F[X]-modules and Normal Forms

We'll start by thinking about the real vector space $V = \mathbb{R}^3$. This means that we are allowed two operations: we can add together any two vectors in V, and we can scale a vector by a real number.

We have the standard basis $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$. This means that everything can be expressed as a linear combination of these vectors: everything is of the form $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3$ for some $\lambda_i \in \mathbb{R}$.

Suppose that we now extend the operations we are allowed to perform: we may still add two vectors together and scale a vector by a real number, but we may now also apply the linear map α , which for our example will be 'rotate by $\pi/2$ about the z-axis'.

Then we no longer need e_2 in order to get everywhere, because $\alpha(e_1) = e_2$. So if a vector was previously $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3$, we can now write it as $\lambda_1 e_1 + \lambda_2 \alpha(e_1) + \lambda_3 e_3$. So the set $\{e_1, e_3\}$ generates V when we have this extra operation.

Since we can apply α to any vector v and get the vector $\alpha(v)$, we can then apply α to $\alpha(v)$ and get the vector $\alpha^2(v)$. Repeating this, we can get $\alpha^k(v)$ for any $k \in \mathbb{N}$. We can then take linear combinations of these vectors, getting expressions of the form $\lambda_n \alpha^n(v) + \cdots + \lambda_1 \alpha(v) + \lambda_0 v$. And this equals $(\lambda_n \alpha^n + \cdots + \lambda_1 \alpha + \lambda_0 \iota)(v)$, where ι is the identity function.

In other words, for any $v \in V$, we also have $p(\alpha)(v)$, for any polynomial $p \in \mathbb{R}[X]$.

So we can now view our operations as: add two vectors together, scale a vector by a real number, and also apply $p(\alpha)$ for any polynomial $p \in \mathbb{R}[X]$. In fact, since applying the constant polynomial $p(X) = \lambda$ to v gives us $\lambda \iota(v) = \lambda v$, we don't need to include 'scale by real numbers'.

So our operations are: add two vectors together, and apply $p(\alpha)$ for any polynomial $p \in \mathbb{R}[X]$

Suppose that we apply the polynomial $p(\alpha)$ to v, then the polynomial $q(\alpha)$ to the output. We get $q(\alpha)p(\alpha)(v)=(qp)(\alpha)(v)$, where qp is the product of the polynomials, not the composition. So 'apply polynomials' obeys a multiplication.

Let's now be more general and formalise some of this.

Let V be a finite-dimensional vector space over a field F, and let $\alpha: V \to V$ be a linear map. By the above, we can define on V a 'multiplication' by elements of F[X], defining $p(X) \cdot v$ to be $p(\alpha)(v)$. With this definition of multiplication (and with the usual vector space definition of addition), we may check that this obeys the rules for a module over the ring F[X].

The underlying set V is still the same set of vectors, but we are giving it a different structure. (In the example above, we saw that \mathbb{R}^3 needed only $\{e_1, e_3\}$ to generate it.) We want to investigate the new structure.

Note that, as a vector space, V had a finite basis, and those basis vectors still generate V as an F[X]-module, just by using addition as usual and multiplying by constant polynomials. So V is a finitely-generated F[X]-module.

Since F is a field, we know that F[X] is a Euclidean Domain. Therefore we may apply the structure theorem and deduce that, as F[X]-modules,

$$V \cong F[X]/(p_1) \oplus \cdots \oplus F[X]/(p_n) \oplus F[X]^r \quad (*)$$

for some polynomials $p_1, ..., p_n$ with $p_1 \mid \cdots \mid p_n$ and some $r \in \mathbb{N}$.

Let's focus on one summand, say F[X]/(p), where $p = X^m + \lambda_{m-1}X^{m-1} + \cdots + \lambda_0$.

Every element in F[X]/(p) is a coset q + (p) for some polynomial q, and since $\deg(p) = m$, we may choose the representative q to have degree at most m - 1.

As an F[X]-submodule, F[X]/(p) is generated by 1 + (p), since we may obtain any q + (p) simply by multiplying 1 + (p) by the scalar q (where 'scalar' here means 'element of F[X]', which is our ring).

But suppose that we now forget how to do the general polynomial multiplication, and just allow scaling by the elements of F itself. Then the submodule gains the structure of a vector space – adding elements and multiplying by scalars from F leaves us in the space, since those operations did so in the module.

Then, over F, the elements 1+(p), X+(p), ..., $X^{m-1}+(p)$ are linearly independent, for if a combination of them equals 0, then we have a polynomial of degree less than m in (p), which can't happen. They also span, since as we said above any element of F[X]/(p) has a representative with degree at most m-1.

Hence, viewing F[X]/(p) as an F-vector space, it has basis $\{1+(p), X+(p), \ldots, X^{m-1}+(p)\}$, and so it is m-dimensional.

Now, via the (module) isomorphism (*) above, the summand F[X]/(p) is identified with a submodule of V (the F[X]-module), and the above shows that it is identified with a subspace U of V (the vector space) once we forget about polynomials.

Where does the above basis go? Let the coset 1 + (p) map to a vector v. Before we forgot about the module's polynomial multiplication, we knew that X + (p) was X(1 + (p)) and so must have mapped to $Xv = \alpha(v)$. It still does so now (as we haven't changed the bijection in (*)), and so X + (p) maps to $\alpha(v)$. In general, $X^i + (p)$ maps to $\alpha^i(v)$.

So, over in the vector space, we have a basis $\{v, \alpha(v), \ldots, \alpha^{m-1}(v)\}$ for the subspace U.

What is the matrix for α (restricted to the subspace U) in terms of this basis? Each basis vector is sent to the next, except for the final vector. This means that for i < m, the i^{th} column of the matrix is all 0s except for a 1 in the entry just below the diagonal. To find the m^{th} we need to know $\alpha^m(v)$ in terms of the earlier vectors.

So, we look back in the F[X]-submodule F[X]/(p). We had $p = X^m + \lambda_{m-1}X^{m-1} + \cdots + \lambda_0$, and so the coset $X^m + (p)$ equals the coset $-\lambda_{m-1}X^{m-1} - \cdots - \lambda_0 + (p)$. And so, over in U, we have $\alpha^m(v) = -\lambda_{m-1}\alpha^{m-1}(v) - \cdots - \lambda_0(v)$.

Therefore, the required matrix is the following:

$$\begin{pmatrix} 0 & \dots & \dots & 0 & -\lambda_0 \\ 1 & 0 & \dots & 0 & -\lambda_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & -\lambda_{m-1} \end{pmatrix}.$$

This is the *companion matrix* for the polynomial p.

We can now do this for each summand $F[X]/(p_i)$ in (*), obtaining a similar vector subspace in V and a similar companion matrix.

What about the final summand $F[X]^r$ in (*)? When we forget about the polynomial multiplication and just consider the vector space multiplication by elements of F, the summand F[X] is infinite dimensional, since all X^i are independent. However, V was a finite-dimensional vector space, and so there are no such summands, i.e. r = 0.

We have obtained the *Rational Canonical Form* (RCF) for α – there is a basis of V such that the matrix for α is block diagonal, with each block being a companion matrix as above, and with the polynomials $p_1 \mid \cdots \mid p_n$.

Note that p_n is then the minimal polynomial of α (once we make it monic). Multiplying by p_n kills off all summands of (*) since each p_i divides it, and no smaller polynomial kills off $F[X]/(p_n)$ itself.

Let us return to the summand F[X]/(p), and suppose that p factorises fully into linear factors as $\prod_{i=1}^k (X - \mu_i)^{c_i}$. Since the polynomials $(X - \mu_i)^{c_i}$ and $(X - \mu_j)^{c_j}$ are coprime if $i \neq j$, we can use the Chinese Remainder Theorem (a version of which works in this setting) to split the summand as

$$F[X]/(p) \cong F[X]/((X - \mu_1)^{c_1}) \oplus \cdots \oplus F[X]/((X - \mu_k)^{c_k})$$
 (**)

We'll focus on a single summand F[X]/(q) for $q = (X - \mu)^c$, and apply a similar analysis to that above, viewing it as a vector space. However, rather than using the basis 1 + (q), $X + (q), \ldots, X^{c-1} + (q)$, we'll use $1 + (q), (X - \mu) + (q), \ldots, (X - \mu)^{c-1} + (q)$. These are linearly independent over F since they have different degrees, and if a combination equals 0 then we have a polynomial of degree less than c in (q), which can't happen. Hence they also span.

As with (*) before, we identify this summand with a subspace U of V, and we obtain the basis $\{v, (\alpha - \mu \iota)(v), \ldots, (\alpha - \mu \iota)^{c-1}(v)\}$ for U.

Now, what is the matrix for α (restricted to U) in terms of this basis?

We'll first find the matrix for $\alpha - \mu \iota$. This sends each basis vector to the next, except for the final vector. The final vector is sent to $(\alpha - \mu \iota)^c(v)$. Back in the F[X]-submodule, we have $(X - \mu)^c + (q) = (q)$, and hence in the vector space we have $(\alpha - \mu \iota)^c(v) = 0$.

So the matrix for
$$\alpha - \mu \iota$$
 is $\begin{pmatrix} 0 & 0 & \dots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 1 & 0 \end{pmatrix}$, and hence the matrix for α is $\begin{pmatrix} \mu & 0 & \dots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 1 & \mu \end{pmatrix}$.

This is a *Jordan block*. (It's a 'lower' Jordan block, i.e. with the 1s below the diagonal. If we want the 1s above the diagonal, we just reorder the basis.)

We now do this for each summand in (**), each time obtaining a vector subspace of V and a similar Jordan block. Then the matrix for α on the vector subspace corresponding to the summand F[X]/(p) is a block diagonal matrix. Repeating this for each summand in (*) gives us the Jordan Normal Form (JNF) of α .

The RCF always exists, but the JNF requires the polynomials p_i all to be fully factorised into linear factors. This is guaranteed over \mathbb{C} , for example, but not over \mathbb{R} .

A worked example. Let $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map represented in the basis $\{e_1, e_2, e_3\}$ by

$$\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}.$$

We'll start by finding what decomposition like (*) the structure theorem gives.

We have
$$\alpha(e_1) = -4e_2 - 2e_3$$
, $\alpha(e_2) = e_1 + 4e_2 + e_3$, and $\alpha(e_3) = 2e_3$.

We make \mathbb{R}^3 into an $\mathbb{R}[X]$ -module via α , defining $p(X) \cdot v$ to be $p(\alpha)(v)$.

Then we have
$$Xe_1 = -4e_2 - 2e_3$$
, $Xe_2 = e_1 + 4e_2 + e_3$, and $Xe_3 = 2e_3$.

That is, the module is generated by e_1, e_2, e_3 such that

$$Xe_1 + 4e_2 + 2e_3 = 0$$
$$-e_1 + (X - 4)e_2 - e_3 = 0$$
$$(X - 2)e_3 = 0$$

So we seek the quotient of $\mathbb{R}[X]^3$ by the ideal generated by (X,4,2), (-1,X-4,-1), and (0,0,X-2). We'll use Smith Normal Form to find the invariant factors.

$$\begin{pmatrix} X & -1 & 0 \\ 4 & X - 4 & 0 \\ 2 & -1 & X - 2 \end{pmatrix} \xrightarrow{c_1 \leftrightarrow c_2} \begin{pmatrix} 1 & X & 0 \\ 4 - X & 4 & 0 \\ 1 & 2 & X - 2 \end{pmatrix} \xrightarrow{c_2 - Xc_1} \begin{pmatrix} 1 & 0 & 0 \\ 4 - X & (X - 2)^2 & 0 \\ 1 & 2 - X & X - 2 \end{pmatrix}$$

$$\xrightarrow{\text{clear } c_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & (X - 2)^2 & 0 \\ 0 & 2 - X & X - 2 \end{pmatrix} \xrightarrow{c_2 + c_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & (X - 2)^2 & 0 \\ 0 & 0 & X - 2 \end{pmatrix} \xrightarrow{\text{swap}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & X - 2 & 0 \\ 0 & 0 & (X - 2)^2 \end{pmatrix}$$

Hence we have $V \cong \mathbb{R}[X]/(X-2) \oplus \mathbb{R}[X]/((X-2)^2)$.

The first summand is generated as a vector space by just 1 + (X - 2), and this corresponds to a 1-dimensional subspace $\langle v \rangle$ of \mathbb{R}^3 . For the matrix of α on this subspace, we can use either of the RCF or JNF methods above.

Phrased the RCF way: in the submodule, we have X + (X - 2) = 2 + (X - 2), so in the subspace we have $\alpha(v) = 2v$, so the matrix is (2). Phrased the JNF way: in the submodule, we have X - 2 + (X - 2) = (X - 2), so in the subspace we have $(\alpha - 2\iota)(v) = 0$, so the matrix for $\alpha - 2\iota$ on the subspace is (0), and so the matrix for α on the subspace is (2).

For the second summand, we'll first do it via RCF, where we deal with the unfactorised polynomials. The summand is generated by $1+(X^2-4X+4)$ and $X+(X^2-4X+4)$, and so it corresponds to a subspace $\langle u,\alpha(u)\rangle$ of \mathbb{R}^3 . In the submodule, we have $X^2+(X^2-4X+4)=4X-4+(X^2-4X+4)$, so in the subspace we have $\alpha^2(v)=4\alpha(v)-4v$, and so the matrix for α on the subspace is

$$\begin{pmatrix} 0 & -4 \\ 1 & 4 \end{pmatrix}$$
.

This tells us that there is a basis such that the map on \mathbb{R}^3 has matrix

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -4 \\ 0 & 1 & 4 \end{pmatrix}.$$

This is the Rational Canonical Form of α .

Now let's do the second summand via JNF. There is no need for Chinese Remainder Theorem since the invariant factors are already suitable, but if we'd had, say, (X-1)(X-2) then we would need it. The summand is generated by $1 + ((X-2)^2)$ and $X-2+((X-2)^2)$, and so it corresponds to a subspace $\langle u, (\alpha-2\iota)(u) \rangle$ of \mathbb{R}^3 . In the submodule, we have $(X-2)^2+((X-2)^2)=((X-2)^2)$, so in the subspace we have $(\alpha-2\iota)^2v=0$, so the matrix for $\alpha-2\iota$ on the subspace is

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

and hence the matrix for α on the subspace is

$$\begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}.$$

This tells us that there is a basis such that the map on \mathbb{R}^3 has matrix

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}.$$

This is the Jordan Normal Form of α .