Linear Algebra: Example Sheet 3 of 4

1. Show that none of the following matrices are similar:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Is the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

similar to any of them? If so, which?
2. Find a basis with respect to which $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)$ is in Jordan normal form. Hence compute $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)^{n}$.
3. (a) Recall that the Jordan normal form of a 3×3 complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for 4×4 complex matrices.
(b) Let A be a 5×5 complex matrix with $A^{4}=A^{2} \neq A$. What are the possible minimal and characteristic polynomials? How many possible JNFs are there for A? [You probably don't want to list them all.]
4. Let α be an endomorphism of the finite dimensional vector space V over F, with characteristic polynomial $\chi_{\alpha}(t)=t^{n}+c_{n-1} t^{n-1}+\cdots+c_{0}$. Show that $\operatorname{det}(\alpha)=(-1)^{n} c_{0}$ and $\operatorname{tr}(\alpha)=-c_{n-1}$.
5. Let α be an endomorphism of the finite-dimensional vector space V, and assume that α is invertible. Describe the eigenvalues and the characteristic and minimal polynomial of α^{-1} in terms of those of α.
6. Prove that any square complex matrix is similar to its transpose. Now prove that that the inverse of a Jordan block $J_{m}(\lambda)$ with $\lambda \neq 0$ has Jordan normal form a Jordan block $J_{m}\left(\lambda^{-1}\right)$. For an arbitrary non-singular square matrix A, describe the Jordan normal form of A^{-1} in terms of that of A.
7. Let V be a complex vector space of dimension n and let α be an endomorphism of V with $\alpha^{n-1} \neq 0$ but $\alpha^{n}=0$. Show that there is a vector $\mathbf{x} \in V$ for which $\mathbf{x}, \alpha(\mathbf{x}), \alpha^{2}(\mathbf{x}), \ldots, \alpha^{n-1}(\mathbf{x})$ is a basis for V. Give the matrix of α relative to this basis.
Let $p(t)=a_{0}+a_{1} t+\ldots+a_{k} t^{k}$ be a polynomial. What is the matrix for $p(\alpha)$ with respect to this basis? What is the minimal polynomial for α ? What are the eigenvalues and eigenvectors?
Show that if an endomorphism β of V commutes with α then $\beta=p(\alpha)$ for some polynomial $p(t)$.
[It may help to consider $\beta(\mathbf{x})$.]
8. Let A be an $n \times n$ matrix all the entries of which are real. Show that the minimal polynomial of A, over the complex numbers, has real coefficients.
9. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, with $a_{i} \in \mathbb{C}$, and let C be the circulant matrix

$$
\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n} \\
a_{n} & a_{0} & a_{1} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{0} & \ldots & a_{n-2} \\
\vdots & & & \ddots & \vdots \\
a_{1} & a_{2} & a_{3} & \ldots & a_{0}
\end{array}\right)
$$

Show that the determinant of C is $\operatorname{det} C=\prod_{j=0}^{n} f\left(\zeta^{j}\right)$, where $\zeta=\exp (2 \pi i /(n+1))$.
10. Let V be a 4-dimensional vector space over \mathbb{R}, and let $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\}$ be the basis of V^{*} dual to the basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ for V. Determine, in terms of the ξ_{i}, the bases dual to each of the following:
(a) $\left\{\mathbf{x}_{2}, \mathbf{x}_{1}, \mathbf{x}_{4}, \mathbf{x}_{3}\right\}$;
(b) $\left\{\mathbf{x}_{1}, 2 \mathbf{x}_{2}, \frac{1}{2} \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$;
(c) $\left\{\mathbf{x}_{1}+\mathbf{x}_{2}, \mathbf{x}_{2}+\mathbf{x}_{3}, \mathbf{x}_{3}+\mathbf{x}_{4}, \mathbf{x}_{4}\right\}$;
(d) $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}-\mathbf{x}_{1}, \mathbf{x}_{3}-\mathbf{x}_{2}+\mathbf{x}_{1}, \mathbf{x}_{4}-\mathbf{x}_{3}+\mathbf{x}_{2}-\mathbf{x}_{1}\right\}$.
11. Let P_{n} be the space of real polynomials of degree at most n. For $x \in \mathbb{R}$ define $\varepsilon_{x} \in P_{n}^{*}$ by $\varepsilon_{x}(p)=p(x)$. Show that $\varepsilon_{0}, \ldots, \varepsilon_{n}$ form a basis for P_{n}^{*}, and identify the basis of P_{n} to which it is dual.
12. (a) Show that if $\mathbf{x} \neq \mathbf{y}$ are vectors in the finite dimensional vector space V, then there is a linear functional $\theta \in V^{*}$ such that $\theta(\mathbf{x}) \neq \theta(\mathbf{y})$.
(b) Suppose that V is finite dimensional. Let $A, B \leq V$. Prove that $A \leq B$ if and only if $A^{o} \geq B^{o}$. Show that $A=V$ if and only if $A^{o}=\{0\}$. Deduce that a subset $F \subset V^{*}$ of the dual space spans V^{*} if and only if $\{\mathbf{v} \in V: f(\mathbf{v})=0$ for all $f \in F\}=\{\mathbf{0}\}$.

