- (a) Let (X₁, d₁) and (X₂, d₂) be metric spaces. Show that we may define a metric d on the product X₁ × X₂ by d((x₁, x₂), (y₁, y₂)) = d₁(x₁, y₁) + d₂(x₂, y₂). Show that the projections π_i : X₁ × X₂ → X_i, (x₁, x₂) ↦ x_i, are continuous. Show that if (X₁, d₁) and (X₂, d₂) are complete, then so is (X₁ × X₂, d).
 - (b) Let (X_i, d_i) be metric spaces for i = 1, 2, ..., and let X be the set of all sequences $(x_i)_{i=1}^{\infty}$ with $x_i \in X_i$ for all i. Show that we may define a metric d on X by

$$d((x_i), (y_i)) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{d_i(x_i, y_i)}{1 + d_i(x_i, y_i)}$$

2. (a) Let d_1, d_2, d_∞ be the metrics on \mathbb{R}^n given by

$$d_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n |x_i - y_i|, \quad d_2(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^n (x_i - y_i)^2\right]^{1/2}, \quad d_\infty(\mathbf{x}, \mathbf{y}) = \sup_i |x_i - y_i|.$$

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, show that

$$d_1(\mathbf{x}, \mathbf{y}) \ge d_2(\mathbf{x}, \mathbf{y}) \ge d_{\infty}(\mathbf{x}, \mathbf{y}) \ge \frac{1}{\sqrt{n}} d_2(\mathbf{x}, \mathbf{y}) \ge \frac{1}{n} d_1(\mathbf{x}, \mathbf{y}) .$$

Deduce that the metrics induce the same topology on \mathbb{R}^n .

(b) Now let d_1, d_2, d_∞ be the metrics on C[0, 1] given by

$$d_1(f,g) = \int_0^1 |f-g|, \quad d_2(f,g) = \left[\int_0^1 (f-g)^2\right]^{1/2}, \quad d_\infty(f,g) = \sup_{[0,1]} |f-g|.$$

Show that the metrics induce distinct topologies on C[0, 1].

3. Define the maps $f, g : \mathbb{R}^2 \to \mathbb{R}$ by f(x, y) = x + y and g(x, y) = xy. Show that f, g are continuous with respect to the Euclidean topologies on \mathbb{R}^2 and \mathbb{R} .

Now give \mathbb{R} the topology τ in which the open sets are intervals of the form (a, ∞) , and give \mathbb{R}^2 the resulting product topology. Are f, g continuous with respect to these topologies?

Find all continuous functions from (\mathbb{R}, τ) to $(\mathbb{R}, \text{Euclidean})$.

- 4. Determine whether the following subsets of \mathbb{R}^2 are open, closed, both or neither.
 - (i) $\{(x,y) \mid x < 0\} \cup \{(x,y) \mid x > 0, y > 1/x\}$
 - (ii) $\{(x, \sin(1/x)) \mid x > 0\} \cup \{(0, y) \mid y \in [-1, 1]\}$
 - (iii) $\{(x,y) \mid y = x^n \text{ for some positive integer } n\}.$
- 5. Show that Q is not complete with respect to the Euclidean metric. Is there a metric on Q which makes it into a complete metric space?
- 6. For a function $f: X \to Y$, define its graph to be $\Gamma_f = \{(x, f(x)) : x \in X\} \subseteq X \times Y$. Prove that $f: [0, 1] \to [0, 1]$ is continuous if and only if Γ_f is closed in $[0, 1]^2$. Give an example of $f: \mathbb{R} \to \mathbb{R}$ for which Γ_f is closed in \mathbb{R}^2 but f is not continuous.

- 7. Let (X, d) be a metric space. For $A \subseteq X$, define $d_A : X \to \mathbb{R}$ by $d_A(x) = \inf_{y \in A} d(x, y)$. Show that d_A is continuous, and that A is closed if and only if $d_A(x) > 0$ for all $x \notin A$. Let A, B be disjoint closed subsets of X. Show that there exist disjoint open subsets U, V of X with $A \subseteq U$ and $B \subseteq V$. Must we have $\inf_{x \in B} d_A(x) > 0$?
- 8. Let $f: X \to Y$ be a map of topological spaces. Show that f is continuous if and only if $f(\operatorname{cl}(A)) \subseteq \operatorname{cl}(f(A))$ for all $A \subseteq X$.

Deduce that if f is continuous and surjective, then the image of a dense set in X is dense in Y.

- 9. Let X be a topological space. Show that the following statements are equivalent:
 - (i) X is Hausdorff
 - (ii) The diagonal $\Delta = \{(x, x) \mid x \in X\}$ is closed in $X \times X$, with the product topology
 - (iii) For any topological space Y and any continuous maps $f, g : Y \to X$, the set $\{y \in Y : f(y) = g(y)\}$ is closed in Y.

Deduce that if X is Hausdorff and $f: Y \to X$ is a continuous function on a space Y, then f is determined by its values on any dense subset of Y.

If instead the diagonal Δ is an open subset of $X \times X$, what is the topology on X?

- 10. A topological space is called *separable* if it has a countable dense subset, and is called *second countable* if it has a countable base of open sets.
 - (a) Show that \mathbb{R} with the Euclidean topology is separable and second countable.
 - (b) Let X be \mathbb{R} with the topology in which a subset of \mathbb{R} is open if either it is empty or contains 0. Is X separable? Is X second countable?
 - (c) Prove that a second countable topological space is separable, and that a separable metric space is second countable. Deduce that a subspace of a separable metric space is separable.
- 11. Refer back to question 1(b). Prove that if each (X_i, d_i) is complete then so is (X, d), and that if each (X_i, d_i) is separable then so is (X, d).
- 12. Let X be \mathbb{R} with the *cocountable topology*, in which a subset of \mathbb{R} is open if either it is empty or its complement in \mathbb{R} is countable. Is X separable? Is X second countable? Which sequences $(x_i)_{i=1}^{\infty}$ in X converge, and what can you say about the limit? Repeat with the *cofinite topology*, in which a subset of \mathbb{R} is open if either it is empty or its complement in \mathbb{R} is finite.
- 13. (a) Find a sequence $[a_1, b_1], [a_2, b_2], \ldots$ of closed intervals in \mathbb{R} of positive length whose union contains all rationals in [0, 1] and such that $\sum_{i=1}^{\infty} (b_i a_i) < 1$.
 - (b) Let $[a_1, b_1], [a_2, b_2], \ldots$ be a sequence of closed intervals in \mathbb{R} of positive length whose union contains all irrationals in [0, 1]. Can we have $\sum_{i=1}^{\infty} (b_i a_i) < 1$?

1. Let \mathbb{R} have the Euclidean topology, and let \sim be the equivalence relation defined by $x \sim y$ if and only if either x = y = 0 or xy > 0. Find all open sets of the quotient space \mathbb{R}/\sim . Is \mathbb{R}/\sim Hausdorff?

Now let ~ instead be the equivalence relation on \mathbb{R} defined by $x \sim y$ if and only if $x - y \in \mathbb{Q}$. What is the topology on \mathbb{R}/\sim ?

- 2. Determine whether the following subsets of \mathbb{R}^2 are connected, path-connected, both or neither. Here, $B_r(\mathbf{x})$ is the open ball with centre \mathbf{x} and radius r, and $\overline{B}_r(\mathbf{x})$ is the corresponding closed ball.
 - (i) $B_1((1,0)) \cup B_1((-1,0))$
 - (ii) $B_1((1,0)) \cup \overline{B}_1((-1,0))$
 - (iii) $\{(x, y) \mid \text{at least one of } x \text{ and } y \text{ is rational}\}$
 - (iv) $\{(x, y) \mid \text{exactly one of } x \text{ and } y \text{ is rational}\}.$
- 3. Let X be a connected topological space.
 - (a) Let $f: X \to Y$ be a locally constant map to a topological space Y, i.e. for every $x \in X$, there is an open neighbourhood of x on which f is constant. Show that f is constant.
 - (b) Suppose that for every $x \in X$, there is an open neighbourhood of x which is path-connected. Show that X is path-connected.
- 4. Let X be a topological space.
 - (a) Let $A_i, i \in I$, be a collection of connected subsets of X such that $A_i \cap A_j \neq \emptyset$ for all $i, j \in I$. Prove that $\bigcup_{i \in I} A_i$ is connected.
 - (b) Prove that if A is a connected subset of X, then cl(A) is also connected. Deduce that any connected component of X is closed.
 - (c) Prove that every connected component of the product $X \times X$ is a product of connected components of X.
- 5. (a) Is there a metric on \mathbb{Q} which makes it into a connected space? What about $\mathbb{R} \setminus \mathbb{Q}$?
 - (b) Is there an infinite compact subset of \mathbb{Q} , in the Euclidean topology?
- 6. I am standing in a forest on ℝ² and cannot see anything but trees in every direction. Is it possible to cut down all but finitely many trees so that I still can't see out?
- 7. A collection C of subsets of a topological space is said to have the *finite intersection* property if every finite subcollection of C has non-empty intersection.

Prove that a topological space is compact if and only if, for every collection of closed subsets with the finite intersection property, the whole collection has non-empty intersection.

- 8. (a) Show that a subset A of \mathbb{R}^n is compact if and only if every continuous function from A to \mathbb{R} has bounded image.
 - (b) Show that any open cover of \mathbb{R}^n has a countable subcover.

- 9. Let X be a topological space. Its *one-point compactification* X^* is defined as follows. As a set, X^* is the union of X with an additional point denoted by ∞ . A subset U of X^* is open if either
 - (i) $\infty \notin U$ and U is open in X, or
 - (ii) $\infty \in U$ and $X^* \setminus U$ is a closed and compact subset of X.

Show that this defines a topology, and that X^* is compact. When is X dense in X^* ?

Write down a subset of \mathbb{R} which is homeomorphic to \mathbb{Z}^* .

Show that \mathbb{C}^* is homeomorphic to the sphere S^2 .

- 10. Let \mathbb{T}^2 be the two-dimensional torus, defined as \mathbb{R}^2/\sim , where $(x, y) \sim (x', y')$ if and only if x x' and y y' are both integers.
 - (a) Show that \mathbb{T}^2 is compact and path-connected.
 - (b) Let $L \subset \mathbb{R}^2$ be a line of the form $y = \alpha x$, where α is irrational, and let q(L) be its image in \mathbb{T}^2 , where $q : \mathbb{R}^2 \to \mathbb{T}^2$ is the quotient map.

What are the interior and closure of q(L) in \mathbb{T}^2 ?

Show that the restriction of q to L is a continuous bijection from L to q(L). Is it a homeomorphism?

- 11. Refer back to question 1(b) on sheet 1. Prove that if each (X_i, d_i) is connected then so is (X, d), and that if each (X_i, d_i) is compact then so is (X, d).
- 12. Can a topological space be homeomorphic to its own one-point compactification?
- 13. For each of the spaces X below, is the one-point compactification X^* metrizable?
 - (i) $X = \mathbb{R}$, with the Euclidean topology
 - (ii) $X = \mathbb{R}$, with the discrete topology
 - (iii) $X = \mathbb{Q}$, with the Euclidean topology
 - (iv) $X = \mathbb{Q}$, with the discrete topology.

- 1. Let \mathbb{Z} have the 5-adic metric. Show that:
 - (i) the sequence 2020, 20020, 200020, 2000020, ... converges
 - (ii) the sequence 2020, 22020, 222020, 2222020, ... is Cauchy but doesn't converge.
- 2. (a) Let $A \subseteq \mathbb{R}^2$ be a countable set of points. Show that $\mathbb{R}^2 \setminus A$ is path-connected.
 - (b) Let $B \subseteq \mathbb{R}^2$ be a set of points satisfying the following two conditions:
 - (i) if $x \in \mathbb{Q}$, then $(x, y) \in B$ for every $y \in \mathbb{R}$
 - (ii) if $x \notin \mathbb{Q}$, then $(x, y) \in B$ for at least one $y \in \mathbb{R}$.

Show that B is connected.

- 3. (a) Show that there is no continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $x \in \mathbb{Q}$ if and only if $f(x) \notin \mathbb{Q}$.
 - (b) Show that there is no continuous injective function from \mathbb{R}^2 to \mathbb{R} .
- 4. Let X be a topological space, and let A be a subset of X. Prove that at most seven distinct sets (including A itself) can be obtained from A by repeated applications of the closure and interior operations.

Find a subset of \mathbb{R} from which seven distinct sets can be obtained using the closure and interior operations.

5. Let X be \mathbb{R} with the *half-open interval topology*, which has a base of open sets given by all intervals [a, b) with a < b. Show that X is totally disconnected, i.e. the only connected subsets are single points. Show also that the interval [a, b], where a < b, is closed but not compact.

Show that $X \times X$ is separable (recall question 10 on sheet 1), but that the subspace $\{(x, -x) : x \in \mathbb{R}\}$ of $X \times X$ is not separable. Deduce that X is not metrizable.

- 6. Let $\tau_c \subsetneq \tau \subsetneq \tau_f$ be topologies on a set X. (I.e., 'c' for 'coarser' and 'f' for 'finer'.)
 - (a) Suppose that (X, τ) is compact. Show that (X, τ_c) is compact. Give an example to show that (X, τ_f) may not be compact.
 - (b) Suppose that (X, τ) is Hausdorff. Show that (X, τ_f) is Hausdorff. Give an example to show that (X, τ_c) may not be Hausdorff.
 - (c) Suppose that (X, τ) is compact and Hausdorff. Show that (X, τ_f) is not compact, and that (X, τ_c) is not Hausdorff.
- 7. We generalise question 6 on sheet 1. Let $f : X \to Y$ be a map between topological spaces, and let Γ_f be its graph.
 - (a) Show that if Y is Hausdorff and f is continuous then Γ_f is closed.
 - (b) Show that if Y is compact then the projection $\pi_1 : X \times Y \to X$, $(x, y) \mapsto x$, is a closed map, i.e. sends closed sets to closed sets.

Deduce that if Y is compact and Γ_f is closed then f is continuous.

- 8. A topological space X is called *normal* if, given disjoint closed subsets A, B of X, there exist disjoint open subsets U, V of X with $A \subseteq U$ and $B \subseteq V$. (So question 7 on sheet 1 shows that any metric space is normal.)
 - (a) Show that we may choose the open subsets U, V above to have disjoint closures.
 - (b) Prove that a compact Hausdorff space is normal.
- 9. Let U, V be subsets of a topological space X. If U, V are compact, must $U \cup V$ be compact? Must $U \cap V$ be compact?
- 10. Let X be a finite topological space. Show that if X is Hausdorff then the topology is discrete. Show that if X is connected then X is path-connected.
- 11. Let C_1, C_2, \ldots be compact, connected, non-empty subsets of a Hausdorff space, such that $C_1 \supseteq C_2 \supseteq \cdots$. Prove that the intersection $\bigcap_{n \in \mathbb{N}} C_n$ is connected. Give an example to show that the compactness assumption is required.
- 12. Show that the torus \mathbb{T}^2 is homeomorphic to $S^1 \times S^1$ with the product topology. Let $C = S^1 \times \{1\}$ be a circle in $X = S^1 \times S^1$. Show that X/C is homeomorphic to S^2/A , where $A = \{(0,0,1), (0,0,-1)\}$.
- 13. Let X, Y be topological spaces such that there exist continuous bijections $f : X \to Y$ and $g : Y \to X$. Show that if X, Y are finite then they are homeomorphic. What if X, Y are infinite?