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1 Week 1: Metric spaces

1.1 Day 1: Thursday 23 April 2004

Recall the definition of a continuous function on the real line.

Definition 1.1 A function f : R→ R is continuous at a ∈ R if, for every ε > 0, there
is a δ > 0 such that for all x ∈ R with |x− a| < δ, we have |f(x)− f(a)| < ε.

We can think of this definition as being based on the notion of the distance between
two real numbers, defined as d(x, y) = |x− y|. Informally, two real numbers are “close”
to each other if the distance between them is small. The definition of continuity is a
precise formulation of the idea that f of a point “close” to a is a point “close” to f(a).

Now there are other geometric situations (not only the real line) where there is a
natural notion of distance between two points. As a result, we will be able to talk about
continuity in these more general situations.

For example, Euclidean geometry is based on the notion of distance between two
points in the plane R2 = {(x1, x2) : x1 ∈ R, x2 ∈ R}. Namely, using the Pythagorean
theorem, one can check that the distance from a point x = (x1, x2) in the plane to
y = (y1, y2) is:

d(x, y) =
√

(y1 − x1)2 + (y2 − x2)2.

More generally, we can talk about the distance between two points in space R3, or
more generally in n-dimensional space Rn. (For a positive integer n, we define Rn to be
the product of n copies of the set R of real numbers; that is, a point in Rn is a sequence
(x1, . . . , xn) of real numbers.) Geometrically, the distance from one point to another in
Rn is the length of the line segment between the two points; algebraically, we can define
this distance as follows.

Definition 1.2 The distance between two points x = (x1, . . . , xn) and y = (y1, . . . , yn)
in Rn is defined to be:

d(x, y) = [
n∑
i=1

(yi − xi)2]1/2.

This definition involves the square root of a nonnegative real number: we mean the
nonnegative square root.

Using this notion of distance on Rn, we can define what it means for a function
f : Rn → R to be continuous.

Definition 1.3 A function f : Rn → R is continuous at a ∈ Rn if, for every ε > 0,
there is a δ > 0 such that for all x ∈ Rn with d(x, a) < δ, we have d(f(x), f(a)) < ε.
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Notice that d(f(x), f(a)) in this definition just means the distance between two real
numbers, that is, |f(x)− f(a)|.

We now make a vast generalization. Rather than only talking about the distance
between two points of Rn, we try to imagine the distance between two points of any
set. For this idea to be of any use, the distance must satisfy several properties which we
now list.

Definition 1.4 (M. Fréchet, 1906) A metric space X (or (X, d)) is a set X together
with a function

d : X ×X → R

which satisfies the following properties.
(0) d(x, y) ≥ 0 for all x, y ∈ X,
(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x) for all x, y ∈ X,
(3) (The triangle inequality) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

The most important point about metric spaces is that it makes sense to ask whether
a function from one metric space to another is continuous.

Definition 1.5 Let X and Y be metric spaces. A function f : X → Y is continuous
at a ∈ X if, for every ε > 0, there is a δ > 0 such that for all x ∈ X with d(x, a) < δ,
we have d(f(x), f(a)) < ε. We say that f : X → Y is continuous if it is continuous at
every point of X.

Examples of metric spaces:
(1) Euclidean space Rn (with the real line R as a special case). We defined the

distance between two points of Rn in Definition 1.2. To check that Rn is a metric
space, we have to check the properties (0) to (3). Here you can easily check properties
(0), (1), (2). Let us check property (3), the triangle inequality. This is geometrically
obvious, but since we gave an algebraic definition of distance on Rn, it seems proper to
give an algebraic proof of the triangle inequality.

Given 3 points x, y, z in Rn, we need to show that

[
n∑
i=1

(zi − xi)2]1/2 ≤ [
n∑
i=1

(yi − xi)2]1/2 + [
n∑
i=1

(zi − yi)2]1/2.

To simplify these formulas, define real numbers ai = yi − xi and bi = zi − xi, for
i = 1, . . . , n. Then zi − xi = ai + bi, and so we need to show:

[
∑

(ai + bi)2]1/2 ≤ [
∑

a2
i ]

1/2 + [
∑

b2i ]
1/2.

(Here and in what follows, all the sums run from i = 1 to n.) Since both sides of this
inequality are nonnegative, it suffices to prove the inequality obtained by squaring both
sides. That is, we want to show:∑

(ai + bi)2 ≤
∑

a2
i + 2[

∑
a2
i ]

1/2[
∑

b2i ]
1/2 +

∑
b2i .

We can expand the left side of this inequality as∑
a2
i + 2

∑
aibi +

∑
b2i .

So the inequality we want follows if we can prove:∑
aibi ≤ [

∑
a2
i ]

1/2[
∑

b2i ]
1/2.

This is called the Cauchy-Schwarz inequality.
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To prove the Cauchy-Schwarz inequality, first note that it is clearly true if a1 = · · · =
an = 0, or if b1 = · · · = bn = 0. So we can assume that at least one ai is nonzero and
at least one bi is nonzero. Therefore, [

∑
a2
i ]

1/2 and [
∑
b2i ]

1/2 are positive real numbers
(not zero). Notice that if we multiply all the numbers a1, . . . , an by the same positive
number c, then both sides of the inequality are multiplied by c. Choose c in such a way
that (after multiplying) [

∑
a2
i ]

1/2 is equal to 1; then we have shown that it suffices to
prove the Cauchy-Schwarz inequality in the special case where

∑
a2
i = 1. Likewise, we

can scale the numbers b1, . . . , bn by any positive constant. The result is that it suffices
to prove the following special case of the Cauchy-Schwarz inequality: if

∑
a2
i = 1 and∑

b2i = 1, then ∑
aibi ≤ 1.

To prove that, we argue as follows. For any real numbers a and b, we have

(a− b)2 ≥ 0,

since the square of any real number is nonnegative. Expanding this expression out and
dividing by 2, we find that

ab ≤ a2

2
+
b2

2
for all real numbers a and b. Applying this to the numbers a = ai and b = bi, for each
i = 1, . . . n, we find that ∑

aibi ≤
1
2

∑
a2
i +

1
2

∑
b2i

=
1
2

+
1
2

= 1,

as we want. Thus we have proved the Cauchy-Schwarz inequality, and hence that Rn is
a metric space.

1.2 Day 2: Saturday 25 April

(2) Discrete metric spaces. For any set X, we define a metric on X by: the distance
from a point to itself is 0, and the distance between any two distinct points is 1. You
can check that this is a metric space (that is, that properties (0) to (3) are satisfied).

(3) The l1, l2, and l∞ metrics on R2. We define three different metrics on R2 by:

d1(x, y) = |y1 − x1|+ |y2 − x2|
d2(x, y) = [|y1 − x1|2 + |y2 − x2|2]1/2

d∞(x, y) = max(|y1 − x1|, |y2 − x2|).

Here d2 is the standard metric. You can check that d1 and d∞ are metrics; it is rather
easier than the case of the standard metric d2 (proved in (1), above). For example, let
us check the triangle inequality for d∞. We have to show that for x, y, z in R2,

max(|z1 − x1|, |z2 − x2|) ≤ max(|y1 − x1|, |y2 − x2|) + max(|z1 − y1|, |z2 − y2|).

To prove this, it suffices to show that both |z1 − x1| and |z2 − x2| are ≤ the right side
of the inequality; the proof will be the same in both cases, so let us consider |z1 − x1|.
We have:

|z1 − x1| ≤ |y1 − x1|+ |z1 − y1|
≤ max(|y1 − x1|, |y2 − x2|) + max(|z1 − y1|, |z2 − y2|),
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as we want.
We can define the l1, l2, and l∞ metrics on Rn for any n, by the analogous formulas.
(4) The standard metric on C. Recall the definition of the absolute value of a complex

number: for z = x+ iy, with x and y real numbers, we define

|z| =
√
x2 + y2.

This is a nonnegative real number. Using this, we define the standard metric on the
complex numbers C by:

d(z1, z2) = |z2 − z1|.
You can check that this is indeed a metric; in particular, the triangle inequality follows
from the property |z + w| ≤ |z| + |w| of the absolute value for complex numbers. This
metric on C is really the same thing as the standard metric on R2, if you identify a
complex number x+ iy with the point (x, y) in R2.

(5) Subspace metrics. Let X be a metric space, and let A be any subset of X. Then
we define a metric on A by defining

dA(x, y) = dX(x, y)

for any x, y ∈ A. You can check that this makes A into a metric space.
As a result, there is a colossal supply of examples of metric spaces: any subset of R

or R2 or Rn is a metric space. Thus, any kind of geometrical shape – a curve, a surface,
a region, or a stranger shape – can be viewed as a metric space.

Definition 1.6 Let X be a metric space. For any point a in X and any positive real
number r, define the open ball Br(a) to be the set of points x in X with d(x, a) < r.

Examples. In the metric space R, the open ball Br(a) is the open interval (a −
r, a+ r). In R2, Br(a) is the region strictly inside a circle of radius r centered at a (not
including the circle itself). In R3, likewise, Br(a) is the region strictly inside a sphere
of radius r centered at a. (Here, when we talk about R or Rn as a metric space, we
always have in mind the standard metric unless otherwise stated.)

We can also consider the open ball Br(a) with respect to different metrics on R2:
you should draw what it looks like for the l1, l2, and l∞ metrics on R2, defined at the
start of this lecture.

In a discrete metric space X, as defined at the start of this lecture, the open ball
Br(a) is just the point a for r ≤ 1, whereas it is the whole space X for r > 1.

In a subspace S of a metric space X, the open ball Br(a) in the metric space S is
the intersection of Br(a) in X with S. For example, in the metric space [0, 1] (defined
as a subset of the metric space R), the open ball B1/2(0) is [0, 1/2) ⊂ [0, 1].

Using the notion of open balls, we can restate the definition of continuity in a more
geometric way, without explicitly mentioning ε and δ.

Lemma 1.7 Let X and Y be metric spaces, and let f : X → Y be a function. Then f
is continuous at a point a in X if and only if, for every open ball C around f(a), there
is an open ball B around a such that f(B) ⊂ C.

Here f(B) means the subset {f(x) : x ∈ B} of Y . The lemma is easy to prove: just
write C = Bε(f(a)) and B = Bδ(a). Then the lemma is simply a restatement of the
definition of continuity (from day 1).

Definition 1.8 A subset U of a metric space X is open if, for every point x in U , there
is an open ball around x (in X) which is contained in U .

You can convince yourself, for example, that in the real line, the open interval (0, 1) is
open, whereas (0, 1] and [0, 1] are not open in R. In R2, the open ball {(x, y) : x2 +y2 <
1} is open, for example, but {(x, y) : x2 + y2 ≤ 1} is not open. Also, you can check that
every subset of a discrete metric space is open.
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1.3 Day 3: Thursday 28 April

Lemma 1.9 Every open ball in a metric space is an open set.

Proof. We have to show that for every point x in a metric space X and every r > 0,
the open ball Br(x) is an open subset of X. That is, we have to show that for every
point y in Br(x), there is an open ball around y which is contained in Br(x). Since y is
in Br(x), we have d(x, y) < r. Let a = r − d(x, y), which is a positive real number; we
will show that the open ball Ba(y) is contained in Br(x). (To see why this is the right
choice of a, draw a picture.)

Thus, we have to show that for every point z inBa(y), z is also inBr(x). Equivalently,
we have to show that for any point z in X with d(y, z) < a, we also have d(x, z) < r.
This follows from the triangle inequality:

d(x, z) ≤ d(x, y) + d(y, z)
= (r − a) + d(y, z)
< (r − a) + a = r,

as we want. QED
Thus, we have some examples of open sets in any metric space, namely all open balls.

Some other examples: in any metric space X, the empty set ∅ and the whole space X
are open in X, as you can check from the definition of open subsets.

When considering subspaces of metric spaces, it is often helpful to say “open in X”,
not just “open”, to avoid ambiguity. For example, the open interval (0, 1) × {0} is not
open in the plane R2, but it is open in the subspace R× {0} of R2. (Draw a picture.)

The following theorem, the main result of the first week, gives yet another character-
ization of continuous functions, using open sets instead of open balls. This is the most
abstract way to describe continuity: the epsilons and deltas are hidden in the definition
of open sets. But this makes it also the most convenient definition of continuity for
many purposes.

Theorem 1.10 Let X and Y be metric spaces. A function f : X → Y is continuous if
and only if, for every open subset U of Y , the inverse image f−1(U) is open in X.

Here the inverse image f−1(U) means the set of points x in X such that f(x) is in
U . Notice that this makes sense even though there may not be an inverse function f−1

from Y to X. (The inverse image of a point in Y may be several points in X, or no
points; but we can still talk about the set f−1(U) in X, for every subset U of Y .)

Proof. First suppose that f : X → Y is continuous. We want to show that for
every open subset U of Y , the inverse image f−1(U) is open in X. By definition of
open subsets in a metric space, we have to show that for every point x in f−1(U), there
is an open ball around x which is contained in f−1(U). To say that x is in f−1(U)
means exactly that f(x) is in U . We then use that U is open in Y ; it follows that there
is an open ball C around f(x) in Y which is contained in U . Since f is continuous,
Lemma 1.7 shows that there is an open ball B around x such that f(B) is contained in
C. Therefore, f(B) is also contained in U . Equivalently, B is contained in the inverse
image f−1(U). Thus we have shown that f−1(U) is open, as we want.

Conversely, let f : X → Y be a function such that the inverse image of every open
set is open. We want to show that f is continuous. By Lemma 1.7, it suffices to show
that for every point x in X and every open ball C around f(x) in Y , there is an open ball
B around x such that f(B) is contained in C. To prove this, we use Lemma 1.9, which
tells us that the open ball C is an open subset of Y . Therefore, by our assumption on
f , the inverse image f−1(C) is open in X. Since f(x) belongs to the ball C, the point x
is in f−1(C). Since f−1(C) is open, there is a ball B around x in X which is contained
in f−1(C). Equivalently, f(B) is contained in C, which is the conclusion we want. That
is, f is continuous. QED
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Beware that continuity does not imply that the image (as opposed to the inverse
image) of an open subset is open. You see this in simple examples. For example, take
the continuous map f : R→ R defined by f(x) = 0 for all x. Then the image f((−1, 1))
of the open subset (−1, 1) in R is just the point {0}, which is not open in R. Or,
for a slightly more complex example, take the continuous map f : R → R defined by
f(x) = x2. Then the image of the open subset (−1, 1) is the interval [0, 1), which again
is not open in R.

To get an idea of how Theorem 1.10 can be useful, consider the following definition.

Definition 1.11 Let X be a set with two metrics d1 and d2. We say that d1 and d2 are
topologically equivalent if the d1-open subsets of X are the same as the d2-open subsets
of X.

By Theorem 1.10, whether a function f : X → Y is continuous does not change if
you replace the given metric on X by a topologically equivalent metric. Likewise, it does
not change if you replace the metric on Y by a topologically equivalent metric. This can
be very convenient, as the following example suggests.

Example. The l1, l2, and l∞ metrics on R2 may seem quite different. In particular,
the open balls for these three metrics are all different. (For the l1 and l∞ metrics, open
balls are (the interiors of) squares, tilted by 45 degrees in the l1 case.) But the open
subsets of R2 are the same for all three of these metrics; in other words, these three
metrics are all topologically equivalent, as you can check. (The key point is that each
open ball for one of the metrics contains an open ball for each of the other metrics;
possibly of smaller radius, but that’s good enough.)

As a result, suppose you want to check whether a given function on the plane R2

is continuous. (Talking about R2 without specifying a metric, we always mean the
standard metric unless stated otherwise.) Then Theorem 1.10 shows that it is equivalent
to check continuity of the given function with respect to the l∞ metric on R2, since it is
topologically equivalent to the standard one. This is actually useful, because calculations
tend to be easier for the l∞ metric than for the standard metric on R2. (It involves the
maximum of two numbers, rather than the square root of the sum of two squares.)

For example, you can check the following important fact. It seems easiest to check by
switching from the standard metric to the l∞ metric on R2, using the above arguments.

Example. The functions s : R2 → R, s(x, y) = x+y, and p : R2 → R, p(x, y) = xy,
are continuous.

Finally, we make one more geometric definition for metric spaces.

Definition 1.12 A subset A of a metric space X is closed in X if its complement
X −A = {x ∈ X : x 6∈ A} is open in X.

Notice that “closed” is not the opposite of “open”: some subsets of a metric space
are both open and closed, while others are neither. For example, in the real line, the
empty set and the whole line are both open and closed; the interval [0, 1] is closed but
not open; and the interval [0, 1), like the subset of rational numbers Q ⊂ R, is neither
open nor closed. In a discrete metric space, you can check that every subset is both
open and closed.

We make some last definitions about metric spaces.

Definition 1.13 A subset of a metric space X is bounded if it is either empty, or
contained in an open ball Br(x) for some point x and some positive real number r.

For example, the interval [0, 1] in the real line, or any subset of it, is bounded, while
the whole real line is unbounded.
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Definition 1.14 The diameter of a bounded subset A in a metric space X is 0 if A is
empty, or the real number

sup
x,y∈A

d(x, y)

if A is not empty.

Here the supremum (or least upper bound) is a real number associated to any
nonempty set of real numbers which has an upper bound, by the completeness property
of the real numbers. The set of real numbers that comes up in the definition of diameter,
the set of distances d(x, y) for x, y ∈ A, is clearly nonempty since A is nonempty, and
it has an upper bound since A is bounded. Indeed, if A is contained in the open ball
Br(x), then the distance between any two points of A is less than 2r, as one checks
immediately from the triangle inequality. So the definition of diameter makes sense.

Example. In the metric space R2, the circle S1 = {(x, y) : x2 + y2 = 1}, the open
ball {(x, y) : x2 + y2 < 1}, and the closed ball {(x, y) : x2 + y2 ≤ 1} all have diameter
2. The supremum in the definition of diameter is actually a maximum in the first and
third cases, but not in the second.

Finally, we state some general properties of open subsets in a metric space.

Lemma 1.15 Let X be a metric space. Then:
(1) The empty set ∅ and the whole space X are open in X.
(2) For any open subsets U and V in X, the intersection U ∩ V is open in X.
(3) The union of any collection (possibly infinite) of open subsets of X is open in X.

Proof. (1) To show that the empty set is open in X, we have to show that for every
element x of the empty set, there is an open ball around x which is contained in the
empty set. This is true because the empty set has no elements. (So any statement of
the form ‘for every element of the empty set, some property holds’ is true.) To show
that the whole space X is open, we have to show that for every x in X, there is an open
ball around x which is contained in X. This is clear, since we can take any open ball,
for example the open ball B1(x).

(2) Given open subsets U and V in X, let us show that the intersection U ∩ V is
open. That is, for every point x in U ∩ V , we have to find an open ball around x in X
which is contained in U ∩ V . To say that x is in U ∩ V means that x is in U and also
in V . Since U and V are open, there are open balls Br(x) and Bs(x) in X which are
contained in U and V , respectively. Let t be the minimum of r and s. This is a positive
real number since r and s are positive real numbers. Clearly the open ball Bt(x) is
contained both in U and in V , and so it is contained in U ∩ V , as we want.

(3) Given any collection of open subsets Ui of X, where i runs through any indexing
set I, we want to show that the union ∪iUi is open in X. So pick any point x in ∪iUi.
To say that x is an element of this union means that there is some j ∈ I such that x is
in Uj . Since Uj is open, there is an open ball Br(x) which is contained in Uj . Therefore
this open ball is also contained in the union ∪iUi. That is, we have shown that the
union is an open subset of X. QED

We will discuss further the different behaviour of unions and intersections of open
sets, early in the next lecture.

2 Week 2: Topological spaces

2.1 Day 4: Thursday 29 April

We have shown that whether a function between metric spaces is continuous only de-
pends on which subsets are open (Theorem 1.10). This fact suggests that we might be
able to forget about distances, and only keep track of which subsets are open. That
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thought leads to the following generalization of metric spaces, which we study for the
rest of the course. The notion of topological spaces was perhaps the most influential
idea in 20th-century mathematics. It offers a huge generalization of the ancient idea
of geometry, which turns out to be useful in essentially all areas of mathematics and
physics.

Definition 2.1 (F. Hausdorff, 1914) A topological space X is a set together with a
collection of subsets of X, called open subsets, such that the following conditions hold.

(1) The empty set ∅ and the whole space X are open in X.
(2) For any open subsets U and V in X, the intersection U ∩ V is open in X.
(3) The union of any collection (possibly infinite) of open subsets of X is open in X.

When we speak of a ‘space’ without further comment, we mean a topological space.
Example. Every metric space is a topological space, by Lemma 1.15. So we have

many examples of topological spaces: the real line R, Euclidean space Rn for any n,
any subset of Rn, and so on. When we talk about the real line or Rn as a topological
space without further comment, we have in mind the standard topology on these sets,
which means the topology associated to the standard metric.

Remark. In any topological space, the intersection of any finite collection of open
subsets, U1 ∩ · · · ∩ Un, is open. This follows by induction on n from property (2) of
topological spaces. But the intersection of infinitely many open subsets need not be
open, even in the most fundamental examples of topological spaces. For example, in the
real line,

∩i≥1(−1/i, 1/i) = {0},

which shows that the intersection of infinitely many open subsets of R need not be open.
This contrasts with the fact that the union of an infinite collection of open subsets is
open, in the real line as in any other topological space.

As with metric spaces, the most important point about topological spaces is that
they allow us to talk about continuity, as follows.

Definition 2.2 A function f : X → Y from one topological space to another is contin-
uous if, for every open subset U of Y , the inverse image f−1(U) is open in X.

By Theorem 1.10, this definition agrees with our original definition of continuity
when both apply, that is, when X and Y are metric spaces. For example, we can ask
whether a function f : R → R is continuous, and it does not matter whether we think
of the real line as a metric space or a topological space.

As we already saw in the special case of metric spaces, we should realize that the
image of an open subset under a continuous mapping need not be open (you should have
some examples in mind).

Example. Discrete topological spaces. For any set X, we define the discrete topol-
ogy on X by declaring that every subset of X is open. You can easily check that this
is indeed a topology on X, meaning that the properties (1)-(3) are satisfied. Also, you
can check that for a discrete topological space X and any topological space Y , every
function f : X → Y is continuous.

It might be useful to point out that every discrete topological space X comes from
a metric space, namely from the discrete metric space (X, d) that we have defined.

Example. Two topologically equivalent metrics on a set X determine the same
topology on X, clearly.

Example. Indiscrete spaces X. For any set X, we define the indiscrete topology on
X by declaring that the empty set and the whole set X are the only open subsets of X.
You can easily check that this is indeed a topology on X. If the set X has at least two
elements, then the indiscrete space X is not metrizable, that is, it does not come from
any metric on the set X. This is easy to check (using Question 5 of Examples Sheet 1),
as we will discuss in more detail later.
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We now prove a first general property of continuous functions on topological spaces.
This is convenient when you actually have to show that a given function is continuous,
by building up from simpler functions which you know are continuous.

Lemma 2.3 Let f : X → Y and g : Y → Z be continuous mappings between topological
spaces. Then the composition g ◦ f : X → Z is continuous.

Proof. Here the composition g ◦ f is defined by (g ◦ f)(x) = g(f(x)). We have to
show that for every open subset U of Z, the inverse image (g ◦ f)−1(U) is open. You
can check that (g ◦ f)−1(U) is equal to f−1(g−1(U)). Here g−1(U) is open, since g is
continuous. Therefore f−1(g−1(U)) is open, since f is continuous. QED

2.2 Day 5: Saturday 1 May

We begin with some simple examples of continuous maps which work for any topological
space.

Lemma 2.4 (1) For any topological space X, the identity map 1X : X → X is contin-
uous.

(2) For any topological spaces X and Y , any constant map f : X → Y is continuous.

Proof. (1) For each open subset U of X, its inverse image under the identity map
of X is equal to U , which is open. So the identity map is continuous.

(2) To say that f : X → Y is constant means that there is a point a in Y such that
f(x) = a for all x in X. Let U be any open subset of Y . Then f−1(U) is the empty
set if a is not in U , while it is the whole space X if a is in U . Both of these are open
subsets of X. So f is continuous. QED

Definition 2.5 Let X be a topological space, and let A be any subset of the set X. We
define the subspace topology on A by saying that a subset of A is open in A if and only
if it can be written as the intersection A ∩ U for some open set U in X.

You can check that the subspace topology is indeed a topology on A.
If X is a metric space and A is a subset of X, then one can think of two different

ways to define a topology on A. First, we can consider the subspace metric on A, and
then consider the associated topology. Or, we can consider the topology on X associated
to the metric, and then consider the subspace topology on A using the above definition.
Fortunately, these two constructions give the same topology on A.

So we have a well-defined topology on any subset of Euclidean space, defined by
either of the above methods. For example, we have a well-defined topology on the
interval [0, 1], the circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}, more general curves, and so
on.

The following are the basic properties of the subspace topology. We omit the proofs,
which are straightforward.

Lemma 2.6 Let X be a space, A ⊂ X a subset, with the subspace topology.
(1) The inclusion i : A → X is continuous. As a result, for any continuous map

f : X → Y , the restriction f |A : A→ Y is continuous, since it is the composition f ◦ i.
(2) For any function g : Z → A, g is continuous if and only if i ◦ g : Z → X is

continuous.

We now give another important construction of topological spaces, which generalizes
the process of going from the real line R to the plane R2 or more generally Rn.

Definition 2.7 Given topological spaces X1 and X2, we define the product topology on
the set X1 × X2 = {(x1, x2) : x1 ∈ X1, x2 ∈ X2}, as follows. A subset U of X1 × X2

is open if and only if it is a union of some collection (possibly infinite) of sets U1 × U2,
where U1 is an open subset of X1 and U2 is an open subset of X2.
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We omit the proof that this is indeed a topology on X1 ×X2, which is not difficult.
Also, you can check that the product topology on R ×R coincides with the standard
topology on R2. More generally, the product topology on the product of n copies of the
real line gives the standard topology on Rn.

Notice that an open subset of X1 × X2 need not be of the form U1 × U2, or even
a finite union of such subsets, even in simple examples. For example, the open ball
{(x, y) ∈ R2 : x2 + y2 < 1} is not a finite union of subsets U1 × U2, which are roughly
open rectangles.

Notice an equivalent formulation: A subset U of X1 ×X2 is open if and only if, for
every point x in U , there are open subsets U1 in X1 and U2 in X2 such that x ∈ U1×U2

and U1 × U2 ⊂ U .
We now give the basic examples of continuous functions on product spaces.

Lemma 2.8 For any spaces X1 and X2, the projections p1 : X1×X2 → X1, p1(x1, x2) =
x1, and p2 : X1 ×X2 → X2, p2(x1, x2) = x2, are continuous.

Proof. The proofs in the two cases are the same, and so we prove that the first
projection p1 is continuous. Let U be any open subset of X1. Then p−1

1 (U) = U ×X2.
Since X2 is an open subset of X2, this is an open subset of X1×X2, by definition of the
product topology. Thus p1 is continuous. QED

Theorem 2.9 Let A, X1, X2 be topological spaces. Then a function f : A→ X1 ×X2

is continuous if and only if the two projections p1 ◦ f : A→ X1 and p2 ◦ f : A→ X2 are
continuous.

Proof. First, suppose that f : A→ X1×X2 is continuous. Since the projections p1

and p2 are continuous, the compositions p1 ◦ f and p2 ◦ f are continuous.
Conversely, suppose that p1 ◦ f : A → X1 and p2 ◦ f : A → X2 are continuous. We

change notation by writing f(a) = (f1(a), f2(a)); then we are assuming that f1 : A→ X1

and f2 : A → X2 are continuous. We now show that f : A → X1 × X2 is continuous.
So let U be any open subset of X1 × X2. By definition of the product topology, U is
a union of some collection of subsets U1 × U2 where U1 is open in X1 and U2 is open
in X2. We note that f−1(∪iSi) = ∪if−1(Si) for any collection of subsets Si. Since the
union of any collection of open subsets in A is open, it follows that f−1(U) is open if we
can show that f−1(U1 × U2) is open for every open subsets U1 in X1 and U2 in X2.

Since f(a) = (f1(a), f2(a)) for all a ∈ A, we can rewrite the set f−1(U1 ×U2) as the
intersection f−1

1 (U1) ∩ f−1
2 (U2). Since f1 and f2 are continuous, the subsets f−1

1 (U1)
and f−1

2 (U2) are open in A. So the intersection of these two sets is open in A, as we
want. QED

Theorem 2.9 makes product spaces very convenient to work with, as we see in the
following example.

Example. Show that f : R→ R2 defined by f(x) = (ex, sinx) is continuous.
Answer: By Theorem 2.9, f is continuous if and only if the two functions R → R

defined by ex and sinx are continuous. This is true, as we know from earlier calculus
courses.

2.3 Day 6: Tuesday 4 May

Here is a fundamental fact, not involving product spaces in the statement, which admits
an easy proof using product spaces.

Lemma 2.10 Let X be a topological space, f and g continuous real-valued functions on
X. (As usual, we use the standard topology on the real line here.) Then f + g and fg
are also continuous real-valued functions on X.
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Proof. We can view f + g as the composition of the two maps

X
→

(f, g) R2
→
+ R.

Here (f, g) : X → R2 is continuous by Theorem 2.9, and we have mentioned earlier
that the function + : R2 → R are continuous. Therefore the composition, f + g, is
continuous. The same argument works for fg, using that the function · : R2 → R is
continuous. QED

Example. Show that the function f : R2 → R2 defined by f(x, y) = (x2 + y2, exy)
is continuous.

Answer: First, by Theorem 2.9, it suffices to show that the two functions R2 → R
defined by (x, y) 7→ x2 + y2 and (x, y) 7→ exy are continuous. By Lemma 2.8, we know
that the functions R2 → R defined by (x, y) → x and (x, y) 7→ y are continuous. By
repeatedly taking sums and products of these functions, it follows that (x, y) 7→ x2 + y2

is continuous. Also, by taking products of these functions, we know that (x, y) 7→ xy is
continuous. By composing this with the continuous function R→ R defined by x 7→ ex,
it follows that exy is also continuous.

Definition 2.11 We define a subset A of a topological space X to be closed in X if its
complement X −A is open in X.

It would be possible to base the definition of topological spaces on closed sets rather
than open sets. The definition would involve the basic properties of closed sets listed
in Examples Sheet 1, Question 14. It is straightforward to check that continuity can be
defined using closed sets, as follows.

Lemma 2.12 Let X and Y be topological spaces. A function f : X → Y is continuous
if and only if the inverse image of every closed subset of Y is closed in X.

Example. Show that B = {(x, y, z) : x2 + y2 + z2 ≤ 1} is closed in R3.
One answer: Define f : R3 → R by f(x, y, z) = x2 + y2 + z2. This is continuous,

since it is built from the coordinate projections R3 → R by sums and products. We can
think of B as the inverse image of (−∞, 1] under the function f . Here (−∞, 1] is closed
in R, and so B is closed in R3 by Lemma 2.12.

Definition 2.13 Let X and Y be topological spaces. A homeomorphism is a bijective
continuous function f : X → Y such that the inverse function f−1 : Y → X is also
continuous. We say that spaces X and Y are homeomorphic if there is a homeomorphism
f : X → Y .

To say that a function f : X → Y is bijective, also called a ‘one-to-one correspon-
dence’, means that f is both one-to-one and onto. Equivalently, for every point y in Y ,
there is a unique point x in X such that f(x) = y. For a bijective function f , there is
an inverse function f−1 : Y → X, mapping a point y of Y to the unique point x in X
such that f(x) = y.

The following statement, easy to prove, clarifies the meaning of homeomorphisms.

Lemma 2.14 Let X and Y be topological spaces. A function f : X → Y is a homeo-
morphism if and only if: f is bijective and a subset of X is open if and only if its image
in Y is open.

This means that two homeomorphic spaces can be thought of as the same topological
space, with different names for the points. As a result, any property of a topological
space which can be defined using only its topology (for example, which functions on it
are continuous) is equivalent to a corresponding property for any homeomorphic space.
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Examples. The closed intervals [0, 1] and [0, 2] are homeomorphic. Explicitly,
f : [0, 1] → [0, 2] defined by f(x) = 2x is a homeomorphism, since it is bijective and
continuous, and the inverse function is x 7→ x/2, which is also continuous.

The open intervals (0, 1), (0,∞), and the real line R are all homeomorphic. For
example, the function tanx : (−π/2, π/2) → R is a homeomorphism, and there is an
easy homeomorphism from (0, 1) to (−π/2, π/2) of the form x 7→ ax+ b. To show that
(0,∞) is homeomorphic to these other spaces, we can use, for example, that x 7→ 1/x is
a homeomorphism from (0, 1) to (1,∞), and the latter space is homeomorphic to (0,∞)
via x 7→ x− 1.

The circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} is homeomorphic to a square, a triangle,
or (informally speaking) any other closed curve which does not cross itself. But, for
example, the interval [0, 1] is not homeomorphic to the circle, as we will prove later in
the course. To give more examples, without proofs: the capital letters A and B (viewed
as closed subsets of R2) are not homeomorphic since A has ‘one hole’ and B has ‘two
holes’. Also, the letters A and O are not homeomorphic even though both have ‘one
hole’, because A has 4 ‘special points’ and O has none. On the other hand, the letters
Q and R are homeomorphic.

Definition 2.15 A topological space X is metrizable if there is a metric d on X such
that the open subsets of X are exactly the d-open sets.

Most of the interesting topological spaces are metrizable, for example Rn and all
its subsets. But not all topological spaces are metrizable, as we will check using the
following notion.

Definition 2.16 A topological space X is Hausdorff if, for any x, y ∈ X with x 6= y,
there are open sets U and V with x ∈ U , y ∈ V , and U ∩ V = ∅.

Lemma 2.17 Every metrizable topological space is Hausdorff.

Proof. Let X be a metrizable topological space. So there is a metric d on X which
induces the given topology on X. To show that X is Hausdorff, pick any two distinct
points x and y in X. Then the distance from x to y is positive (not zero). By Examples
Sheet 1, question 5, there are open balls around x and y which are disjoint from each
other. QED

Example. An indiscrete topological space X with at least two points is not Haus-
dorff. Indeed, for any two distinct points x and y in X, any open subset U of X
containing x must be the whole space X, and any open subset V of X containing y is
also the whole space. So U and V cannot be disjoint; that is, X is not Hausdorff.

By Lemma 2.17, it follows that an indiscrete topological space with at least two
points is not metrizable.
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3 Week 3: Connected topological spaces

3.1 Day 7: Thursday 6 May 2004

We now make precise the idea of a topological space being ‘all in one piece’.

Definition 3.1 A topological space X is connected if X is nonempty and the only subsets
of X that are both open and closed are the empty set and the whole space X.

Since a subset is closed if and only if its complement is open, we can rephrase this
definition just in terms of open sets. Namely, a space X is connected if and only if it is
nonempty and it is impossible to write X as the union of two disjoint nonempty open
subsets. Intuitively, this means that X is connected if it is impossible to divide X into
two pieces which are ‘separated’ from each other.

Another equivalent condition: a space X is connected if and only if it is nonempty
and there is no continuous function from X onto the subset {0, 1} of R. Indeed, given
such a function, X would be the union of the two disjoint open subsets f−1(0) and
f−1(1), which are nonempty because f is onto, and so X would not be connected.
Conversely, if X is not connected, then we can write X = A ∪B with A and B disjoint
nonempty open subsets of X. In that case, we can define a function f from X onto
{0, 1} by mapping A to 0 and B to 1; this is continuous because A and B are both open.

Example. The subspace X = [0, 1]∪ [2, 3] of the real line is not connected, because
the subsets [0, 1] and [2, 3] are both open in X.

Although the definition of connected spaces is fairly simple, it is nontrivial to show
that even simple spaces like the real line R or the unit interval [0, 1] are connected.
In fact, to prove this, we will need the completeness property of the real numbers,
for essentially the first time in the course. (It came up in the definition of diameter,
Definition 1.14, but we made no further use of that.) Indeed, until now, all our results
about the topological space R would apply equally well to the topological space Q of
rational numbers; but the space Q is not connected. For example, we can write it as
the union of the following two disjoint nonempty open subsets:

Q = {x ∈ Q : x2 > 2} ∪ {x ∈ Q : x2 < 2},

because the square root of 2 is irrational.
Define an interval in the real line to be a subset of the form [a, b] or [a, b) or (a, b]

or (a, b) for a < b, or [a,∞) or (a,∞), or (−∞, a] or (−∞, a), or the whole line R, or
a single point {a}. (In some situations, one might not want to call a single point an
interval, but for now I will do so.)

Theorem 3.2 Every interval I ⊂ R is connected.
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Notice that, when we say that a given subset of a topological space is connected, we
are talking about the subspace topology on that subset.

Proof. Clearly I is nonempty, as we check from the definition of an interval. So we
just need to show that it is impossible to write I as the union of two disjoint nonempty
open subsets A and B in I. Suppose that we can write I in that way; we will derive a
contradiction.

Since A and B are nonempty, we can pick a point a in A and a point b in B. Since
A and B are disjoint, a is not equal to b. We can assume that a < b; if not, switch the
two sets A and B.

Since a and b are in I and I is an interval, we see (by inspection of the various types
of interval) that I contains the whole closed interval [a, b]. To avoid the inconvenience of
dealing with the various types of interval, we now replace I by [a, b], A by A∩ [a, b], and
B by B ∩ [a, b]. Here A∩ [a, b] and B ∩ [a, b] are both open subsets of [a, b], by definition
of the subspace topology on [a, b]. They are disjoint since A and B are disjoint. Finally,
we know that a is in A ∩ [a, b] and that b is in B ∩ [a, b].

Thus (writing A instead of A ∩ [a, b] and B instead of B ∩ [a, b]), we now have the
following situation. The closed interval [a, b] is a union of two disjoint open subsets A
and B with a ∈ A and b ∈ B. We want to derive a contradiction from this.

The key idea is to consider the real number c = supA, which exists by the complete-
ness property of the real numbers. Indeed, the set A is nonempty since it contains a,
and it has an upper bound, namely b; so it has a least upper bound, namely c. Since
A is open in [a, b] and contains a, A must contain [a, a + ε) for some ε > 0; therefore,
c = supA must be greater than a. Also, since B is open in [a, b] and contains b, B
contains (b − ε, b] for some ε > 0. Therefore, c = supA is less than b. Thus, c is in the
open interval (a, b).

We ask whether c is in A or B; we will get a contradiction either way. Suppose c is
in B. In that case, since B is open in [a, b], B contains the open interval (c− ε, c+ ε) for
some ε > 0. This contradicts the fact that c is the supremum of A. On the other hand,
suppose c is in A. Since A is open in [a, b], A contains the open interval (c− ε, c+ ε) for
some ε > 0. But then c = supA would be at least c+ ε, which is a contradiction. This
completes the proof that every interval in the real line is connected. QED

To show the depth of Theorem 3.2, we can use it to prove that certain topological
spaces are not homeomorphic to each other, something which is in general very hard.

Example. Show that the spaces [0, 1] and [0, 1] ∪ [2, 3] are not homeomorphic.
Answer: [0, 1] ∪ [2, 3] is not connected (as we showed easily, above), whereas [0, 1] is
connected (as we showed with difficulty in Theorem 3.2). Therefore these two spaces
cannot be homeomorphic, since two homeomorphic spaces have all the same topological
properties.

We can complete Theorem 3.2 by showing that this theorem gives all the connected
subspaces of the real line, as follows.

Lemma 3.3 Any connected subspace of R is an interval.

Proof. We use the following characterization of intervals: a subset S of the real line
is an interval if and only if it is nonempty and, for all real numbers a < b < c such that
a and c are in S, b is also in S. I omit the proof of this, which is easy but a bit messy
because of the various types of intervals.

Now let S be a connected subspace of R. We know that S is nonempty. It remains
to prove that for all real numbers a < b < c with a and c in S, b must also be in S. So
suppose that b is not in S. Then we can write

S = (S ∩ (−∞, b)) ∪ (S ∩ (b,∞)).

This expresses S as the union of two disjoint open subsets. They are both nonempty,
because a is in the first subset and c is in the second subset. This contradicts the fact
that S is connected. So in fact S must be an interval. QED

2



Lemma 3.4 Let f : X → Y be a continuous mapping between topological spaces. If X
is connected, then the image f(X) ⊂ Y is connected.

Here, to talk about connectedness of f(X) ⊂ Y , we view it as a topological space
using the subspace topology.

Proof. By Lemma 2.6 (2), since f : X → Y is continuous and maps into the subset
f(X) of Y , the function f : X → f(X) is also continuous, where we give f(X) the
subspace topology. Let us replace Y by the subspace f(X) of Y . Then the situation is:
we have a continuous map f from X onto Y , with X connected, and we want to show
that Y is connected.

Clearly Y is nonempty since X is nonempty. To show that Y is connected, we have
to show that we cannot write Y as the union of two disjoint nonempty open subsets
A and B. Suppose we can. Then X is the union of the inverse images f−1(A) and
f−1(B). These are open in X because f is continuous. They are disjoint, because A
and B are disjoint. Finally, f−1(A) and f−1(B) are both nonempty, because A and B
are nonempty and f is onto. This contradicts the fact that X is connected. Thus we
have shown that the image of f is connected. QED

Corollary 3.5 (Intermediate Value Theorem) For any continuous function f : [a, b]→
R, the image f([a, b]) is an interval in R. In particular, for any real number c between
f(a) and f(b), there is a point x in [a, b] with f(x) = c.

Proof. The interval [a, b] is connected by Theorem 3.2. So its image f([a, b]) ⊂ R
is connected by Lemma 3.4. By Lemma 3.3, this means that f([a, b]) is an interval in
R. The second statement then follows from the properties of intervals I in the real line:
if u < c < v with u and v in I, then c is also in I. QED

3.2 Day 8: Saturday 8 May

The familiar Intermediate Value Theorem for real-valued functions on an interval (Corol-
lary 3.5) generalizes to real-valued functions on any connected space, with the same
proof. Since we there are many more examples of connected spaces, as we will soon see,
this generalization shows the value of topological ideas.

Corollary 3.6 (Intermediate Value Theorem for connected spaces) For any continuous
real-valued function f on a connected topological space X, the image f(X) is an interval.
Therefore, if there are points x1 and x2 in X with f(x1) = a1 and f(x2) = a2 with
a1 < a2, then for any real number b in the interval [a1, a2], there is a point x in X with
f(x) = b.

Proof. Since X is connected, the image f(X) ⊂ R is connected, by Lemma 3.4.
This connected subset of the real line must be an interval, by Lemma 3.3. This proves
the first statement of the corollary; the second statement follows from the properties of
intervals in the real line. QED

To give more examples of connected spaces, one can use the following results, to be
proved in Examples Sheet 2.

Lemma 3.7 Let X be a topological space. Suppose that X is the union of two connected
subspaces A and B whose intersection is nonempty. Then X is connected.

Lemma 3.8 For any connected topological spaces X and Y , the product space X × Y
is connected.

So, for example, Euclidean space Rn is connected for any n, by induction using
Lemma 3.8. Likewise, the n-dimensional cube [0, 1]n is connected for any n.
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Example. Show that the letter ‘T’ is connected; we could define this precisely as
the subspace X = ([0, 1]× {0}) ∪ ({1/2} × [−1, 0]) of R2. One answer: The space X is
the union of two subspaces which are homeomorphic to the closed interval and whose
intersection is nonempty; so X is connected by Lemma 3.7.

We now turn to a different notion of connectedness, based upon the idea of a path.

Definition 3.9 A path in a topological space X is a continuous function f : [0, 1]→ X.
We say that f is a path from f(0) to f(1) in X.

Definition 3.10 A topological space X is path-connected if it is nonempty and, for all
points x and y in X, there is a path from x to y.

Example. The real line is path-connected. To prove this, let x and y be any real
numbers. We can define a path from x to y, f : [0, 1]→ R, by:

f(t) = (1− t)x+ ty.

This is a continuous function from [0, 1] to R, with f(0) = x and f(1) = y. So we have
shown that R is path-connected.

More generally, every interval I in the real line is path-connected. To prove this, let
x and y be any points in I. Then we can define a path from x to y, f : [0, 1] → I, by
the same formula. This function clearly has all the right properties if we can show that
it does map into I (which would not be true for an arbitary subset of R). This is true
because, for x and y in an interval I, and for any t ∈ [0, 1], the real number (1− t)x+ ty
is between x and y, and therefore also belongs to the interval I.

Also, Euclidean space Rn is also path-connected. Indeed, for any points x and y in
Rn, there is a path from x to y, going along the line segment from x to y. We can define
this by the same formula:

f(t) = (1− t)x+ ty

for t ∈ [0, 1]. One just has to interpret this formula correctly: for a real number t and a
point x = (x1, . . . , xn) in Rn, tx means the point (tx1, . . . , txn) in Rn. You can check
that f : [0, 1]→ Rn is continuous and goes from x to y, so that Rn is path-connected.

We mention one last generalization: any nonempty convex subset of Rn is path-
connected. By definition, a subset of Rn is convex if it contains the line segment between
any two points in the subset. Then, for a convex subset X in Rn, there is an obvious
path between any two points x and y in X, namely the straight-line path defined by the
same formula as above. So X is path-connected.

The following fact makes the notion of path-connectedness easier to work with.

Lemma 3.11 Let X be a topological space. If there is a path from x to y in X, and a
path from y to z, then there is a path from x to z.

Proof. Let f : [0, 1]→ X and g : [0, 1]→ X be paths from x to y and from y to z.
Define h : [0, 1]→ X by:

h(t) =

{
f(2t) if t ∈ [0, 1/2]
g(2t− 1) if t ∈ [1/2, 1].

(This is the natural way to define a path which goes along the path f from x to y, and
then along the path g from y to z.) Clearly h is a well-defined function from [0, 1] to X,
because the two parts of the definition agree when t = 1/2, using that f(1) = y = g(0).
Also, it is clear that h(0) = x and h(1) = z. So we are done if we can prove that h is
continuous.

Clearly the restrictions of h to the intervals [0, 1/2] and [1/2, 1] are continuous, since
they are defined as composites of continuous functions. We want to show that h is

4



continuous on the whole interval [0, 1]. So let U be any open subset of X; we have to
show that h−1(U) is open in [0, 1]. Since the restrictions of h to the two half-intervals
are continuous, we know that h−1(U)∩ [0, 1/2] and h−1(U)∩ [1/2, 1] are open in [0, 1/2]
and in [1/2, 1], respectively.

To show that h−1(U) is open in [0, 1], pick any point t in h−1(U); we have to show
that the subset h−1(U) contains an open ball around t in [0, 1]. This is clear if t is not
equal to 1/2, using that h−1(U)∩ [0, 1/2] is open in [0, 1/2] and h−1(U)∩ [1/2, 1] is open
in [1/2, 1]. So suppose that t = 1/2 is in h−1(U). From the openness of h−1(U) in the
two half-intervals, we know that h−1(U) contains (1/2− ε, 1/2] for some ε > 0, and also
that it contains [1/2, 1/2 + ε) for some ε > 0. Therefore (taking the smaller of these two
positive numbers ε), h−1(U) contains (1/2− ε, 1/2 + ε). This completes the proof that
h−1(U) is open in [0, 1]. QED

We now relate our two notions of connectedness.

Lemma 3.12 Every path-connected space is connected.

Proof. Let X be a path-connected space. We know that X is nonempty. To show
that X is connected, we have to show that we cannot write X as the union of two disjoint
nonempty open subsets A and B. Suppose we can; we will derive a contradiction.

Since A and B are nonempty, we can pick a point a in A and a point b in B. Since
X is path-connected, there is a path f : [0, 1]→ X from a to b. We see that the interval
[0, 1] is the union of the two subsets f−1(A) and f−1(B). They are disjoint, since A and
B are disjoint. Both subsets are open in [0, 1], since f is continuous and A and B are
open in X. Finally, both subsets of [0, 1] are nonempty, since 0 is in f−1(A) and 1 is in
f−1(B). This contradicts the connectedness of [0, 1]. QED

For subsets of the real line, the converse holds: a connected subspace of the real line
is an interval (Lemma 3.3) and hence is also path-connected. But for general topological
spaces, even subspaces of the plane, connectedness does not imply path-connectedness.

(*) Example. Let X ⊂ R2 be the union of A = {0}×[−1, 1] and B = {(x, sin(1/x)) :
x ∈ (0, 1]}. Then X is connected but not path-connected. (Draw a picture.) The proof
of these properties of X is complicated, and is in any case non-examinable.

Although not every connected space is path-connected, any connected space which
one encounters in daily life is likely to be path-connected. One might consider con-
nectedness to be the more fundamental notion, while path-connectedness has a clearer
geometric meaning and often seems easier to check in examples.

Example. Show that R2 − {0} is connected. (Here 0 denotes the point (0, 0) in
R2.)

One could prove this from the general properties of connected spaces (notably,
Lemma 3.7). But it seems more intuitively appealing to show that R2 − {0} is path-
connected; of course that implies that it is connected. Notice that this is not completely
trivial, in that R2 − {0} is not convex.

To show that R2−{0} is path-connected, we first observe that many points in X can
be connected to the point (1, 0) (for example) by a single straight-line path. Namely, this
works for all the points in R2 − {0} except those in the ray (−∞, 0)× {0}. But all the
points in that ray can be connected to the point (−1, 1) by a single straight-line path,
and then a second straight-line path goes from (−1, 1) to (1, 0). (I am using Lemma
3.11 tacitly here.) So R2 − {0} is path-connected.

Remark. Any connected open subset U of Euclidean space is path-connected.
Proof. Choose a point x in U . Let A be the set of points in U which can be reached

by a path starting at x, and let B be the complement A−U . I claim that A and B are
both open in Rn. Indeed, for any point a in A, U contains some open ball around a in
Rn, and this is a convex set. So all the points in this open ball can be reached by a
path from a, hence by a path from x (using Lemma 3.11); that is, all the points in this
open ball are in A. So A is open in U .
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Likewise, let b be any point in B. Then U contains some open ball around b in Rn.
If any of the points in this ball were in A, that is, if any of those points could be reached
by a path from x, then so would b be (using a straight line path from the given point to
b, plus Lemma 3.11 again), which is a contradiction. So B contains an open ball around
b in Rn. This shows that B is open in U . Also, A is nonempty, since it contains the
point x. By connectedness of U , it follows that B must be empty. This means exactly
that U is path-connected. QED

3.3 Day 9: Tuesday 11 May

Today, we finish our work on connectedness, and then make a series of definitions about
closures in topological spaces and completeness in metric spaces.

For any topological space X, and any two points x and y in X, say that x ∼ y if
there is a connected subspace of X which contains both x and y. This is an equivalence
relation, by Lemma 3.7.

Definition 3.13 The connected components of a topological space X are the equivalence
classes for the above equivalence relation on X.

One can check that the connected components ofX are, in fact, connected. Moreover,
any connected subspace of X is contained in a connected component.

Examples. For X connected, X has just one connected component, the whole
space. For X = [0, 1] − {1/2}, the connected components are [0, 1/2) and (1/2, 1]. For
X = Q, with the subspace topology from the real line, the connected components are
just the points of Q, because any connected subspace of Q is a point. This follows, for
example, from the fact that the only connected subspaces of the real line are intervals
(Lemma 3.3).

Remark. If two spaces are homeomorphic, then they have the same number of
connected components, clearly. This gives another possible way to show that two given
spaces are not homeomorphic.

Example. Show that the closed interval X = [0, 1] and the letter ‘T’, defined as the
subspace

Y = ([0, 1]× {0}) ∪ ({1/2} × [−1, 0])

of R2 are not homeomorphic.
Answer: Both X and Y are connected (in fact, path-connected), and so we cannot

distinguish them that way. But suppose that there is a homeomorphism f : X → Y .
Then, for every point y ∈ Y , f restricts to a homeomorphism from X − {f−1(y)}
to Y − {y}. In particular, X − {f−1(y)} must have the same number of connected
components as Y − {y}. For the point y = (1/2, 0) in Y , however, Y − {y} has 3
connected components. By contrast, X − {x} has 1 or 2 connected components for all
x ∈ X = [0, 1]. So in fact X and Y are not homeomorphic.

The same method can be used to show that R and R2 are not homeomorphic, and
also that the interval [0, 1] and the circle S1 are not homeomorphic (Examples Sheet 2,
Questions 6 and 12).

We now turn away from connectedness to make some general definitions about clo-
sures in topological spaces and completeness in metric spaces. These ideas help to
prepare for the final section of the course, on compactness.

Definition 3.14 Let S be a subset of a topological space X. The closure S of S in X
is the intersection of all closed subsets of X which contain S.

Since the intersection of any collection of closed subsets is closed, the closure of S is
itself a closed subset of X. Clearly, it is the smallest closed subset of X that contains S.

Examples. The closure of [0, 1] in R is [0, 1], since this is a closed set. The closure
of (0, 1) in R is [0, 1].
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Definition 3.15 Let S be a subset of a topological space X. The interior int S of S in
X is the union of all open subsets of X which are contained in S.

Since the union of any collection of open subsets is open, the interior of S is an open
subset of X. It is the largest open subset of X contained in S.

Examples. The interior of the closed ball {(x, y) ∈ R2 : x2 + y2 ≤ 1} in R2 is the
open ball {(x, y) ∈ R2 : x2 + y2 < 1}. The interior of [0, 1]×{0} in R2 is the empty set.

Definition 3.16 Let X be a topological space. We say that a subset S of X is dense in
X if the closure S is equal to X.

Example. Both Q and R − Q (the sets of rational and irrational numbers) are
dense in the real line. This follows from the fact that every open interval in the real
line contains both a rational and an irrational number. In particular, we see that an
uncountable topological space can have a countable dense subset, since Q is dense in R.

In the special case of metric spaces, we can give an alternative, more explicit descrip-
tion of the closure of a subset, Lemma 3.18 below. First, we need the following basic
definition.

Definition 3.17 Let X be a metric space. We say that a sequence x1, x2, . . . in X
converges to a point x in X if, for every open ball U around x, there is an integer N
such that xi is in U for all i ≥ N .

The limit of a convergent sequence in a metric space is unique, by Examples Sheet
1, Question 9.

Lemma 3.18 Let X be a metric space. The closure S of a subset S in X is the set of
points x in X such that there is a sequence of points in S which converges to x in X.

Proof. First, let x1, x2, . . . be a sequence of points in S which converges to a point
x in X. We want to show that x is in the closure S of S in X. Suppose that x is not
in S. Since S is closed, its complement X − S is open, and we are assuming that it
contains the point x. So there is an open ball U around x which is contained in X − S.
This open ball does not contain any of the points xi, since they are in S and hence in
S. This contradicts the fact that the sequence xi converges to x. Thus, we have shown
that the limit point x must be in the closure S.

Conversely, let x be any point in the closure S. Then, for any open ball U around x,
X −U is a closed set that does not contain x. If X −U contained the subset S, then it
would also contain the closure S and hence the point x; so X − U does not contain S.
That is, for every open ball U around x, there is a point in S ∩ U .

As a result, for each positive integer i, we can choose a point xi in S∩B1/i(x). Thus
we have a sequence x1, x2, . . . in S such that d(xi, x) < 1/i for all i. Therefore the
sequence xi converges to x. Thus we have found a sequence in S that converges to any
given point x in the closure S. QED

For example, by Lemma 3.18, we can rephrase the fact that Q is dense in R by
saying that every real number is the limit of some sequence of rational numbers.

We now turn to the notion of completeness for metric spaces.

Definition 3.19 A sequence x1, x2, . . . in a metric space X is a Cauchy sequence if,
for every ε > 0 there is an integer N such that d(xi, xj) < ε for all i, j ≥ N .

Any convergent sequence in a metric space is Cauchy, as one easily checks.

Definition 3.20 A metric space X is complete if every Cauchy sequence in X is con-
vergent (to some point in X).
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Completeness of a metric space is a remarkable property: it says that you can check
whether a sequence has a limit or not just by looking at the distance between different
points in the sequence, without knowing what the limit point might be.

Lemma 3.21 The metric space R is complete.

Proof. Let x1, x2, . . . be a Cauchy sequence of the real numbers; we want to show
that this sequence converges to some real number. First, using the definition of a
Cauchy sequence, we notice that this sequence is bounded. That is, it is contained in
some interval [a, b]. As a result, using the completeness property of the real numbers,
we can define a real number

yN := sup
i≥N

xi

for each positive integer N . Clearly yN is also in the interval [a, b], and we have y1 ≥
y2 ≥ · · · . Therefore, again using the completeness property of the real numbers, we can
define a real number

x := inf
N≥1

yN .

I claim that the sequence xi converges to x.
To prove this, pick any ε > 0. Since xi is a Cauchy sequence, there is a positive

integer M such that d(xi, xj) < ε for all i, j ≥M . In particular, all the numbers xi with
i ≥ M are in the closed interval [xM − ε, xM + ε], and so the supremum yN is also in
that interval for all N ≥ M . Therefore, also, the infimum x is in that same interval.
(This uses that, because the sequence yN is decreasing, the numbers yN with N < M
are irrelevant to the definition of x.) As a result, we have d(xi, x) ≤ 2ε for all i ≥ M .
This shows that xi converges to x. QED

Examples. The metric space Q is not complete. Indeed, any sequence in Q which
converges to the real number

√
2 is Cauchy, but does not converge to any point in Q.

The open interval (0, 1) is not complete: the sequence xi := 1/i in (0, 1) is Cauchy,
but does not converge to any point in (0, 1).

Since R and (0, 1) are homeomorphic, but R is complete while (0, 1) is not, we see
that completeness of metric spaces is not a topological property.

Lemma 3.22 The metric space Rn is complete.

Proof. As usual, we refer here to the standard metric on Rn. Let x1, x2, . . . be
a Cauchy sequence in Rn. Thus, for every ε > 0, there is an integer N such that
d(xi, xj) < ε for all i, j ≥ N . We recall the definition of the metric on Rn:

d(x, y) = [
n∑

m=1

(ym − xm)2]1/2.

In particular, for each m = 1, . . . , n, the distance between the mth coordinates xm and
ym is at most the distance between x and y. It follows that, for each m = 1, . . . , n, the
mth coordinates of our sequence, x1

m, x
2
m, . . . , form a Cauchy sequence in the real line.

By completeness of R, it follows that, for eachm = 1, . . . , n, the sequence x1
m, x

2
m, . . .

converges to some real number xm. I claim that our sequence x1, x2, . . . in Rn converges
to the point x := (x1, . . . , xn) in Rn. We know that for every ε > 0, and every m =
1, . . . , n, there is an Nm such that dR(xim, xm) < ε for all i ≥ Nm. It follows that, for
every i > max(N1, . . . , Nn),

dRn(xi, x) = [
n∑

m=1

(xim − xm)2]1/2

< n1/2ε.

Here n1/2 is just a constant. So this shows that the sequence xi converges to x in Rn.
Thus Rn is complete. QED
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Lemma 3.23 (1) A subspace X of any metric space Y which is complete (using the
subspace metric) must be closed in Y .

(2) Let Y be a complete metric space. Then a subspace X of Y is complete if and
only if it is closed in Y .

Lemma 3.23 makes it easy to check completeness for a large class of metric spaces.
For example, this lemma tells us that a subset X of Rn is complete in the subspace
metric if and only if it is closed in Rn.

Proof. (1) Let X be a complete subspace of a metric space Y . By Lemma 3.18, to
show that X is closed in Y , it is equivalent to show that for every sequence in X with
a limit point in Y , the limit is actually in X. To prove this, note that such a sequence
must be a Cauchy sequence. By completeness of X, this sequence has a limit point in
X. So the limit point in Y is actually in X (by uniqueness of the limit).

(2) The direction =⇒ follows from (1) (even without knowing that Y is complete).
The direction ⇐= is Examples Sheet 1, Question 20. It is proved most easily using the
description of closed sets given by Lemma 3.18. Namely, let X be a closed subset of
a complete metric space Y . We want to show that X is complete (with the subspace
metric). So take any Cauchy sequence in X. Since the bigger space Y is complete,
our sequence converges to some point in Y . By Lemma 3.18, since X is closed, every
sequence in X that converges to a point in Y actually has its limit point in X. So our
Cauchy sequence actually converges to a point in X. That is, X is a complete metric
space. QED
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Part IA Metric and Topological Spaces, third set of

notes

Burt Totaro

18 May 2004

4 Week 4: Compact topological spaces

4.1 Day 10: Thursday 13 May 2004

The last week of the course will be devoted to “compact” topological spaces. A basic ex-
ample of a compact space will be a closed interval in the real line. One main result about
compact spaces will be that any continuous real-valued function on a compact space is
bounded, and moreover attains its maximum and minimum. Notice that this does not
hold for open intervals (the function 1/x on (0, 1) is continuous, but unbounded). So
open intervals will not be compact.

Definition 4.1 A topological space X is compact if, for every collection of open subsets
of X whose union is X, X is actually the union of finitely many of these open subsets.

More briefly: X is compact if every open cover of X has a finite subcover.
Examples. (1) Any finite topological space is compact. Indeed, if the set X is

finite, then X has only finitely many open subsets, and so any open cover of X has a
finite subcover.

In fact, we can think of compactness as a natural generalization of finiteness. Most
of the properties of compact spaces will be generalizations of obvious properties of finite
sets. (For example, every real-valued function on a finite set is bounded.)

(2) The real line R is not compact. For example,

R = ∪n≥1(−n, n),

which says that the open sets (−n, n) form an open cover of R. This open cover has
no finite subcover, since the union of any finite number of these sets (−n, n) will be
bounded and hence not all of R.

(3) The open interval (0, 1) is not compact. This follows from the fact that the real
line is not compact, since (0, 1) and R are homeomorphic (and compactness is clearly
a topological property). We can also check directly that (0, 1) is not compact: the sets
(1/n, 1) for positive integers n form an open cover of (0, 1) which has no finite subcover.

As with connected spaces, it is easy to give examples of non-compact spaces (as
above), but hard to prove that any interesting space is compact. We now give the
fundamental example of a compact topological space. Just as with the corresponding
fact for connectedness (that intervals are connected), the proof is fairly deep, relying
upon the completeness property of the real numbers.

Theorem 4.2 The closed interval [a, b], for real numbers a < b, is compact.

Proof. Suppose that [a, b] is the union of a collection of open sets Ui, where i runs
over some indexing set I. We need to show that [a, b] is the union of finitely many of
the sets Ui.
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The basic idea is to consider the set A of numbers x in [a, b] such that the interval
[a, x] is covered by finitely many of the sets Ui. Clearly we will be done if we can show
that b belongs to the set A.

Since the open sets Ui cover [a, b], the point a belongs to some set Ui. Therefore a
belongs to the setA (because 1 is a finite number). In particular, sinceA is nonempty and
bounded, we can consider the real number c = supA, using the completeness property
of the real numbers.

Let Ui be an open set in the given collection which contains a. Since Ui is open in
[a, b], it contains the interval [a, a+ ε) for some ε > 0. Then it is clear that [a, a+ ε) is
contained in A. Therefore c = supA is greater than a.

Since c belongs to the interval [a, b], c is in one of the open sets Uj in the given
collection. We know that c is greater than a; suppose that c is also less than b. Then,
since Uj is open in [a, b], Uj must contain (c− ε, c+ ε) for some ε > 0. Since c = supA,
the definition of A shows that the interval [a, c− ε/2] is covered by finitely many of the
open sets Ui. Therefore, using those open sets together with Uj , the interval [a, c+ ε/2]
is covered by finitely many of the open sets Ui. That is, c + ε/2 is in the set A, which
contradicts the fact that c = supA. This contradiction shows that in fact c must be
equal to b.

Thus, we have b = supA. We want to show that b itself is in A, to complete the
proof. This is a similar argument to the previous paragraph. Namely, since b is in [a, b],
b must belong to some Uj . Since Uj is open in [a, b], it must contain (b− ε, b] for some
ε > 0. Since b = supA, the definition of A shows that the interval [a, b− ε/2] is covered
by finitely many of the sets Ui. Using those open sets together with Uj , it follows that
the whole interval [a, b] is covered by finitely many of the sets Ui. QED

Now that we have the basic example of a compact space, we prove some general
properties of compact spaces. These will lead fairly easily to the basic properties of
continuous real-valued functions on a compact space.

Lemma 4.3 Any compact subspace of a metric space is bounded.

For example, this proves again that the real line is noncompact, since it is an un-
bounded metric space.

Proof. It suffices to show that every compact metric space X is bounded. This is
clear if X is empty. Otherwise, let x be a point in X. Consider the open balls Bn(x),
where n runs over the positive integers. They form an open cover of X, since for every
point y in X there is a positive integer n such that d(x, y) < n. Since we assume X is
compact, this open cover has a finite subcover. That is, X is the union of finitely many
of the open balls Bn(x). Taking the largest of these integers n, we conclude that X is
equal to Bn(x). That is, X is bounded. QED

Lemma 4.4 Any compact subspace S of a Hausdorff topological space X is closed in
X.

For example, this proves again that the open interval (0, 1) is noncompact, since it is
contained in the Hausdorff space R as a subset which is not closed. More generally, any
metric space is Hausdorff. So Lemmas 4.3 and 4.4 imply that any compact subspace of
a metric space must be closed and bounded.

Proof of Lemma 4.4. Let S be a compact subspace of a Hausdorff space X.
Suppose that S is not closed in X; we want to derive a contradiction. Since S is not
closed in X, we can choose a point x in the closure S which is not in S.

For every point s in S, we know that s is not equal to x. Since X is Hausdorff, we
can choose open subsets Us and Vs of X such that s is in Us, x is in Vs, and Us and Vs
are disjoint. Choosing such subsets for every point s in S, we see that the sets Us ∩ S
(one for each point s in S) form an open cover of S, using the subspace topology on
S. Since we assume S is a compact topological space, it follows that S is the union of
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the open sets Us1 ∩ S, . . . , Usn ∩ S for some finite collection of points s1, . . . , sn in S.
Equivalently, S is covered by the open sets Us1 , . . . , Usn in X.

Let V be the intersection of the other open sets Vs1 , . . . , Vsn in X. Since this is a
finite intersection of open sets, V is again open in X, and it clearly contains the point
x. Also, V is disjoint from each of the open sets Us1 , . . . , Usn , and so V is disjoint from
S. But this contradicts the fact that x is in the closure of S. (Indeed, X −V is a closed
subset of X which contains S, and so it contains the closure S and hence the point x.
This contradicts the fact that x is in V .) So in fact S must be closed. QED

4.2 Day 11: Saturday 15 May 2004

Lemma 4.5 Let f : X → Y be a continuous map of topological spaces. If X is compact,
then f(X) is compact.

Proof. Here f(X) is viewed as a topological space, using its topology as a subspace
of Y . By Lemma 2.6 (2), the function f : X → f(X) is continuous. So, replacing Y by
f(X), we have a continuous map f from X onto Y with X compact, and we want to
deduce that Y is compact.

So let Ui be any open cover of Y , where i runs over some indexing set I. We want to
show that Y is covered by finitely many of the sets Ui. Since f is continuous, the sets
f−1(Ui) are open. Clearly the union of these sets is all of X (since f of any point in
X belongs to some set Ui). Since X is compact, X is in fact the union of only finitely
many of these open sets, say f−1(U1), . . . , f−1(Un). That is, for every point x in X,
f(x) belongs to one of the sets U1, . . . , Un. Since f is onto, this means that Y is covered
by the finitely many sets U1, . . . , Un. QED

We now have a powerful set of tools for studying continuous functions on compact
spaces. In particular, we can draw the following conclusion.

Corollary 4.6 Let X be a compact topological space. Then any continuous real-valued
function f : X → R is bounded. If X is nonempty, then f also attains its maximum
and minimum on X.

Proof. SinceX is compact, the image f(X) ⊂ R is compact (Lemma 4.5). Therefore
f(X) is a bounded subset of R (Lemma 4.3). We rephrase this by saying that f is
bounded.

If X is nonempty, then we can define the greatest lower bound and least upper bound
of the nonempty bounded set f(X), a = inf f(X) and b = sup f(X), by the completeness
property of the real numbers. Also, the compact subspace f(X) is closed in R by Lemma
4.4. It is a general fact (which you can check) that for any nonempty bounded subset
A of the real line, inf A and supA belong to the closure of A. Therefore, since f(X) is
closed, a and b belong to f(X). That is, there are points x and y in X with f(x) = a
and f(y) = b; clearly these are the minimum and maximum values of f . QED

In particular, Corollary 4.6 generalizes the following result from calculus.

Corollary 4.7 Every continuous function f : [a, b] → R is bounded and attains its
maximum and minimum.

We now show how to construct many more examples of compact spaces.

Lemma 4.8 A closed subset of a compact topological space is compact.

Proof. Let S be a closed subset of a compact space X. Suppose we are given an
open cover of S; we want to show that this cover has a finite subcover. By definition of
the subspace topology on S, we can write the open cover of S as Ui ∩ S, where i runs
over some indexing set I and each Ui is an open subset of the bigger space X.

3



Since S is closed in X, the complement X−S is open in X. Therefore X−S together
with the open sets Ui gives an open cover of X. Since X is compact, X is covered by
finitely many of these open sets. In particular, S is covered by finitely many of these
sets. The set X − S is irrelevant for S, and so we have shown that S is covered by
finitely many of the sets Ui. QED

Example. Let X be the subset of R of numbers 1/n, where n runs over the positive
integers, together with the point 0. Then X is a closed subset of [0, 1], as you can check
(for example using Lemma 3.18). Therefore X is a compact topological space by Lemma
4.8. You can imagine even more complicated closed subsets of [0, 1]. It seems that there
is no hope of giving a simple ‘list’ of all compact subspaces of the real line, as we were
able to do for connected subspaces of the real line (which are all intervals).

At least there is a clear characterization of which subsets of the real line are compact.
Namely, a subset S ⊂ R is compact if and only if it is closed in R and bounded. We
already know that a compact subset of R must be closed and bounded (Lemmas 4.3
and 4.4). Conversely, a closed bounded subset of R is a closed subset of some interval
[a, b], and hence is compact.

Theorem 4.9 The product of two compact topological spaces is compact.

Proof. Let X and Y be compact spaces. Let Ui, i ∈ I, be an open cover of the
product space X × Y ; we want to show that this open cover has a finite subcover.

Pick any point x in X. The subspace {x} × Y of X × Y is homeomorphic to Y ,
since you can check that the obvious maps from Y to this subspace and back are both
continuous. Therefore this subspace is compact.

For every point y in Y , the point (x, y) must belong to some subset Ui. By definition
of the product topology, since Ui is open in X × Y , there are open subsets By in X and
Cy in Y such that x is in By, y is in Cy, and By × Cy is contained in Ui. Choose such
subsets By and Cy for every point y in Y .

Then the open subsets By × Cy, as y runs through all the points in Y , form an
open covering of {x} × Y . Since this subspace is compact, it is in fact covered by the
open subsets By × Cy for y running through some finite subset S of Y . Let Ax be the
intersection of the finitely many open subsets By ⊂ X with y ∈ S. Then Ax is an open
subset of X which contains x (one says: Ax is an open neighbourhood of x). We see that
{x} × Y is covered by the products Ax × Cy for y in the finite set S. It follows that
the whole ‘strip’ Ax × Y is covered by these finitely many products Ax × Cy. But this
product is contained in By × Cy, which in turn in contained in some set Ui. Thus, we
have shown: (*) For every point x in X, there is an open neighbourhood Ax of x such
that the strip Ax × Y is covered by finitely many of the sets Ui.

For each point x in X, choose an open neighbourhood Ax with the property listed
in (*). Then these open sets Ax form an open covering of X. Since X is compact, X is
covered by only finitely many of the sets Ax. It follows that the whole space X × Y is
covered by finitely many strips Ax× Y , each of which is covered by finitely many of the
sets Ui. So X × Y is covered by finitely many of the sets Ui. QED

By induction on n, it follows that the n-dimensional cube [0, 1]n is compact, for any
positive integer n.

Corollary 4.10 A subset of Rn is compact, in the subspace topology, if and only if it
is closed in Rn and bounded.

Proof. The proof as the same as the one we gave earlier for subsets of the real line.
If S is a compact subspace of Rn, then it must be closed and bounded, by Lemmas 4.3
and 4.4 (which hold in any metric space). Conversely, if S is a closed bounded subset
of Rn, then it is a closed subset of the cube [a, b]n for some real numbers a < b. So S is
a closed subset of a compact space, and hence is compact. QED
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Thus we have a huge supply of interesting compact spaces. For example, the surface
of the sphere, {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}, is closed in R3 and bounded, and so
it is compact. This has valuable consequences: any continuous real-valued function on
the sphere (for example) is bounded and attains its maximum and minimum.

4.3 Day 12: Tuesday 18 May 2004

Definition 4.11 A metric space X is sequentially compact if every sequence x1, x2, . . .
in X has a convergent subsequence.

Here a subsequence means the sequence xi1 , xi2 . . . in X associated to a sequence of
positive integers i1 < i2 < · · · .

Lemma 4.12 Every compact metric space X is sequentially compact.

Thus we know that all the compact subspaces of Rn, constructed at the end of
the last section, are sequentially compact. That is, every sequence has a convergent
subsequence, which is a useful property of these spaces. In fact, the converse to Lemma
4.12 is also true: a sequentially compact metric space is compact.

Proof of Lemma 4.12. Let x1, x2, . . . be a sequence in a compact metric space
X. Suppose that this sequence has no convergent subsequence; we will derive a con-
tradiction. Let S be the set of points xi, viewed as a subset of X. If S is finite, then
the conclusion is easy: there must be infinitely many numbers i such that xi is equal to
some point of S, and this constant subsequence is certainly convergent.

So we can assume that S is infinite. In order to use that X is compact, we have to
construct a suitable open cover of X. We note that for every point x in X, there is an
ε > 0 such that the open ball Bε(x) contains no points of S, or only the point {x} if x
happens to be in S. Indeed, if there were no such ε, then we could find a subsequence
of the sequence xi converging to x. So use these open balls Bε(x), for all points of x,
as an open covering of X. Since X is compact, it is covered by finitely many of these
open balls. Since each of these open balls contains only 0 or 1 point of S, it follows that
S is finite, which is a contradiction. So in fact every sequence in X has a convergent
subsequence. QED

Finally, we turn to some other remarkable properties of compact topological spaces.
First, there is the following inverse function theorem.

Lemma 4.13 Every bijective continuous map f from a compact space X to a Haus-
dorff space Y is a homeomorphism. Equivalently, the inverse function Y → X is also
continuous.

Let me point out how common it is, outside the setting of the lemma, to have bijective
continuous maps which are not homeomorphisms (that is, such that the inverse function
is not continuous). This is common whenever you consider two different topologies on
the same set. For example, there is a continuous bijective map (the identity map) from
the set R with the discrete topology to the set R with its standard topology. It is not a
homeomorphism, because there are many open sets in the first topology which are not
open for the second topology. (Or, more geometrically: the inverse function cannot pos-
sibly be continuous, because it maps the connected space R onto the space (R,discrete)
whose connected components are all points.) Similarly, there is a continuous bijective
map from the set {0, 1} with the discrete topology to the same set with the indiscrete
topology, and this is not a homeomorphism.

One can also give examples with a more geometric flavour. For example, there is
a continuous bijective function from [0, 1] ∪ (2, 3] to [0, 2], defined by subtracting 1 on
the component (2, 3]. Again, you can check that the inverse function is not continuous.
Lemma 4.13 shows the surprising fact that such things cannot happen when the domain
space is compact (and the image space is Hausdorff).
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Proof of Lemma 4.13. Let f be a continuous bijective map from a compact space
X to a Hausdorff space Y . We use the interpretation of continuity in terms of closed
sets: it means that for every closed subset B of Y , the inverse image f−1(B) is closed.
To show that f−1 is continuous, we have to show that for every closed subset A of X,
the image f(A) is closed.

Since X is compact, any closed subset A of X is compact. Therefore the image f(A)
is a compact subspace of Y . Since Y is Hausdorff, a compact subspace is closed in Y .
QED

Example. Using Lemma 4.13, we can make precise the vague idea that any closed
curve in the plane which does not cross itself must be homeomorphic to the circle S1.
Namely, let f : S1 → R2 be any continuous injective function. Then Lemma 4.13 shows
that the image f(S1) is in fact homeomorphic to the circle.

There is a generalization of Lemma 4.13 using the notion of quotient spaces.

Definition 4.14 An identification map or quotient map is a surjective function f :
X → Y between topological spaces such that a subset U of Y is open if and only if
f−1(U) is open in X. We say that Y is a quotient space of X.

The point is that if Y is a quotient space of X, then the topology on Y is completely
determined by the topology of X (as the definition makes clear). Examples Sheet 1,
Question 24 shows how to construct a quotient space Y starting from any partition of a
topological space X.

Notice that a bijective map is a quotient map if and only if it is a homeomorphism.
Therefore, the following result generalizes Lemma 4.13

Lemma 4.15 Every continuous map f from a compact space X onto a Hausdorff space
Y is a quotient map.

Proof. We have to show that a subset U of Y is open if and only if f−1(U) is open
in X. Equivalently, we have to show that a subset A of Y is closed if and only if f−1(A)
is closed in X. Since f is continuous, we know that if A is closed in Y , then f−1(A) is
closed in X. Conversely, let A be a subset of Y such that f−1(A) is closed in X. Then
f−1(A) is compact since X is compact. So the image f(f−1(A)) is a compact subspace
of Y . Since f is onto, this image is all of A. Finally, since Y is Hausdorff, it follows that
A is closed in Y . QED

Example. Show that the space obtained by identifying the points 0 and 1 in [0, 1]
is homeomorphic to the circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

Answer: We could check this from the definition of the quotient topology, but it is
easier to use Lemma 4.15. Namely, consider the function f : [0, 1]→ S1 defined by

f(t) = (cos 2πt, sin 2πt).

Clearly f is continuous and surjective. Since [0, 1] is compact and S1 is Hausdorff, this
is a quotient map by Lemma 4.15. Also, this map identifies the two points 0 and 1 and
is otherwise injective. So S1 is the quotient space obtained by identifying 0 and 1 in
[0, 1].
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