A brief explanation of the Steinitz Exchange Lemma

Suppose we have a set of linearly independent vectors $I = \{\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\}$, and a set of spanning vectors $S = \{\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3, \mathbf{s}_4\}$. Then we may replace, one at a time, vectors in S with vectors in I, until we get a spanning set $T = \{\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3, \mathbf{s}\}$, where \mathbf{s} is one of the \mathbf{s}_i .

Since S spans, we know that \mathbf{i}_1 may be written as a linear combination of elements of S, say $\mathbf{i}_1 = \lambda_1 \mathbf{s}_1 + \lambda_2 \mathbf{s}_2 + \lambda_3 \mathbf{s}_3 + \lambda_4 \mathbf{s}_4$. One of the λ_i must be non-zero, or else we have $\mathbf{i}_1 = 0$, which contradicts I being linearly independent. So, by renaming the \mathbf{s}_i if necessary, we may assume that $\lambda_1 \neq 0$.

We have
$$\mathbf{s}_1 = \frac{1}{\lambda_1} (\mathbf{i}_1 - \lambda_2 \mathbf{s}_2 - \lambda_3 \mathbf{s}_3 - \lambda_4 \mathbf{s}_4).$$

Then $S' = \{\mathbf{i}_1, \mathbf{s}_2, \mathbf{s}_3, \mathbf{s}_4\}$ spans. Why? We know that S spans, so any vector is some combination of $\mathbf{s}_1, \ldots, \mathbf{s}_4$, and we can now replace the occurrence of \mathbf{s}_1 by the above expression in $\mathbf{i}_1, \mathbf{s}_2, \mathbf{s}_3, \mathbf{s}_4$.

We now have the linearly independent set $I' = \{i_2, i_3\}$ and the spanning set $S' = \{i_1, s_2, s_3, s_4\}$.

Since S' spans, we know that \mathbf{i}_2 may be written as a linear combination of elements of S', say $\mathbf{i}_2 = \mu_1 \mathbf{i}_1 + \mu_2 \mathbf{s}_2 + \mu_3 \mathbf{s}_3 + \mu_4 \mathbf{s}_4$. This time, we know that one of μ_2, μ_3, μ_4 must be non-zero, or else we have $\mathbf{i}_2 = \mu_1 \mathbf{i}_1$, which contradicts the original I being linearly independent. So, by renaming the \mathbf{s}_i if necessary, we may assume that $\mu_2 \neq 0$.

We have
$$\mathbf{s}_2 = \frac{1}{\mu_2} (\mathbf{i}_2 - \mu_1 \mathbf{i}_1 - \mu_3 \mathbf{s}_3 - \mu_4 \mathbf{s}_4).$$

Then $S'' = \{\mathbf{i}_1, \mathbf{i}_2, \mathbf{s}_3, \mathbf{s}_4\}$ spans. Why? Like before, we know that S' spans, so that any vector is some combination of $\mathbf{i}_1, \mathbf{s}_2, \mathbf{s}_3, \mathbf{s}_4$, and we can now replace the occurrence of \mathbf{s}_2 with the above expression in $\mathbf{i}_1, \mathbf{i}_2, \mathbf{s}_3, \mathbf{s}_4$.

We now have the linearly independent set $I'' = \{i_3\}$ and the spanning set $S'' = \{i_1, i_2, s_3, s_4\}$.

Since S'' spans, we know that \mathbf{i}_3 may be written as a linear combination of elements of S'', say $\mathbf{i}_3 = \nu_1 \mathbf{i}_1 + \nu_2 \mathbf{i}_2 + \nu_3 \mathbf{s}_3 + \nu_4 \mathbf{s}_4$. This time, we know that one of ν_3, ν_4 must be non-zero, or else we have $\mathbf{i}_3 = \nu_1 \mathbf{i}_1 + \nu_2 \mathbf{i}_2$, which contradicts the original I being linearly independent. So, by renaming the \mathbf{s}_i if necessary, we may assume that $\nu_3 \neq 0$.

We have
$$\mathbf{s}_3 = \frac{1}{\nu_3} (\mathbf{i}_3 - \nu_1 \mathbf{i}_1 - \nu_2 \mathbf{i}_2 - \nu_4 \mathbf{s}_4).$$

Then $S''' = \{i_1, i_2, i_3, s_4\}$ spans, for reasons just like before. And this is the set T we claimed existed at the start.

What would have happened if we'd started with the linearly independent set $I = \{i_1, i_2, i_3, i_4\}$ and the spanning set $S = \{s_1, s_2, s_3, s_4\}$?

We would do one more step in the process above, and end up replacing all elements in S with those in I, and we would conclude that I itself spans.

What if we'd started with the linearly independent set $I = \{\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3, \mathbf{i}_4, \mathbf{i}_5\}$ and the spanning set $S = \{\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3, \mathbf{s}_4\}$?

Well, after four steps in the above process we would have reached the point where $I'''' = \{\mathbf{i}_5\}$ and $S'''' = \{\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3, \mathbf{i}_4\}$ were the sets under consideration. But this is impossible, for if this S'''' spanned, then we could write \mathbf{i}_5 as a linear combination of $\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3, \mathbf{i}_4$, which would contradict I being linearly independent in the first place.

__

It is clear that if I is a finite linearly independent set and S is a finite spanning set, then the procedure above could be performed. In particular, we would find that $|I| \leq |S|$.

An immediate corollary is that if a vector space has a finite basis, then any two bases for it have the same size. For if B_1 and B_2 are two bases for it, then taking $I = B_1$ and $S = B_2$, we see that $|B_1| \leq |B_2|$, and taking $I = B_2$ and $S = B_1$, we see that $|B_2| \leq |B_1|$.

This means that 'dimension' is well-defined.

We can also see that, in a finite-dimensional vector space, any linearly independent set may be extended to a basis: let I be the linearly independent set and let S be any basis you like, and at the end of the process we have reached a basis containing I.

_

Note the use of the word 'finite' a few times above. The process described did assume that I and S were finite. We could have taken S to be infinite, and replaced |I| many elements of S with the elements of I. That's okay, because the process would still terminate after |I| many steps.

It's not obvious what would happen if I were infinite. If the exchange process turns out to be invalid, then the corollaries might not follow. Is 'dimension' even well-defined for huge spaces, and does every vector space actually have a basis? For the answers, you'll have to go to $Logic \, \mathcal{E} \, Set \, Theory$ in the third year and throw Zorn's Lemma at the problem.