Linear Algebra: Example Sheet 2 of 4

1. (Another proof of the row rank column rank equality.) Let A be an $m \times n$ matrix of (column) rank r. Show that r is the least integer for which A factorises as $A=B C$ with $B \in \operatorname{Mat}_{m, r}(\mathbb{F})$ and $C \in \operatorname{Mat}_{r, n}(\mathbb{F})$. Using the fact that $(B C)^{T}=C^{T} B^{T}$, deduce that the (column) rank of A^{T} equals r.
2. Write down the three types of elementary matrices and find their inverses. Show that an $n \times n$ matrix A is invertible if and only if it can be written as a product of elementary matrices. Write the following matrices as products of elementary matrices. Then use this to find their inverses.

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 3 & -1
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 2 & 1 \\
1 & 3 & 0
\end{array}\right) .
$$

3. Let $\lambda \in F$. Evaluate the determinant of the $n \times n$ matrix A with each diagonal entry equal to λ and all other entries 1.
4. Let A be an $n \times m$ matrix. Prove that if B is an $m \times n$ matrix then $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
5. Let A and B be $n \times n$ matrices over a field F. Show that the $2 n \times 2 n$ matrix

$$
C=\left(\begin{array}{cc}
I & B \\
-A & 0
\end{array}\right) \quad \text { can be transformed into } \quad D=\left(\begin{array}{cc}
I & B \\
0 & A B
\end{array}\right)
$$

by elementary row operations (which you should specify). By considering the determinants of C and D, obtain another proof that $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
6. (i) Let V be a non-trivial real vector space of finite dimension. Show that there are no endomorphisms α, β of V with $\alpha \beta-\beta \alpha=\mathrm{id}_{V}$.
(ii) Let V be the space of infinitely differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$. Find endomorphisms α, β of V which do satisfy $\alpha \beta-\beta \alpha=\mathrm{id}_{V}$.
7. Compute the characteristic polynomials of the matrices

$$
\left(\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 3 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 3 & 4 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Which of the matrices are diagonalisable over \mathbb{C} ? Which over \mathbb{R} ?
8. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 3 & -1 \\
-1 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

9. Let a_{0}, \ldots, a_{n} be distinct real numbers, and let

$$
A=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
a_{0} & a_{1} & \cdots & a_{n} \\
a_{0}^{2} & a_{1}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{0}^{n} & a_{1}^{n} & \cdots & a_{n}^{n}
\end{array}\right) .
$$

Show that $\operatorname{det}(A) \neq 0$.
10. For $n \geq 2$, let $A, B \in \operatorname{Mat}_{n}(\mathbb{F})$. Show that, if A and B are invertible, then
$(i) \operatorname{adj}(A B)=\operatorname{adj}(B) \operatorname{adj}(A)$,
(ii) $\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}$,
(iii) $\operatorname{adj}(\operatorname{adj} A)=(\operatorname{det} A)^{n-2} A$.

What happens if A is not invertible? Now show that

$$
\operatorname{rank}(\operatorname{adj} A)= \begin{cases}n & \text { if } \quad \operatorname{rank}(A)=n \\ 1 & \text { if } \quad \operatorname{rank}(A)=n-1 \\ 0 & \text { if } \quad \operatorname{rank}(A) \leq n-2\end{cases}
$$

11. Let V be a vector space, let $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ be endomorphisms of V such that $\operatorname{id}_{V}=\pi_{1}+\cdots+\pi_{k}$ and $\pi_{i} \pi_{j}=0$ for any $i \neq j$. Show that $V=U_{1} \oplus \cdots \oplus U_{k}$, where $U_{j}=\operatorname{Im}\left(\pi_{j}\right)$.
Let α be an endomorphism on the vector space V, satisfying the equation $\alpha^{3}=\alpha$. Prove directly that $V=V_{0} \oplus V_{1} \oplus V_{-1}$, where V_{λ} is the λ-eigenspace of α.
12. Let $A \in \operatorname{Mat}_{n}(\mathbb{R})$ be such that for all $i \in\{1, \ldots, n\}$ we have $\left|a_{i, i}\right|>\sum_{j \neq i}\left|a_{i, j}\right|$. Show that A is invertible. Now additionally assume $a_{i, i} \geq 0$, for all i; does this imply $\operatorname{det}(A)>0$?
13. Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$ satisfy $A^{k}=I$, for some $k \in \mathbb{N}$. Show that A can be diagonalised.
