IA Groups - Example Sheet 2

Questions marked * are more challenging.

1. Show that if two elements of a group are conjugate, then they have the same order.
2. Let H be a subgroup of a group G. Show that there is a bijection between the set of left cosets of H in G and the set of right cosets of H in G.
3. Show that if a group G contains an element of order 6 and an element of order 10 , then G has order at least 30 .
4. For H a subgroup of a finite group G, and K a subgroup of H, show that

$$
|G: K|=|G: H| \cdot|H: K| .
$$

* What happens when G is infinite?

5. Suppose that a group G acts on a set X.
(a) Show that

$$
\operatorname{Stab}_{G}(h x)=h \operatorname{Stab}_{G}(x) h^{-1}
$$

for any $x \in X$ and $h \in G$.
(b) For any $g \in G$, let $\operatorname{Fix}(g)=\{y \in X \mid g y=y\}$ be the set of points fixed by g. Show that

$$
\operatorname{Fix}\left(h g h^{-1}\right)=h \operatorname{Fix}(g)
$$

for any $h \in G$.
6. Show that $D_{2 n}$ has one conjugacy class of reflections if n is odd and two conjugacy classes of reflections if n is even. Draw a picture to illustrate your answer.
7. Let G be the group of all isometries of a cube in \mathbb{R}^{3}. Show that G acts on the set of 4 lines that join diagonally opposite pairs of vertices. * Show that if ℓ is one of these lines then $\operatorname{Stab}_{G}(\ell) \cong D_{12}$.
8. Let G be a finite abelian group acting faithfully on a set X. Show that if the action is transitive then $|G|=|X|$.
9. Let G be a finite group and let $\operatorname{Sub}(G)$ be the set of all its subgroups. Show that

$$
g(H)=g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\}
$$

defines an action of G on $\operatorname{Sub}(G)$. Show that, for any $H \in \operatorname{Sub}(G)$, the size of the orbit of H under this action is at most $|G: H|$. Deduce that if $H \neq G$ then G is not the union of all conjugates of H.
10. Let G be a finite group acting on a set X. By counting the set $\{(g, x) \in G \times X \mid g(x)=x\}$ in two ways, show that the number of orbits of the action is equal to

$$
\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix}(g)|
$$

[This famous result is called 'Burnside's lemma'.] Deduce that if G acts transitively and $|X|>1$, then there is some $g \in G$ with no fixed point.
11. Express the Möbius transformation $f(z)=\frac{2 z+3}{z-4}$ as the composition of transformations of the form

$$
\alpha_{a}: z \mapsto a z, \beta_{b}: z \mapsto z+b, \gamma: z \mapsto 1 / z .
$$

Hence show that f sends the circle described by $|z-2 i|=2$ to the circle described by $|8 z+(6+11 i)|=$ 11.
12. Consider the Möbius transformations $f(z)=e^{2 \pi i / n} z$ and $g(z)=1 / z$. Show that the subgroup G of the Möbius group \mathcal{M} generated by f and g is isomorphic to $D_{2 n}$.
13. Let G be the subgroup of Möbius transformations that send the set $\{0,1, \infty\}$ to itself. List the elements of G. Identify G. Identify the group H of Möbius transformations that send the set $\{0,2, \infty\}$ to itself by relating H to G.
[Here, 'identify' means 'find a standard group that it is isomorphic to'.]
14. Prove or disprove each of the following statements:
(i) The Möbius group is generated by Möbius transformations of the form $\alpha_{a}: z \mapsto a z$ and $\beta_{b}: z \mapsto z+b$.
(ii) The Möbius group is generated by Möbius transformations of the form $\alpha_{a}: z \mapsto a z$ and $\gamma: z \mapsto 1 / z$.
(iii) The Möbius group is generated by Möbius transformations of the form $\beta_{b}: z \mapsto z+b$ and $\gamma: z \mapsto 1 / z$.
15. Determine under what conditions on $\lambda, \mu \in \mathbb{C} \backslash\{0\}$ the Möbius transformations $f(z)=\lambda z$ and $g(z)=\mu z$ are conjugate in \mathcal{M}.
16. What is the order of the Möbius transformation $f(z)=i z$? What are its fixed points? Construct a Möbius transformation of order 4 that fixes 1 and -1 .

