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Let f have Laurent expansion f(z) => >° _ ¢,(z —a)", valid for 0 < |z — a| < r. The

n=—oo

important coefficient in Cauchy’s Residue Theorem is the residue c_;, because that is
the only one that survives the integration (essentially because

s 2w if n=-1
c 10 if n#£-—1
where C' is the circular contour ¢t — €', 0 < t < 27). As remarked previously, Laurent

coefficients, and hence residues, are not easy to calculate in general. Fortunately, there
are a couple of results that help in a lot of cases.

Proposition 1 Suppose that h and k are analytic on the disc |z —a| < r, with h(a) # 0,
k(a) = 0 and K'(a) # 0. Then f = h/k (which has a pole of order 1) has residue

h(a)/K'(a) at a.
Proof. If f has a pole of order 1 then it can be written
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f) = 3 calz—a)"
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for 0 < |z — a|] < r. Hence lim,_,, f(2)(z — a) = c_1. On the other hand,

h(z)(z—a) _ z—a
e h<z)<k(z)—k(a)>
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as z — a. Hence ¢! = h(a)/K'(a). O

fR)(z—a) =

Example 2 tan has residue —1 at 7.

Proposition 3 Suppose that g is analytic on |z — a| < r, with g(a) # 0. Then

where m > 0 (so has a pole of order m) has residue g™ (a)/(m — 1)!.

Proof. g is analytic so by Taylor’s Theorem, g(z) = >~ d,(z —a)" for [z —a| <r. It
follows (by the uniqueness of Laurent coefficients), that f has Laurent expansion

Z Apim(z —a)"
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for 0 < |z — a| < r. Hence the residue is d,,,_1 = ¢/ Y(a)/(m — 1)\. O
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There will be cases where neither proposition above will apply, for example, if f has an
isolated, essential singularity at a. Direct computation of ¢_; may be necessary. Note
that while essential singularities produce extremely wild behaviour, Cauchy’s Residue
Theorem still applies and residues still exist. For example

has residue 1 at 0, and

/ei dz = 271
c

where C' is the contour t — e, 0 < ¢ < 2r.



