Questions marked * are more challenging.

1. Let $G$ be any group. Show that the identity $e$ is the only element $g \in G$ satisfying the equation $g^{2}=g$.
2. Let $H$ and $K$ be two subgroups of a group $G$. Show that the intersection $H \cap K$ is a subgroup of $G$. Show that the union $H \cup K$ is a subgroup of $G$ if and only if either $H \subseteq K$ or $K \subseteq H$.
3. Let $G=\mathbb{R} \backslash\{-1\}$, and let $x * y=x+y+x y$, where $x y$ denotes the usual product of two real numbers. Show that $(G, *, 0)$ is a group. What is the inverse of 2 in this group? Solve the equation $2 * x * 5=6$.
4. Let $G$ be a finite group.
(a) Let $g \in G$. Show from first principles that there is a positive integer $n$ such that $g^{n}=e$. (The least such $n$ is called the order of $g$.)
(b) Show from first principles that there is a positive integer $N$ such that $g^{N}=e$ for all $g \in G$.
5. Let $S$ be a finite non-empty set of non-zero complex numbers which is closed under multiplication. Show that $S$ is a subset of the set $\{z \in \mathbb{C}||z|=1\}$. Show that $S$ is a group with respect to multiplication, and deduce that $S$ is the set of $n^{\text {th }}$ roots of unity for some $n \in \mathbb{N}$; that is,

$$
S=\left\{e^{2 \pi i k / n} \mid k=0,1, \ldots, n-1\right\}
$$

6. Show that the set of complex numbers

$$
G=\left\{e^{\pi i t} \mid t \in \mathbb{Q}\right\}
$$

is a group under multiplication. Show that $G$ is infinite, but that every element of $G$ has finite order. * Does $G$ have an infinite, proper subgroup?
7. Let $f: G \rightarrow H$ be a group homomorphism and let $g \in G$ have finite order. Show that the order of $f(g)$ is finite and divides the order of $g$.
8. Show that any subgroup of a cyclic group is cyclic.
9. Let $H$ and $G$ be groups and let $X \subseteq G$ such that $\langle X\rangle=G$. Show that a homomorphism $G \rightarrow H$ is uniquely determined by its image on $X$ : that is, if $\varphi: G \rightarrow H$ and $\psi: G \rightarrow H$ are homomorphisms such that $\varphi(x)=\psi(x)$ for all $x \in X$, then $\varphi(g)=\psi(g)$ for all $g \in G$.
10. Let $C_{n}$ be the cyclic group with $n$ elements and $D_{2 n}$ the group of symmetries of the regular $n$-gon. If $n$ is odd and $\theta: D_{2 n} \rightarrow C_{n}$ is a homomorphism, show that $\theta(g)=e$ for all $g \in D_{2 n}$. Can you find all homomorphisms $D_{2 n} \rightarrow C_{n}$ if $n$ is even? Find all homomorphisms $C_{n} \rightarrow C_{m}$.
11. Let $G$ be a group in which every element other than the identity has order two. Show that $G$ is abelian. Show also that, if $G$ is finite, then the order of $G$ is a power of 2 . [Hint: consider a minimal generating set for $G$.]
12. Let $G$ be a finite group of even order. Show that $G$ contains an element of order two. * Can a group have exactly two elements of order two?
13. Show that every isometry of $\mathbb{C}$ is either of the form $z \mapsto a z+b$ or the form $z \mapsto a \bar{z}+b$ with $a, b \in \mathbb{C}$ and $|a|=1$ in either case. * Describe the finite subgroups of the group of isometries of $\mathbb{C}$.
14. Suppose that $Q$ is a quadrilateral in $\mathbb{C}$. Show that its group of isometries $\operatorname{Isom}(Q)$ has order at most 8 . For which $n$ is there an $\operatorname{Isom}(Q)$ of order $n$ ? * Which groups can arise as an $\operatorname{Isom}(Q)$ (up to isomorphism)?

