Suppose that f is analytic on the punctured disc $\{z \in \mathbb{C}|0<|z-a|<r\}$. Then it has a Laurent expansion $f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}$, valid for $0<|z-a|<r$. The coefficients c_{n} are unique. Because f is analytic on a punctured disc about a, we say that f has an isolated singularity at a. The nature of this singularity is determined by the coefficients c_{n}. We have three cases:

1. If $c_{n}=0$ for all $n<0$ then f has a removable singularity at a. f may be extended to the full disc by defining $f(a)=c_{0}$. The resulting function $f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$, $0 \leq|z-a|<r$, is analytic on the disc (of course, f may already be analytic on the disc). For example

$$
f(z)=\frac{\sin z}{z}=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\ldots
$$

for $z \neq 0$, can be extended to 0 by defining $f(0)=1$.
2. If there is $n<0$ such that $c_{n} \neq 0$ and $c_{m}=0$ for all $m<n$, then f has a pole at a, of order $-n$. It is important in applications to determine the order of the pole (so that, for example, residues may be calculated properly). While the coefficients in a Taylor expansion $g(z)=\sum_{n=0}^{\infty} d_{n}(z-a)^{n}$ can be found easily in principle (by repeated differentiation, we get $d_{n}=g^{(n)}(a) / n!$), Laurent coefficients can be more elusive.
Sometimes the coefficients are easy to determine. For example

$$
\frac{\sin z}{z^{3}}=\frac{1}{z^{2}}-\frac{1}{3!}+\frac{z^{2}}{5!}-\frac{z^{4}}{7!}+\ldots
$$

for $z \neq 0$, so it is clear that $\sin z / z^{3}$ has a pole of order 2 at the origin. But in general, things are less clear. Fortunately the following result can be applied to a lot of functions. We say that f, analytic on the disc $|z-a|<r$, has a zero of order n at a if $f^{(k)}(a)=0$ for $k<n$ and $f^{(n)}(a) \neq 0$; equivalently, if f has a Taylor expansion $f(z)=\sum_{k=n}^{\infty} d_{k}(z-a)^{k}$, with $d_{n} \neq 0$. Note that the orders of zeros are, in principle, easy to calculate by repeated differentiation.

Proposition 1 Let f, g be analytic on the disc $|z-a|<r$, with zeros of orders n, m at a respectively. If $n<m$ then f / g (which is analytic for $0<|z-a|<r$) has a pole of order $m-n$ at a.

Proof. Omitted to keep these notes short, but quite accessible.
Example $2 \tan z$ has a pole of order 1 at $\frac{\pi}{2}$. Indeed, $\sin \frac{\pi}{2}=1$, so \sin has a zero of order 0 at $\frac{\pi}{2}$, i.e. no zero. Meanwhile, $\cos \frac{\pi}{2}=0$ and $\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} z} \cos z\right|_{z=\frac{\pi}{2}}=-1$, so \cos has a zero of order 1 at $\frac{\pi}{2}$. Therefore, tan has a pole of order 1 at $\frac{\pi}{2}$.

Sometimes a function cannot be easily written as f / g with f, g analytic for $|z-a|<$ r. In this case, it may be necessary to apply a brute force expansion to calculate the order of the pole.
3. If (1) and (2) do not hold then, for all $n<0$, we can find $m \leq n$ such that $c_{m} \neq 0$. In this case, f has an (isolated) essential singularity at a. The behaviour of f as $z \rightarrow a$ is, in this case, extremely wild. For example,

$$
\mathrm{e}^{\frac{1}{z}}=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{3}}+\ldots
$$

for $z \neq 0$, has an essential singularity at the origin. As an example of the wildness, we have the following theorem.

Theorem 3 (Casorati-Weierstrass) Let f have an isolated, essential singularity at a. Then, given any $w \in \mathbb{C}$, there is a sequence $z_{n} \rightarrow a$ such that $f\left(z_{n}\right) \rightarrow w$.

The proof of this result is well within the scope of the Complex Analysis course.
Finally, we remark that there is a convenient way of determining the nature of the singularity at a by finding the limit of $f(z)$ as $z \rightarrow a$.

Proposition 4 Let f be analytic on the punctured disc $0<|z-a|<r$. Then

1. f has a removable singularity at a if and only if $\lim _{z \rightarrow a} f(z)=w$ for some $w \in \mathbb{C}$;
2. f has a pole at a if and only if $\lim _{z \rightarrow a} f(z)=\infty$;
3. f has an essential singularity at a if and only if $\lim _{z \rightarrow a} f(z)$ does not exist.

Proof. Exercise.
Example 5 Consider $\mathrm{e}^{\frac{1}{z}}$, analytic on $\mathbb{C} \backslash\{0\}$. Since $\mathrm{e}^{2 n \mathrm{i} \pi}=1$ and $\mathrm{e}^{(2 n+1) \mathrm{i} \pi}=-1$ for all $n \in \mathbb{N}$, if we set $z_{n}=1 / 2 n \mathrm{i} \pi$ and $w_{n}=1 /(2 n+1) \mathrm{i} \pi$ then $z_{n}, w_{n} \rightarrow 0$ and $\lim \mathrm{e}^{\frac{1}{z_{n}}}=1$ and $\lim \mathrm{e}^{\frac{1}{w_{n}}}=-1$. Hence $\lim _{z \rightarrow 0} \mathrm{e}^{\frac{1}{z}}$ does not exist. Thus $\mathrm{e}^{\frac{1}{z}}$ has an essential singularity at the origin.

In fact, it is easy to see the Casorati-Weierstrass Theorem (Theorem 3) in action in Example 5. Indeed, take any $w \in \mathbb{C}$. If $w=0$, set $z_{n}=-\frac{1}{n}$. If $w \neq 0$ then (by considering \log), there is $a \in \mathbb{C}$ such that $\mathrm{e}^{a}=w$. Set $z_{n}=(a+2 n \mathrm{i} \pi)^{-1}$. In both cases, we have $\lim \mathrm{e}^{\frac{1}{z_{n}}}=w$.

