1. Which groups have exactly three subgroups?
2. Define the order sequence of a finite group to be a list of the orders of its elements, written in increasing order. For example, S_{3} has order sequence ($1,2,2,2,3,3$). If two finite groups have the same order sequence, must they be isomorphic?
3. Is there a non-cyclic group of order 15? Is there a non-cyclic group of order 21 ?
4. Let X be a non-empty set with an associative binary operation, such that for every $x \in X$ there is a unique x^{\prime} such that $x x^{\prime} x=x$. Prove that X is a group.
5. Which groups contain a (non-zero) even number of elements of order 2 ?
6. Let G be a group, $H<G$, and $g \in G$. If $g H g^{-1} \subset H$, must we have $g H g^{-1}=H$?
7. Let G be a finite non-abelian group. Show that at most $5 / 8$ of the pairs of elements of G commute, and show that this bound cannot be improved.
8. Which finite groups have exactly one non-identity automorphism? Find an infinite group, other than \mathbb{Z}, with this property.
9. Which finite groups have the property that all non-identity elements are conjugate? Is there an infinite group with this property?
10. Write down a finite group G having a non-normal subgroup of index 5 . Is there an example where G has odd order?
11. For which natural numbers n is there a unique group of order n ?
