Vector Calculus: Example Sheet 3

David Tong, February 2024

We will have covered the material necessary to attempt all these questions by the end of lecture 19.

1. Consider the line integral

$$
I=\oint_{C}-x^{2} y \mathrm{~d} x+x y^{2} \mathrm{~d} y
$$

for C a closed curve traversed anti-clockwise in the (x, y)-plane.
(i) Evaluate I when C is a circle of radius R centred at the origin. Use Green's theorem to relate the results for $R=b$ and $R=a$ to an area integral over an appropriate region, and calculate the area integral directly.
(ii) Now suppose C is the boundary of a square centred at the origin with sides of length ℓ. Show that I does not change if the square is rotated in the (x, y)-plane.
2. Verify Stokes' theorem for the hemispherical shell $S=\left\{x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$, and the vector field

$$
\mathbf{F}(\mathbf{x})=(y,-x, z) .
$$

3. By applying Stokes' theorem to the vector field $\mathbf{a} \times \mathbf{F}$ for a constant, or otherwise, show that for a vector field $\mathbf{F}(\mathbf{x})$

$$
\oint_{C} \mathrm{~d} \mathbf{x} \times \mathbf{F}=\int_{S}(\mathrm{~d} \mathbf{S} \times \nabla) \times \mathbf{F}
$$

where $C=\partial S$. Verify this result when C is the boundary of a unit square lying in the (x, y)-plane, with opposite vertices at $(0,0,0)$ and $(1,1,0)$, and $\mathbf{F}(\mathbf{x})=\mathbf{x}$.
4. Let $S=\{\mathbf{x}:|\mathbf{x}|=1\}$ be the surface of a unit sphere. For the vector field

$$
\mathbf{F}(\mathbf{x})=\frac{\mathbf{x}}{r^{3}}
$$

where $r=|\mathbf{x}|$, compute the integral $\int_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$. Deduce that there does not exist a vector potential for \mathbf{F}, i.e. there can be no \mathbf{A} for which $\mathbf{F}=\nabla \times \mathbf{A}$. Compute $\nabla \cdot \mathbf{F}$ and comment on your result.

5*. Consider the following vector field

$$
\mathbf{A}(\mathbf{x})=\frac{1}{\left(x^{2}+y^{2}\right) r}(y z,-x z, 0)
$$

where $r=|\mathbf{x}|$. Compute $\nabla \times \mathbf{A}$. Does this contradict the result of Question 4? Apply Stokes' theorem to $\nabla \times \mathbf{A}$ on the open surface

$$
S_{\epsilon}=\left\{\mathbf{x}:|\mathbf{x}|=1, x^{2}+y^{2} \geq \epsilon^{2}\right\}
$$

How does this help reconcile the existence of \mathbf{A} with the result of Question 4?
6. Use Gauss' flux method to find the electric field $\mathbf{E}=\mathbf{E}(\mathbf{x})$ due to a spherically symmetric charge density

$$
\rho(r)=\left\{\begin{array}{cc}
0 & 0 \leq r \leq a \\
\rho_{0} r / a & a<r<b \\
0 & r \geq b
\end{array}\right.
$$

Now find the electric potential $\phi=\phi(r)$ directly from Poisson's equation by writing down the general, spherically symmetric solution to Laplace's equation in each of the intervals $0<r<a, a<r<b$ and $r>b$, and adding a particular integral where necessary. You should assume that ϕ and ϕ^{\prime} are continuous at $r=a$ and $r=b$. Check this solution gives rise to the same electric field using $\mathbf{E}=-\nabla \phi$.
7. The scalar field $\psi(r)$ only depends on $r=|\mathbf{x}|$. Use Cartesian coordinates and suffix notation to show

$$
\nabla \psi=\psi^{\prime}(r) \frac{\mathbf{x}}{r} \quad \text { and } \quad \nabla^{2} \psi=\psi^{\prime \prime}(r)+\frac{2}{r} \psi^{\prime}(r)
$$

Verify this result using your expression for the Laplacian in spherical polar coordinates. Find a non-singular, spherically symmetric solution to the equation $\nabla^{2} \psi=1$ for $r<R$ subject to the requirement that $\psi(R)=1$.
8. Consider a complex valued function $f=\phi(x, y)+i \psi(x, y)$, with ϕ and ψ real, satisfying $\partial f / \partial \bar{z}=0$, where $\partial / \partial \bar{z}=\frac{1}{2}(\partial / \partial x+i \partial / \partial y)$. Show that $\nabla^{2} \phi=\nabla^{2} \psi=0$. Show also that a curve on which ϕ is constant is orthogonal to a curve on which ψ is constant, at a point where they intersect. Find ϕ and ψ when $f=z e^{z}, z=x+i y$, and compare with Question 5 on Examples Sheet 2.

9a. Using Cartesian coordinates (x, y), find all solutions of Laplace's equation $\nabla^{2} \psi=0$ in two dimensions of the form $\psi(x, y)=f(x) e^{\alpha y}$, with α constant. Hence find a solution on the region $0<x<a$ and $y>0$ with boundary conditions:

$$
\psi(0, y)=\psi(a, y)=0 \quad \text { and } \quad \psi(x, 0)=\lambda \sin (\pi x / a)
$$

and $\psi(x, y) \rightarrow 0$ as $y \rightarrow \infty$.
b. Using the formula for the 2 d Laplacian in plane polar coordinates (r, θ), verify that Laplace's equation in the plane has solutions of the form $\psi(r, \theta)=A r^{\alpha} \cos \beta \theta$, if α and β are related appropriately. Hence find solutions on the following regions, with the given boundary conditions (λ a constant):
(i) $r<R$ with $\psi(R, \theta)=\lambda \cos \theta$,
(ii) $r>R$ with $\psi(R, \theta)=\lambda \cos \theta$ and $\psi(r, \theta) \rightarrow 0$ as $r \rightarrow \infty$,
(iii) $a<r<b$ with $\mathbf{n} \cdot \nabla \psi(a, \theta)=0$ and $\psi(b, \theta)=\lambda \cos 2 \theta$.
10. Let ψ and ϕ be scalar functions. Using an integral theorem, establish Green's second identity

$$
\int_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) \mathrm{d} V=\int_{\partial V}(\phi \nabla \psi-\psi \nabla \phi) \cdot \mathrm{d} \mathbf{S}
$$

11. Show that if the following boundary value problem has a solution on V, then that solution is unique:

$$
-\nabla^{2} \psi+\psi=\rho(\mathbf{x})
$$

with $\mathbf{n} \cdot \nabla \psi=f(\mathbf{x})$ on ∂V.
12. Consider the Laplace equation $\nabla^{2} \psi=0$ on V, subject to the boundary condition on ∂V

$$
(\mathbf{n} \cdot \nabla \psi) g(\mathbf{x})+\psi=f(\mathbf{x})
$$

where $g(\mathbf{x}) \geq 0$ on ∂V. Show that, if a solution exists, then it is unique. Find a nonzero solution to Laplace's equation on $|\mathbf{x}| \leq 1$ which satisfies the boundary conditions above with $f=0$ and $g=-1$ on $|\mathbf{x}|=1$.
13. Let u be harmonic on V and v a smooth function that satisfies $v=0$ on ∂V. Show that

$$
\int_{V} \nabla u \cdot \nabla v \mathrm{~d} V=0
$$

Now if w is any function on V with $w=u$ on ∂V, show, by considering $v=w-u$, that

$$
\int_{V}|\nabla w|^{2} \mathrm{~d} V \geq \int_{V}|\nabla u|^{2} \mathrm{~d} V
$$

14*. Show that a harmonic function ψ at the point \mathbf{a} is equal to the average of its values on the interior of the ball $B_{r}(\mathbf{a})=\{\mathbf{x}:|\mathbf{x}-\mathbf{a}|<r\}$, for any $r>0$. Using this result for large r and considering $\nabla \psi$, or otherwise, prove that if ψ is bounded and harmonic on \mathbb{R}^{3} then it is constant.

15*. Consider a time-dependent volume $V=V(t)$. The velocity of a point $\mathbf{x} \in V$ is $\mathbf{v}(\mathbf{x})$. Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{vol}(V)=\int_{S} \mathbf{v} \cdot \mathrm{~d} \mathbf{S} .
$$

Show that, for a scalar function $\rho(\mathrm{x}, t)$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V(t)} \rho \mathrm{d} V=\int_{V(t)} \frac{\partial \rho}{\partial t} \mathrm{~d} V+\int_{S(t)} \rho \mathbf{v} \cdot \mathrm{d} \mathbf{S} .
$$

This is Reynold's Transport Theorem. What is the physical interpretation?
[Hint: it is better to think physically about this problem rather than simply trying to manipulate equations. You might first try constructing a 1d version of the result.]

