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Suppose that f is analytic on the punctured disc {z € C| 0 < |z — a| < r}. Then it has
a Laurent expansion f(z) =Y o~ ¢,(z—a)", valid for 0 < |z —a| < r. The coefficients
¢, are unique. Because f is analytic on a punctured disc about a, we say that f has an
isolated singularity at a. The nature of this singularity is determined by the coefficients

¢,. We have three cases:

1. If ¢, = 0 for all » < 0 then f has a removable singularity at a. f may be extended to
the full disc by defining f(a) = ¢o. The resulting function f(z) => > c,(z —a)",
0 < |z—a| < r, is analytic on the disc (of course, f may already be analytic on the
disc). For example
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for z # 0, can be extended to 0 by defining f(0) = 1.

2. If there is n < 0 such that ¢, # 0 and ¢, = 0 for all m < n, then f has a pole at
a, of order —n. It is important in applications to determine the order of the pole
(so that, for example, residues may be calculated properly). While the coefficients
in a Taylor expansion g(z) = Y~ d,(z — a)" can be found easily in principle (by
repeated differentiation, we get d, = ¢ (a)/n!), Laurent coefficients can be more
elusive.

Sometimes the coefficients are easy to determine. For example

sin z 1 1 22z
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for z # 0, so it is clear that sinz/z® has a pole of order 2 at the origin. But in
general, things are less clear. Fortunately the following result can be applied to
a lot of functions. We say that f, analytic on the disc |z — a| < r, has a zero of
order n at a if f*®)(a) = 0 for k < n and f™(a) # 0; equivalently, if f has a Taylor
expansion f(z) = > r— dp(z —a)*, with d,, # 0. Note that the orders of zeros are,
in principle, easy to calculate by repeated differentiation.

Proposition 1 Let f,g be analytic on the disc |z — a| < r, with zeros of orders
n,m at a respectively. If n < m then f/g (which is analytic for 0 < |z —a| <)
has a pole of order m —n at a.

Proof. Omitted to keep these notes short, but quite accessible. O

Example 2 tanz has a pole of order 1 at 7. Indeed, sin § = 1, so sin has a zero
of order 0 at 7, i.e. no zero. Meanwhile, cos 5 = 0 and %COS z|,_» = —1, so cos
has a zero of order 1 at 7. Therefore, tan has a pole of order 1 at 7.
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Sometimes a function cannot be easily written as f/g with f, g analytic for |z —a| <
r. In this case, it may be necessary to apply a brute force expansion to calculate
the order of the pole.
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3. If (1) and (2) do not hold then, for all n < 0, we can find m < n such that ¢,, # 0.
In this case, f has an (isolated) essential singularity at a. The behaviour of f as
z — a is, in this case, extremely wild. For example,
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for z # 0, has an essential singularity at the origin. As an example of the wildness,
we have the following theorem.

Theorem 3 (Casorati-Weierstrass) Let f have an isolated, essential singularity at
a. Then, given any w € C, there is a sequence z, — a such that f(z,) — w.

The proof of this result is well within the scope of the Complex Analysis course.

Finally, we remark that there is a convenient way of determining the nature of the
singularity at a by finding the limit of f(z) as z — a.

Proposition 4 Let f be analytic on the punctured disc 0 < |z — a| < r. Then
1. f has a removable singularity at a if and only if lim,_., f(z) = w for some w € C;
2. f has a pole at a if and only if lim,_, f(z) = oo;
3. f has an essential singularity at a if and only if lim,_, f(2) does not exist.

Proof. Exercise. O]

Example 5 Consider e, analytic on C\{0}. Since 2" = 1 and e@+Div — _1 for all
n € N, if we set z, = 1/2nir and w,, = 1/(2n + 1)ir then z,,w, — 0 and limes = 1
and lime#s = —1. Hence lim,_ge> does not exist. Thus e* has an essential singularity
at the origin.

In fact, it is easy to see the Casorati-Weierstrass Theorem (Theorem 3) in action in

Example 5. Indeed, take any w € C. If w = 0, set z, = —%. If w # 0 then (by

considering log), there is a € C such that e* = w. Set z, = (a + 2nir)~'. In both cases,
1

we have lim ez = w.



