IA Groups - Example Sheet 3

Questions marked * are more challenging. As usual, 'identify' means 'find a standard group that it is isomorphic to'.

1. Suppose $a, b \in \mathbb{Z}$ and consider $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ given by $\phi(x, y)=a x+b y$. Show that ϕ is a group homomorphism and describe $\operatorname{im}(\phi)$ and $\operatorname{ker}(\phi)$. Draw a picture illustrating the cosets of $\operatorname{ker}(\phi)$ in \mathbb{Z}^{2}.
2. Show that every group of order 10 is cyclic or dihedral. * Can you extend your proof to groups of order $2 p$, where p is any odd prime number?
3. Prove that

$$
(\sigma p)\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}\right)
$$

defines an action of the group S_{4} on the set of polynomials in variables $x_{1}, x_{2}, x_{3}, x_{4}$. Show that the stabiliser H of the polynomial $x_{1} x_{2}+x_{3} x_{4}$ has order 8 , and identify it.
4. Let p be a prime and let G be a group of order p^{2}. By considering the conjugation action of G on itself, show that G is abelian. Furthermore, show that there are just two groups of that order for each prime p, up to isomorphism.
5. Show that a subgroup of a group G is normal if and only if it is a union of conjugacy classes in G.
6. Let K be a subgroup of a group G. Show that K is a normal subgroup if and only if it is the kernel of some group homomorphism $\phi: G \rightarrow H$.
7. (a) Let $H \leqslant C_{n}$. Identify the quotient C_{n} / H.
(b) Show that any subgroup $N \leqslant D_{2 n}$ consisting only of rotations is normal. Identify the quotient $D_{2 n} / N$.
(c) Consider the subgroup

$$
\Gamma=\{m+i n \mid m, n \in \mathbb{Z}\}
$$

of \mathbb{C}. Show that the group \mathbb{C} / Γ is isomorphic to $S^{1} \times S^{1}$, where S^{1} is the group of complex numbers with modulus 1 .
8. Suppose that G is a group in which every subgroup is normal. Must G be abelian?
9. Let G be a finite group and H a proper subgroup. Let $k=|G: H|$ and suppose that $|G|$ does not divide k !. By considering the action of G on G / H, show that H contains a non-trivial normal subgroup of G.
10. (a) Show that a group of order 28 has a normal subgroup of order 7 .
(b) Show that if a group G of order 28 has a normal subgroup of order 4 then G is abelian.
11. * Let G be a (not necessarily finite) group generated by a finite set X. Prove that the number of subgroups of a given index n in G is finite, and give a bound for this number in terms of n and $|X|$.
12. Write the following permutations as compositions of disjoint cycles and hence compute their orders:
(a) $(12)(1234)(12)$;
(b) $(123)(1234)(132)$;
(c) $(123)(235)(345)(45)$.
13. What is the largest possible order of an element of S_{5} ? Of S_{9} ?
14. Show that S_{n} is generated by each of the following sets of permutations:
(a) $\{(j, j+1) \mid 1 \leq j<n\} ;$
(b) $\{(1, k) \mid 1<k \leq n\}$;
(c) $\{(12),(123 \cdots n)\}$.
15. Let $X=\mathbb{Z} / 31 \mathbb{Z}$, and $\sigma: X \rightarrow X$ be given by $\sigma(x+31 \mathbb{Z})=2 x+31 \mathbb{Z}$. Show that σ is a permutation, and decompose it as a composition of disjoint cycles.
16. * Prove that S_{n} has a subgroup isomorphic to Q_{8} if and only if $n \geq 8$.

