Numbers and Sets: Examples Sheet 1 of 4

1. The numbers $3,5,7$ are all prime. Does it ever happen again that three numbers of the form $n, n+2, n+4$ are all prime?
2. There are four primes between 0 and 10 and between 10 and 20 . Does it ever happen again that there are four primes between two consecutive multiples of 10 ?
3. Consider the sequence $41,43,47,53,61, \ldots$ (where each difference is 2 more than the previous one). Are all of these numbers prime?
4. Does there exist a block of 100 consecutive positive integers, none of which is prime?
5. Translate the following sentence into a short English one. Is it true? Write down its negation in symbolic form. (Here m, n, a, b should be understood as ranging over all natural numbers.)

$$
\forall m \exists n \forall a \forall b(n \geq m) \wedge[(a=1) \vee(b=1) \vee(a b \neq n)]
$$

6. Show that $2^{19}+5^{40}$ is not prime. Show also that $2^{91}-1$ is not prime.
7. If n^{2} is a multiple of 3 , must n be a multiple of 3 ?
8. Show that for every positive integer n the number $3^{3 n+4}+7^{2 n+1}$ is a multiple of 11 .
9. Write down carefully (while not looking at your notes) a proof that there are infinitely many primes. By considering numbers of the form $4 p_{1} p_{2} \ldots p_{k}-1$, prove that there are infinitely many primes of the form $4 n-1$. What would go wrong if we tried a similar proof to show that there are infinitely many primes of the form $4 n+1$?
10. Prove that $2^{2^{n}}-1$ has at least n distinct prime factors.
11. We are given an operation $*$ on the positive integers, satisfying
(i) $1 * n=n+1$ for all n;
(ii) $m * 1=(m-1) * 2$ for all $m>1$;
(iii) $m * n=(m-1) *(m *(n-1))$ for all $m, n>1$.

Find the value of $5 * 5$.
12. Suppose that we have some positive integers (not necessarily distinct) whose sum is 100 . How large can their product be?
13. The repeat of a positive integer is obtained by writing it twice in a row. For example, the repeat of 254 is 254254 . Is there a positive integer whose repeat is a square number?
14. Let $a<b$ be distinct natural numbers. Prove that every block of b consecutive natural numbers contains two distinct numbers whose product is a multiple of $a b$. + Suppose now that $a<b<c$. Must every block of c consecutive natural numbers contain three distinct numbers whose product is a multiple of $a b c$?
${ }^{+}$15. All integers greater than one but less than 100 are put into a hat and two are drawn. Sophie is given their sum and Paul their product. Sophie says, "I can tell you don't know the numbers." Paul replies, "Now I do." Sophie exclaims, "Now I do too!" What are the numbers?

