Green’s theorem in the plane

Green’s theorem in the plane. For functions P(z,y) and Q(x,y) defined in R?, we have
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where C' is a simple closed curve bounding the region A.

Vector Calculus is a “methods” course, in which we apply these results, not prove them.
Here is a sketch proof.

We’ll show that // —dxdy = — ]{de and // dacdy—j{ Qdy.
c

Assume that R has “nice y-ranges”, in the sense that for each fixed z, the range of y-
integration is an interval, say [y_(z),y+(z)]. Let the range of a-integration be [x_,z4].

Then
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where Cy, Cp, are the top and bottom parts of C. (Remember that C is traversed anticlock-
wise.)

Similarly, assume R has “nice z-ranges”, i.e., that for each fixed y, the range of z-integration
is an interval, say [z_(y), 2+ (y)]. Let the range of y-integration be [y_, y].
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where Cj, C;. are the left and right parts of C.
Combining these two calculations gives the required answer for A.

Any fairly nice A can be subdivided into such nice regions. When summing the path subin-
tegrals, all internal edges cancel out, leaving the integral around the outer boundary C.



