1. For each case below, let U be the subset of the real vector space \mathbb{R}^{3} consisting of all vectors $\left(x_{1}, x_{2}, x_{3}\right)$ satisfying the given condition. In which cases is U a subspace of \mathbb{R}^{3} ?
(a) $x_{1} \geqslant 0$
(d) $x_{1}+x_{2}=1$
(b) either $x_{1}=0$ or $x_{2}=0$
(e) $x_{1}^{2}+x_{2}^{2}=0$
(c) $x_{1}+x_{2}=0$
(f) $x_{1}+x_{2}+x_{3}=0$ and $x_{1}-x_{3}=0$.
2. Let $\mathbb{R}^{\mathbb{N}}$ be the set of all real sequences, which you may assume is a vector space over \mathbb{R}. Determine which of the following sets of sequences of real numbers $\left(x_{n}\right)$ form subspaces of $\mathbb{R}^{\mathbb{N}}$. (You may assume any results from Part IA Analysis I.)
(a) x_{n} is bounded
(e) $x_{n+2}=x_{n+1}+x_{n}$ for all n
(b) x_{n} is convergent
(f) there exists N such that $x_{n}=0$ for $n>N$
(c) $x_{n} \rightarrow 0$ as $n \rightarrow \infty$
(g) $\sum\left|x_{n}\right|$ is convergent
(d) $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$
(h) $\sum x_{n}^{2}$ is convergent.
3. Let $\mathbb{R}^{\mathbb{R}}$ be the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, with addition and scalar multiplication defined pointwise, which you may assume is a vector space over \mathbb{R}. Determine which of the following sets of functions f form subspaces of $\mathbb{R}^{\mathbb{R}}$.
(a) f is a polynomial
(d) f is a solution of $\left(f^{\prime}(t)\right)^{2}-f(t)=0$
(b) f is a polynomial of even degree
(e) f is a solution of $\left(f^{\prime \prime}(t)\right)^{4}+(f(t))^{2}=0$
(c) f is constant on \mathbb{Z}
(f) f is periodic.
4. For each of the vector spaces found in questions $1-3$, determine whether it is finite-dimensional or not. When it is finite-dimensional, state the dimension and find a basis. When it is not finite-dimensional, demonstrate why is it not.
5. Which of the following are bases for the given spaces?
(a) For $\mathbb{R}^{3}:\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$
(c) For $\mathbb{R}^{3}:\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$
(b) For $\mathbb{R}^{4}:\left\{\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$
(d) For $\mathbb{R}^{4}:\left\{\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$.
6. For each following matrix A, find bases for the kernel and image of the linear map $\mathbf{x} \mapsto A \mathbf{x}$.

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
2 & 0 & 1 \\
0 & 2 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

7. (a) Let P denote the vector space of all polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$, and let P_{n} denote the subspace of P consisting of polynomials of degree at most n. Which of the following define linear maps $P_{n} \rightarrow P$?
(i) $S(p)(t)=p\left(t^{2}+1\right)$
(iv) $E(p)(t)=p\left(e^{t}\right)$
(ii) $T(p)(t)=p(t)^{2}+1$
(v) $D(p)(t)=p^{\prime}(t)$
(iii) $U(p)(t)=p\left(t^{2}\right)-t p(t)$
(vi) $I(p)(t)=\int_{0}^{t} p(s) d s$.

For those that are linear maps, find their rank and nullity.
(b) Let $Q(p)$ and $R(p)$, respectively, be the quotient and remainder when p is divided by $t^{2}+1$. Show that Q and R are linear maps $P_{n} \rightarrow P$. Find their rank and nullity.
8. The linear map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by

$$
\binom{x}{y} \longmapsto\binom{-5 x+9 y}{-4 x+7 y} .
$$

Find the matrix of α relative to the basis

$$
\left\{\binom{3}{2},\binom{1}{1}\right\} .
$$

Write down the matrix of α relative to the basis

$$
\left\{\binom{1}{1},\binom{3}{2}\right\}
$$

9. Let V_{1}, V_{2} be subspaces of \mathbb{R}^{4} with bases

$$
V_{1}:\left\{\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)\left(\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right)\left(\begin{array}{c}
-2 \\
3 \\
-2 \\
3
\end{array}\right)\right\} \quad \text { and } \quad V_{2}:\left\{\left(\begin{array}{c}
1 \\
0 \\
-4 \\
-3
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
3 \\
2
\end{array}\right)\left(\begin{array}{c}
-4 \\
4 \\
1 \\
2
\end{array}\right)\right\}
$$

Find a basis for the subspace $V_{1} \cap V_{2}$ of the form $\left\{\left(\begin{array}{l}a \\ b \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}c \\ d \\ 0 \\ 1\end{array}\right)\right\}$, for suitable a, b, c, d.
10. Let A, B be $n \times n$ real matrices. If $A B=0$, must $B A=0$? If $(A B)^{n}=0$, must $(B A)^{n}=0$?

