A brief explanation of the Steinitz Exchange Lemma

Suppose we have a set of linearly independent vectors I = {iy, 12,13}, and a set of spanning
vectors S = {s1,82,83,84}. Then we may replace, one at a time, vectors in S with vectors in
I, until we get a spanning set T' = {iy, ia, i3, s}, where s is one of the s;.

Since S spans, we know that i; may be written as a linear combination of elements of S, say
i1 = A1s1 + Aoss + Ags3 + Ags4. One of the \; must be non-zero, or else we have i; = 0,
which contradicts I being linearly independent. So, by renaming the s; if necessary, we may
assume that A\; # 0.

1
We have S1 = 7(11 — )\252 — )\353 — )\454).
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Then S’ = {ij,s2,83,84} spans. Why? We know that S spans, so any vector is some
combination of sy, . . ., 84, and we can now replace the occurrence of s; by the above expression
in i17527s3;S4-

We now have the linearly independent set I’ = {is, i3} and the spanning set S” = {i1, s2,83,84}.

Since S’ spans, we know that i may be written as a linear combination of elements of S’, say
is = pqiy + pose + psss + pgse. This time, we know that one of us, p3, t4 must be non-zero,
or else we have iy = p1i;, which contradicts the original I being linearly independent. So,
by renaming the s; if necessary, we may assume that ps # 0.

1. .
We have s, = ;(12 — paiy — pssSs — pass).
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Then S” = {i1,i2,83,84} spans. Why? Like before, we know that S’ spans, so that any
vector is some combination of iy, so, 83,84, and we can now replace the occurrence of s, with
the above expression in iy, i, s3,84.

We now have the linearly independent set I"” = {i3} and the spanning set S” = {i1, i, 83,84}.

Since S” spans, we know that i3 may be written as a linear combination of elements of S”,
say i3 = v1iy + eis + v3s3 + v484. This time, we know that one of v3, v4 must be non-zero,
or else we have i3 = v1i; + v»is, which contradicts the original I being linearly independent.
So, by renaming the s; if necessary, we may assume that v3 = 0.

L. . .
We have S3 = *(13 — V1l] — U2l — 1/454).
V3

Then S”" = {iy, ia, i3, 84} spans, for reasons just like before. And this is the set T we claimed
existed at the start.

What would have happened if we’d started with the linearly independent set I = {iy, i, 13,14}
and the spanning set S = {s1, 82,835,814} ?

We would do one more step in the process above, and end up replacing all elements in S with
those in I, and we would conclude that [ itself spans.



What if we’d started with the linearly independent set I = {ij, i3, i3, 14,15} and the spanning
set S = {s1,82,83,84} 7

Well, after four steps in the above process we would have reached the point where I"" = {i5}
and S = {iy,is,i3,14} were the sets under consideration. But this is impossible, for if
this S”” spanned, then we could write i5 as a linear combination of iy, is, i3, i4, which would
contradict I being linearly independent in the first place.

It is clear that if I is a finite linearly independent set and S is a finite spanning set, then the
procedure above could be performed. In particular, we would find that |I| < |S|.

An immediate corollary is that if a vector space has a finite basis, then any two bases for it
have the same size. For if B; and By are two bases for it, then taking I = By, and S = By,
we see that |B;| < |Bz|, and taking I = By and S = Bj, we see that |Bs| < |By].

This means that ‘dimension’ is well-defined.

We can also see that, in a finite-dimensional vector space, any linearly independent set may
be extended to a basis: let I be the linearly independent set and let S be any basis you like,
and at the end of the process we have reached a basis containing I.

Note the use of the word ‘finite’ a few times above. The process described did assume that
I and S were finite. We could have taken S to be infinite, and replaced |I| many elements
of S with the elements of I. That’s okay, because the process would still terminate after ||
many steps.

It’s not obvious what would happen if I were infinite. If the exchange process turns out to
be invalid, then the corollaries might not follow. Is ‘dimension’ even well-defined for huge
spaces, and does every vector space actually have a basis? For the answers, you’ll have to go
to Logic € Set Theory in the third year and throw Zorn’s Lemma at the problem.

Please let me know of any corrections: glt1000@cam.ac.uk



