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L1: Topological spaces The central idea of

topology is that it makes sense to talk about

continuity without talking about distance.

We do this by formalising a notion of “proxim-

ity” or “nearness”. Specifically, we take a set

X and distinguish a certain collection of sub-

sets of X – which we call the open subsets –

which satisfy certain axioms. The idea is that

two points are close if open sets which con-

tain one also contain the other unless the open

sets are “small enough”. As often happens,

the formal definition has so little structure, it

both captures our original idea, but also lots

of much more general things (which makes it

even more useful, even if less intuitive).



Definition: A topological space (X, TX) is a set

X together with a collection TX of subsets of

X which satisfy:

(i) both ∅ and X belong to TX;

(ii) TX is closed under taking arbitrary unions;

(iii) TX is closed under taking finite intersec-

tions.

So for an arbitrary indexing set I and n ∈ N

{Ui}i∈I ⊂ TX ⇒
⋃

i

Ui ∈ TX

{Vj}1≤j≤n ⊂ TX ⇒
⋂

j

Vj ∈ TX

Terminology: we say that the elements of TX

are the open subsets of X. The indexing set I

need not be countable. In practise one can

check (iii) by checking intersections of two

open sets and using induction, but there’s no

analogous inductive way of checking (ii). The

second fundamental definition that goes hand-

in-hand with this is the one which allows us to

compare topologies on two spaces.



Definition: if (X, TX) and (Y, TY ) are topolog-
ical spaces, a function (of sets) f : X → Y is
continuous if f−1(TY ) ⊂ TX, in other words

V ∈ TY ⇒ f−1(V ) ∈ TX

So f is cts ⇔ preimages of open sets are open.

Warning: f−1(V ) is the set-theoretic preim-
age of points {x ∈ X | f(x) ∈ V }. We are not
assuming f has an inverse function.

Here’s a first indication of the power of the
formalism:

Lemma: the composition of continuous func-
tions is again continuous.

Proof: Take topological spaces (X, TX), (Y, TY )
and (Z, TZ) and functions f : X → Y and g :
Y → Z which are assumed continuous. If W ⊂
Z belongs to TZ, then V = g−1(W ) ∈ TY (since
g cts) and f−1(V ) ∈ TX (since f cts). Thus
(g ◦ f)−1(W ) = f−1(g−1(W )) = f−1(V ) ∈ TX.
Since W was arbitrary, preimages of open sets
are open, and g ◦ f is indeed continuous. ¥



This is “cleaner” than the ε, δ proof using the

usual idea of continuity in metric spaces... of

course, it also recovers (and generalises) that

argument, as we’ll see next time.

Example: (Indiscrete spaces)

For any X, let TX = {∅, X}. This is the “indis-
crete topology” on X.

Example: (Discrete spaces)

For any X, let TX = P(X) be the power set of

X, so every subset of X is open. This is the

“discrete topology” on X.

Warning: if you talk about the “trivial topol-

ogy” on a set, people won’t know which of the

two examples above you mean.

Example: (Metric spaces)

If (X, dX) is a metric space, then let TX be

those sets U ⊂ X which are metric-open; i.e.

U ∈ TX if for each x ∈ U there is some δx > 0

s.t. the open dX-ball Bx(δx) ⊂ U . [Check this

works!] We’ll discuss this at length next time.



Example: consider the set F of real or complex

numbers and declare

U ∈ TF ⇔ F \U is finite or U = ∅

Then certainly ∅ ∈ TF by definition, and since

F \F is finite [by convention], F ∈ TF as well.

Suppose {Ui}i∈I ⊂ TF. Then for each i ∈ I, we

know F \Ui = Vi is finite. Now

F \
⋃

i

Ui =
⋂

i

(F \Ui) =
⋂

i

Vi

is certainly finite, so the second axiom holds.

Moreover, if Uj 6= ∅ for 1 ≤ j ≤ n, then

F \
n⋂

j=1

Uj =
n⋃

j=1

(F \Uj) =
n⋃

j=1

Vj

is also finite, so the third axiom holds (note:

this axiom is trivial if one of the Uj above is

empty). Hence we satisfy all the axioms. ¤

Note: in TF, every two non-empty open sets

have non-empty intersection. This is a far cry

from the usual Euclidean metric topology. If

F = C this is called the Zariski topology.



The above example shows it’s important to

have “de Morgan’s laws” at your fingertips:

• X\
⋃

i Ai =
⋂

i (X\Ai)

• X\
⋂

i Ai =
⋃

i (X\Ai)

The following are also very useful in working

out whether a function is continuous or not:

note the first is not in general an identity.

• f (
⋂

i Ai) ⊂
⋂

i f(Ai)

• f (
⋃

i Ai) =
⋃

i f(Ai)

• f−1(
⋂

i Bi) =
⋂

i f−1(Bi)

• f−1(
⋃

i Bi) =
⋃

i f−1(Bi)

• f−1(Y \B) = X\f−1(B) if f : X → Y .

These are all set-theoretic relations, which you

can apply to any sets; in topology, they obvi-

ously give information when applied to open

sets. In all the relations, the indexing set i ∈ I

can be arbitrary, it doesn’t have to be finite or

countable or...



Definition: suppose (X, TX) and (Y, TY ) are

topological spaces and f : X → Y is a bijec-

tive function. If both f and the (well-defined)

inverse function f−1 are continuous, then f is

a homeomorphism and the spaces are homeo-

morphic.

Homeomorphic spaces are “topologically indis-

tinguishable”. One justification for abstract

topology is that there are many interesting

pairs of homeomorphic spaces which are not

obviously “isometric” for any “natural” met-

rics. Unfortunately, the neat examples only

appear later in the Tripos...

Example: the matrix group SL(2, R ) is home-

omorphic to a solid torus (inside of a bagel).

Example: The space of cosets of SL(2, Z) in-

side SL(2, R ) is naturally a topological space,

homeomorphic to the complement of a trefoil

knot in R 3 (this is the knot most commonly

found in garden hoses and shoelaces).



L2: Metric spaces Recall that a topological

space is a set X with a collection of “open”

subsets TX s.t. ∅ ∈ TX, X ∈ TX and TX is

closed under the operations of taking arbitrary

unions and finite intersections. A map f : X →

Y is continuous (with respect to topologies TX

and TY – which we will sometimes suppress

from the notation) if f−1(V ) is open whenever

V is open.

Definition: a metric space (X, dX) is a set X

with a “distance function” dX : X × X → R≥0

satisfying the axioms (for any x, y, z ∈ X):

(i) d(x, y) ≥ 0; d(x, y) = 0 ⇔ x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ d(x, y) + d(y, z).

Example: (R n, deucl) with d(x, y) =
√

∑

(xi − yi)
2

Example: the discrete metric on a set X, with

d(x, y) = 1 if x 6= y and d(x, x) = 0 for all x, y.



Example: B[a, b] = {f : [a, b] → R | f bounded},
with the metric d(f, g) = supx∈[a,b]|f(x)−g(x)|.

Note: (i) the RHS is well-defined, since if f ≤
Kf and g ≤ Kg on [a, b] then |f(x) − g(x)| ≤
|f(x)|+ |g(x)| ≤ Kf +Kg; so we are taking the
supremum of a bounded set.
Note: (ii) this really is a metric. For instance,
for f, g, h ∈ B and c ∈ [a, b]:

|f(c)− h(c)| ≤ |f(c)− g(c)|+ |g(c)− h(c)|

The RHS is bounded above by d(f, g)+d(g, h),
so we have for each c ∈ [a, b]

|f(c)− h(c)| ≤ d(f, g) + d(g, h)

and now take the sup on the LHS to obtain the
triangle inequality. This is called the “sup” or
“uniform” metric.

Definition: if (xn) ⊂ X satisfy d(xn, a) → 0 as
n → ∞ we say the sequence xn converges to a,
and write xn → a.
Example: Convergence of a sequence of func-
tions in (B[a, b], dsup) is called “uniform conver-
gence”.



It is good to be familiar with many examples

of metric spaces:

(i) R n has d1(x, y) =
∑

i |xi − yi| [l
1-metric]

(ii) R n has d∞(x, y) = maxi{|xi−yi|} [l
∞-metric]

Lemma: if (X, d) is a metric space and A ⊂ X

is a subspace, then (A, d|A×A) defines a metric

space structure on A.

Proof: set dA(x, y) = dX(x, y) for x, y ∈ A and

check the axioms! ¥

Note: this means e.g. surfaces (shapes) in R 3

are metric spaces; but here we’re measuring

distance “inside the bigger space”, so e.g. on

the sphere distances between points would not

be being measured along great circles.

Definition: in a metric space (X, d) the open

ball Bδ(x) = {a ∈ X | d(x, a) < δ}.

Example: xn → x iff for each δ > 0, there is Nδ

s.t. xn ∈ Bδ(x) for n > Nδ; convergence can be

described using open balls.



There are many things we can talk about with

metric spaces. Two of the most basic are

boundedness and continuity.

Definition: a function f : X → R is bounded if

f(X) is a bounded subset of R . If the function

d : X × X → R defining the metric is bounded,

we say (X, d) is bounded or has finite diameter

diam(X) = sup{x,y∈X}d(x, y) < ∞

This seems like a very basic property, but it

isn’t topological, and is just the kind of thing

this course is all about ignoring.

Definition: f : (X, dX) → (Y, dY ) is continuous

at x ∈ X if for each ε > 0 there is δ > 0 such

that

dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε

Say f is continuous if it is cts at every x ∈ X.

Note: the defining criterion can be rewritten

as: ∀ ε > 0, ∃δ > 0 s.t. f−1(Bε(f(x)) ⊃ Bδ(x).



Definition: we say a set U ⊂ (X, d) is open

if for each u ∈ U , there is some δu > 0 such

that Bδu
(u) ⊂ U . In words, a set is open if it

contains an open ball about each of its points.

Lemma: this defines a topology TX,d on X.

Proof: Obviously ∅ and X are open, and since

the condition just requires existence of some-

thing pointwise, arbitrary unions of open sets

must be open. We must check that if U1, . . . , Un

are open and
⋂

j Uj 6= ∅ then
⋂

j Uj is open.

Well, if u ∈
⋂

j Uj then since u ∈ Ui there

is some δi > 0 such that Bδi
(u) ⊂ Ui. Let

δ = min{δi : 1 ≤ i ≤ n} and note that δ > 0.

Then Bδ(u) ⊂
⋂

j Uj, so we’re done. ¥

A topology on a set X which arises in this way

for some distance function d is called metris-

able; later we’ll see non-metrisable topologies.

Exercise: on any set, the topology induced by

the discrete metric is the discrete topology.



Warning: just as which sets are open in a set

depends on which topology you use, so they

depend on which metric you use. E.g. {0} ⊂ R

is open in the discrete (metric) topology but

not in the usual (Euclidean metric) topology.

Lemma: f : X → Y is continuous as a map of

metric spaces if and only if it is continuous as

a map of topological spaces, for the topologies

induced by the metrics.

Proof: Recall f is continuous as a map of met-

ric spaces if for every x ∈ X and ε > 0 there is

δ > 0 so that f−1(Bε(f(x)) ⊃ Bδ(x). If V ⊂ Y

is an open set, V ∈ TY,dY
, and f(x) ∈ V , by def-

inition of “open set” there is some open ball

Bε(f(x)) ⊂ V . By continuity of f in the metric

space sense, this shows there is some δ > 0 so

that Bδ(x) ⊂ f−1(V ). Hence, f−1(V ) contains

an open ball around each of its points, thus is

an open set. The converse is analogous. ¥

Note: unions of open balls need not be open

balls, so it’s more natural to use “open sets”.



Examples: any constant function on any topo-

logical space is continuous. For if f : X → Y

takes X 7→ y ∈ Y ,then f−1(V ) = X if y ∈ V

and f−1(V ) = ∅ if y 6∈ V , so the only possible

preimages of open sets are certainly open.

Warning: this shows that the image of an open

set need NOT be open. For instance f : R →
R taking the constant value 0 sends the open

set (−2,7) to the set {0} ⊂ R , which is not

open.

On the other hand, if we looked at the (unique)

function f : R → {P} from R to a one-point

space, the image of (−2,7) would be the set

{P} which IS open in {P}. So to talk about

open and closed sets, you must first decide

what space you’re living in. The set (0,1] ⊂ R

is not open with the usual metric; but with the

induced Euclidean metric on A = (−7,1] it is.

More interestingly, x 7→ tan(x) defines a contin-

uous map (0, π
2) → (0,∞) with a continuous in-

verse. So “boundedness is not topological”...



L3: Equivalent metrics We saw last time

that a metric on a set gives rise to a topology

on that set, and that two metric spaces can

be “homeomorphic” (so there is a continuous

map between them with continuous inverse)

even though one is bounded and one is not.

So we want to distil topological notions from

metric ones.

Definition: metrics d1 and d2 on a set X are

equivalent if they define the same topologies:

that is, d1-open sets are exactly the same as

d2-open sets.

Recall that T(X,d) denotes the sets which con-

tain an open ball around each of their points,

so equivalently:

Corollary: d1 and d2 are equivalent if and only if

every open d1-ball contains some open d2-ball

(of possibly smaller radius), and vice-versa.

Example: the Euclidean and discrete metrics

on R are not equivalent [why?].



Definition: d1, d2 are Lipschitz equivalent if

∃ k, κ > 0 s.t. for all x, y ∈ X:

k d1(x, y) ≤ d2(x, y) ≤ κ d1(x, y)

Note this is “symmetric”, i.e. does define an

equivalence relation.

Lemma: Lipschitz equivalent metrics are topo-

logically equivalent.

Proof: from the definition,

B
d2
ε (x) ⊂ B

d1
ε/k

(x) B
d1
δ (x) ⊂ B

d2
δκ(x)

i.e. d2(x, y) < ε ⇒ d1(x, y) < ε/k etc. Hence

any set which contains open di-balls about its

points contains open dj 6=i-balls about them. ¥

Example: the l1 =
∑ |xj−yj|, l2 =

√

∑ |xj − yj|2
and l∞ = maxj|xj − yj| metrics on R n are Lip-

schitz equivalent, indeed (check!):

d1 ≥ d2 ≥ d∞ ≥ 1√
n

d2 ≥ 1

n
d1



Example: let C[0,1] be the set of continuous

real-valued functions on [0,1]. The metrics

l1 =
∫

t |f − g|dt and l∞ = maxt|f − g| are not

topologically (hence not Lipschitz) equivalent.

Proof: Let 0 denote the constant function with

value 0; we claim B1(0; l
∞) is not an l1-open

set. For otherwise it contains some Bδ(0; l
1).

But we can certainly find a function with l1-

norm less than δ but with supremum 2, by tak-

ing a suitable height 2 “spike” function centred

on a narrow interval around 1
2, of small total

integral, and vanishing elsewhere. ¥

Thus there are interestingly different metric

topologies on the same set without invoking

“pathologies” like the discrete metric. Indeed,

in the above example, one of the metrics is

complete and the other is not.

Definition: a sequence (xn) ⊂ (X, d) in a metric

space is a Cauchy sequence if ∀ε > 0 there is

Nε > 0 s.t. d(xn, xm) < ε for n, m > Nε.



Definition: a metric space is complete if every

Cauchy sequence in X converges.

Warning: this means: converges to a point of

X. e.g. (0,1) ⊂ R , with the Euclidean metric,

is NOT complete; since the Cauchy sequence

xn = 1/n does NOT converge in (0,1), even
though it does converge in R . The complete-

ness of R is one of the basic facts we’ll assume.

Remark: we’ve already seen that, with the

usual metric topologies (e.g. via a suitably

tweaked tangent function), (0,1) and R are

topologically equivalent; so completeness is not

a topological property.

Example: C[0,1] is complete with the l∞ met-

ric but not with the l1-metric. If (fn) is Cauchy

in (C[0,1], l∞) then CHECK

(i) for each x ∈ [0,1], (fn(x)) is Cauchy in R ,

so converges to some F (x);
(ii) F is continuous as a function of x; and
(iii) fn → F in l∞.
Why doesn’t a similar argument apply for l1 ?



There are some beautiful theorems that apply

only to metric, and not topological spaces, and

more specifically to complete metric spaces.

For instance:

Theorem: Suppose (X, d) is a complete metric
space and f : X → X is a contraction, i.e.

∃κ < 1 s.t. for all x, y, d(f(x), f(y)) ≤ κd(x, y).
Then f has a unique fixed point.

We’ll use an easy (but important!) Lemma:

Lemma: if xn → x and f : X → Y is continuous

then f(xn) → f(x).

Proof: Since f is continuous, given ε there

is δ > 0 s.t. f−1Bε(f(x)) ⊃ Bδ(x). Hence

given ε > 0 there is Nε s.t. xn ∈ Bδ(x) for

n > Nε and hence f(xn) ∈ Bε(f(x)). But this,

by definition, means f(xn) → f(x). ¥

Remark: a variation of this argument says a

function of metric spaces is continuous iff it

preserves all limits of sequences in this sense.



Proof of theorem: First note f is continu-

ous! Choose x0 ∈ X and set xn = f(xn−1).

We claim (xn) is a Cauchy sequence. Given

this, xn → x∞ converges by completeness of

X. Then f(xn) = xn+1 → f(x∞) = x∞, so we

have a fixed point. Moreover, if there are 2

fixed points, say x, y, then

d(x, y) = d(f(x), f(y)) ≤ κ d(x, y) ⇒ d(x, y) = 0

so the limit is unique.

To see (xn) is Cauchy, note that by induction

d(xr, xr−1) ≤ κr−1d(x1, x0). So if m > n

d(xm, xn−1) ≤
m−n
∑

j=0

d(xm−j, xm−j−1)

≤ (κm−1 + κm−2 + · · ·+ κn−1) d(x1, x0).

Write this as κn−1(1−κm−n)
1−κ d(x1, x0), which is

bounded above by κn

1−κd(x1, x0). Now this goes

to zero as n → ∞ as κ < 1, and this implies

that the sequence is Cauchy, as required. ¥



This “contraction mapping theorem” is both

important and beautiful; it implies existence of

solutions to ordinary differential equations, un-

derlies the “inverse function theorem” in anal-

ysis and geometry... At a more mundane level

it gives an obstruction to completeness and

hence of Lipschitz equivalence of some given

metric to one that is known to be complete.

Example: the map f : x 7→ x + 1
x on the com-

plete metric space [1,∞) satsfies

∀x 6= y |f(x)− f(y)| < |x − y|
but has no fixed point; so the existence of a

“contraction factor” κ strictly less than 1 is

critical for the theorem, as well as the proof!

Remark: there is a curious converse. Given

f : X → X a map of a set s.t. each iterate

fn = f ◦ · · · ◦ f has a unique fixed point, and

if κ ∈ (0,1), there is some complete metric

topology on X s.t. f is a contraction in that

topology, of factor κ. [We won’t prove this,

and it doesn’t have many applications.]



L4: Closed sets In looking at metric spaces,

an important role is played by convergence of

sequences; indeed, this can be used to char-

acterise continuity of a function. There is a

(weak) analogue of convergence of sequences

in a general topological space, but first we need

some more language.

Definition: Let (X, TX) be a topological space

and V ⊂ X a subset. If the complement X\V ∈
TX is open, we say V is closed.

The closed sets satisfy:

(i) ∅ and X are closed sets;

(ii) arbitrary intersections of closed sets are

closed; Vj closed for j ∈ J ⇒
⋂

j Vj closed;

(iii) finite unions of closed sets are closed; Vj

closed for 1 ≤ j ≤ n ⇒
⋂n

j=1 Vj closed.

These statements are “dual” to the axioms for

open sets under taking complements, so follow

from de Morgan’s laws (check!). A topology

is completely determined by saying which sets

are closed, since this tells you which are open.



Warning: in general, not every subset of a

topological space is either open or closed! For

instance in (R , Tdeucl
), the set [1,2) is neither

open nor closed.

Example: in the discrete topology, every set is

closed (since every set is open).

Warning: just as with open sets, it matters ex-

actly which set you’re working in and in which

topology to say if something is closed. So

[0,1) is closed in (−3,1) but not closed in R ,

with the usual topology; and (0,1) is closed in

R with the discrete topology but not with the

usual topology.

Example:
⋃

j[
1
j
,1] = (0,1] ⊂ R , so an infinite

union of closed sets need not be closed, just as

an infinite intersection of open sets need not

be open.

Exercise: f : (X, TX) → (Y, TY ) is continuous

iff the preimages of closed sets are closed.



Definition: if (X, TX) is a space and A ⊂ X,

then x is a limit point of A if every open set

U 3 x contains some point of A other than x.

[Note: x may or may not be a point of A in

this definition.]

Example: in a metric space, x is a limit point

of A iff for all ε > 0, (Bε(x) ∩ A)\{x} 6= ∅.

Example: in R with the usual topology, every

point is a limit point of the rationals Q; so the

set of limit points has larger cardinality than

the original set.

Example: in the discrete topology (metric),

no point is a limit point of any set. For given

x and δ < 1, Bδ(x) = {x}. In the indiscrete

topology, x is a limit point of a nonempty sub-

set A iff A 6= {x}. For if A ⊂ X, and x ∈ X,

then the only open set containing x is X, and

(X ∩ A)\{x} = A\{x}.

Definition: the closure Cl(A) of a set A ⊂ X

is the union of A and all of its limit points.



Note a point x ∈ Cl(A) iff every open set con-

taining x meets A.

Lemma: This operation satisfies:

(i) H ⊂ K ⇒ Cl(H) ⊂ Cl(K);

(ii) Cl(ClH) = Cl(H);

(iii) H is closed iff H = Cl(H);

(iv) Cl(H) is closed.

Proof: (i) is obvious from the definition. If

x ∈ Cl((Cl(H)) and U 3 x is open then there

is some point y ∈ Cl(H) ∩ U\{x}. So U is an

open set containing y ∈ Cl(H), hence U ∩H 6=
∅; so every open U containing x meets H, so

x ∈ Cl(H), proving (ii).

For (iii), suppose H is closed. If x ∈ X\H,

then X\H is an open set containing x and not

meeting H, so x 6∈ Cl(H). So Cl(H) ⊂ H, so

they co-incide. Conversely, if Cl(H) = H and

x ∈ X\H then ∃ open Ux 3 x not meeting H, so

this open set lies in X\H; so X\H is a union of

open sets Ux, hence is open. This proves (iii);

now (iv) follows from (ii)+(iii). ¥



Corollary: Cl(H) is the smallest closed set con-

taining H, i.e. the intersection of all the closed

sets containing H.

Proof: if V is closed and H ⊂ V then Cl(H) ⊂
Cl(V ) = V . ¥

Definition: if Cl(A) = X we say A is dense (or

“everywhere dense”) in X.

Example: the rationals are dense in the reals;

so are the irrationals; but the natural numbers

are not dense in R .

Example: [0,1) ∪ (1,2] is dense in [0,2].

Similarly, we can talk about the “largest open

subset” of A, called the interior Int(A) of A,

defined as the union of all the open sets of

X contained inside A. If Int(Cl(A)) = ∅ then

A is said to be “nowhere dense”. Note: we

take the closure before we take the interior;

so the rationals are NOT nowhere dense, even

though Int(Q) = ∅.



By analogy with metric spaces, we might say:

Definition: a sequence xn → x if for every open

U 3 x there is N = NU s.t. xn ∈ U for n > NU .

In particular, the limit x of a sequence in this

sense is a limit point of the set {xn |n ∈ N} (the
converse is not true: not all limit points of the

set need be limits of the sequence). However,

this notion of convergence is rather weak: lim-

its are far from being unique.

Example: in an indiscrete space X, every se-

quence in X converges to every point of X.

Next time we’ll talk about a condition which

guarantees uniqueness of limits even in this

more general topological setting. Whilst we’re

collecting definitions, a helpful and related one

to open/closed sets is:

Definition: a neighbourhood (nhood) of a point

x ∈ X is any set A 3 x which contains some

open set U containing x, so A ⊃ U 3 x.



For our examples and illustrations, we often

take intervals in R . Any subset of a metric

space inherits a metric, hence a topology; in

fact this is true without metrics being present.

Definition: if (X, TX) is a topological space and

A ⊂ X is a subset, there is an induced subspace

topology on A, with by definition

TA = {A ∩ U |U ∈ TX}.

Lemma: TA satisfies the axioms to define a

topology on the set A.

Proof: A = A ∩ X and ∅ = ∅ ∩ X, so these are

open. Now A∩
⋃

j Uj =
⋃

j(A∩Uj), similarly for

finite intersections, shows that TA inherits the

necessary properties from TX. ¥

Example: [0,1) is open in [0,∞) since it equals

[0,∞) ∩ (−1,1) and this is of the form A ∩ U

with U ∈ TR . The closure of (0,1) ⊂ (0,∞) is

(0,1], although its closure in R is [0,1].

Example: if A ⊂ (X, d), TA = TA,d|A×A
.



L5: Products and quotients We saw that

if (X, TX) is a topological space and A ⊂ X is

any subset, then we get an induced topology

(A, TA = A ∩ TX). There are other ways of

building news spaces out of old. It’s helpful to

introduce the idea of a “basis” for a topology.

Definition: if (X, TX) is a topological space, a

basis for the topology is any subset B ⊂ TX s.t.

every U ∈ TX is a union of elements of B.

B may not itself be preserved by taking arbi-
trary unions, but if we “close it up” under this

operation by force, we get all of TX (and no

more than TX – why?).

Warning: “being closed under an operation”

is a property of a collection of sets, and has

nothing to do with “closedness” of a single set

in the sense of “having open complement”...

Example: if (X, dX) is a metric space, the open

balls Bδ(x) (varying over x ∈ X and δ ∈ R +)

form a basis.



Example: a more economical basis for R 2 is

Bq(x) where x ∈ Q × Q ⊂ R 2 and q ∈ Q+;

indeed this is a countable basis. [When the

topological space you’re working on also hap-

pens to have the structure of a vector space,

don’t confuse “basis for a topology” and “lin-

early independent spanning set”.]

Example: in the Zariski topology on C every

(non-full) closed set is a finite union of points,

but there is no obvious basis for open sets.

Definition: if (X, TX) and (Y, TY ) are topolog-

ical spaces, the product topology on X × Y is

the topology with basis the open sets of the

form UX × UY with UX ∈ TX and UY ∈ TY .

Thus: every open set in X × Y is a union of

sets of the form UX ×UY ; an arbitrary open set

will NOT have this form in general.

Example: the disc {x ∈ R 2 | ‖x‖eucl < 1} is

open, but not globally A × B ⊂ R × R .



Note: since we only close a basis up under

unions, it must already be closed under fi-

nite intersections. To see our definition of the

product topology makes sense, check

(UX ×UY )∩ (VX ×VY ) = (UX ∩VX)× (UY ×VY )

Inductively, finite intersections of sets of the

form (open in X)×(open in Y ) are in the basis.

To reiterate: from the definition, if w ∈ W ⊂
X × Y with W open, there are open UX ⊂ X

and UY ⊂ Y s.t. w ∈ UX × UY ⊂ W .

Lemma: (i) the projection maps πi : X1×X2 →
Xi are continuous. (ii) f : Z → X1×X2 is con-

tinuous iff the projections πi◦f are continuous.

Proof: (i) if U ⊂ X1 is open, π−1
1 (U) = U ×X2

is a basic open set for TX1×X2
. (ii) One direc-

tion is “composition of cts functions”. Sup-

pose πi ◦ f are both cts and Ui ∈ TXi
, then

f−1(U1 ×U2) = (π1 ◦ f)−1(U1)∩ (π2 ◦ f)−1(U2)

is open. So inverse images of all basic open

sets, and hence all open sets, are open. ¥



We’ve written out a “minimalist” proof: check

that all the steps in the above, and proofs like

it, really make sense to you!

Exercise: check that the product topology on

R n induced by the Euclidean metric on R is

the Euclidean metric topology of R n.

Example: f : R 2 → R 2, (x, y) 7→ (xy, sin(x+y))

is continuous.

Proof: it suffices to check the projections are

continuous. Since composition of continuous

functions is continuous, we reduce to checking

sin, addition and multiplication are continuous,

which is straightforward.

Example: the graph of a function f : X → Y is

Γf = {(x, y) ∈ X × Y | y = f(x)}

Then Γf
∼= X (they are homeomorphic), via

the maps X → Γf , x 7→ (x, f(x)) and the pro-

jection map (to the first factor) Γf → X. [For

we now know these inverse functions are cts.]



As well as taking products, we can also take

quotients of topological spaces; this is a bit

more subtle.

Definition: Let (X, TX) be a topological space

and suppose p : X → Y is a surjective map of

sets. The quotient topology on Y is

TY, quot(p) = TY = {V ⊂ Y | p−1(V ) ∈ TX}

Lemma: this does define a topology.

Proof: Since ∅ ∈ TX and X ∈ TX and since p is

assumed to be onto, we see ∅ ∈ TY and Y ∈ TY .

If Vi ∈ TY for i ∈ I, say p−1Vi = Ui ∈ TX, then
⋃

i

Ui =
⋃

i

p−1(Vi) = p−1(
⋃

i

Vi)

is open (using the LHS and the fact that TX

is a topology); so the RHS is open, so (by

definition of TY )
⋃

i Vi ∈ TY ; hence TY is closed

under arbitrary unions. Similarly, if Vi, 1 ≤ i ≤
n are in TY , then p−1(

⋂
j Vj) =

⋂
j p−1(Vj) and

this is open in X [check!], so TY is closed under

finite intersections, as required. ¥



Remarks:

(i) by definition, the quotient map p : X → Y

is continuous. [Think of p as “projection”.]

(ii) if f : (X, TX) → (Y, TY ) is any continu-

ous surjective map of topological spaces, then

TY, quot(f) ⊃ TY . To see this, note that if W ∈

TY , then f−1(W ) ∈ TX since f is continuous;

but this means precisely that W ∈ TY, quot(f).

Thus, the quotient topology contains “as many

open sets as possible” if we want the projec-

tion map to be continuous.

The key feature of the quotient topology is:

Lemma: given a triangle of commuting maps

of topological spaces

X
f

−→ Y

p ↘ ↗ f ′

T

where p induces the quotient topology on T ,

then f is continuous iff f ′ is continuous.



Definition: if p : X → Y is any map of spaces

and TY = TY, quot(p) we call p a quotient map.

Note: every map f ′ from a quotient space in-

duces some map f = f ′ ◦ p from the original

space, so to understand whether a map to or

from a quotient space is continuous, you can

always work “upstairs” with the original space

– which is usually easier to understand (e.g.

its open sets are more explicit).

Proof: if f ′ is continuous, f = f ′◦p is obviously

continuous (since we already know all quo-

tient maps are continuous, and p is a quotient

map). If f is continuous, and V ∈ TY , then

f−1(V ) = (f ′ ◦ p)−1(V ) is open in X. But this

is p−1(f ′)−1(V ). Since by assumption T has a

quotient topology from p, a set of the shape

p−1(U) is open in X if and only if U is open in

T , so we deduce (f ′)−1(V ) ∈ TT, quot(p). Thus,

we have shown whenever V ∈ TY , (f
′)−1(V ) ∈

TT . Hence f ′ is continuous. ¥



L6: Hausdorff spacesWe introduced the idea

of quotient spaces, but didn’t yet look at any

examples. The most important class is where

we quotient a space by an equivalence relation,

“gluing” parts of the space together.

Definition: an equivalence relation on a topo-

logical space (X, TX) is a subset R ⊂ X × X

satisfying

(i) the diagonal ∆ ⊂ R;

(ii) if (x, y) ∈ R then (y, x) ∈ R and

(iii) (x, y), (y, z) ∈ R ⇒ (x, z) ∈ R.

The data of an equivalence relation is exactly

the same thing as a decomposition of X into

disjoint subsets; but we can now give the set

X/ ∼ of equivalence classes a natural topology.

For there is a surjective map of sets X → X/ ∼

and this induces the quotient topology on the

image.



Example: the quotient of the strip

{(x, y) ∈ R
2 |0 ≤ x ≤ 1}

by the relation (0, y) ∼ (1, y) is an infinite cylin-
der.

Exercise: describe an orientable surface with
g holes as a quotient of a 4g-gon, by gluing
edges in a similar way. [Start with g = 1.]

Definition: if A ⊂ X is a subset, the quotient
space obtained by collapsing A to a point and
leaving the rest of X alone [i.e. imposing the
equivalence relation x ∼ y ⇔ {x, y} ⊂ A] is writ-
ten X/A.

Warning: if X = G is a group and A = H ≤ G
is a subgroup, G/H = {gH : g ∈ G} denotes
the set of cosets...

Example: D2/∂D2 = S2; the quotient of the
closed disc by its boundary is a sphere.

But what do we mean by saying one space “is”
another? Later we’ll have more technology...



Example: the quotient R /Z with the topology

induced from (R , Teucl) is homeomorphic to the

unit circle S1 ⊂ R 2 with the subspace topology.

Proof: Define a map R → S1 by taking t 7→
(cos2πt, sin2πt). As a map of sets, this is con-
stant on Z, hence descends to a map on the

set R /Z of equivalence classes; moreover, this

latter map is clearly a bijection.

The map R → S1 is continuous, since both its

projections to the factors are, so by definition

of the quotient topology the map R /Z → S1

is continuous. Now a set in R /Z is open iff

its preimage in R is open. Such an open set

is a union of open intervals; indeed the open

intervals of length < δ ≤ 1
2 form a basis for

the topology Teucl. The image of such a short

open interval under R → S1 is obviously open

in the subspace topology of S1, so all open

sets in R map to open sets in S1. Hence, the

map R /Z → S1 is continuous, bijective and

takes open sets to open sets. This means it’s

a homeomorphism (exercise!). ¥



Quotients are more subtle than products, sub-

spaces etc. For instance, consider the quotient

X of two parallel lines {x = 0} q {x = 1} ⊂ R 2

by the relation which identifies (0, y) ∼ (1, y)
whenever y 6= 0. The result is one line, but

with a single point “doubled up”.

Recall that a sequence (xn) ⊂ (X, TX) con-

verges to a ∈ X if for every open set U 3 a,
there is some NU so that xn ∈ U for all n ≥ NU .

Our line with one “fat point” is obtained from

a nice space by imposing a simple equivalence

relation, yet:

Example: the sequence (0, 1
n) ⊂ X has two

distinct limits, namely (0,0) and (1,0).

Proof: in the quotient topology, the open sets

about (0,0) are just sets which pull back to

open sets upstairs. Any such contains (0, 1
n)

for all n À 0. But (0, 1
n) ∼ (1, 1

n), so all these

points also lie inside any open neighbourhood

of (1,0) ∈ X. Hence the sequence is also con-

verging to this (distinct) point. ¥



Often equivalence relations come from geom-

etry (quotients by groups of symmetries), and

we want to know what equivalence class a se-

quence converges to, so this behaviour is bad –

not so much that the quotient space is strange,

but that this particular good property (unique-

ness of limits of sequences, which holds for

subsets of R 2) is explicitly not inherited by its

Siamese sibling.

Roughly, Hausdorff spaces are the ones which

don’t have this problem.

Definition: (X, TX) is Hausdorff if for every pair

of distinct points x 6= y ∈ X we can find disjoint

open sets Ux 3 x and Uy 3 y.

So the points can be “housed off” from one

another by open sets.

Example: any metric space is Hausdorff. If

x 6= y ∈ (X, d) then the open balls Br(x) and

Br(y) are disjoint for any 0 < r < d(x, y)/2.



Example: the indiscrete topology on a set X
is Hausdorff iff X has at most one point. The

Zariski topology on C is not Hausdorff since ev-

ery two non-empty open sets meet non-trivially.

Lemma: if (X, TX) is Hausdorff, a sequence

(xn) ⊂ X has at most one limit.

Proof: suppose xn → a1 and xn → a2 for

distinct points a1 6= a2. The Hausdorff hy-

pothesis says there are open sets Ui 3 ai with

U1 ∩ U2 = ∅. But by the definition of con-

vergence in a general topological space, there

are N1 and N2 s.t. xn ∈ Ui for n > Ni; for

n ≥ max{N1, N2} this is absurd. ¥

Being Hausdorff is not inherited by all quo-

tients, but is by some:

Proposition: Let (X, TX) be a compact Haus-

dorff topological space. If R ⊂ X×X is a closed

subspace, the quotient X/ ∼ is also Hausdorff.

In particular, if A ⊂ X is closed then X/A is

Hausdorff.



Let’s end with an illustrative (but perhaps quite

hard) example.

Example: the group R ∗ acts on R 2 via

λ · (x, y) = (λx, λy)

What does the quotient space look like? If

(x, y) 6= 0, then the orbit is a copy of R ∗ –

it’s exactly the non-zero points of the unique

line L(x,y) through the origin in R 2 which con-

tains (x, y). The set of such lines is (visu-

ally!) parametrised by the unit circle in R 2,

with antipodal points identified. Topologically

the quotient space is still homeomorphic to a

circle, the “real projective line” (R 2\{0})/R ∗.

But the orbit of 0 ∈ R 2 is just 0; and this

orbit is in the closure in R 2 of every other

R ∗-orbit. This means the quotient R 2/R ∗ is

set-theoretically the union of a circle and a dis-

joint point {?}, and if q is a point of the circle

then Cl({q}) = {q, ?}. In the quotient topol-

ogy, not all points are closed (which means it’s

not Hausdorff – why?). ¥



L7: Compactness The most important no-

tion in topology is probably compactness.

Definition: a topological space (X, TX) is com-

pact if every open cover of X admits a finite

subcover.

i.e. if {Uj | j ∈ J} ⊂ TX have the property that⋃
j∈J Uj = X, then for some {j1, . . . , jn} ⊂ J we

have
⋃n

i=1 Uji = X.

Example: a discrete space is compact if and

only if it is finite. An indiscrete space is always

compact.

Example: with the Zariski topology, (C , TZariski)

is compact. For the non-empty open sets are

complements of finite sets. Hence, if {Uj | j ∈
J} are open, with finite complements Vj, then⋃

j Uj = C \
⋂

Vj. Now if the intersection of

the finite sets Vj is empty, then for some finite

subcollection Vji the intersection
⋂n

i=1 Vji is al-

ready empty. This implies all open covers have

finite subcovers.



Remark: since it is a property of the set TX of

open sets, the property of being compact is ob-

viously topological, i.e. preserved under home-

omorphisms. Actually, we have the stronger:

Lemma: the continuous image of a compact

space is compact.

Proof: Suppose (X, TX) is compact and f :

X → Y is any continuous map of topological

spaces. We claim f(X) ⊂ Y is compact (with

the subspace topology from Y ). Let {Vj | j ∈ J}

be an open cover of f(X). By definition of the

subspace topology, Vj = Wj ∩ f(X) for some

Wj ∈ TY . Since f is continuous, f−1(Vj) =

f−1(f(X) ∩ Wj) = f−1Wj is open for each j,

and this defines an open cover of X. Hence

there is a finite subcover X =
⋃n

i=1 f−1(Wji).

But then f(X) =
⋃n

i=1 Vji, so our arbitrary

open cover of f(X) had a finite subcover. ¥

Contrast: being Hausdorff is a topological prop-

erty, but does not satisfy the analogous Lemma.



Warning: being compact does not say the space

X has some finite open cover – this is always

true, taking the single open set X itself – we

insist that all open covers have finite subcov-

ers.

Example: a compact metric space is bounded.

Proof: Fix x ∈ (X, d) (assumed non-empty).

The open balls Bx(n) of radius n about x form

(as n varies) an open cover of X, since cer-

tainly every y ∈ X satisfies d(x, y) < n for some

n(y). Compactness gives a finite subcover, so

X = Bx(N) for some fixed N , which says for

every y, z ∈ X, we have d(y, z) ≤ 2N (using the

triangle inequality at the last stage). ¥

Corollary: if (X, TX) is any compact topolog-

ical space, every continuous real-valued func-

tion f : X → R is bounded.

Proof: the image f(X) ⊂ (R , Teucl) is compact,

hence bounded. ¥



The following are often helpful. Contrast (ii)

below with what happens in an indiscrete space.

Lemma: (i) A closed subset of a compact

space is compact. (ii) A compact subset of

a Hausdorff space is closed.

Exercise/Corollary: a continuous bijection from

a compact space to a Hausdorff space is a

homeomorphism. [This is very helpful for un-

derstanding quotient spaces, cf. last time!]

Proof:

(i) Let (X, TX) be compact and Z ⊂ X be

closed. Let Vj = Z ∩ Wj be an open cover

of Z, with Wj ∈ TX. Then the collection of

sets {X\Z, Wj | j ∈ J} forms an open cover of

X, precisely since the Wj cover Z (and noting

that X\Z is open exactly since Z is closed).

This open cover of X has a finite subcover, say

{X\Z, W1, . . . , Wn}. Then {V1, . . . , Vn} cover Z,

so Z is compact.



(ii) Let (X, TX) be Hausdorff and Z ⊂ X be

compact. Fix some x ∈ X\Z. We want to

show X\Z is open, so it suffices to show it

contains an open set Ux containing x; for then

we’ll have X\Z =
⋃

x∈X\Z Ux.

For each z ∈ Z, pick disjoint open sets Vzx 3 z

and Wzx 3 x, which is possible by the Haus-

dorff property. As we vary over z, we get an

open cover Z ⊂
⋃

z∈Z Vzx, so this open cover

of Z has a finite subcover by compactness of

Z. Call this {Vz1, . . . , Vzn}. Then consider the

neighbourhood Ux =
⋂n

j=1 Wzjx of x. This is a

finite intersection of opens so open; we claim

it lies in X\Z. For if z ∈ Ux ∩ Z, then z ∈ Wzjx

for every j, but that means z 6∈ Vzjx for each

j (by the original disjointness), but this is a

contradiction since this finite collection covers

Z. Thus Ux ⊂ X\Z, so X\Z is indeed open. ¥

Note: these results are very important – most

arguments with compactness reduce to these

lemmas!



Corollary: a compact Hausdorff space is nor-

mal; every two disjoint closed subsets can be

separated by disjoint open sets. i.e. if V, V ′ ⊂
X are closed and disjoint, ∃ open U ⊃ V and

U ′ ⊃ V ′ which are still disjoint.

Proof: Fix v′ ∈ V ′ and for each v ∈ V choose

disjoint opens Uvv′ 3 v and U ′
vv′

3 v′ (Haus-

dorff). V ⊂ X is closed in a compact space, so

compact, so the open cover {Uvv′ | v ∈ V } has
a finite subcover {Uv1v′, . . . , Uvnv′}; let Uv′ =⋃n

j=1 Uvjv
′. Set also U ′

v′
=

⋂n
j=1 U ′

vjv
′. This

gives us for each v′ ∈ V ′ an open set Uv′ ⊃ V

and a disjoint open set U ′
v′

3 v′.

Now the U ′
v′
form an open cover of the (com-

pact) V ′; take a finite subcover {U ′
v′1

, . . . , U ′
v′m

}.

Now set U =
⋂m

k=1 Uv′
k
(a finite intersection

of open sets which each contain V , hence an

open set containing V ) and set U ′ =
⋃m

k=1 U ′
v′
k

(an open set containing V ′ and disjoint from

U since Uv′
k
∩ U ′

v′
k
= ∅ for all k). ¥



Aside: Normal spaces have the following amaz-

ing property:

Theorem: Let (X, TX) be normal and let A and

B be disjoint closed sets in X. There is a con-

tinuous real-valued function f : X → (R , Teucl)

s.t. f(A) = 0 and f(B) = 1.

We won’t prove this, but it’s remarkable since

it “creates” the real numbers where the input

just concerns these very abstract topological

spaces and distinguished collections of sets etc.

Remark: metric spaces are normal, even if they

are not compact (exercise). A nasty fact is

that products of normal spaces need not be

normal (don’t worry about an explicit coun-

terexample!); but a good thing to do would

be to check that products of Hausdorff spaces

are Hausdorff (indeed X×Y is Hausdorff if and

only if both X and Y are).



L8: Compactness continued We introduced

compactness, but haven’t yet seen many ex-

amples.

Proposition: a closed bounded interval [a, b] in

(R , Teucl) is compact.

Proof: take an open cover {Ui | i ∈ I} of [a, b]

and consider the set A of those x ∈ [a, b] s.t.

[a, x] has a finite subcover. We want to show

b lies in this set. Now if a ∈ Ui then [a, a +

δ) ⊂ Ui for some δ > 0 so c = supA > a. Say

c ∈ Uj, and suppose for contradiction c < b.

Well (c − ε, c+ ε) ⊂ Uj for some ε > 0, and by

definition, [a, c − ε/2] has a finite subcover by

finitely many Ui. Now use this finite subcover,

together with Uj itself, to see that c+ε/2 ∈ A;

but this contradicts c = supA. Hence c = b.

Now b ∈ Uk say, so (b− δ, b] ⊂ Uk, and so [a, b−

δ/2] has a finite subcover (definition of A and

fact that b = supA); now argue as before! ¥



Corollary: a continuous real-valued function on

a (nonempty) compact space X is bounded

and attains its bounds.

Proof: if a = inf f(X) and b = sup f(X), which

exist by completeness of R , then these belong

to cl(f(X)) (this is very basic: why?). But

f(X) is compact. ¥

To get a feel for compact sets in higher-dimensional

Euclidean spaces, we need to talk about com-

pactness of products.

Theorem: The product of two compact topo-

logical spaces is compact.

Corollary (Heine-Borel theorem): a subspace

of R n is compact iff it is closed and bounded.

Proof: if A is compact, we know from be-

fore it’s closed and bounded. If it’s closed and

bounded, it lies inside some cube [a, b]n; now

it’s a closed set in a compact space. ¥



Proof of Theorem: let X and Y be compact,

and take an open cover Ui, i ∈ I of the product

X × Y . We need a finite subcover. Note the

(homeomorphic to Y ) copies {x} × Y ⊂ X × Y

are compact.

Fix x ∈ X. If (x, y) ∈ Ui, there is some open

x ∈ Ay ⊂ X and y ∈ By ⊂ Y s.t. (x, y) ∈

Ay × By ⊂ Ui (definition of product topology);

then {By} form an open cover of {x}×Y . Take

a finite subcover, indexed by y1, . . . , yn, and let

Ax =
⋂n

j=1 Ayj, an open nhood of x. The strips

Ax×Byj cover Ax×Y , and all these strips belong

to some Ui. Thus, for each x ∈ X, there is an

open nhood Ax 3 x s.t. Ax × Y is covered by

finitely many Ui.

For each x ∈ X, choose an open nhood Ax with

this property, and then take a finite subcover

Ax1, . . . , Axm of this open cover. Then X ×

Y is covered by finitely many strips Axi × Y ,

each of which is covered by finitely many Uj,

so altogether we have a finite subcover. ¥



Remark: this gives us a large collection of com-

pact sets, but we’re a long way from describing

all of them – indeed, there’s no very nice de-

scription of the general compact subset of R ,

even (e.g. there are uncountably many home-

omorphism types of such things). Here’s a typ-

ical “wacky” compact subset of R .

Example: take the unit interval [0,1], remove

the open middle third, remove the open middle

thirds of the resulting two intervals, and iterate

onwards. Explicitly, at stage n we have a set

An made up of 2n−1 closed intervals, and we

set C =
⋂

n An, the Cantor set. This is closed

in a compact space, so compact. It’s famously

uncountable, fractal... It can be described as

the real numbers in [0,1] which have a base 3

expansion omitting the digit 1.

Theorem: (hard) Every compact metric space

is the continuous image of the Cantor set. In

particular, a compact metric space has cardi-

nality at most that of R .



Finally, before moving on, we should return

to the claims at the end of Lecture 6 about

compactness helping in establish the Hausdorff

property for quotients. We begin with some

helpful lemmas.

Lemma: (i) if f : X → Y is continuous and

Y is Hausdorff, then A = {(x1, x2) | f(x1) =

f(x2)} ⊂ X × X is closed. (ii) if f is open and

surjective, and A is closed, then Y is Hausdorff.

Proof: (i) Suppose f is continuous and Y is

Hausdorff. Then if (x1, x2) 6∈ A, the points

f(xi) ∈ Y are distinct, so can be separated by

open sets Ui; and then f−1(U1) × f−1(U2) is

an open nhood of (x1, x2) not meeting A. So

the complement of A is open, and A is closed.

(ii) if f(x1) and f(x2) are distinct in Y , then

(x1, x2) 6∈ A; so we can find open nhoods Ui of

xi such that (U1×U2)∩A = ∅. Since f is open,

f(Ui) form disjoint open nhoods of f(xi). ¥



Now suppose we are taking the quotient of a

compact Hausdorff space X by a closed equiva-

lence relation R ⊂ X ×X; so the quotient map

f : X → Y = X/ ∼ satisfies the hypothesis,

R = {(x1, x2) | f(x1) = f(x2)} is indeed closed.

To see the quotient is Hausdorff it is enough

to see the map is an open map, or equivalently,

that it is a closed map, so takes closed sets to

closed sets. [Note: openness and closedness

are only equivalent since we’re dealing with a

surjective quotient map and not just a surjec-

tive continuous map: why?]

If V ⊂ X is closed, we want f(V ) closed, so

(we’re using the quotient topology on Y ) we

want f−1(f(V )) = {x ∈ X | ∃ v ∈ V s.t. (x, v) ∈

R} closed. But this is just π1((X×V )∩R) with

π1 : X×X → X the projection. Now (X×V )∩R

is closed, so compact; so its continuous image

under π1 is compact. But X is Hausdorff, so

this image is closed, and we’re done. ¥



Corollary: the quotient of a compact Haus-

dorff space by a closed equivalence relation is

Hausdorff. Hence, if a compact group G acts

continuously on a compact Hausdorff space,

the quotient (set of orbits) is Hausdorff. ¥

This enables us to take quotients by groups

like S1 = SO(2) (unit complex numbers), by

SO(n), by any finite group, and is very useful in
geometry. Here’s a non-examinable example.

Example: we can describe the “space of com-

plex lines through the origin in a complex vec-

tor space” as a quotient of the unit sphere

S2n+1 ⊂ C n+1 (parametrising all possible di-

rections of real lines) by the action of scalar

multiplication by S1 [since there is an S1-worth

of real lines in a given complex line, if we look

only at numbers of unit modulus]. The quo-

tient S2n+1/S1 = C Pn is Hausdorff; it’s called

complex projective space.

Challenge: understand why C P1 = C ∪ {∞} is

naturally a 2-dimensional sphere.



L9: Sequential compactness Compact sub-

sets of Hausdorff spaces are closed, so they

contain all their limit points. This suggests

a deep relationship between compactness, and

convergence of sequences, which we explore

now.

Definition: Let (M, d) be a metric space and

C ⊂ M . Then C is sequentially compact if

every sequence (xn) ⊂ C has a subsequence

which converges to a point of C.

Note: (0,1) ⊂ (R , deucl) is not sequentially

compact, since the sequence (1n)n∈N converges

in R but not in (0,1). The closed interval

[0,1] ⊂ R is sequentially compact, although

the sequence (0,1,0,1,0, . . .) doesn’t converge.

Warning: some books distinguish “C is se-

quentially compact in itself” (∃ some subse-

quence converging to a point of C) and “C
is sequentially compact in M” (∃ some subse-

quence converging to a point of M); we will

not give any special terminology for the latter.



Here are some useful things to remember:

(i) if a sequence converges in a metric space

M then it’s a Cauchy sequence;

(ii) limits of sequences are unique when they

exist (e.g. since metric spaces are Hausdorff);

(iii) if a sequence converges in (M, d) to a point

a, and if the metric d′ is equivalent to d, then

the sequence converges in (M, d′) to a as well.

Lemma: if C ⊂ (M, d) then x ∈ Cl(C) iff there

is a sequence in C converging to x.

Proof: if xn → x then for every ε > 0 there

is some N > 0 s.t. xn ∈ Bε(x) for n ≥ N .

This implies that Bε(x) ∩ C 6= ∅ for all ε > 0

(since (xn) ⊂ C). But this means x lies in the

closure of C, from the definition of closure.

Conversely, if x ∈ Cl(C), then for each n there

is some xn ∈ B1
n
(x) ∩ C; then (xn) → x. ¥

Corollary: if C is sequentially compact, it’s

closed. ¥



Lemma: Compact ⇒ sequentially compact.

Proof: Let C ⊂ (M, d) be a compact subspace

and suppose (xn) ⊂ C. If the set S of members

of the sequence is finite, at least one point

x ∈ S is repeated infinitely often; then there

is a constant subsequence (x = xnj) ⊂ (xn)

which obviously converges to a point of C. So

suppose S has infinitely many members. It is

enough to show S has a limit point in C.

If not, for each x ∈ C there is ε(x) > 0 s.t.

Bε(x)(x) ∩ S = ∅ or Bε(x)(x) ∩ S = {x}. [Recall

that x is a limit point of a set S if every open

nhood of x meets S in some point other than

x itself.] We have an open cover Bε(x)(x) of

C which has a finite subcover {Bε(xi)
(xi) |1 ≤

i ≤ n}. But each of these open balls contains

at most one point of S, hence the union of

finitely many contains at most finitely many

points of S. But the finite collection covers

C ⊃ S, which contradicts infinitude of S. ¥



Note: we used above the fact that if a se-

quence (xn) ⊂ M in a metric space has a limit

point x ∈ M (i.e. if x is a limit point of the set

S of members of the sequence), then there is

a subsequence converging to x. This is intu-

itively obvious but a tiny bit fiddly:

Without loss of generality, xn 6= x for each n

[why can we assume this?]. Choose n(1) s.t.

xn(1) ∈ B1(x), and inductively n(1) < n(2) <

· · · < n(k) s.t xn(i) ∈ B1/i(x). Set

ε = min

{

1

k +1
, d(xj, x) | 1 ≤ j ≤ n(k)

}

Now xn 6= x for each n ⇒ ε > 0. There is some

n(k+1) s.t. xn(k+1) ∈ Bε(x), since x is a limit

point of the sequence, and choice of ε forces

n(k + 1) > n(k). Inductively, this constructs a

subsequence converging to x, as required. ¥

Corollary: a bounded sequence in R n has a

convergent subsequence. [For Cl({xn}) is com-

pact, hence sequentially compact.] ¥



We have that compactness implies sequential

compactness, and we would like to establish

the reverse as well (characterising compact-

ness in metric spaces entirely in terms of con-

vergence of subsequences). For this, we need

to make some connection between the metric

structure and open covers; this is by way of

“Lebesgue numbers”.

Definition: Given ε > 0, an ε-net for a metric

space (M, d) is some subset S ⊂ M such that

M =
⋃

x∈S Bε(x).

Lemma: a sequentially compact metric space

has a finite ε-net for every ε > 0.

Proof: if not, choose x1, x2, . . . , xr inductively

s.t. d(xi, xj) ≥ ε for each i 6= j. Since {x1, . . . , xr}

is not an ε-net, we can choose xr+1 to con-

tinue the induction, and build a sequence with

no convergent (no Cauchy) subsequence. This

contradicts sequential compactness. ¥



Remark: a metric space is “precompact” or

“totally bounded” if it has a finite ε-net for

every ε > 0. This is not the same as being

compact. E.g. (0,1) is precompact.

Definition: if (M, d) is a metric space with open
cover M =

⋃

j∈J Uj, a Lebesgue number for the

cover is δ > 0 s.t. for each x ∈ M , there is some

Uj(x) in the cover s.t. Bδ(x) ⊂ Uj(x).

Example: the open cover {(1/n,1) |n ∈ N} of

((0,1), deucl) has no Lebesgue number. For if

δ > 0 and k > 1
δ , then Bδ(1/k) = (0, 1

k + δ) 6⊂
(1/m,1) for any m.

Lemma: every open cover of a sequentially

compact metric space has a Lebesgue num-

ber.

Proof: Suppose (M, d) is sequentially com-

pact and the open cover U =
⋃

j∈J Uj has no

Lebesgue number. For each n there is some

xn s.t. B1/n(xn) 6⊂ Uj for each j. Let (xn(r))

be a convergent subsequence.



The limit xn(r) → x of the sequence belongs

to some U ∈ U, since the sets form a cover.

The set U is open, so there is some δ > 0 s.t.

Bδ(x) ⊂ U . But Bδ/2(x) ⊃ xn(r) for all r ≥ R;
in particular, if n(r) > 2/δ then

B1/n(r)(xn(r)) ⊂ Bδ(x) ⊂ U

But this contradicts the choice of xn(r). ¥

Corollary: sequentially compact ⇒ compact.

Proof: if M =
⋃

j∈J Uj is an open cover of a

sequentially compact metric space M , choose

a Lebesgue number δ > 0 for the cover. We

have a finite δ-net {x1, . . . , xn} for M , and there

are sets Uji in the cover s.t. Bδ(xi) ⊂ Uji (by

definition of Lebesgue number). But then

M ⊂
n
⋃

i=1

Bδ(xi) ⊂
n
⋃

i=1

Uji ⊂ M

shows that this arbitrary cover indeed has a

finite subcover. This proves compactness. ¥

[Ed: the definition with open covers is nicer...]



L10: Connectedness In contrast to com-

pactness, connectedness is a very (well, fairly...)

“visual” property – does your topological space

fall into several pieces or not?

Definition: a topological space (X, TX) is con-

nected if for every decomposition X = A ∪ B

into disjoint open subsets A ∈ TX and B ∈ TX,

either A or B is empty.

Example: [0,1] is connected; [0,1] ∪ [6,7] is

not. The graph of {y = x2} ⊂ R 2 is connected;

the graph of {y = 1/x} ⊂ R 2 is not.

Example: Q ⊂ (R , Teucl) is not connected. For

the sets (−∞,
√
2)∩Q and (

√
2,∞)∩Q are open

sets in the subspace topology, they are disjoint,

and they cover Q.

Example: (C , TZariski) is connected, since ev-

ery two non-empty open sets have non-empty

intersection.



Warning: [0,1] = [0,1/2]∪ [1/2,1] and [0,1] =

[0,1/2) ∪ [1/2,1] are both illegal decomposi-

tions!

Lemma: X is connected if and only if every

continuous function from X to the two-point

discrete space is constant.

Proof: Suppose f : X → {0,1} is continuous,

where we give the RHS the discrete topol-

ogy. If f is onto, then f−1(0) ∪ f−1(1) is a

decomposition of X into disjoint non-empty

open sets, so X is not connected. Thus, con-

nected ⇒ such maps are constant. Conversely,

if X = A ∪ B is a partition of X into disjoint

open sets, then the map f : X → {0,1} taking

f |A ≡ 0 and f |B ≡ 1 is continuous. ¥

In practise, you can take either of the two char-

acterisations of connectedness as a definition,

depending on which is more useful to you at

the time. Obviously, connectedness is a topo-

logical property. Indeed, more is true.



Lemma: The continuous image of a connected

space is connected.

Proof: if f : X → Y and f(X) = A ∪ B is

a partition into disjoint open sets, then write

A = f(X) ∩ U and B = f(X) ∩ V for open sets

U, V in Y . Now f−1(U)∪f−1(V ) = X partitions

X, so by connectedness one of these is empty:

say f−1(U) = ∅. But then A = ∅, so f(X) is

connected. ¥

Example: if a subspace I ⊂ R is connected it

is an interval.

[An interval is any set I such that if x, y, z ⊂ R

and x < z < y, then x, y ∈ I ⇒ z ∈ I. So

this includes (a, b), [a, b), (a, b], [a, b], {a}, where
open ends may be infinite.]

Proof: if I is not an interval, say x < z < y

with x, y ∈ I and z 6∈ I, then (−∞, z) ∩ I and

(z,∞) ∩ I form a partition into disjoint open

subsets. ¥



Remark: note that it’s much harder to char-

acterise the compact subsets of R , e.g. there

were fractals like Cantor sets; so connected-

ness is amazingly well behaved in this sense.

And of course we have the converse to the

above:

Proposition: intervals in R are connected.

Proof: Suppose I = A ∪ B is a partition into

disjoint nonempty opens. Suppose a ∈ A, b ∈ B
and a < b (or exchange labels). Note [a, b] ⊂ I
and let A′ = A∩ [a, b] and B′ = B ∩ [a, b], which
are closed in [a, b], hence are compact. Thus

A′×B′ ⊂ R 2 is compact. Hence the Euclidean

distance function (x, y) 7→ d(x, y) achieves its

lower bound on A′ × B′ at some (a′, b′). Since
A′ ∩ B′ = ∅, d(a′, b′) > 0. Now consider c =

(a′+ b′)/2 ∈ [a, b]. Then

|c − b′| = 1

2
|a′ − b′| < |a′ − b′|

so (c, b′) 6∈ A′×B′ ⇒ c 6∈ A′. But similarly c 6∈ B′,
which contradicts [a, b] ⊂ A′ ∪ B′. ¥



Corollary: for any connected topological space

X and real-valued function f : X → R , f(X) is

an interval.

The intermediate value theorem for functions

on R or [a, b] obviously follows. In general,

unions of connected spaces aren’t connected,

but the “obvious” obstruction is in fact the

only one.

Lemma: if {Xj | j ∈ J} are connected sub-

spaces of a fixed topological space (Z, TZ), and

Xi∩Xj 6= ∅ for each i, j then X =
⋃

j Xj is con-

nected.

Proof: let f : X → {0,1} be continuous, the

RHS being discrete. For each j, f |Xj
is con-

stant; say f |Xj0
≡ 0. But then for each j,

Xj ∩ Xj0 6= ∅ and f |Xj
constant ⇒ f |Xj

≡ 0 as

well, so finally f ≡ 0 on X, as required. ¥

Remark: it’s not enough to say that for each

i there is some j 6= i s.t. Xi ∩ Xj 6= ∅ – why?



Lemma: X and Y are connected iff X × Y is

connected.

Proof: if X × Y is connected, then the contin-

uous images (by projections to the factors) X
and Y are certainly connected. Conversely, if

X and Y are connected, and f : X ×Y → {0,1}
is continuous, then f |X×{y} is constant for each
y ∈ Y . But all these subspaces meet the sin-

gle, connected space {x0} × Y , for any fixed

x0 ∈ X. Now argue precisely as in the previous

Lemma. ¥

Exercise: use an analogous argument to say

that if n > 1, R n\{0} is connected, and deduce
Sn−1 is connected.

Connectedness gives a natural equivalence re-

lation on a space X: x ∼ y ⇔ x and y belong

to a common connected subspace of X. The

equivalence classes are called the components

(or connected components) of X. The num-

ber of connected components is a topological

invariant of the space.



Remark: from the definition, note that the

connected components are the maximal con-

nected subspaces of X (maximal with respect

to the inclusion relation amongst subsets). The

closure of a connected space is connected [ex-

ample sheet 2], so components are closed. In

general, they are not open:

Definition: if the connected components are

points, the space is said to be totally discon-

nected.

Lemma: Discrete ⇒ totally disconnected, but

not the converse.

Proof: if X is discrete, then for each x ∈ X
there is a decomposition X = {x}∪X\{x} into
disjoint open sets, which shows maximal con-

nected subspaces are points. However, Q ⊂
(R , Teucl) is totally disconnected, but singleton

sets {q} are not open in Q. ¥

Exercise: the Cantor set is totally disconnected

[as are many naturally occuring “fractal dusts”].



L11: Path-connectedness There is a vari-

ant of the idea of connectedness which is even

more intuitive.

Definition: a space (X, TX) is path-connected

if for every a, b ∈ X there is a continuous map

γ : [0,1] → X with γ(0) = a and γ(1) = b.
[Here [0,1] has its Euclidean metric topology.]

We think of the image of such a map γ as a

path in X from a to b.

Lemma: being joined by some path defines an

equivalence relation on the points of X.

Proof: if γ(t) is a path from a to b, then γ(1−t)
is a path from b to a; and the constant map

t 7→ γ(t) ≡ a defines a path from a to a. For

transitivity, if γ is a path from a to b and τ is

a path from b to c then

γ ? τ : t 7→

{

γ(2t) t ∈ [0, 1
2]

τ(2t − 1) t ∈ [12,1]

defines a path from a to c. ¥



Remark: note the map γ ? τ is indeed continu-

ous, since its restriction to the closed sets [0, 1
2]

and [12,1] are both continuous. Now check:

Exercise: for any space X =
⋃n

j=1 Vj written

as a finite union of closed sets, f : X → Y is

continuous iff f |Vj
is continuous for each j.

Analogous to the results for connectedness,

one can check the following:

(i) the continuous image of a path-connected

space is path-connected;

(ii) the product of path-connected spaces is

path-connected.

However, not all analogues carry over. Recall

H ⊂ X is connected ⇒ Cl(H) ⊂ X is con-

nected, hence connected components are al-

ways closed.

Lemma: Let X ⊂ R 2 be the union of the graph

of sin 1
x, for x > 0, and the interval [−1,1] on

the y-axis. This is connected but not path-

connected.



The space in the Lemma is called the “topol-

ogist’s sin curve”:

Proof: Recall the graph of a function is home-

omorphic to its domain, hence

G = {(x, y) | y = sin (1/x), x > 0}

is homeomorphic to R and so connected. Hence,

to show X is connected, it’s enough to show

the points on the y-axis between (0,−1) and

(0,1) lie in Cl(G). Fix ε > 0; if p = (0, y), and
1/(2πn) < ε, then since sin((4n + 1)π/2) = 1

and sin((4n + 3)π)/2 = −1, the intermedi-

ate value theorem says sin(1/x) takes on the

value y ∈ (−1,1) at a point x0 in the interval

[ 2
(4n+3)π

, 2
(4n+1)π

]. But |(x0, y)− (0, y)| < ε, so
the ε-ball about (0, y) meets G. So cl(G) = X.



To see that the space X is not path-connected,

suppose for contradiction we have a path γ :

[0,1] → X from (0,0) to (1, sin(1)). Let

c = sup {t | γ(t) ∈ A = {0} × [−1,1] ⊂ X}

Now A is closed in X, so γ(c) ∈ A, so c < 1.

Since γ(t) ∈ G for t > c, there is δ > 0 s.t.

im(γ|[c,c+δ]) ⊂ B1/3(γ(c)).

Now consider the composite γ̄ : [0,1] → R

given by γ̄ = p ◦ γ, where p : R 2 → R is first

projection (to the x-axis). We have γ̄(c) = 0

but γ̄(t) > 0 for all t > c. The image γ̄|[c,c+δ]
is connected, hence an interval, so contains

[0, α] for some positive α. But, arguing as be-

fore, the function sin (1/x) takes every value

in [−1,1] on the interval (0, α]; so the image

under γ of [c, c+ δ] contains a point with y-co-
ordinate 1 and a point with y-co-ordinate −1.
But then im(γ|[c,c+δ]) 6⊂ B1/3(γ(c)), which is

our contradiction. ¥

Note that the topologist’s sin curve has a path-

component which is not a closed subset.



This kind of pathology is very much the ex-
ception in that for nice spaces, connectedness
and path-connectedness are equivalent.

Lemma: Path-connected ⇒ connected.

Proof: Suppose X 6= ∅ is path-connected but
we have written X = A∪B as a union of disjoint
non-empty open subsets. Then for a ∈ A and
b ∈ B, we have a path γ : [0,1] → X from a to
b, and therefore [0,1] = γ−1(A) ∪ γ−1(B) is a
partition of the interval into disjoint non-empty
open sets, which is absurd. ¥

Lemma: a connected open subset of R n is
path-connected.

Proof: Let U ⊂ R n be non-empty, open and
connected; fix w ∈ U . We consider the subset

Z = {u ∈ U | ∃ a path from u to w}

It is enough to show this is both open and
closed; for in a connected space, the only sub-
set which is open, closed and non-empty, is the
whole set. [Why?]



To see Z is open, note if u ∈ Z, by openness

there is a ball Bδ(u) ⊂ U . Let u′ ∈ Bδ(u) be

arbitrary. If γ : [0,1] → U is a path from w to

u, then the composite γ ? τ of γ with a radial

path τ ⊂ Bδ(u) from u to u′ is a path from w

to u′, hence Z contains the whole ball Bδ(u);

so it contains an open nhood of each of its

points, and is open.

But exactly the same argument as above shows

that the complement U\Z is open; if v ∈ U\Z

and there is a path from w to some point in the

δ-ball about v, by concatenation there would

be a path from w to v itself, contradiction.

Hence Z has open complement and is therefore

closed. So Z is full (all of U) or empty, and we

know w ∈ Z, so Z = U . ¥

Corollary: for manifolds (topological spaces lo-

cally homeomorphic to R n, i.e. such that ev-

ery point has an open nhood homeomorphic

to R n), connectedness is the same as path-

connectedness.



This is the start of the beautiful subject of al-

gebraic topology. One studies a space (X, TX)

by studying the set of all paths γ : [0,1] → X

up to continuous deformation or “homotopy”.

More precisely, there is a natural topology on

the set of continuous maps S1 → X – called

the loop space LX – and one uses the number

of connected components of this new space as

a subtle invariant of the original space X. An

important point is that if you “base” the loops

somewhere, considering maps

S1 → X taking 1 7→ x0

taking a chosen point of S1 to a fixed point of

X, then the set of connected components of

that based subspace ΩX ⊂ LX is naturally a

group. The operation is induced by the con-

catenation ? of paths we’ve already met [draw

a picture and you’ll see why based loops are im-

portant!]. But this means we can apply tools

from algebra and group theory to questions in

geometry and topology.



L12: Topological dynamics To finish the

course, we’ll use our results on connectedness

to prove one or two intriguing things about

self-maps of the real line (R , Teucl). Recall

we proved that a contraction of R always has

a fixed point. One can also study “periodic

points”, that is fixed points of iterates of a

map.

Theorem (Sarkovskii): If f : R → R is continu-

ous and has a periodic point of period 3, then

f has periodic points of every period.

Remark: We can order the natural numbers

3 . 5 . 7 . 9 . · · ·
.2 · 3 . 2 · 5 · · ·

.22 · 3 . 22 · 5 · · ·

· · · . 24 . 23 . 22 . 2 . 1

So we take all the odd numbers > 1, then these

times increasing powers of 2, finally the pow-

ers of 2 in decreasing order. Then if f has a

periodic point of period k and k . l then f has

a periodic point of period l.



Before the proof, here are two easy facts which

follow since the continuous image of an inter-

val under f is an interval.

(i) if I ⊂ J are nested closed intervals and

f(I) ⊃ J then f has a fixed point in I. This

follows from applying the intermediate value

theorem to x − f(x) on I.

(ii) if A0 ⊃ A1 ⊃ · · · ⊃ An are nested closed

intervals and f(Ai) ⊃ Ai+1 for 0 ≤ i ≤ n − 1,

then there is some subinterval J0 ⊂ A0 s.t.

f(J0) = A1 is onto A1. Now there is also an

interval in A1 which maps onto A2, and lifting

this back to J0, we find J1 ⊂ J0 s.t. f(J1) ⊂ A1

and f2(J1) = A2. Iterating this, it follows that

there is x ∈ A0 s.t. f i(x) ∈ Ai for each i.

Proof of Theorem: Suppose we have a, b, c ∈ R

with f(a) = b, f(b) = c and f(c) = a. Suppose

a < b < c (the other case, f(a) = c, is com-

pletely similar). Let I0 = [a, b] and I1 = [b, c];

then f(I0) ⊃ I1 and f(I1) ⊃ I0 ∪ I1.



We claim f has a fixed point in [b, c]; this is

an application of (i) above. Similarly, f2 has a

fixed point in [a, b].

Exercise: there is such a fixed point of f2

which is not a fixed point of f , hence is a pe-

riodic point of period 2 (cf. graph).

Thus, for n > 3 we need a periodic point of

“prime” period n (i.e. a point fixed by the

n-th iterate but not by any (k < n)-th iter-

ate). Set A0 = I1; f(I1) ⊃ I1 ⇒ ∃A1 ⊂ A0 s.t.

f(A1) = A0 = I1 (by (ii) above). Iterate to

find A2 ⊂ A1 with f2(A2) = A0, and An−2 ⊂

An−3 s.t. f(An−2) = An−3. If x ∈ An−2 then

by (ii) above, {f(x), f2(x), . . . , fn−2(x)} ⊂ A0

and fn−2(An−2) = A0 = I1.



Now f(I1) ⊃ I0 implies there is An−1 ⊂ An−2

s.t. fn−1(An−1) = I0. But f(I0) ⊃ I1 implies

fn(An−1) ⊃ I1 so fn(An−1) covers An−1. Then

by (i), fn must have a fixed point p ∈ An−1 ⊂

I1 = [b, c].

We have constructed a periodic point of pe-

riod n; we claim this is its prime period. Note

fn−1(p) ∈ I0 = [a, b]; we can suppose it does

not lie on the boundary of this interval (oth-

erwise n = 2 or n = 3). But then if for some

j < n we have f j(p) = p, then since the set

{p, f(p), . . . , f j−1(p)} ⊂ I1, it is impossible that

fn−1(p) lies in (a, b). Hence we have a point

of prime period n. ¥

Corollary: if f : R → R has finitely many peri-

odic points, every periodic point has period a

power of 2. [Check: this case does occur!] If

f has any periodic point of period not a power

of 2, it has infinitely many periodic points.



Example: there is a map with a point of period

5 and no point of period 3. E.g. consider the

piecewise linear map f : [1,5] → [1,5] s.t.

f : 1 7→ 3 7→ 4 7→ 2 7→ 5 7→ 1

We make f linear between the integers, having

graph as shown below:

Then f3 maps the intervals

[1,2] 7→ [2,5]; [2,3] 7→ [3,5]; [4,5] 7→ [1,4]

so f3 has no fixed point in any of these in-

tervals. f3([3,4]) = [1,5] ⊃ [3,4] ⇒ f3 has a

fixed point in [3,4]; but we claim this point

is unique, hence must be the fixed point of f

and not a period 3 point. This is clear since f3

is monotonically decreasing on [3,4] (check!).

This completes the example. ¥



A famous family of self-maps of R are the

quadratic maps x 7→ µx(1 − x); we’ll consider
µ = 3.839 (after Smale...). One can check

by hand there’s a periodic orbit {a1, a2, a3} of

period 3, to a few decimal places:

0.14988.. 7→ 0.48917.. 7→ 0.95929.. 7→ .14988..

This is “attracting” – a small interval around

the periodic point is mapped into itself by f3.

A general theorem says that there are no other

attracting periodic points; hence all other peri-

odic points, guaranteed by Sarkovskii, are com-

putationally invisible. Where are they, and what

does f do near them?

The answer is given by “symbolic dynamics”,

and is best expressed in terms of superficially

unrelated topological spaces. Consider all in-

finite sequences s = (s0s1s2...) of 0’s and 1’s

with a metric topology d(s, t) =
∑∞

j=0
|sj−tj|

2j .

There is a subspace Σ of sequences in which no

two 0’s are adjacent. There is a natural func-

tion σ : Σ → Σ taking (s0s1s2 . . .) 7→ (s1s2 . . .),
called the shift.



Lemma: the shift σ : Σ → Σ is continuous.

Proof: let ε > 0 and suppose 1/2n < ε; set δ =

1/2n+1. Then if d(s, t) < δ it follows that si =

ti for i ≤ n + 1; hence σ(s)i = σ(t)i for i ≤ n,

and that immediately implies d(σ(s), σ(t)) < ε.

This proves (uniform) continuity. ¥

Theorem: there is a union of two disjoint closed

subintervals I ∪J ⊂ [0,1], with I ⊂ (a1, a2) and

J ⊂ (a2, a3), which contains all periodic points

of f(x) = 3.839x(1−x) other than {0, a1, a2, a3}.

(i) The set Λ = {x | fn(x) ∈ I ∪ J ∀n ∈ N} is

homeomorphic to Σ;

(ii) under this homeomorphism f ⇔ σ.

In particular, the structure of periodic orbit

phenomena, even for simple quadratic maps of

R , is sometimes best understood using rather

abstract topological spaces of sequences and

their continuous mappings.


