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Suppose that f is analytic on the punctured disc {z ∈ C | 0 < |z − a| < r}. Then it has
a Laurent expansion f(z) =

∑∞
n=−∞ cn(z− a)n, valid for 0 < |z− a| < r. The coefficients

cn are unique. Because f is analytic on a punctured disc about a, we say that f has an
isolated singularity at a. The nature of this singularity is determined by the coefficients
cn. We have three cases:

1. If cn = 0 for all n < 0 then f has a removable singularity at a. f may be extended to
the full disc by defining f(a) = c0. The resulting function f(z) =

∑∞
n=0 cn(z− a)n,

0 ≤ |z− a| < r, is analytic on the disc (of course, f may already be analytic on the
disc). For example

f(z) =
sin z

z
= 1− z2

3!
+

z4

5!
− . . .

for z 6= 0, can be extended to 0 by defining f(0) = 1.

2. If there is n < 0 such that cn 6= 0 and cm = 0 for all m < n, then f has a pole at
a, of order −n. It is important in applications to determine the order of the pole
(so that, for example, residues may be calculated properly). While the coefficients
in a Taylor expansion g(z) =

∑∞
n=0 dn(z − a)n can be found easily in principle (by

repeated differentiation, we get dn = g(n)(a)/n!), Laurent coefficients can be more
elusive.

Sometimes the coefficients are easy to determine. For example

sin z

z3
=

1

z2
− 1

3!
+

z2

5!
− z4

7!
+ . . .

for z 6= 0, so it is clear that sin z/z3 has a pole of order 2 at the origin. But in
general, things are less clear. Fortunately the following result can be applied to
a lot of functions. We say that f , analytic on the disc |z − a| < r, has a zero of
order n at a if f (k)(a) = 0 for k < n and f (n)(a) 6= 0; equivalently, if f has a Taylor
expansion f(z) =

∑∞
k=n dk(z − a)k, with dn 6= 0. Note that the orders of zeros are,

in principle, easy to calculate by repeated differentiation.

Proposition 1 Let f, g be analytic on the disc |z − a| < r, with zeros of orders
n, m at a respectively. If n < m then f/g (which is analytic for 0 < |z − a| < r)
has a pole of order m− n at a.

Proof. Omitted to keep these notes short, but quite accessible.

Example 2 tan z has a pole of order 1 at π
2
. Indeed, sin π

2
= 1, so sin has a zero

of order 0 at π
2
, i.e. no zero. Meanwhile, cos π

2
= 0 and d

dz
cos z|z=π

2
= −1, so cos

has a zero of order 1 at π
2
. Therefore, tan has a pole of order 1 at π

2
.

Sometimes a function cannot be easily written as f/g with f, g analytic for |z−a| <
r. In this case, it may be necessary to apply a brute force expansion to calculate
the order of the pole.
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3. If (1) and (2) do not hold then, for all n < 0, we can find m ≤ n such that cm 6= 0.
In this case, f has an (isolated) essential singularity at a. The behaviour of f as
z → a is, in this case, extremely wild. For example,

e
1
z = 1 +

1

z
+

1

2!z2
+

1

3!z3
+ . . .

for z 6= 0, has an essential singularity at the origin. As an example of the wildness,
we have the following theorem.

Theorem 3 (Casorati-Weierstrass) Let f have an isolated, essential singularity at
a. Then, given any w ∈ C, there is a sequence zn → a such that f(zn) → w.

The proof of this result is well within the scope of the Complex Analysis course.

Finally, we remark that there is a convenient way of determining the nature of the
singularity at a by finding the limit of f(z) as z → a.

Proposition 4 Let f be analytic on the punctured disc 0 < |z − a| < r. Then

1. f has a removable singularity at a if and only if limz→a f(z) = w for some w ∈ C;

2. f has a pole at a if and only if limz→a f(z) = ∞;

3. f has an essential singularity at a if and only if limz→a f(z) does not exist.

Proof. Exercise.

Example 5 Consider e
1
z , analytic on C\{0}. Since e2niπ = 1 and e(2n+1)iπ = −1 for all

n ∈ N, if we set zn = 1/2niπ and wn = 1/(2n + 1)iπ then zn, wn → 0 and lim e
1

zn = 1

and lim e
1

wn = −1. Hence limz→0 e
1
z does not exist. Thus e

1
z has an essential singularity

at the origin.

In fact, it is easy to see the Casorati-Weierstrass Theorem (Theorem 3) in action in
Example 5. Indeed, take any w ∈ C. If w = 0, set zn = − 1

n
. If w 6= 0 then (by

considering log), there is a ∈ C such that ea = w. Set zn = (a + 2niπ)−1. In both cases,

we have lim e
1

zn = w.

2


