
F [X ]-modules and Normal Forms

We’ll start by thinking about the real vector space V = R3. This means that we are allowed
two operations: we can add together any two vectors in V , and we can scale a vector by a
real number.

We have the standard basis e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). This means that
everything can be expressed as a linear combination of these vectors: everything is of the
form λ1e1 + λ2e2 + λ3e3 for some λi ∈ R.

Suppose that we now extend the operations we are allowed to perform: we may still add two
vectors together and scale a vector by a real number, but we may now also apply the linear
map α, which for our example will be ‘rotate by π/2 about the z-axis’.

Then we no longer need e2 in order to get everywhere, because α(e1) = e2. So if a vector was
previously λ1e1 +λ2e2 +λ3e3, we can now write it as λ1e1 +λ2α(e1)+λ3e3. So the set {e1, e3}
generates V when we have this extra operation.

Since we can apply α to any vector v and get the vector α(v), we can then apply α to α(v) and
get the vector α2(v). Repeating this, we can get αk(v) for any k ∈ N. We can then take linear
combinations of these vectors, getting expressions of the form λnα

n(v) + · · ·+ λ1α(v) + λ0v.
And this equals (λnα

n + · · ·+ λ1α + λ0ι)(v), where ι is the identity function.

In other words, for any v ∈ V , we also have p(α)(v), for any polynomial p ∈ R[X].

So we can now view our operations as: add two vectors together, scale a vector by a real
number, and also apply p(α) for any polynomial p ∈ R[X]. In fact, since applying the
constant polynomial p(X) = λ to v gives us λι(v) = λv, we don’t need to include ‘scale by
real numbers’.

So our operations are: add two vectors together, and apply p(α) for any polynomial p ∈ R[X]

Suppose that we apply the polynomial p(α) to v, then the polynomial q(α) to the output. We
get q(α)p(α)(v) = (qp)(α)(v), where qp is the product of the polynomials, not the composition.
So ‘apply polynomials’ obeys a multiplication.

Let’s now be more general and formalise some of this.

Let V be a finite-dimensional vector space over a field F , and let α : V → V be a linear map.
By the above, we can define on V a ‘multiplication’ by elements of F [X], defining p(X) · v to
be p(α)(v). With this definition of multiplication (and with the usual vector space definition
of addition), we may check that this obeys the rules for a module over the ring F [X].

The underlying set V is still the same set of vectors, but we are giving it a different structure.
(In the example above, we saw that R3 needed only {e1, e3} to generate it.) We want to
investigate the new structure.

Note that, as a vector space, V had a finite basis, and those basis vectors still generate V as
an F [X]-module, just by using addition as usual and multiplying by constant polynomials.
So V is a finitely-generated F [X]-module.
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Since F is a field, we know that F [X] is a Euclidean Domain. Therefore we may apply the
structure theorem and deduce that, as F [X]-modules,

V ∼= F [X]/(p1)⊕ · · · ⊕ F [X]/(pn)⊕ F [X]r (∗)

for some polynomials p1, .., pn with p1 | · · · | pn and some r ∈ N.

Let’s focus on one summand, say F [X]/(p), where p = Xm + λm−1X
m−1 + · · ·+ λ0.

Every element in F [X]/(p) is a coset q + (p) for some polynomial q, and since deg(p) = m,
we may choose the representative q to have degree at most m− 1.

As an F [X]-submodule, F [X]/(p) is generated by 1 + (p), since we may obtain any q + (p)
simply by multiplying 1 + (p) by the scalar q (where ‘scalar’ here means ‘element of F [X]’,
which is our ring).

But suppose that we now forget how to do the general polynomial multiplication, and just
allow scaling by the elements of F itself. Then the submodule gains the structure of a vector
space – adding elements and multiplying by scalars from F leaves us in the space, since those
operations did so in the module.

Then, over F , the elements 1 + (p), X + (p), . . . , Xm−1 + (p) are linearly independent, for
if a combination of them equals 0, then we have a polynomial of degree less than m in (p),
which can’t happen. They also span, since as we said above any element of F [X]/(p) has a
representative with degree at most m− 1.

Hence, viewing F [X]/(p) as an F -vector space, it has basis
{

1+(p), X+(p), . . ., Xm−1 +(p)
}

,
and so it is m-dimensional.

Now, via the (module) isomorphism (∗) above, the summand F [X]/(p) is identified with a
submodule of V (the F [X]-module), and the above shows that it is identified with a subspace
U of V (the vector space) once we forget about polynomials.

Where does the above basis go? Let the coset 1 + (p) map to a vector v. Before we forgot
about the module’s polynomial multiplication, we knew that X + (p) was X(1 + (p)) and so
must have mapped to Xv = α(v). It still does so now (as we haven’t changed the bijection
in (∗)), and so X + (p) maps to α(v). In general, X i + (p) maps to αi(v).

So, over in the vector space, we have a basis {v, α(v), . . ., αm−1(v)} for the subspace U .

What is the matrix for α (restricted to the subspace U) in terms of this basis? Each basis
vector is sent to the next, except for the final vector. This means that for i < m, the ith

column of the matrix is all 0s except for a 1 in the entry just below the diagonal. To find the
mth we need to know αm(v) in terms of the earlier vectors.

So, we look back in the F [X]-submodule F [X]/(p). We had p = Xm + λm−1X
m−1 + · · ·+ λ0,

and so the coset Xm + (p) equals the coset −λm−1Xm−1 − · · · − λ0 + (p). And so, over in U ,
we have αm(v) = −λm−1αm−1(v)− · · · − λ0(v).
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Therefore, the required matrix is the following:
0 . . . . . . 0 −λ0
1 0 . . . 0 −λ1
0

. . . . . .
...

...
...

. . . . . . 0
...

0 . . . 0 1 −λm−1

 .

This is the companion matrix for the polynomial p.

We can now do this for each summand F [X]/(pi) in (∗), obtaining a similar vector subspace
in V and a similar companion matrix.

What about the final summand F [X]r in (∗)? When we forget about the polynomial multipli-
cation and just consider the vector space multiplication by elements of F , the summand F [X]
is infinite dimensional, since all X i are independent. However, V was a finite-dimensional
vector space, and so there are no such summands, i.e. r = 0.

We have obtained the Rational Canonical Form (RCF) for α – there is a basis of V such that
the matrix for α is block diagonal, with each block being a companion matrix as above, and
with the polynomials p1 | · · · | pn.

Note that pn is then the minimal polynomial of α (once we make it monic). Multiplying by
pn kills off all summands of (∗) since each pi divides it, and no smaller polynomial kills off
F [X]/(pn) itself.

Let us return to the summand F [X]/(p), and suppose that p factorises fully into linear factors
as
∏k

i=1(X − µi)
ci . Since the polynomials (X − µi)

ci and (X − µj)
cj are coprime if i 6= j, we

can use the Chinese Remainder Theorem (a version of which works in this setting) to split
the summand as

F [X]/(p) ∼= F [X]/((X − µ1)
c1)⊕ · · · ⊕ F [X]/((X − µk)ck) (∗∗)

We’ll focus on a single summand F [X]/(q) for q = (X − µ)c, and apply a similar analysis
to that above, viewing it as a vector space. However, rather than using the basis 1 + (q),
X+(q), . . ., Xc−1 +(q), we’ll use 1+(q), (X−µ)+(q), . . ., (X−µ)c−1 +(q). These are linearly
independent over F since they have different degrees, and if a combination equals 0 then we
have a polynomial of degree less than c in (q), which can’t happen. Hence they also span.

As with (∗) before, we identify this summand with a subspace U of V , and we obtain the
basis

{
v, (α− µι)(v), . . ., (α− µι)c−1(v)

}
for U .

Now, what is the matrix for α (restricted to U) in terms of this basis?

We’ll first find the matrix for α− µι. This sends each basis vector to the next, except for the
final vector. The final vector is sent to (α − µι)c(v). Back in the F [X]-submodule, we have
(X − µ)c + (q) = (q), and hence in the vector space we have (α− µι)c(v) = 0.
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So the matrix for α−µι is


0 0 . . . 0

1
. . . . . .

...
...

. . . . . . 0
0 . . . 1 0

, and hence the matrix for α is


µ 0 . . . 0

1
. . . . . .

...
...

. . . . . . 0
0 . . . 1 µ

.

This is a Jordan block. (It’s a ‘lower’ Jordan block, i.e. with the 1s below the diagonal. If we
want the 1s above the diagonal, we just reorder the basis.)

We now do this for each summand in (∗∗), each time obtaining a vector subspace of V and
a similar Jordan block. Then the matrix for α on the vector subspace corresponding to the
summand F [X]/(p) is a block diagonal matrix. Repeating this for each summand in (∗) gives
us the Jordan Normal Form (JNF) of α.

The RCF always exists, but the JNF requires the polynomials pi all to be fully factorised into
linear factors. This is guaranteed over C, for example, but not over R.

A worked example. Let α : R3 → R3 be the linear map represented in the basis {e1, e2, e3} by 0 1 0
−4 4 0
−2 1 2

 .

We’ll start by finding what decomposition like (∗) the structure theorem gives.

We have α(e1) = −4e2 − 2e3, α(e2) = e1 + 4e2 + e3, and α(e3) = 2e3.

We make R3 into an R[X]-module via α, defining p(X) · v to be p(α)(v).

Then we have Xe1 = −4e2 − 2e3, Xe2 = e1 + 4e2 + e3, and Xe3 = 2e3.

That is, the module is generated by e1, e2, e3 such that

Xe1 + 4e2 + 2e3 = 0

−e1 + (X − 4)e2 − e3 = 0

(X − 2)e3 = 0

So we seek the quotient of R[X]3 by the ideal generated by (X, 4, 2), (−1, X − 4,−1), and
(0, 0, X − 2). We’ll use Smith Normal Form to find the invariant factors.

X −1 0
4 X − 4 0
2 −1 X − 2

 c1↔c2

−→
−c1

 1 X 0
4−X 4 0

1 2 X − 2

 c2−Xc1

−→

 1 0 0
4−X (X − 2)2 0

1 2−X X − 2


clear c1

−→

1 0 0
0 (X − 2)2 0
0 2−X X − 2

 c2+c3

−→

1 0 0
0 (X − 2)2 0
0 0 X − 2

 swap

−→

1 0 0
0 X − 2 0
0 0 (X − 2)2


Hence we have V ∼= R[X]/(X − 2)⊕ R[X]/((X − 2)2).
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The first summand is generated as a vector space by just 1 + (X−2), and this corresponds to
a 1-dimensional subspace 〈v〉 of R3. For the matrix of α on this subspace, we can use either
of the RCF or JNF methods above.

Phrased the RCF way: in the submodule, we have X + (X − 2) = 2 + (X − 2), so in the
subspace we have α(v) = 2v, so the matrix is (2). Phrased the JNF way: in the submodule,
we have X−2 + (X−2) = (X−2), so in the subspace we have (α−2ι)(v) = 0, so the matrix
for α− 2ι on the subspace is (0), and so the matrix for α on the subspace is (2).

For the second summand, we’ll first do it via RCF, where we deal with the unfactorised
polynomials. The summand is generated by 1+(X2−4X+4) and X+(X2−4X+4), and so
it corresponds to a subspace 〈u, α(u)〉 of R3. In the submodule, we have X2+(X2−4X+4) =
4X − 4 + (X2 − 4X + 4), so in the subspace we have α2(v) = 4α(v)− 4v, and so the matrix
for α on the subspace is (

0 −4
1 4

)
.

This tells us that there is a basis such that the map on R3 has matrix2 0 0
0 0 −4
0 1 4

 .

This is the Rational Canonical Form of α.

Now let’s do the second summand via JNF. There is no need for Chinese Remainder Theorem
since the invariant factors are already suitable, but if we’d had, say, (X − 1)(X − 2) then
we would need it. The summand is generated by 1 + ((X − 2)2) and X − 2 + ((X − 2)2),
and so it corresponds to a subspace 〈u, (α − 2ι)(u)〉 of R3. In the submodule, we have
(X − 2)2 + ((X − 2)2) = ((X − 2)2), so in the subspace we have (α− 2ι)2v = 0, so the matrix
for α− 2ι on the subspace is (

0 0
1 0

)
and hence the matrix for α on the subspace is(

2 0
1 2

)
.

This tells us that there is a basis such that the map on R3 has matrix2 0 0
0 2 0
0 1 2

 .

This is the Jordan Normal Form of α.
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