Vector Calculus: Example Sheet 4

David Tong, February 2024

1. The current \mathbf{J} due to an electric field \mathbf{E} is given by $J_{i}=\sigma_{i j} E_{j}$, where $\sigma_{i j}$ is the conductivity tensor. In a given Cartesian coordinate system

$$
\sigma_{i j}=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

Show that there is a direction along which no current flows, and find the direction(s) along which the current is largest, for an electric field of fixed magnitude.
2. Given the vectors $\mathbf{u}=(1,0,1), \mathbf{v}=(0,1,-1)$ and $\mathbf{w}=(1,1,0)$, find all components of the second-rank and third-rank tensors defined by

$$
T_{i j}=u_{i} v_{j}+v_{i} w_{j} ; \quad S_{i j k}=u_{i} v_{j} w_{k}-v_{i} u_{j} w_{k}+v_{i} w_{j} u_{k}-w_{i} v_{j} u_{k}+w_{i} u_{j} v_{k}-u_{i} w_{j} v_{k} .
$$

3. Use the transformation law for a second-rank tensor $T_{i j}$, show that the quantities

$$
\alpha=T_{i i}, \quad \beta=T_{i j} T_{j i}, \quad \gamma=T_{i j} T_{j k} T_{k i}
$$

are scalars, i.e. remain the same in all Cartesian coordinate systems. If $T_{i j}$ is diagonal in some coordinate system, express the quantities above in terms of its eigenvalues. Hence deduce that the eigenvalues are the roots of the cubic equation

$$
\lambda^{3}-\alpha \lambda^{2}+\frac{1}{2}\left(\alpha^{2}-\beta\right) \lambda-\frac{1}{6}\left(\alpha^{3}-3 \alpha \beta+2 \gamma\right)=0 .
$$

4. If $u_{i}(\mathbf{x})$ is a vector field, show that $\partial u_{i} / \partial x_{j}$ transforms as a second rank tensor field. If $\sigma_{i j}(\mathbf{x})$ is a tensor field, show that $\partial \sigma_{i j} / \partial x_{j}$ transforms as a vector field.
5. The electric field $\mathbf{E}(\mathbf{x}, t)$ and magnetic field $\mathbf{B}(\mathbf{x}, t)$ satisfy Maxwell's equations with zero charge and current. Show that the Poynting vector $\mathbf{P}=\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}$ satisfies the conservation law

$$
\frac{\partial P_{i}}{\partial t}+\frac{\partial T_{i j}}{\partial x_{j}}=0 \quad \text { where } \quad T_{i j}=\frac{1}{\mu_{0}}\left(\frac{1}{2} \delta_{i j}\left(\mathbf{E}^{2}+c^{2} \mathbf{B}^{2}\right)-\left(E_{i} E_{j}+c^{2} B_{i} B_{j}\right)\right)
$$

where $c^{2}=1 / \mu_{0} \epsilon_{0}$. If the component P_{i} is the momentum density in the x^{i} direction stored in the electric and magnetic fields, what is the interpretation of $T_{i j}$?
6. The velocity field $\mathbf{u}(\mathbf{x}, t)$ of an inviscid compressible gas obeys

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0 \quad \text { and } \quad \rho\left(\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)=-\nabla P
$$

where $\rho(\mathbf{x}, t)$ is the density and $P(\mathbf{x}, t)$ is the pressure. Show that

$$
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho u_{j} u_{j}\right)+\frac{\partial}{\partial x_{i}}\left(\frac{1}{2} \rho u_{j} u_{j} u_{i}+P u_{i}\right)=P \nabla \cdot \mathbf{u} \quad \text { and } \quad \frac{\partial}{\partial t}\left(\rho u_{i}\right)+\frac{\partial t_{i j}}{\partial x_{j}}=0
$$

for a suitable symmetric tensor $t_{i j}$, to be determined.
7. By first decomposing into symmetric and anti-symmetric parts, show that an arbitrary second rank tensor $T_{i j}$ can be written in the form

$$
T_{i j}=\alpha \delta_{i j}+\epsilon_{i j k} \omega_{k}+B_{i j}
$$

where α is a scalar, ω_{k} a vector and $B_{i j}$ a symmetric second rank tensor satisfying $B_{i i}=0$.
(i) A tensor of rank 3 satisfies $T_{i j k}=T_{j i k}$ and $T_{i j k}=-T_{i k j}$. Show that $T_{i j k}=0$.
(ii) A tensor of rank 4 satisfies $T_{j i k l}=-T_{i j k l}=T_{i j l k}$ and $T_{i j i j}=0$. Show that

$$
T_{i j k l}=\epsilon_{i j p} \epsilon_{k l q} S_{p q} \quad \text { where } \quad S_{p q}=-T_{r q r p} .
$$

8. A cuboid of uniform density and mass M has sides of length $2 a, 2 b$ and $2 c$. Find the inertia tensor about its centre, with respect to a coordinate system of your choice.

A cube of sides of length $2 a$ has uniform charge density, mass M, and is rotating with angular velocity $\boldsymbol{\omega}$ about an axis which passes through its center and through a pair of opposite vertices. What is its angular momentum?
9. Evaluate the following integrals, where $\gamma>0$ and $r^{2}=x_{p} x_{p}$:

$$
\text { (i) } \int_{\mathbb{R}^{3}} r^{-3} e^{-\gamma r^{2}} x_{i} x_{j} \mathrm{~d} V, \quad \text { (ii) } \int_{\mathbb{R}^{3}} r^{-5} e^{-\gamma r^{2}} x_{i} x_{j} x_{k} \mathrm{~d} V \text {. }
$$

10. A tensor has components $T_{i j}$ with respect to a given Cartesian coordinate system $\left\{x_{i}\right\}$. If the tensor is invariant under arbitrary rotations about the x_{3}-axis, show that it must have the form

$$
T_{i j}=\left(\begin{array}{ccc}
\alpha & \omega & 0 \\
-\omega & \alpha & 0 \\
0 & 0 & \beta
\end{array}\right)
$$

11. In the theory of linear elasticity, the symmetric stress tensor $\sigma_{i j}$ depends on the symmetric strain tensor $e_{k l}$ through the equation $\sigma_{i j}=C_{i j k l} e_{k l}$. Explain why $C_{i j k l}$ must be a fourth rank tensor, assuming that $C_{i j k l}=C_{i j l k}$. For an isotropic medium, use the most general possible form for $C_{i j k l}$ (which you may quote) to show that

$$
\sigma_{i j}=\lambda \delta_{i j} e_{k k}+2 \mu e_{i j},
$$

where λ and μ are scalars. Invert this equation to express $e_{i j}$ in terms of $\sigma_{i j}$, assuming $\mu \neq 0$ and $3 \lambda \neq-2 \mu$. Explain why the principal axes of $\sigma_{i j}$ and $e_{i j}$ coincide.

The elastic energy density resulting from a deformation of the medium is $E=\frac{1}{2} e_{i j} \sigma_{i j}$. Show that E is strictly positive for any non-zero strain $e_{i j}$ provided $\mu>0$ and $\lambda>-\frac{2}{3} \mu$.

12*. The totally anti-symmetric tensor of rank n is defined by

$$
\epsilon_{i_{1} i_{2} \cdots i_{n}}=\left\{\begin{array}{cc}
+1, & \text { if }\left(i_{1}, i_{2}, \ldots, i_{n}\right) \text { is an even permutation of }(1,2, \ldots, n), \\
-1, & \text { if }\left(i_{1}, i_{2}, \ldots, i_{n}\right) \text { is an odd permutation of }(1,2, \ldots, n), \\
0, & \text { otherwise }
\end{array}\right.
$$

Show that $\epsilon_{i_{1} i_{2} \cdots i_{n}} \epsilon_{i_{1} i_{2} \cdots i_{n}}=n$!.
How might you get a computer to compute $\epsilon_{i_{1} \cdots i_{n}}$ for a given permutation $\left(i_{1}, \ldots, i_{n}\right)$ of $(1,, \ldots, n)$? For instance, computing the determinant of the relevant permutation matrix is one option, but is quite computationally complex. Can you do better?

13*. Let $T_{i j \ldots k}$ be a tensor of rank m in \mathbb{R}^{n}. How many independent components does $T_{i j \cdots k}$ have if it is (a) totally antisymmetric; or (b) totally symmetric?

