Permutation groups

1. Show that if H is a subgroup of S_{n} containing an odd permutation then exactly half of the elements of H are odd.
2. (a) Show that A_{4} has no subgroup of order 6 .
(b) Show that S_{4} has a subgroup of order d for each d dividing 24. For which d does S_{4} have two non-isomorphic subgroups of order d ?
3. Find the centre of each of S_{n} and A_{n}, for all n.
4. Let $\sigma \in A_{n}$. Show that the conjugacy class of σ in A_{n} is half of that in S_{n} if and only if the cycles (including singletons) in the disjoint cycle decomposition of σ have distinct odd lengths.
5. Determine the sizes of the conjugacy classes in A_{6}. Deduce that A_{6} is a simple group.
6. By using an action on left cosets, show that A_{5} has no subgroup of index 2,3 or 4 , and that any subgroup of index 5 is isomorphic to A_{4}.

Matrix groups

7. Let G be the set of all 3×3 real matrices of determinant 1 of the form

$$
\left(\begin{array}{lll}
a & 0 & 0 \\
b & w & x \\
c & y & z
\end{array}\right)
$$

Show that G is a subgroup of $G L_{3}(\mathbb{R})$. Construct a surjective homomorphism from G to $G L_{2}(\mathbb{R})$, and find its kernel.
8. Let G be the set of all 3×3 real matrices of the form

$$
\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) .
$$

Show that G is a subgroup of $G L_{3}(\mathbb{R})$. Let $H \subset G$ be the subset of those matrices with $a=c=0$. Show that H is a normal subgroup of G, and identify the quotient group G / H.
9. Show that the only normal subgroup of $O(2)$ containing a reflection is $O(2)$ itself.
10. (a) Find a surjective homomorphism from $O(3)$ to C_{2} and another from $O(3)$ to $S O(3)$.
(b) Prove that $O(3)$ is isomorphic to $S O(3) \times C_{2}$.
(c) Is $O(4)$ isomorphic to $S O(4) \times C_{2}$?
11. For $A \in M_{n \times n}(\mathbb{C})$ with entries $a_{i j}$, let $A^{\dagger} \in M_{n \times n}(\mathbb{C})$ have entries $\overline{a_{j i}}$. The matrix A is called unitary if $A A^{\dagger}=I_{n}$. Show that the set $U(n)$ of unitary matrices is a subgroup of $G L_{n}(\mathbb{C})$. Show that $S U(n)=\{A \in U(n): \operatorname{det} A=1\}$ is a normal subgroup of $U(n)$ and that $U(n) / S U(n)$ is isomorphic to S^{1}.
12. Let $S L_{2}(\mathbb{R})$ act on \mathbb{C}_{∞} via Möbius transformations. Find the orbit and stabiliser of i and ∞. By considering the orbit of i under the action of the stabiliser of ∞, show that every $g \in S L_{2}(\mathbb{R})$ may be written as $g=h k$ with h upper-triangular and $k \in S O(2)$. In how many ways can this be done?
13. Let p be prime, let $G=G L_{2}\left(\mathbb{Z}_{p}\right)$ be the group of invertible matrices modulo p, and let $X=\mathbb{Z}_{p}^{2}$ be the set of vectors of length 2 with entries in \mathbb{Z}_{p}.
(i) Show that G acts on X by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) *\binom{x}{y}=\binom{a x+b y}{c x+d y} .
$$

Find the orbit and stabiliser of $\binom{1}{0}$, and hence find the order of G.
(ii) Let $g \in G$ have order p. Show that g fixes some non-zero vector in X, and deduce that g is conjugate in G to

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Optional extras

14. Let G be a finite non-trivial subgroup of $S O(3)$. Let X be the set of points on the unit sphere in \mathbb{R}^{3} which are fixed by at least one non-trivial rotation in G. Show that G acts on X and that there are either two or three orbits.

Identify G in the case when there are two orbits. When there are three orbits, what are their possible sizes?
15. Which of the following groups can occur as $G / Z(G)$ for some group G : D_{6}, C_{7}, Q_{8} ?
16. Does $G L_{2}(\mathbb{R})$ have a subgroup isomorphic to Q_{8} ?

