Suppose that f is analytic on the punctured disc $\{z \in \mathbb{C} \mid 0 < |z-a| < r\}$. Then it has a *Laurent expansion* $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$, valid for 0 < |z-a| < r. The coefficients c_n are unique. Because f is analytic on a punctured disc about a, we say that f has an *isolated singularity* at a. The nature of this singularity is determined by the coefficients c_n . We have three cases:

1. If $c_n = 0$ for all n < 0 then f has a *removable singularity* at a. f may be extended to the full disc by defining $f(a) = c_0$. The resulting function $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$, $0 \le |z-a| < r$, is analytic on the disc (of course, f may already be analytic on the disc). For example

$$f(z) = \frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots$$

for $z \neq 0$, can be extended to 0 by defining f(0) = 1.

2. If there is n < 0 such that $c_n \neq 0$ and $c_m = 0$ for all m < n, then f has a pole at a, of order -n. It is important in applications to determine the order of the pole (so that, for example, residues may be calculated properly). While the coefficients in a Taylor expansion $g(z) = \sum_{n=0}^{\infty} d_n(z-a)^n$ can be found easily in principle (by repeated differentiation, we get $d_n = g^{(n)}(a)/n!$), Laurent coefficients can be more elusive.

Sometimes the coefficients are easy to determine. For example

$$\frac{\sin z}{z^3} = \frac{1}{z^2} - \frac{1}{3!} + \frac{z^2}{5!} - \frac{z^4}{7!} + \dots$$

for $z \neq 0$, so it is clear that $\sin z/z^3$ has a pole of order 2 at the origin. But in general, things are less clear. Fortunately the following result can be applied to a lot of functions. We say that f, analytic on the disc |z - a| < r, has a zero of order n at a if $f^{(k)}(a) = 0$ for k < n and $f^{(n)}(a) \neq 0$; equivalently, if f has a Taylor expansion $f(z) = \sum_{k=n}^{\infty} d_k(z-a)^k$, with $d_n \neq 0$. Note that the orders of zeros are, in principle, easy to calculate by repeated differentiation.

Proposition 1 Let f, g be analytic on the disc |z - a| < r, with zeros of orders n, m at a respectively. If n < m then f/g (which is analytic for 0 < |z - a| < r) has a pole of order m - n at a.

Proof. Omitted to keep these notes short, but quite accessible.

Example 2 tan z has a pole of order 1 at $\frac{\pi}{2}$. Indeed, $\sin \frac{\pi}{2} = 1$, so sin has a zero of order 0 at $\frac{\pi}{2}$, i.e. no zero. Meanwhile, $\cos \frac{\pi}{2} = 0$ and $\frac{d}{dz} \cos z|_{z=\frac{\pi}{2}} = -1$, so cos has a zero of order 1 at $\frac{\pi}{2}$. Therefore, tan has a pole of order 1 at $\frac{\pi}{2}$.

Sometimes a function cannot be easily written as f/g with f, g analytic for |z-a| < r. In this case, it may be necessary to apply a brute force expansion to calculate the order of the pole.

3. If (1) and (2) do not hold then, for all n < 0, we can find $m \le n$ such that $c_m \ne 0$. In this case, f has an (isolated) essential singularity at a. The behaviour of f as $z \rightarrow a$ is, in this case, extremely wild. For example,

$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots$$

for $z \neq 0$, has an essential singularity at the origin. As an example of the wildness, we have the following theorem.

Theorem 3 (Casorati-Weierstrass) Let f have an isolated, essential singularity at a. Then, given any $w \in \mathbb{C}$, there is a sequence $z_n \to a$ such that $f(z_n) \to w$.

The proof of this result is well within the scope of the Complex Analysis course.

Finally, we remark that there is a convenient way of determining the nature of the singularity at a by finding the limit of f(z) as $z \to a$.

Proposition 4 Let f be analytic on the punctured disc 0 < |z - a| < r. Then

- 1. f has a removable singularity at a if and only if $\lim_{z\to a} f(z) = w$ for some $w \in \mathbb{C}$;
- 2. f has a pole at a if and only if $\lim_{z\to a} f(z) = \infty$;
- 3. f has an essential singularity at a if and only if $\lim_{z\to a} f(z)$ does not exist.

Proof. Exercise.

Example 5 Consider $e^{\frac{1}{z}}$, analytic on $\mathbb{C}\setminus\{0\}$. Since $e^{2ni\pi} = 1$ and $e^{(2n+1)i\pi} = -1$ for all $n \in \mathbb{N}$, if we set $z_n = 1/2ni\pi$ and $w_n = 1/(2n+1)i\pi$ then $z_n, w_n \to 0$ and $\lim e^{\frac{1}{z_n}} = 1$ and $\lim e^{\frac{1}{w_n}} = -1$. Hence $\lim_{z\to 0} e^{\frac{1}{z}}$ does not exist. Thus $e^{\frac{1}{z}}$ has an essential singularity at the origin.

In fact, it is easy to see the Casorati-Weierstrass Theorem (Theorem 3) in action in Example 5. Indeed, take any $w \in \mathbb{C}$. If w = 0, set $z_n = -\frac{1}{n}$. If $w \neq 0$ then (by considering log), there is $a \in \mathbb{C}$ such that $e^a = w$. Set $z_n = (a + 2ni\pi)^{-1}$. In both cases, we have $\lim e^{\frac{1}{z_n}} = w$.