_{C_{t}} P(x, y) d x \\
& =-\oint_{C} P(x, y) d x
\end{aligned}
$$

where $C_{t}, C_{b}$ are the top and bottom parts of $C$. (Remember that $C$ is traversed anticlockwise.)

Similarly, assume $R$ has "nice $x$-ranges", i.e., that for each fixed $y$, the range of $x$-integration is an interval, say $\left[x_{-}(y), x_{+}(y)\right]$. Let the range of $y$-integration be $\left[y_{-}, y_{+}\right]$.

$$
\begin{aligned}
\iint_{A} \frac{\partial Q}{\partial x} d x d y & =\int_{y_{-}}^{y_{+}}\left(\int_{x_{-}(y)}^{x_{+}(y)} \frac{\partial Q}{\partial x} d x\right) d y \\
& =\int_{y_{-}}^{y_{+}} Q\left(x_{+}(y), y\right)-Q\left(x_{-}(y), y\right) d y \\
& =\int_{y_{-}}^{y_{+}} Q\left(x_{+}(y), y\right) d y+\int_{y_{+}}^{y_{-}} Q\left(x_{-}(y), y\right) d y \\
& =\int_{C_{l}} Q(x, y) d y+\int_{C_{r}} Q(x, y) d y \\
& =\oint_{C} Q(x, y) d y
\end{aligned}
$$

where $C_{l}, C_{r}$ are the left and right parts of $C$.
Combining these two calculations gives the required answer for $A$.
Any fairly nice $A$ can be subdivided into such nice regions. When summing the path subintegrals, all internal edges cancel out, leaving the integral around the outer boundary $C$.

