## $F[X]$-modules and Normal Forms

We'll start by thinking about the real vector space $V=\mathbb{R}^{3}$. This means that we are allowed two operations: we can add together any two vectors in $V$, and we can scale a vector by a real number.

We have the standard basis $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)$. This means that everything can be expressed as a linear combination of these vectors: everything is of the form $\lambda_{1} e_{1}+\lambda_{2} e_{2}+\lambda_{3} e_{3}$ for some $\lambda_{i} \in \mathbb{R}$.

Suppose that we now extend the operations we are allowed to perform: we may still add two vectors together and scale a vector by a real number, but we may now also apply the linear map $\alpha$, which for our example will be 'rotate by $\pi / 2$ about the $z$-axis'.

Then we no longer need $e_{2}$ in order to get everywhere, because $\alpha\left(e_{1}\right)=e_{2}$. So if a vector was previously $\lambda_{1} e_{1}+\lambda_{2} e_{2}+\lambda_{3} e_{3}$, we can now write it as $\lambda_{1} e_{1}+\lambda_{2} \alpha\left(e_{1}\right)+\lambda_{3} e_{3}$. So the set $\left\{e_{1}, e_{3}\right\}$ generates $V$ when we have this extra operation.

Since we can apply $\alpha$ to any vector $v$ and get the vector $\alpha(v)$, we can then apply $\alpha$ to $\alpha(v)$ and get the vector $\alpha^{2}(v)$. Repeating this, we can get $\alpha^{k}(v)$ for any $k \in \mathbb{N}$. We can then take linear combinations of these vectors, getting expressions of the form $\lambda_{n} \alpha^{n}(v)+\cdots+\lambda_{1} \alpha(v)+\lambda_{0} v$. And this equals $\left(\lambda_{n} \alpha^{n}+\cdots+\lambda_{1} \alpha+\lambda_{0} \iota\right)(v)$, where $\iota$ is the identity function.
In other words, for any $v \in V$, we also have $p(\alpha)(v)$, for any polynomial $p \in \mathbb{R}[X]$.
So we can now view our operations as: add two vectors together, scale a vector by a real number, and also apply $p(\alpha)$ for any polynomial $p \in \mathbb{R}[X]$. In fact, since applying the constant polynomial $p(X)=\lambda$ to $v$ gives us $\lambda \iota(v)=\lambda v$, we don't need to include 'scale by real numbers'.

So our operations are: add two vectors together, and apply $p(\alpha)$ for any polynomial $p \in \mathbb{R}[X]$
Suppose that we apply the polynomial $p(\alpha)$ to $v$, then the polynomial $q(\alpha)$ to the output. We get $q(\alpha) p(\alpha)(v)=(q p)(\alpha)(v)$, where $q p$ is the product of the polynomials, not the composition. So 'apply polynomials' obeys a multiplication.

Let's now be more general and formalise some of this.
Let $V$ be a finite-dimensional vector space over a field $F$, and let $\alpha: V \rightarrow V$ be a linear map. By the above, we can define on $V$ a 'multiplication' by elements of $F[X]$, defining $p(X) \cdot v$ to be $p(\alpha)(v)$. With this definition of multiplication (and with the usual vector space definition of addition), we may check that this obeys the rules for a module over the ring $F[X]$.

The underlying set $V$ is still the same set of vectors, but we are giving it a different structure. (In the example above, we saw that $\mathbb{R}^{3}$ needed only $\left\{e_{1}, e_{3}\right\}$ to generate it.) We want to investigate the new structure.

Note that, as a vector space, $V$ had a finite basis, and those basis vectors still generate $V$ as an $F[X]$-module, just by using addition as usual and multiplying by constant polynomials. So $V$ is a finitely-generated $F[X]$-module.

Since $F$ is a field, we know that $F[X]$ is a Euclidean Domain. Therefore we may apply the structure theorem and deduce that, as $F[X]$-modules,

$$
\begin{equation*}
V \cong F[X] /\left(p_{1}\right) \oplus \cdots \oplus F[X] /\left(p_{n}\right) \oplus F[X]^{r} \tag{*}
\end{equation*}
$$

for some polynomials $p_{1}, . ., p_{n}$ with $p_{1}|\cdots| p_{n}$ and some $r \in \mathbb{N}$.
Let's focus on one summand, say $F[X] /(p)$, where $p=X^{m}+\lambda_{m-1} X^{m-1}+\cdots+\lambda_{0}$.
Every element in $F[X] /(p)$ is a coset $q+(p)$ for some polynomial $q$, and since $\operatorname{deg}(p)=m$, we may choose the representative $q$ to have degree at most $m-1$.
As an $F[X]$-submodule, $F[X] /(p)$ is generated by $1+(p)$, since we may obtain any $q+(p)$ simply by multiplying $1+(p)$ by the scalar $q$ (where 'scalar' here means 'element of $F[X]$ ', which is our ring).

But suppose that we now forget how to do the general polynomial multiplication, and just allow scaling by the elements of $F$ itself. Then the submodule gains the structure of a vector space - adding elements and multiplying by scalars from $F$ leaves us in the space, since those operations did so in the module.
Then, over $F$, the elements $1+(p), X+(p), \ldots, X^{m-1}+(p)$ are linearly independent, for if a combination of them equals 0 , then we have a polynomial of degree less than $m$ in $(p)$, which can't happen. They also span, since as we said above any element of $F[X] /(p)$ has a representative with degree at most $m-1$.

Hence, viewing $F[X] /(p)$ as an $F$-vector space, it has basis $\left\{1+(p), X+(p), \ldots, X^{m-1}+(p)\right\}$, and so it is $m$-dimensional.

Now, via the (module) isomorphism $(*)$ above, the summand $F[X] /(p)$ is identified with a submodule of $V$ (the $F[X]$-module), and the above shows that it is identified with a subspace $U$ of $V$ (the vector space) once we forget about polynomials.

Where does the above basis go? Let the coset $1+(p)$ map to a vector $v$. Before we forgot about the module's polynomial multiplication, we knew that $X+(p)$ was $X(1+(p))$ and so must have mapped to $X v=\alpha(v)$. It still does so now (as we haven't changed the bijection in $(*))$, and so $X+(p)$ maps to $\alpha(v)$. In general, $X^{i}+(p)$ maps to $\alpha^{i}(v)$.

So, over in the vector space, we have a basis $\left\{v, \alpha(v), \ldots, \alpha^{m-1}(v)\right\}$ for the subspace $U$.
What is the matrix for $\alpha$ (restricted to the subspace $U$ ) in terms of this basis? Each basis vector is sent to the next, except for the final vector. This means that for $i<m$, the $i^{\text {th }}$ column of the matrix is all $0 s$ except for a 1 in the entry just below the diagonal. To find the $m^{\text {th }}$ we need to know $\alpha^{m}(v)$ in terms of the earlier vectors.

So, we look back in the $F[X]$-submodule $F[X] /(p)$. We had $p=X^{m}+\lambda_{m-1} X^{m-1}+\cdots+\lambda_{0}$, and so the coset $X^{m}+(p)$ equals the coset $-\lambda_{m-1} X^{m-1}-\cdots-\lambda_{0}+(p)$. And so, over in $U$, we have $\alpha^{m}(v)=-\lambda_{m-1} \alpha^{m-1}(v)-\cdots-\lambda_{0}(v)$.

Therefore, the required matrix is the following:

$$
\left(\begin{array}{ccccc}
0 & \ldots & \ldots & 0 & -\lambda_{0} \\
1 & 0 & \ldots & 0 & -\lambda_{1} \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \ldots & 0 & 1 & -\lambda_{m-1}
\end{array}\right) .
$$

This is the companion matrix for the polynomial $p$.
We can now do this for each summand $F[X] /\left(p_{i}\right)$ in $(*)$, obtaining a similar vector subspace in $V$ and a similar companion matrix.

What about the final summand $F[X]^{r}$ in $(*)$ ? When we forget about the polynomial multiplication and just consider the vector space multiplication by elements of $F$, the summand $F[X]$ is infinite dimensional, since all $X^{i}$ are independent. However, $V$ was a finite-dimensional vector space, and so there are no such summands, i.e. $r=0$.

We have obtained the Rational Canonical Form (RCF) for $\alpha$ - there is a basis of $V$ such that the matrix for $\alpha$ is block diagonal, with each block being a companion matrix as above, and with the polynomials $p_{1}|\cdots| p_{n}$.

Note that $p_{n}$ is then the minimal polynomial of $\alpha$ (once we make it monic). Multiplying by $p_{n}$ kills off all summands of $(*)$ since each $p_{i}$ divides it, and no smaller polynomial kills off $F[X] /\left(p_{n}\right)$ itself.

Let us return to the summand $F[X] /(p)$, and suppose that $p$ factorises fully into linear factors as $\prod_{i=1}^{k}\left(X-\mu_{i}\right)^{c_{i}}$. Since the polynomials $\left(X-\mu_{i}\right)^{c_{i}}$ and $\left(X-\mu_{j}\right)^{c_{j}}$ are coprime if $i \neq j$, we can use the Chinese Remainder Theorem (a version of which works in this setting) to split the summand as

$$
F[X] /(p) \cong F[X] /\left(\left(X-\mu_{1}\right)^{c_{1}}\right) \oplus \cdots \oplus F[X] /\left(\left(X-\mu_{k}\right)^{c_{k}}\right) \quad(* *)
$$

We'll focus on a single summand $F[X] /(q)$ for $q=(X-\mu)^{c}$, and apply a similar analysis to that above, viewing it as a vector space. However, rather than using the basis $1+(q)$, $X+(q), \ldots, X^{c-1}+(q)$, we'll use $1+(q),(X-\mu)+(q), \ldots,(X-\mu)^{c-1}+(q)$. These are linearly independent over $F$ since they have different degrees, and if a combination equals 0 then we have a polynomial of degree less than $c$ in $(q)$, which can't happen. Hence they also span.

As with $(*)$ before, we identify this summand with a subspace $U$ of $V$, and we obtain the basis $\left\{v,(\alpha-\mu \iota)(v), \ldots,(\alpha-\mu \iota)^{c-1}(v)\right\}$ for $U$.
Now, what is the matrix for $\alpha$ (restricted to $U$ ) in terms of this basis?
We'll first find the matrix for $\alpha-\mu \iota$. This sends each basis vector to the next, except for the final vector. The final vector is sent to $(\alpha-\mu \iota)^{c}(v)$. Back in the $F[X]$-submodule, we have $(X-\mu)^{c}+(q)=(q)$, and hence in the vector space we have $(\alpha-\mu \iota)^{c}(v)=0$.

So the matrix for $\alpha-\mu \iota$ is $\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ldots & 1 & 0\end{array}\right)$, and hence the matrix for $\alpha$ is $\left(\begin{array}{cccc}\mu & 0 & \ldots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ldots & 1 & \mu\end{array}\right)$.
This is a Jordan block. (It's a 'lower' Jordan block, i.e. with the 1s below the diagonal. If we want the 1 s above the diagonal, we just reorder the basis.)
We now do this for each summand in $(* *)$, each time obtaining a vector subspace of $V$ and a similar Jordan block. Then the matrix for $\alpha$ on the vector subspace corresponding to the summand $F[X] /(p)$ is a block diagonal matrix. Repeating this for each summand in $(*)$ gives us the Jordan Normal Form (JNF) of $\alpha$.

The RCF always exists, but the JNF requires the polynomials $p_{i}$ all to be fully factorised into linear factors. This is guaranteed over $\mathbb{C}$, for example, but not over $\mathbb{R}$.

A worked example. Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map represented in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ by

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
-4 & 4 & 0 \\
-2 & 1 & 2
\end{array}\right)
$$

We'll start by finding what decomposition like $(*)$ the structure theorem gives.
We have $\alpha\left(e_{1}\right)=-4 e_{2}-2 e_{3}, \alpha\left(e_{2}\right)=e_{1}+4 e_{2}+e_{3}$, and $\alpha\left(e_{3}\right)=2 e_{3}$.
We make $\mathbb{R}^{3}$ into an $\mathbb{R}[X]$-module via $\alpha$, defining $p(X) \cdot v$ to be $p(\alpha)(v)$.
Then we have $X e_{1}=-4 e_{2}-2 e_{3}, X e_{2}=e_{1}+4 e_{2}+e_{3}$, and $X e_{3}=2 e_{3}$.
That is, the module is generated by $e_{1}, e_{2}, e_{3}$ such that

$$
\begin{aligned}
X e_{1}+4 e_{2}+2 e_{3} & =0 \\
-e_{1}+(X-4) e_{2}-e_{3} & =0 \\
(X-2) e_{3} & =0
\end{aligned}
$$

So we seek the quotient of $\mathbb{R}[X]^{3}$ by the ideal generated by $(X, 4,2),(-1, X-4,-1)$, and ( $0,0, X-2$ ). We'll use Smith Normal Form to find the invariant factors.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
X & -1 & 0 \\
4 & X-4 & 0 \\
2 & -1 & X-2
\end{array}\right) \xrightarrow[-c_{1}]{c_{1} \leftrightarrow c_{2}}\left(\begin{array}{ccc}
1 & X & 0 \\
4-X & 4 & 0 \\
1 & 2 & X-2
\end{array}\right) \xrightarrow{c_{2}-X c_{1}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
4-X & (X-2)^{2} & 0 \\
1 & 2-X & X-2
\end{array}\right) \\
& \xrightarrow{\text { clear } c_{1}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & (X-2)^{2} & 0 \\
0 & 2-X & X-2
\end{array}\right) \xrightarrow{c_{2}+c_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & (X-2)^{2} & 0 \\
0 & 0 & X-2
\end{array}\right) \xrightarrow{\text { swap }}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & X-2 & 0 \\
0 & 0 & (X-2)^{2}
\end{array}\right)
\end{aligned}
$$

Hence we have $V \cong \mathbb{R}[X] /(X-2) \oplus \mathbb{R}[X] /\left((X-2)^{2}\right)$.

The first summand is generated as a vector space by just $1+(X-2)$, and this corresponds to a 1-dimensional subspace $\langle v\rangle$ of $\mathbb{R}^{3}$. For the matrix of $\alpha$ on this subspace, we can use either of the RCF or JNF methods above.

Phrased the RCF way: in the submodule, we have $X+(X-2)=2+(X-2)$, so in the subspace we have $\alpha(v)=2 v$, so the matrix is (2). Phrased the JNF way: in the submodule, we have $X-2+(X-2)=(X-2)$, so in the subspace we have $(\alpha-2 \iota)(v)=0$, so the matrix for $\alpha-2 \iota$ on the subspace is (0), and so the matrix for $\alpha$ on the subspace is (2).

For the second summand, we'll first do it via RCF, where we deal with the unfactorised polynomials. The summand is generated by $1+\left(X^{2}-4 X+4\right)$ and $X+\left(X^{2}-4 X+4\right)$, and so it corresponds to a subspace $\langle u, \alpha(u)\rangle$ of $\mathbb{R}^{3}$. In the submodule, we have $X^{2}+\left(X^{2}-4 X+4\right)=$ $4 X-4+\left(X^{2}-4 X+4\right)$, so in the subspace we have $\alpha^{2}(v)=4 \alpha(v)-4 v$, and so the matrix for $\alpha$ on the subspace is

$$
\left(\begin{array}{cc}
0 & -4 \\
1 & 4
\end{array}\right) .
$$

This tells us that there is a basis such that the map on $\mathbb{R}^{3}$ has matrix

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & -4 \\
0 & 1 & 4
\end{array}\right)
$$

This is the Rational Canonical Form of $\alpha$.
Now let's do the second summand via JNF. There is no need for Chinese Remainder Theorem since the invariant factors are already suitable, but if we'd had, say, $(X-1)(X-2)$ then we would need it. The summand is generated by $1+\left((X-2)^{2}\right)$ and $X-2+\left((X-2)^{2}\right)$, and so it corresponds to a subspace $\langle u,(\alpha-2 \iota)(u)\rangle$ of $\mathbb{R}^{3}$. In the submodule, we have $(X-2)^{2}+\left((X-2)^{2}\right)=\left((X-2)^{2}\right)$, so in the subspace we have $(\alpha-2 \iota)^{2} v=0$, so the matrix for $\alpha-2 \iota$ on the subspace is

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and hence the matrix for $\alpha$ on the subspace is

$$
\left(\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right) .
$$

This tells us that there is a basis such that the map on $\mathbb{R}^{3}$ has matrix

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 1 & 2
\end{array}\right) .
$$

This is the Jordan Normal Form of $\alpha$.

