
Sylow’s Theorems

Here are two different ways of proving Sylow’s theorems. The first set of proofs is rather ‘magical’,
picking a different clever action that works for each part. The second set of proofs is rather more
‘natural’, using the same familiar action for all three parts.

Let G be a group of order pam, where p is prime and (p,m) = 1.

Sylow 1. G has a Sylow p-subgroup – that is, a subgroup of order pa.

Let X be the set of all subsets of G of size pa, and let G act on X by left multiplication: for g in
G and {x1, . . .xpa} in X, we let g ∗ {x1, . . .xpa} = {gx1, . . .gxpa}.

We’ll show that (a) any orbit has size at least m, and (b) there is an orbit of size dividing m. Such
an orbit then has size equal to m, and by Orbit-Stabiliser the corresponding stabiliser has size pa,
which is our required Sylow subgroup.

(a) Pick an orbit O, let S be a member of O, let s ∈ S, and let g ∈ G. Then gs−1 ∗ A contains g.
So the sets in orb(S) cover all of G, and hence there are at least |G|/|S| = m sets in orb(S).

(b) We have
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For each factor in this product, the same power of p divides the numerator and denominator, and
so all factors of p cancel. Hence |X| is coprime to p.

Then, when we partition X up into orbits, at least one orbit has size coprime to p (for if they are
all multiples of p, then so is |X|, but it’s not). By Orbit-Stabiliser the size of this orbit divides |G|.
And if a number divides pam and is coprime to p, then it divides m.

Combining (a) and (b), we have proved Sylow 1.

Sylow 2. Any two Sylow p-subgroups are conjugate.

Let P be the Sylow p-subgroup we found above, and let X be the set of left cosets of P . Let Q be
some other Sylow p-subgroup, and let Q act on X by left multiplication: q ∗ gP = qgP .

The orbits have sizes dividing |Q| = pa, so they are powers of p, and since |X| = |G|/|P | = m is
coprime to p, there must be some orbit {gP} of size 1.

Then, for all q ∈ Q we have qgP = gP , so g−1qgP = P , so g−1qg ∈ P , and so q ∈ gPg−1. Hence
Q 6 gPg−1 and so by sizes we have Q = gPg−1, as required.

Sylow 3. The number np of Sylow p-subgroups satisfies np ≡ 1 mod p and np divides m.

Let P be the Sylow p-subgroup we found above, and let X be the set of Sylow p-subgroups of G.
Let P act on X by conjugation: g ∗Q = gQg−1.

By Orbit-Stabiliser, the orbits have size dividing |P | and hence are powers of p, and we know that
{P} is an orbit of size 1. If {Q} is another orbit of size 1, then gQg−1 = Q for all g ∈ P , and so
P 6 N(Q). But N(Q) has Q as its unique Sylow p-subgroup (any two are conjugate by Sylow 2,
and Q is normal in N(Q)), so P = Q and hence {P} is in fact the only orbit of size 1.

Hence np ≡ 1 mod p.

Now, let G act on X by conjugation. Sylow 2 tells us that there is only one orbit, which has size
np. By the Orbit-Stabiliser theorem, we have that np divides |G|. Since np is coprime to p, we have
that np divides m.



Now a second set of proofs, where everything is a bit more natural and motivated.

Sylow 1. G has a Sylow p-subgroup – that is, a subgroup of order pa.

Let P be a maximal p-subgroup of G. Our aim is to show that |P | = pa, or equivalently that
|G|/|P | is not a multiple of p. Writing N for the normaliser of P in G, we have
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This is useful because both factors have a meaning:

� via orbit-stabiliser on the conjugation action of G on its subgroups, we have that |G|/|N | is
the number of conjugates of P

� since P is normal in N , we have |N |/|P | = |N/P |, the size of the quotient group.

We’ll show that neither factor is a multiple of p.

� Let π : N → N/P be the quotient map.

If p divides |N/P |, then Cauchy’s theorem gives us an element x ∈ N/P of order p. Then
π−1(〈x〉) is a subgroup of G of order p|P |, contradicting P being maximal.

� Let X be the set of conjugates of P , i.e. X = {gPg−1 : g ∈ G}. Then |G|/|N | = |X|.

Let P act on X by conjugation. Since |P | is a power of p, each orbit has size a power of p.
We have at least one orbit of size 1, namely {P}. We’ll show that this is the only orbit of
size 1, and then we are done, with |X| ≡ 1 mod p and hence |G|/|N | coprime to p.

Suppose that {gPg−1} is an orbit of size 1. Then P fixes gPg−1 in the action – i.e., P
normalises gPg−1. So, for all h ∈ P we have

h(gPg−1)h−1 = gPg−1 .

Rearranging this, we have

P = (g−1hg)P (g−1hg)−1

which says that g−1hg normalises P . This is true for all h ∈ P , and so g−1Pg ⊂ N .

We can therefore restrict π : N → N/P to g−1Pg. The image π(g−1Pg) is a subgroup of
N/P and so has size dividing |N/P | which has no factors of p. But the size of the image also
divides |g−1Pg| which is a power of p. Hence the image has size 1 and thus is {e}.

Therefore, we have g−1Pg ⊂ P , and so g−1Pg = P , and hence P = gPg−1, as required.

Sylow 2. Any two Sylow p-subgroups are conjugate.

Let Q be another Sylow p-subgroup of G. We want Q = gPg−1 for some g.

Let Q act on X by conjugation. The orbits have size a power of p, and there is an orbit of size 1
since |X| ≡ 1 mod p. Let this orbit be {gPg−1}.

So Q normalises gPg−1, and then g−1Qg normalises P (as above). Then g−1Qg ⊂ N , and
π(g−1Qg) = {e} (as above). So g−1Qg ⊂ P , so g−1Qg = P , and hence Q = gPg−1, as required.

Sylow 3. The number of Sylow p-subgroups is 1 (mod p) and divides m.

This is now immediate. We showed that the number of conjugates of P is congruent to 1 (mod p),
and then we showed that all Sylow subgroups were conjugate to P . Hence np ≡ 1 (mod p). And
finally, np divides m by orbit-stabiliser, since it divides |G| and is coprime to p.


